## Multipole Expansions

The potential $\phi(\mathbf{r})$ due to a distribution of charge density $\rho\left(\mathbf{r}^{\prime}\right)$ within a region V is

$$
\phi(\mathbf{r})=\int_{\mathrm{V}} \frac{\rho\left(\mathbf{r}^{\prime}\right) \mathrm{d}^{3} r^{\prime}}{4 \pi \varepsilon_{0}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

which we wish to approximate by a series. There are several possible useful expansions but since

$$
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}=\frac{1}{r}\left(1+\left(\frac{r^{\prime}}{r}\right)^{2}-\frac{2\left(\mathbf{r} \cdot \mathbf{r}^{\prime}\right)}{r^{2}}\right)^{-1 / 2}
$$

when $r>r^{\prime}$ a simple binomial series will converge:

$$
\begin{aligned}
\frac{1}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}= & \frac{1}{r}\left[1-\frac{1}{2}\left(\frac{r^{\prime 2}}{r^{2}}-\frac{2\left(\mathbf{r} \cdot \mathbf{r}^{\prime}\right)}{r^{2}}\right)+\frac{3}{2} \frac{1}{2} \frac{1}{2!}\left(\frac{r^{\prime 2}}{r^{2}}-\frac{2\left(\mathbf{r} \cdot \mathbf{r}^{\prime}\right)}{r^{2}}\right)^{2}+\cdots\right] \\
& =\frac{1}{r}+\frac{\mathbf{r} \cdot \mathbf{r}^{\prime}}{r^{3}}-\frac{1}{2} \frac{r^{\prime 2}}{r^{3}}+\frac{3}{8 r} \cdot \frac{4\left(\mathbf{r} \cdot \mathbf{r}^{\prime}\right)^{2}}{r^{4}}+\cdots \\
& =\frac{1}{r}+\frac{\mathbf{r} \cdot \mathbf{r}^{\prime}}{r^{3}}+\frac{1}{2 r^{5}}\left[3\left(\mathbf{r} \cdot \mathbf{r}^{\prime}\right)^{2}-(\mathbf{r} \cdot \mathbf{r})\left(\mathbf{r}^{\prime} \cdot \mathbf{r}^{\prime}\right)\right]+\cdots \\
& =\frac{1}{r}+\frac{\mathbf{r} \cdot \mathbf{r}^{\prime}}{r^{3}}+\frac{1}{2 r^{5}} \sum_{i, j=1}^{3} x_{i} x_{j}\left(3 x_{i}^{\prime} x_{j}^{\prime}-\delta_{i j} r^{\prime 2}\right)+\cdots
\end{aligned}
$$

where $x_{i}(i=1,2,3)$ are the Cartesian components of $\mathbf{r}$ and $\delta_{i j}$ is the Dirac delta function. Therefore

$$
\phi(\mathbf{r})=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q}{r}+\frac{\mathbf{r} \cdot \mathbf{p}}{r^{3}}+\frac{\frac{1}{2} \sum_{i j} x_{i} x_{j} Q_{i j}}{r^{5}}+\cdots\right)
$$

where $q$ is the total charge of the source, $\mathbf{p}$ is the dipole moment of the distribution

$$
q=\int_{\mathrm{V}} \rho\left(\mathbf{r}^{\prime}\right) \mathrm{d}^{3} r^{\prime} \quad \text { and } \quad \mathbf{p}=\int_{\mathrm{V}} \mathbf{r}^{\prime} \rho\left(\mathbf{r}^{\prime}\right) \mathrm{d}^{3} r^{\prime}
$$

and the nine elements of $\mathbf{Q}$, the Cartesian quadrupole moment tensor, are defined by

$$
Q_{i j}=\int_{\mathrm{V}} \rho\left(\mathbf{r}^{\prime}\right)\left(3 x_{i}^{\prime} x_{j}^{\prime}-\delta_{i j} r^{\prime 2}\right) \mathrm{d}^{3} r^{\prime}
$$

It is easy to show that

$$
\operatorname{Tr}(\mathbf{Q})=Q_{11}+Q_{22}+Q_{33}=0
$$

Some authors, when the distribution has azimuthal symmetry about the $z$-axis and therefore

$$
Q_{33}=-2 Q_{11}=-2 Q_{22},
$$

refer to $Q_{33}$ as "the quadrupole moment" which can be a little confusing.

## Comments

(i) Note that the expansion is valid only when $\mathbf{r}$ is outside V .
(ii) For large $r$ usually only the first non-zero term is significant.
(iii) The expansion can equally well be made in terms of spherical harmonics.
(iv) The field of a distribution can be reproduced by placing suitably sized multipoles at the origin.
(v) In general the size of the dipole and higher-order terms depend on the position of the origin.

