PHY2206 (Electromagnetic Fields) Gauss's Law
Gauss’s Law

Coulomb’s law states that the electric fi€l@) at a point due to a charg® at another point’ is
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and the field due to a distribution of charge deng(ty) is
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because the principle of superposition applies to electrostatic fields. So the flux is
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To deal with this, first consider the integral
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For all points outside the surface A the integrand is continuous and, as is easily shown by direct
differentiation, its divergence vanishes so the divergence theorem can be used to prove that
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However, wherr' lies inside A the singularity at =r prevents a similiar conclusion. Instead let
R=r-r"and
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then
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from which we deduce Gauss’s law:
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Applying the divergence theorem to this result
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which is true for all volumes so the integrands must be eiqeial.
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which is the differential, or ‘point’, form of Gauss’s law. This is a fundamental result and is always
true providingall the charge is included in the defintion of the charge density.
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