The ∇ Operator

What is a Vector?

If S and S^{\prime} are two sets of Cartesian coordinates sharing a common origin, then vector \mathbf{A}, which has components $A_{\mathrm{x}}, A_{\mathrm{y}}, A_{\mathrm{z}}$ in the S frame has components in the S^{\prime} frame given by

$$
\left(\begin{array}{c}
A_{x^{\prime}} \\
A_{y^{\prime}} \\
A_{z^{\prime}}
\end{array}\right)=\left(\begin{array}{lll}
a_{x x} & a_{x y} & a_{x z} \\
a_{y x} & a_{y y} & a_{y z} \\
a_{z x} & a_{z y} & a_{z z}
\end{array}\right)\left(\begin{array}{c}
A_{x} \\
A_{y} \\
A_{z}
\end{array}\right) .
$$

Where the coefficients $\left\{a_{i j}\right\}$ depend only on the orientation of S^{\prime} with respect to S. If a quantity transforms in this way then it is a vector, otherwise it is not.

The ∇ Operator

If we let $\mathbf{A}=\nabla f$ then provided f is differentiable

$$
A_{x}=\frac{\partial f}{\partial x} \quad \text { and } \quad A_{x^{\prime}}=\frac{\partial f}{\partial x^{\prime}}=a_{x x} \frac{\partial f}{\partial x}+a_{x y} \frac{\partial f}{\partial y}+a_{x z} \frac{\partial f}{\partial z}
$$

with similar result for the other two components so ∇f is certainly a vector. We can also see from this that the components of ∇ which were defined in the S frame are given in the S^{\prime} frame by

$$
\nabla_{x^{\prime}}=\frac{\partial}{\partial x^{\prime}}=a_{x x} \frac{\partial}{\partial x}+a_{x y} \frac{\partial}{\partial y}+a_{x z} \frac{\partial}{\partial z} \quad \text { etc. }
$$

so the operator ∇ transforms in the required way and is, therefore a vector in its own right. However it is also a differential operator and so ∇ must only be used in ways that satisfy simultaneously the rules for manipulating vectors, and of partial differentiation.

