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Gauss’s Law

Coulomb’s law states that the electric field E(r) at a point r  due to a charge Q at another point ′r  is

E = Q r − ′r( )
4πε0 r − ′r 3

and the field due to a distribution of charge density ρ ′r( ) is

E r( ) = ρ ′r( ). r − ′r( )d3 ′r
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because the principle of superposition applies to electrostatic fields. So the flux  is
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To deal with this, first consider the integral

I ′r( ) = r − ′r( ) ⋅ dA r( )
r − ′r 3
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For all points outside the surface A the integrand is continuous and, as is easily shown by direct

differentiation, its divergence vanishes so the divergence theorem can be used to prove that

I ′r  outside A( ) = r − ′r( ) ⋅ dA r( )
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However, when ′r  lies inside A the singularity at ′r = r  prevents a similiar conclusion. Instead let

R = r − ′r  and

R̂ ⋅ dA( ) = dAR = R2 sinθ dθ dϕ

then
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from which we deduce Gauss’s law:
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Φ = E ⋅d A
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Applying the divergence theorem to this result

Φ = E ⋅d A
A
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= ∇ ⋅E( )dV
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which is true for all volumes so the integrands must be equal. i.e.

∇ ⋅E( ) = ρ
ε0

which is the differential, or ‘point’, form of Gauss’s law. This is a fundamental result and is always

true providing all the charge is included in the defintion of the charge density.


