PHY2206 (Electromagnetic Fields) Analytic Solutions to Laplace’s Equation

Analytic Solutions to Laplace’s Equation in 2-D

Cartesian Coordinates

When it works, the easiest way to reduce a partial differential equation to a set of ordinary ones is by
separating the variables
d?X ) d2y

o(x,y)=X(x)Y(y) so — = Y(y)W and FYa = X(x)d—y2
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and since andy are independent, if this is to be true each term must be a constant and therefore

2 2
d—>2(=+)\2X and d—Z:—/\ZY.
dx dy

So the general solutions have the form

Y =acosAy+Bsindy and X =ycoshAx+dsinhAx
with only four of the five constants independent.
Example: Find the potential at an arbitrary point inside a Y

rectangular box of infinite extent in tlzedirection with 1
conducting walls at potentials..V,. 1

Solution: The problem is to choose the value of the
constants in the general solution above such that i
specified boundary conditions are met. Since the principle‘; v,
of superposition applies to solutions of Laplace’s equation
let ¢, be the solution wheX,=V;=V,=0 so - >

D

»(0,y) =V, = y(acosAy +BsinAy) O y#0

@(%,0) =0=a(ycoshAx + sinhAx) O either (y=56=0) or (a =0)
Sincey=pB=0 is a trivial solution set=0 and then

@ (x,b) =0=pBsin(Ab)(ycoshAx + dsinhAx) O A =nr/ b for integer n
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@(0.y) = V1 = vBsing g

which is not satisified by any single valuempfBo use a Fourier series expansion

2
@(0y) = zynsnmgygwhere yn——éj Vi (y) sm gdy
and put it all together so that

e .y X [ [nny
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The procedure is repeated to fipd g, and construct the final answer= ¢, + @, + @ + ¢,.
Although the general solution is simple in Cartesian coordinates, getting it to satisfy the boundary
conditions can be rather tedious.

Cylindrical Polar Coordinates

In cylindrical polar coordinates when there iszriiependencél®e has the form

10 ET&pDJr 1 D&'Z(pD: 0

rorC o0 r2Har?H
Separating variableg = R(r)©(6) so

10 dETd_R _-imed_

rRHar “oHw?H "

where the positive sign of the constaitanticipates the result

2
Dﬁg(} 25: -m’®@ 0 ©= acos(ms)+psin(me)
o

as® must be periodic sm must be an integer.

i ﬁ—RD—mR sotry R= Cr!
dr or 0

and 12cr' =1°R=m?R O |=+m.



PHY2206 (Electromagnetic Fields) Analytic Solutions to Laplace’s Equation

HenceR=yr™+5r ™ is the general form fanz0 and R = a, Inr + 3, whenm=0 and the most
general form of the solution is

o(r,8) = agpInr + g, + Z[(erm + 5mr‘m)(am cos(mé) +,8msin(m0))]
m=1
including a redundant constant.

Example: A long conducting cylinder with its axis along thdirection is placed into a field
E = E,X. Find the resultant potential if the cylinder radiua.is

Solution: Far enough away from the cylinder the field will be unaffected so

as r-oo EoEX so ¢ -Ex=-Eycoq6) O p,=0.

and symmetry about the x-axis implies tig) = —¢( 6) thereforeB,,=0 (for m>0). The increasing
powers ofr would affect the potential at very large distances unjes6 (form>0). The required
form of the potential is therefore

@=day — Eyrcoso + Z?—g‘cos(me)
m=1

where thed,, have been absorbed into e On the surface of the conducting cylinder the potential
must be constant, say,\50

_ = _ [ O < (Am[]
or=a)=V, O 0=(ag-Vp)+ D;l - Epacog(6) + Y Da—nTDcos(mG).
m=2
Since{cos(me)} are linearly independent functions

_ —E a2 _
ap=Vo, 0 =E@%, =0

@(r,0) =V, — Eyr cog(6) + Eoraz cos(6)

=V, + Eoéé—z—r%cos(e).

Complex Variables

A functionf(2) is analytic (also known agegular or holomorphig if, at a pointz,

df = lim f(20+AZ)_f(ZO)

dzZO Az-0 Az

exists and has a single value. The quadiitgan be in any direction in the complex plane. If
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f(2) = f{x+iy) =u(xy) +iv(xy)

then forAz along the real axidz=Ax and

df _ u(x+Ax,y)—u(x,y)+i[v(x+Ax,y)—v(x,y)] au
dz ax-o0 AX OX

but whenAz is along the imaginary axisz=iAy and

df __ou, v
dz gy oy
Equating the real and imaginary parts of these results yields the Cauchy-Riemann equations
ou _ov ou ov
—=— and —=-—
ox oy oy ox

which are both necessary and sufficient conditions for the furfcitobe analytic.

The Cauchy-Riemann equations can be differentiated

d%u _ 0% d%u __ Ay, 2%u _ Ay, d%u _ o
oC axdy N oyax  dNox 2 oxdy o

and adding the results together gives

2 2 2 2
Peetoo w22
d’g _ d°%g . .
because—— = ——= for a continuous functiog(x,y).
oxdy odyox

Thereforeeveryanalytic function provides two solutions to Laplace’s equation in 2-dimensions, and
pairs of such solutions are knowncasjugate harmonitunctions. As the curvas=constant and
v=constant are perpendicular to each other, if one represents a contour of constant potential, then the
other is a flux line of the corresponding electric field. These interesting properties are the basis of
conformal mappingnethods for solving 2-dimensional electrostatic problems. Details are given in
advanced text and reference books such as KJ Binns and PJ Lawrenson (1973) “Analysis and
Computation of Electric and Magnetic Fields Problems” 2nd edn, Pergamon Press.
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