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Small Current-Loops

Vector potential due to a current loop

The magnetic vector potential at a distant point r  due to a current I flowing round a small loop C, is

found by substituting J ′r( )d3 ′r → Id ′r  in the definition of the potential so

A r( ) = µ0I
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d ′r

r − ′rC

⌠
⌡

(1)

which can be approximated by a series in much the same way as was described on the previous

Multipole Expansions handout.
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and since r >> ′r  a simple binomial series will converge rapidly
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where only terms to first order in ′r /r  have been retained, an approximation which requires that the

origin of the primed coordinate system is close to the centre of the loop. Substituting into equation 1
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and the first term of this obviously vanishes. The second term can be rewritten with the help of a

vector identity (VAF-2) which states that

′r × d ′r( ) × r = − ′r r ⋅ d ′r( ) + d ′r ′r ⋅ r( ) (5)

The small change in ′r ′r ⋅ r( ) due to a small change d ′r  in ′r  is

d ′r ′r ⋅ r( )[ ] = ′r r ⋅ d ′r( ) + d ′r ′r ⋅ r( ) (6)

which is an exact differential. After adding equation 6 to equation 5 we find

d ′r ′r ⋅ r( ) = 1
2 ′r × d ′r( ) × r + 1

2 d ′r ′r ⋅ r( )[ ] . (7)

The second term vanishes on integration because it is an exact differential and its integral between two

points is therefore independent of the path, a closed loop in this case, leaving
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so, if the magnetic dipole moment m of the circuit is defined and the higher order terms are dropped

A r( ) = µ0

4π
m × r

r3 where m = I

2
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. (9)

Field due to a current loop

Having found the vector potential its curl can be used to find the field B(r ) due to the current loop

described above. We start by using a vector identity (VAF-15)

B r( ) = ∇ × A r( ) = µ0

4π
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where the two terms in the identity involving ∇ ⋅ m  have been dropped because m doesn’t depend on

the coordinates. The first term is best dealt with by writing it out in component form, which in index

notation and summing over all indices
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and therefore
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The second term of equation 10 is zero, which can be shown by using (VAF-9)
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so, combining all these results
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which is known as the magnetic dipole field because of its similarity to the electric dipole field.
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Scalar potential due to a current loop

In regions of space where the current density is zero the curl of the magnetic field must also be zero so

it can be described by a magnetic scalar potential φm

B = −µ0∇ φm. (15)

Since the divergence of B is also zero φm satisfies Laplace’s equation which means that many results

derived for electrostatics can be reused for magnetostatics. Things are not entirely straightforward as

φm is often not single valued and getting boundary conditions right can be tricky. A simple example is

the scalar potential outside a wire carrying current I, in cylindrical coordinates,

φm = − Iθ
2π

. (16)

By comparing equation 14 with its electrostatic equivalent, the scalar potential of the magnetic dipole

moment m is

φm r( ) = m ⋅r
4πr3 . (17)

This quantity is useful when calculating the field due to large current-loops, which can be represented

as an array of many small loops, and when dealing with problems involving magnetic materials.

Magnetic forces on a small current-loop

To calculate the forces due to an inhomogeneous magnetic field B(r ) on a loop carrying a current I

consider a small rectangular loop of side δx and δy lying in the x–y plane. The net force components

are

Fx = IδyBz x + δx( ) − IδyBz x( ) = Iδy
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where mẑ  is the magnetic dipole moment of the loop. Adding these components together and

generalising for a magnetic moment pointing in an arbitrary direction the net force is

F = m∇ B ⋅ m̂( ) = ∇ B ⋅ m( ) − B ⋅ m̂( )∇ m. (19)

and in the case that m doesn’t depend on the position of the loop, this simplifies and becomes
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F = ∇ m ⋅ B( ) = m ⋅ ∇( )B + m × ∇ × B( ) (20)

Note: Since an electric field E has no curl the equivalent expression for the force on an electrostatic

dipole moment p is

F = ∇ p ⋅ E( ) = p ⋅ ∇( )E . (21)

The torque on the loop when it lies in the x–y plane has components

Γ x = +δxIδyBx = +mzBx Γ y = −δyIδxBy = −mzBy Γ z = 0 (22)

with similar expressions obtained (from symmetric permutations of the coordinates) for the cases

when it lies in the x–z and y–z planes. By considering each of these thre cases as the projection of an

arbitrarily orientated loop the results can be summed to obtain the general expression

Γ x = myBz − mzBy

Γ y = mzBx − mxBz i.e. ΓΓ = m × B

Γ z = mxBy − myBx

. (23)

The results in this section apply to loops of any shape because these can be approximated to arbitrary

accuracy by superpositions of smaller square loops.

Potential energy of a current loop

Since the definition of the potential energy V is that it satisfies F = −∇ V  and equation 20 has exactly

this form the potential energy of the current loop is simply

Vm = −m ⋅ B (24)

This potential must be used with care as it is not the total energy of the current loop because it was

derived subject to the assumption that m is constant and this often not be the case, for example if we

were to move the loop to a position where B was different the Lentz’s law current set up would

change m, and energy would be needed to counteract this and keep m constant.


