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Abstract

Following a brief and selective history of elasticity, the general theory of the rôle of relative

sublattice displacements on the elasticity of single-crystalline material is elaborated in Chapter 1.

This involves the definition of (a) rotationally-invariant inner displacements and (b) the internal

strain tensors that relate those inner displacements to the external strain. The total elastic constants

of such materials can then be decomposed into partial and internal parts, the former free of, and

the latter involving, the inner displacement(s). Six families of inner elastic constants are needed to

characterize the internal parts of the second- and third-order constants. The relation of the second-

order inner elastic constants to the longwave coupling constants of lattice dynamics is shown, and

a new form of secular equation for the frequencies and eigenvectors of the optic modes at the zone

centre is given. In Chapter 2 the point-group symmetry implications for the inner elastic constants

are explored in detail.

Chapter 3 is an interlude in which the measurement of the internal strain in cubic diamond is

described.

In Chapters 4 and 5 the general formalism is applied to cubic and hexagonal diamond and to

hexagonal and rhombohedral graphite. Space-group symmetry implications are described in

detail and the formalism is extended to cover effective constants, pressure derivatives, elastic

compliances and compressibilities. The allotropes are treated individually in terms of the Keating

model in the following four Chapters. Cubic diamond is treated in Chapter 6 in terms of the

original model. A shortcoming of the model—non-transferability of its parameters to alternative

descriptions of unit cell geometry—is overcome by redefining both the Keating strain and the

Keating parameters. The modified Keating model is then extended rigorously and successfully

to a non-cubic material, hexagonal graphite, for the first time in Chapter 7. Chapter 8 presents a

completely plausible account of the elasticity and zone-centre optic modes in hexagonal diamond by

transferring the modified parameters from cubic diamond. The little that is known experimentally,

the bulk modulus and three Raman frequencies, is predicted exactly. Chapter 9 extends Keating to

the rhombohedral form of graphite using transferred parameters and provides a detailed picture of

its transformation to cubic diamond. In Chapter 10 the relation of bond-order potentials to the

Keating model is explored.

An Appendix contains a generalised method of homogeneous deformation, developed to

relate the computationally-friendlyinfinitesimal strain approach to the thermodynamically-rigorous

finite strain formalism, and the associated computational protocols needed to determine all elastic

and inner elastic constants, and hence all derived quantities, of the allotropes discussed.
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The writing-up has had to compete with my parallel pursuit of an MA in Creative Writing,

during which I wrote the following poem 1 about my dawning awareness of symmetry:

My Tray

When I was six a student came

to take Miss Steeds’s class

and turned her room

into the Pedlar’s Caravan.

We’d all to bring from home

card, paper, crayons, glue or string

to make the different sorts of thing

the pedlar’d sell.

For me

some cardboard from a pad of forms

(my father’s time-sheets) and coloured,

gummy squares.

I snip

into the corners of the card

and bend the edges up to make a frame.

I cut some pieces, pink and chocolate,

red, green and blue, squares, diamonds,

and stick them on. Each piece to left

is balanced on the right, in colour

and in shape. And pieces up by pieces down.

Turn it right round and it still looks the same.

It is my tray!

Others made plates and cups

and knives and forks, yet those I don’t

recall.

But bright as yesterday

I see my desk, the texture of the tray,

and, above all, its awesome symmetry.

1The Pedlar’s Caravan, in line 4, was a popular children’s poem by the writer William Brighty Rands



Chapter 1

Elasticity

1.1 A little history

This thesis inhabits the region where elasticity and crystallography overlap. These two grand

schemes began, almost simultaneously, in the second half of the 17th century, in a magnificent era

that saw the birth of modern science.

Elasticity has grown from the very first law to be formulated in what is now called solid-state

physics. Robert Hooke, who has been described as ‘Europe’s last Renaissance man and England’s

Leonardo’ [9], originally published his law as a Latin anagram

c e d i i n n o o p s s s t t u u

in A description of Helioscopes and some other Instruments [22, p.32] in 1676. This playful

17th century conceit was a popular way of simultaneously announcing a discovery, establishing

priority and intellectually challenging one’s peers. The solution was published two years later in

De potentia Restitutiva, or of Spring Explaining the Power of Springing Bodies [23, p.5]:

Ut Pondus sic Tensio

As the weight, so the (ex)tension.

A few years later, when there was a better appreciation of the nature of weight and the significance

of the force within the spring, the more familiar form of the law appeared:

Ut Tensio sic Vis

As the (ex)tension, so the force.

In 1669 Niels Steensen, a Dane known as Nicolaus Steno, published a dissertation which

included a detailed study of sections cut from various samples of quartz. This laid the groundwork

for what, nearly a century later, came to be called the Law of Constancy of Angle and is now

seen as a fundamental law of crystallography. Another such, the Law of Rational Indices, was

given by Haüy in 1784. We owe to Haüy the idea that minute, identical building blocks, molécules

intégrantes, underlie the macroscopic forms of crystals. Yet some credit is surely due to Hooke
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also: in his hugely influential study of the microscopic world Micrographia, published in 1665, he

clearly intimates the close-packing of spheres when he writes

There was not any regular Figure, which I have hitherto met withall, of [Metals,

Minerals, Precious Stones, Salts and Earths] that I could not with the composition of

bullets or globules, and one or two other bodies, imitate, even almost by shaking them

together.

The painstaking observation of the morphology of countless specimens by mineralogists and

chemists led to the realization that all crystals could be divided between seven distinct crystal

systems on the basis of the shape of their molécules intégrantes, or unit cells. Then Bravais,

amongst others, showed in 1848 that there were just 14 space lattices into which the unit cells

could be packed. The development of the theory of finite groups confirmed earlier speculation that

crystals could be assigned to just 32 classes, each of which possessed a distinctive point group

formed from the identity and some of the symmetry elements of inversion, rotation and reflection.

The first half of the 19th century saw important conceptual advances in elasticity: the notions

of stress and strain replaced force and extension; and different elastic moduli were associated with

linear, torsional and bulk strains. Three of the French giants of mathematical physics—Navier [32],

Cauchy [8] and Poisson [34]—each derived, independently, general equations governing the equi-

librium and motion of elastic bodies. The resulting classical theory of elasticity was based on the

assumption that bodies were homogeneous and isotropic, the movements of particles within them

were very small, and the relation between stress and strain was linear.

The initial development of the theory was driven by the desire to understand the properties

of the æther, the medium proposed by Fresnel to support the propagation of light. It was the

practical aspect, however, that was seized on by the developers of machines and the designers of

buildings: the understanding of the effects of load and vibration on material bodies, the bending and

twisting of rods, the flexure of plates and the stability of beams. Already the notions of the elastic

limit and of the yield point were showing up the limitations of the linear theory. St. Venant [37]

and Kirchhoff [25] began to study the implications of large strains and laid the foundations of the

non-linear theory of elasticity.

In the same period both Mayer and Joule presented their results on the mechanical equivalent

of heat and Helmholtz asserted that the principle of the conservation of energy had universal

validity and was applicable to all natural phenomena. Thermodynamics was thereby born and

elastic behaviour fell clearly within its scope. Whilst crystallographers were developing a deep

understandingof symmetry through their studies of crystals with exotic optical properties, engineers

and physicists were focused on isotropic material, metals and alloys, and hardly needed anything

more sophisticated than the simple moduli and Poisson’s ratio. Wood was an exception: it was an

important material and clearly had different elastic properties in different directions. It was termed

æolotropic and different moduli were assigned along the grain and across the grain in an idealized
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model, anticipating the correct description of uniaxial material.

The last five years of the 19th century and the first five of the 20th were a miraculous decade

in which X-rays, radioactivity and the electron were discovered, and the foundations of quantum

mechanics and special relativity were laid. The subsequent application of X-ray diffraction,

the establishment of the nuclear atom and the development of wave mechanics brought about a

revolution in understanding the structure of solids. Max Born was a prime mover in this area. As

early as 1915 he had produced a study entitled Dynamik der Kristalgitter followed in 1923 by the

influential Atomtheorie des festen Zustandes. Techniques of summation were developed to compute

the contribution of Coulomb interactions to the cohesive energy of ionic crystals (Madelung 1918).

For non-ionic crystals, where there was no clear-cut potential function, an inductive method was

employed by Lennard-Jones (1924). Initially seeking the form of the molecular force field of

argon atoms to account for the observed viscosity and isotherms of the gaseous phase he was able

to propose a number of models that fitted the data but was unable to discriminate between them.

He then appealed to lattice parameter and compressibility measurements on solid argon and used

functions of the form F (r) = �n=r
n � �m=rm to achieve discrimination. This occurred when n

andm were 15 and 5, i.e. the exponents in what is now called the Lennard-Jones potential were 14

and 4. Much later, in a tribute to the memory of van der Waals (Lennard-Jones 1937), he settled

on 6 for the attractive term, consonant with the theory of the van der Waals interaction, and a range

from 9 to 12 for the repulsive term, dependent on the molecule involved.

Such potentials, with their simple analytical forms, and similar ones involving terms like

A exp(�r=�), became the functions of choice in a wide variety of studies of both perfect crystals

and crystals with defects. In particular Born, with various co-workers, published numerous papers

on the stability of crystals over a period that extended to 1954 when, with Kun Huang, he published

his masterpiece on the thermodynamics of lattices: the Dynamical Theory of Crystal Lattices.

In his Preface Born rebukes crystallographers for their profligate use of the letters of the

alphabet: the Miller indices h, k, l for example use three where a single subscripted letter would

suffice. The antidote of course is to use tensor notation wherever possible. The great scope for this

was almost immediately illustrated in Nye’s Physical Properties of Crystals: their Representation

by Tensors and Matrices which appeared first in 1957 and then in 1985 with corrections and updated

material.

Neither Born and Huang nor Nye however venture into the realm of higher-order elasticity, an

area opened up experimentally by Bridgman’s work on the compressibility of media up to high

pressure (105 atmospheres) and theoretically by Murnaghan in his 1951 book Finite Deformation of

an Elastic Solid. Slightly flawed definitions in the latter were made thermodynamically consistent

by Brugger (1964). For many years second-order elastic constants (SOECs) had been deduced

from the speeds of longitudinal and transverse elastic waves in different crystal directions. In 1965

Brugger published [6] an exhaustive account of how the third-order elastic constants (TOECs)

determine the (small) changes of such speeds under stress for all crystal classes and [7] protocols
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for experiments to determine full sets of TOECs for all crystal classes. Around this time there

was a burst of activity to measure TOECs. The time was ripe for several reasons: high-quality

single crystals of many materials were becoming available; advances in electronics allowed small

changes in the speeds of elastic waves through crystals to be measured accurately; and techniques

for applying uniaxial stresses to crystal samples could be added to those for applying hydrostatic

pressure, thereby generating the number of distinct elastic wave modes needed.

It was at this point that I entered the field, choosing first to work on the theory of the TOECs

of noble metals [10]. Later, after involvement with metals that crystallized in the close-packed

hexagonal structure and which therefore involved internal strain [11, 12, 13, 14, 15, 16], I became

more interested in the formal theory [17, 18]. Now read on.

1.2 Inner elasticity

I introduced the term inner elasticity as the title of [17] to emphasize that the paper concerned the

specific area of elasticity that dealt with the response to deformation of crystals whose structures

contained atoms at sites lacking inversion symmetry. This approach features the specification of

sublattice displacement, inner displacement, internal strain tensors, partial elastic constants

and inner elastic constants. Certain of the inner elastic constants define the frequencies of optic

modes at the zone centre. These may be combined with components of the internal strain tensor to

give the specific contributions to the total elastic constants that are due to the inner displacements.

The earliest works in this area were published between 1954 and 1972 by Born and Huang [3],

Srinivasan [36], Keating [24], Barron, Gibbons and Munn [1] and Fuller and Naimon [20]. A

massive review of developments in lattice theory was presented in 1967 by Ludwig [28]. Because

these different works lacked an agreed nomenclature, and sometimes suffered from an extremely

opaque notation, their most important ideas were frequently ignored in situations where they should

have been invoked: Ludwig, in particular, writes in his Introduction that he has used a different

notation from Anglo-American papers because ‘there is no uniformity in different languages, and

we think [our notation] is the most consistent and unique one’. This curious logic has resulted

in pages where the equations feature symbols bearing two columns of four labels! I addressed

this problem in [17] by proposing nomenclature 1 that was close to that of macroscopic elasticity,

by introducing a rational notation and by treating the subject with complete generality. The

remainder of this chapter gives a condensed summary of that paper with some improvements in

presentation that have arisen as a result of applying the formalism in subsequent years. I eschew

thermodynamic intricacies, ignore external electric and magnetic fields and concentrate on non-
1The nomenclature and notation were first proposed in a post-graduate lecture course on Higher-order Elasticity that

I gave in 1972/3 in the Department of the Structural Properties of Materials at the Technical University of Denmark.

Amongst those presentwas my colleagueJohn Martin who first exposed the formalism publicly in his study of many-body

forces in non-primitive crystals [30], published in 1975.
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piezoelectric crystals. Strains are assumed to be applied isothermally so that the relevant energy

function is the Helmholtz free energy.

As I was, at that time (1976/7), unaware of any treatment of symmetry relevant to the tensors

with which I was concerned I covered the topic myself in [18], which is summarized in Chapter 2.

Subsequently I learnt of Thurston’s article on waves in solids [38] where the effect of symmetry

on a host of material coefficients (elastic, dielectric, piezoelectric, electro-optic etc.) is considered

and the results of a number of authors are collated. These results can be related to mine and are,

with one or two exceptions, completely equivalent to them. The differences are indicated later in

the appropriate place.

1.3 Macroscopic strain

There are two approaches to the definition of macroscopic elastic strain, both involving the notion

of homogeneous deformation. The latter is specified by a deformation gradient matrix H whose

effect is to transform any vector ~r0 in the material into ~r where

~r = H~r0: (1.1)

The first approach, historically, is through the infinitesimal strain matrix � = H � I , where I is the

unit 3�3 matrix, and the second, exploited first by Born in works referred to earlier, is via the finite,

or Lagrangian, strain matrix �, given by 2� + I = H̃H , where the tilde denotes transposition. The

two forms continue to coexist because strains in the first case are more computationally-friendly

when contributions to the energy are not simple analytical functions of interatomic distances or

atomic volume whilst strains in the second case are rotationally-invariant and therefore rigorous

thermodynamically.

Complex treatments of elasticity, via total energy calculations for example, or models in which

many-body terms are introduced to represent bond order, are not easily handled analytically and

usually require the energy to be calculated for a sufficiently large set of deformations and the

results processed by numerical differentiation. Such calculations are most readily handled through

infinitesimal approach and the resulting Fuchs constants [19] converted subsequently to Brugger

constants [5], their finite strain counterparts. This procedure, which is particularly intricate for the

inner elastic constants, has been completely generalized and underlies all the calculations in the

thesis. It is detailed extensively in Appendix A and augmented by a full exposition of computational

procedures of sufficient scope to enable all constants to be computed.

It is the finite strain approach, however, that is followed from a formal point of view. As � is

symmetric the usual Voigt contraction of suffixes has been implemented: the strain represented by

�I where I runs from 1 to 6.
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Figure 1.1: Schematic of occurrence of sublattice displacement

1.4 Microscopic strain

1.4.1 Occurrence and description of sublattice displacement

If each lattice point in a crystal structure is associated with a basis of n distinguishable material

units (atoms, ions, etc.) then the crystal can be considered as n interpenetrating identical sublattices

L1, L2, : : :, Ln. All sites on a given sublattice have the same symmetry but different sublattices

may have different symmetries. The group of point operations that embodies the symmetry of the

environment of sites on L� will be denoted by G�. Compatibility with translational periodicity

constrains G� to be one of the 32 point groups normally encountered in crystal classification.

The occurrence of sublattice displacement is illustrated in Fig. 1.1. This shows schematically the

effect of a homogeneous deformation, represented by the matrixH , on two sublatticesL� and L� .

Fig. 1.1(a) is the situation before deformation. Fig. 1.1(b) shows the effect of H when bothG� and

G� contain the inversion. The crucial rôle of the inversion is easily appreciated: if it is present in

G� then the equivalence of the vectors ~r and�~r with respect to any site onL� prevents the atom at

such a site from being preferentially displaced asymmetrically with respect to the environment. The

same argument applies to the atoms on L� . Since the atoms on L� are part of the environment of

those onL� and conversely, it is a necessary condition for the occurrence of sublattice displacement

that at least one ofG� andG� should lack the inversion. Fig. 1.1(c) shows the situation when both

L� and L� suffer sublattice displacements.
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In the infinitesimal approach atomic positions are given by

~r � = H~r �0 + ~u� (1.2)

where� runs from 1 to n, with ~u� � 0 whenG� contains the inversion. In the finite strain approach

rotational invariance is obtained by redefining the sublattice displacement as ~w � = H̃~u� whence

~r � = H~r �0 + H̃�1 ~w �: (1.3)

The ~w � are not all independent because homogeneous deformation does not shift the centre of

mass. Thus
Pn

1 m
� ~w �=

Pn
1 m

� = 0, where m� is the mass of the atoms on sublattice �.

1.4.2 Inner displacement

Interatomic vectors, rather than individual atomic position vectors, are the entities most intimately

involved in elasticity calculations:

~r � � ~r � = H(~r �0 � ~r �0 ) + H̃�1(~w � � ~w �): (1.4)

The relative sublattice displacements implied are then used to define rotationally-invariant inner

displacement through
~� � = ~w � � ~w � = H̃(~u� � ~u�); (1.5)

where �, the interlattice index, is methodically related to the ordered pair �; �, where � > �, by

� = � + 1
2 (� � �� 1)(2n� � + �): (1.6)

This prescription can be visualized in the following tableau which illustrates the case when n = 6

and locates ~� � at the intersection of the sloping lines that run from a particular ~w � and ~w �.

Table 1.1:

Sublattice displacement

~w 1 ~w 2 ~w 3 ~w 4 ~w 5 ~w 6

~� 1 ~� 2 ~� 3 ~� 4 ~� 5

~� 6 ~� 7 ~� 8 ~� 9

~� 10 ~� 11 ~� 12

~� 13 ~� 14

~� 15

Inner displacement
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It is readily seen that n � 1 of the ~� � at most, those with � � n � 1, are independent. All

the ~� � with � � n can be expressed as sums of consecutive independent ones: for example, in the

tableau above,

~� 11 = ~w 5 � ~w 2 = (~w 3 � ~w 2) + (~w 4 � ~w 3) + (~w 5 � ~w 4) = ~� 2 + ~� 3 + ~� 4: (1.7)

It will prove useful later if this independent set is defined via ~� � = Λ�� ~w � and the (n � 1) � n
rectangular matrix

Λ =

2
66666664

�1 1 � � � � � �
� �1 1 � � � � �
...

...
...

. . .
...

...

� � � � � � 1 �
� � � � � � �1 1

3
77777775
: (1.8)

In certain crystal structures some sublattices, say ni of them, possess inversion symmetry. Two

cases arise: if ni = 1 then there will still be n(n�1)=2 non-zero ~� � of which n�1 are independent

(essentially it makes no difference to the earlier tableau if ~w 6 = 0); if ni � 2 there are m(m� 1)=2

non-zero values of ~� �, some repeated, of whichm� 1 = n�ni are independent. This rather tricky

result is illustrated for the n = 6 case with ni = 2

Table 1.2:

Sublattice displacement

~w 1 ~w 2 ~w 3 ~w 4 ~w 5 = 0 ~w 6 = 0
~� 1 ~� 2 ~� 3 ~� 4 ~� 5 = 0

~� 6 ~� 7 ~� 8 ~� 9 = ~� 4

~� 10 ~� 11 ~� 12 = ~� 8

~� 13 ~� 14 = ~� 11

~� 15 = ~� 13

Inner displacement

1.4.3 Internal strain tensors

Since the inner displacement is the crystal response to homogeneous deformation, the components

of each independent inner displacement vector can be expressed as a Taylor series in the components

of the finite strain:

� �i = A�
iJ�J + 1

2A
�
iJK�J�K + � � � � = 1; 2; : : :m� 1 (1.9)
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where there is no constant term since � �i = 0 when � = 0 and m � 1 = n � 1 if ni = 0; 1 and

m� 1 = n�ni if ni � 2. The coefficientsA�
iJ and A�

iJK are the components of the internal strain

tensors.

Further discussion of internal strain tensors is deferred to Sec. 1.5.4 where their relationship to

the inner elastic constants is set out.

1.5 Energy and elastic constants

An individual contribution to the free energy per unit initial volume of a strained crystal can be

expressed as a Taylor series in the components of � and ~� � as follows:

�0F (��; �) = �0F (0; 0) + C0
I�I +D�

i �
�
i

+ 1
2C

0
IJ�I�J + D�

iJ�
�
i �J + 1

2E
��
ij �

�
i �

�
j (1.10)

+ 1
6C

0
IJK�I�J�K + 1

2D
�
iJK�

�
i �J�K + 1

2E
��
ijK�

�
i �

�
j �K + 1

6F
���
ijk �

�
i �

�
j �

�
k ;

where F (0; 0) is the free energy per unit mass in the unstrained state. Summation over repeated

indices is understood, Greek superscripts run from 1 to m � 1 where m � 1 = n � 1 if ni = 0; 1

or m � 1 = n � ni if ni � 2. If m = 2 the superscripts are all unity and may thus be omitted for

clarity. Lower case Roman subscripts run from 1 to 3, upper case from 1 to 6.

1.5.1 Partial elastic constants

The coefficients C0
I , C0

IJ and C0
IJK are contributions to the partial elastic constants which are

themselves the contributions to the total elastic constants CI , CIJ and CIJK that are independent

of inner displacement.

1.5.2 Inner elastic constants

The tensors characterized by the components D�
i , D�

iJ , D�
iJK , E��

ij , E��
ijK and F���

ijk are the inner

elastic constants. These are all defined in the same way, that is as derivatives of the energy with

respect to strain parameters, thus for example

D�
iJ = �0(@ 2F=@��i @�J )0 (1.11)

where the derivative is evaluated at equilibrium. These definitions are analogous to those of Brugger

for the total elastic constants [5].

The notation for the inner elastic constants is based on the following considerations: (i) the

Cartesian and Voigt subscripts are separated from the interlattice indices as they are different kinds

of label; (ii) the subscript sequence is a useful label when the results of symmetry analysis are

tabulated, as in the following Chapter; (iii) the sequence C,D, E and F for the tensors with 0, 1, 2

and 3 inner displacement components permits different tensor types to be distinguished when the
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subscripts are numerical. Although this is a redundant indication when superscripts are present it

comes into its own when they are absent, which commonly happens when m = 2.

The D�
iJ elements express the strength of the coupling between internal and external strain

and the E��
ij , closely related to lattice-dynamical coupling constants, determine the frequencies,

and sometimes the eigenvectors, of the optic modes at the zone centre. The remaining third-order

constants,D�
iJK , E��

ijK and F���
ijk , are involved in the strain-dependence of various parameters that

would be constant in the harmonic approximation.

1.5.3 External equilibrium of the unstressed crystal

When all contributions� to the free energy have been included in Eq. (1.10) equilibrium conditions

require that the sums of the first-order terms should be zero: CI =
P

�(C0
I )� � 0 and D�

i =P
�(D�

i )� � 0. The total free energy is then a minimum with respect to all possible small

deformations. If these are homogeneous then all the principal minors of CIJ are greater than

zero [3, ch.3]. These conditions guarantee the vanishing of external stress and a positive definite

value for the elastic energy.

The total free energy must also be a minimum with respect to arbitrary spontaneous inner

displacements. From (1.10) it can be seen that the term in E��
ij �

�
i �

�
j must be positive definite.

If this is so there exists a similarity transformation that will diagonalize E�� and render all the

diagonal elements positive. The matrix E�� will therefore be non-singular and will possess an

inverse B�� given by

B�� = (Ẽ��)y=(detE��) (1.12)

where the tilde denotes transposition, the dagger indicates the formation of the adjugate matrix and

det indicates the determinant.

1.5.4 Internal equilibrium of the stressed crystal

The application of a stress to a crystal produces a finite strain and a minimization of the free energy

by inner displacement. Stability of equilibrium against small changes in the components of inner

displacement requires that

�0

�
@F

@��i

�
�

= 0 (1.13)

�0

�
@2F

@�� 2
i

�
�

> 0 (1.14)

and "
�0

�
@2F

@�� 2
i

�
�

#24�0

 
@2F

@�� 2
j

!
�

3
5 >

2
4�0

 
@2F

@��i @�
�
j

!
�

3
5

2

: (1.15)
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The inequalities specialized to the case of vanishing � give

E��
ii > 0 (1.16)

and

E��
ii E

��
jj > (E��

ij )2: (1.17)

Using (1.9) and (1.10) it is seen that (1.13) becomes

D�
i + �I(D

�
iI + E��

ij A
�
jI )

+ 1
2�I�J [D�

iIJ + E��
ij A

�
jIJ + (E��

ijIA
�
jJ + E��

ijJA
�
jI ) + F���

ijk A
�
jIA

�
kJ ] � 0: (1.18)

Since this is true for all � the first term and the coefficients of �I and �I�J must be separately zero:

D�
i = 0 (1.19)

D�
iI + E��

ij A
�
jI = 0 (1.20)

and

D�
iIJ + E��

ij A
�
jIJ + (E��

ijIA
�
jJ + E��

ijJA
�
jI ) + F���

ijk A
�
jIA

�
kJ = 0: (1.21)

Equation (1.20) may be solved for the internal strain tensor by using the inverse defined in (1.12),

giving

A�
iJ = �B��

ip D
�
pJ : (1.22)

Equation (1.21) is formally just as easy to solve despite its apparent complexity. All that is required

is the definition of a composite tensor

G�
iIJ = D�

iIJ + (E��
ijIA

�
jJ + E��

ijJA
�
jI ) + F���

ijk A
�
jIA

�
kJ (1.23)

from which the solution

A�
iJK = �B��

ip G
�
pJK : (1.24)

follows.

1.5.5 Composition of the total elastic constants

Individual contributions to the total elastic constants are obtained from (1.10) by taking total

derivatives with respect to the components of �. The usual Brugger definition of the nth-order

elastic constant may then be generalized to

CIJ:: = �0

�
DnF

D�ID�J ::

�
0

(1.25)
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where

D
D�I

� @

@�I
+
@��i
@�I

@

@��i
summed over � = 1; 2; : : : ; m� 1

� @

@�I
+ (A�

iI + A�
iIP �P + � � �) @

@��i
(1.26)

using (1.9). The contribution to a particular elastic constant is then the sum of terms depending on

the different orders of internal strain. Thus to the second order

CI = C0
I + C1

I

CIJ = C0
IJ + C1

IJ + C2
IJ (1.27)

CIJK = C0
IJK +C1

IJK + C2
IJK

where the first-order internal strain contributions are

C1
I = A�

iID
�
i

C1
IJ = A�

iI (D�
iJ +E��

ij A
�
jJ ) +A�

iJ (D�
iI +E��

ij A
�
jI )�A�

iIA
�
jJE

��
ij (1.28)

C1
IJK = (A�

iID
�
iJK + A�

iJD
�
iIK + A�

iKD
�
iIJ )

+(A�
iIA

�
jJE

��
ijK + A�

iIA
�
jKE

��
ijJ +A�

iJA
�
jKE

��
ijI ) + A�

iIA
�
jJA

�
kKF

���
ijk

and the second-order contributions are

C2
IJ = A�

iIJD
�
i (1.29)

C2
IJK = A�

iIJ (D�
iK + E��

ij A
�
jK) + A�

iIK(D�
iJ +E��

ij A
�
jJ ) + A�

iJK (D�
iI +E��

ij A
�
jI ):

The symmetrized expressions guarantee the equality of total elastic constants that differ only in

the order of their subscripts. Considerable simplification follows the application of the equilibrium

conditions, (1.19) and (1.20). First it can be seen that C2
IJ = C2

IJK = 0 and that the second-order

internal strain has no effect on the elasticity below the fourth order. This conclusion was reached

by Srinivasan in [36] using a central force model and a mixture of infinitesimal and finite strain

parameters. The derivation here involves no assumptions and holds rigorously. Final results for the

composition of the total elastic constants are

CI = C0
I = 0

CIJ = C0
IJ � A�

iIA
�
jJE

��
ij (1.30)

CIJK = C0
IJK + (A�

iID
�
iJK +A�

iJD
�
iIK + A�

iKD
�
iIJ )

+(A�
iIA

�
jJE

��
ijK + A�

iIA
�
jKE

��
ijJ +A�

iJA
�
jKE

��
ijI ) + A�

iIA
�
jJA

�
kKF

���
ijk
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1.6 Compliances and compressibilities

Measurements of lattice parameter and volume change under pressure by means of X-ray or neutron

diffraction may be used to extract elasticity information from crystals too small to subject to more

conventional techniques, such as ultrasonics. The primary quantities obtained are compressibilities.

The compatibility of Hooke’s law extended to terms quadratic in the strain

�I = CIJ�J + 1
2CIJK�J�K (1.31)

with its inverse form

�I = SIJ�J + 1
2SIJK�J�K (1.32)

defines implicitly both second- and third-order elastic compliances. The second-order ones are

given by standard matrix inversion whilst the third-order ones are given by [2, 21]

SIJK = �SIPSJQSKRCPQR: (1.33)

Under hydrostatic pressure �J = �pÆJ , where ÆJ = 1 if J = 1, 2 or 3 and zero otherwise,

whence

�I = �pSIJÆJ + 1
2p

2SIJKÆJÆK

= �kIp + 1
2KIp

2 (1.34)

implicitly defining harmonic and anharmonic linear compressibilities.

1.7 Computational simplification and sublattice tensors

In practical computation it is easy to impose a single sublattice displacement and evaluate the conse-

quences. But a single such displacement automatically activates a number of inner displacements,

as a glance at the illustrative tableaux presented earlier will show, and there is no way to specify

a single inner displacement. It is therefore computationally simpler to introduce sets of sublattice

tensors d, e and f that relate to sublattice displacement in the same way that inner elastic constants

relate to inner displacement:

d�i = �0

�
@F=@w�

i

�
0

d�iJ = �0

�
@2F=@w�

i @�J
�

0

d�iJK = �0

�
@3F=@w�

i @�J@�K
�

0

e��ij = �0

�
@2F=@w�

i @w
�
j

�
0

(1.35)

e��ijK = �0

�
@3F=@w�

i @w
�
j @�K

�
0

f��ijk = �0

�
@3F=@w�

i @w
�
j @w


k

�
0
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where the Greek superscripts take values from 1 to n� ni.
The sublattice tensors are related to the inner elastic constants via chain rule differentiation

with the operator
@

@w�
i

=

 
@��i
@w�

i

!
@

@��i
= Λ̃�� @

@��i
(1.36)

where Λ̃ is the transpose of the matrix defined in (1.8).

The inner elastic constants are then given in terms of sublattice tensors by

D�
��� = �

�X
p=1

dp���

E��
��� =

�X
p=1

�X
q=1

epq��� (1.37)

F���
��� = �

�X
p=1

�X
q=1

�X
r=1

fpqr���

for all valid subscript sequences i, iJ or iJK on d and D; all ij or ijK on e and E, and all ijk on

f and F .

As the n � ni sublattice displacements ~w� are not independent it follows from application of

(1.36) that

n�n
iX

p=1

dp��� = 0

n�n
iX

p=1

e�p��� =

n�n
iX

p=1

ep���� = 0 (1.38)

n�n
iX

p=1

f��p��� =

n�n
iX

p=1

f�p��� =

n�n
iX

p=1

fp���� = 0

for any values of �, � or . The results are true a fortiori for double or triple summations.

It is easily seen that as �, � and � increase the number of terms on the right of (1.37) escalates.

Smaller numbers can be retrieved by combining (1.37) and (1.38) to give alternative, equivalent,

definitions. For example, combining the summations involving � in corresponding tensors gives

D�
��� = +

n�n
iX

p=�+1

dp���

E��
��� = �

n�n
iX

p=�+1

�X
q=1

epq��� (1.39)

F���
��� = +

n�n
iX

p=�+1

�X
q=1

�X
r=1

fpqr��� ;
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where the signs on the right are the opposite of those in (1.37). If the limits on a second superscript

are modified the sign will be reversed again, and so on.

1.8 Lattice dynamical connection

1.8.1 Inner elastic constants and longwave coupling constants

Certain of the inner elastic constants are related to parameters that occur in conventional lattice

dynamics and may be discovered by going to the longwave limit. This is equivalent to considering

the motion of rigid sublattices.

The variables are the displacements ~u� of all n sublattices from their equilibrium positions and

the potential energy per unit initial volume may be written

V = V0 + Φ�
i u

�
i + 1

2 Φ��
ij u

�
i u

�
j + 1

6Φ��
ijk u

�
i u

�
j u


k + � � � �; �;  = 1; 2; : : : ; n (1.40)

where Φ�
i � (@V=@u�i )0 etc., the derivatives being taken at equilibrium. The first step towards the

desired comparison is a change from sublattice variable ~u� to interlattice variables. This is done

by defining n � 1 interlattice displacements ~z � by analogy with the first layer of the scheme in

Table 1.2, but with all displacements non-zero:

~z � = ~u�+1 � ~u� � = 1; 2; : : : ; n� 1 (1.41)

An additional variable is required to produce an invertible transformation between the two ap-

proaches. This is provided by ~z n, the displacement of the centre of mass:

~z n = mp~u p=M (1.42)

where mp is the mass of an atom on sublattice p and M =
Pn

p=1m
p is the mass of the entire basis.

The inverse of the coordinate transformation is then

u�i = Q��z�i �; � = 1; 2; : : : ; n (1.43)

where

Q =

2
6666664

�1 � 1 �2 � 1 � � � �n�1 � 1 1

�1 �2 � 1 � � � �n�1 � 1 1
...

...
...

...
...

�1 �2 � � � �n�1 � 1 1

�1 �2 � � � �n�1 1

3
7777775

(1.44)

is an n� n matrix in which �k =
�Pk

p=1m
p
�
=M .

The corresponding differential operator applied to the potential energy density V gives

@V

@z�i
= Q̃�� @V

@u�i
: (1.45)



1.8 Lattice dynamical connection 28

Because the vibrational energy of a crystal is small compared to its potential energy, the crystal

potential energy density, V , is a good first approximation to the free energy per unit initial volume,

�0F (Wallace 1972, p.60). The displacements ~z � (apart from ~z n) may also be identified with

the ~� � in the absence of finite strain (i.e.H = I) so that if (1.45) is evaluated at equilibrium the

following result is obtained:

D�
i = Q̃��Φ�

i (1.46)

and, by extension,

E��
ij = Q̃��Q̃��Φ��

ij (1.47)

and

F���
ijk = Q̃��Q̃��Q̃�Φ��

ijk (1.48)

where �, � and � run from 1 to n� 1 and �, � and  from 1 to n.

As shown earlier all the D�
i vanish as a result of equilibrium conditions, hence all the Φ�

i in

(1.46) are zero, as would be expected from purely lattice dynamical considerations.

The motion of the centre of mass does not contribute to the potential energy of the crystal so

the remaining constants, implied by the addition of ~z n to the set of variables, all vanish. Thus,

since Q̃n� = 1 for all �,

Dn
i =

X
�

Φ�
i = 0 (1.49)

E�n
ij = Q̃��

0
@X

�

Φ��
ij

1
A = 0 (1.50)

and

F��n
ijk = Q̃��Q̃��

 X


Φ��
ijk

!
= 0; (1.51)

corresponding to standard results on the coupling constants.

1.8.2 The secular equation and optic mode frequencies

The kinetic energy per unit initial volume may be written

T =
1
2
���u̇�i u̇

�
i (1.52)

where ��� is a diagonal density matrix in which ��� is that part of the equilibrium crystal density

due to the atoms on sublattice � [30]. The Lagrangian per unit initial volume in the harmonic

approximation is obtained by subtracting from T the quadratic terms in V . Standard procedures

may then be used to obtain the 3n equationsh
Φ��
ij � !2���Æij

i
u�j = 0: (1.53)

If the left-hand side is premultiplied by Q̃ and ~u is replaced by Q~z the equations become
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h
E��
ij � !2K��Æij

i
z�j = 0 (1.54)

where K = Q̃�Q is a new density matrix (no longer diagonal) and � is a diagonal n � n matrix

given by

� = �0

2
6666664

�1 � � � � � �
� �2 � �1 � � � � �
...

...
...

...
...

� � � � � �n�1 � �n�2 �
� � � � � � 1� �n�1

3
7777775
: (1.55)

These equations have a non-trivial solution only for those values of !2 that satisfy the secular

equation

jE��
ij � !2K��Æij j = 0: (1.56)

In this 3n� 3n determinant !2 no longer occurs along only the main diagonal. There are however

three rows and three columns, corresponding to � = n and � = n which contain zeroes except

where they intersect on the main diagonal where the element �!2Knn (i.e.��0!
2) occurs. These

triply degenerate roots, ! = 0, correspond to the acoustic modes at the zone centre and may be

removed from the determinant leaving a 3(n � 1) � 3(n� 1) secular equation whose eigenvalues

correspond to the longwave limit of the 3(n � 1) optic mode frequencies.

If n > 2 then to each value of !2 there corresponds an eigenvector given by

E��
ij z

�
j = !2K��z�i : (1.57)

If n = 2 the eigenvectors are indeterminate.

1.9 Rationale

This Chapter has been concerned with dressing up some old ideas in new clothing. Vocabulary and

notation, closely related to that of ordinary elasticity, has been introduced in an effort to make the

unity of the subject more readily apparent.

Elastic constant measurements alone reveal nothing of the ‘inner’ aspects of the material.

Fortunately there are various experimental techniques which reveal valuable information. Firstly

the inelastic scattering of X-rays and neutrons, infra-red and Raman spectroscopy, can all be used for

the determination of optic mode frequencies in the longwave limit. Secondly the strain dependence

of the intensity of the elastic scattering of X-rays or neutrons from single crystals can be used

to determine components of the internal strain tensor. After publishing the papers that form the

basis of this and Chapter 2 I led a group specializing in this technique and produced results for

a number of group IV elements and III-V compounds. These are mentioned briefly in Chapter 3

where the method, with specific reference to cubic diamond, is described. Thirdly, access to some
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of the third-order inner elastic constants is possible in principle through the strain dependence of

the above phenomena. It is doubtful if any of the techniques are yet sufficiently accurate to provide

meaningful results, however.
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Chapter 2

Symmetry of inner elastic constants

A space group is an infinite, spatially periodic, arrangement of symmetry elements having the

property that the operation of any particular element carries all the remaining elements into similar

elements. At least one complete sample of the arrangement is contained within a limited region

of space, a unit cell, and points within this region can be specified by coordinates with respect to

some conventionally located reference axes. Every space group has a unique spectrum of sets of

equivalent points (Wyckoff sets) of varying degrees of symmetry. A complete description of all

space groups is given in the encyclopædic International Tables of Crystallography, Volume A, [8].

Conventions for the settings of Cartesian axes with respect to the symmetry elements are given in

Standards on Piezoelectric Crystals, [11], a work that is far more general than its title suggests.

A crystal structure belongs to a particular space group if entire Wyckoff sets are populated by

atoms or ions of the same species. The connection between this description and that in terms of

interpenetrating sublattices is simple: every sublattice corresponds to a distinct point in one of the

occupied sets. By investigating the effect of symmetry operations on individual points the effect

on the sublattices is revealed.

Perfect crystals belong to one of 230 space groups, of which 73 are symmorphic and 157

are non-symmorphic. A space group is said to be symmorphic if, apart from the translations,

the generating symmetry operations leave one common point fixed. Thus only the point-group

operations are permitted: rotations, reflections, inversions and roto-inversions: together with the

identity these form a group of order g

Γ = fA(s)g; (2.1)

where the A(s) are 3 � 3 orthogonal matrices (g in all). Non-symmorphic space groups are those

that possess the space operations of screw axes and/or glide planes. Their symmetry operations are

represented by augmented 4� 4 partitioned matrices which form a group

Γ =
�fA(s)j~t g	 =

("
A(s) ~t

0 1

#)
(2.2)

where ~t is a 3� 1 column vector representing a fractional translation. These operators act on 4� 1

column vectors [~rl=1] in which ordinary lattice vectors ~rl supply the first three elements.
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2.1 Point-group symmetry analysis

As far as material tensors are concerned screw axes and glide planes are invisible. Symmetry

properties are determined by the directions of the axes, not by the precise position of their origin.

In principle the non-zero components of a tensor of rank r and any relations between them are

obtained by invoking the tensor transformation law for every symmetry operator A(s):

Tijk:: = a(s)
ip a

(s)
jq a

(s)
kr ::Tpqr:: (2.3)

where thea(s)
ip etc. are the elements ofA(s) . The transformation law applies to tensors in uncontracted

form. It can be modified provided care is taken. In practice a large number of vanishing components

in the orthorhombic, tetragonal and cubic classes can be inferred by direct inspection. In particular,

if one of the A(s) is the inversion then

Tijk:: = (�1)rTijk:: (2.4)

and tensors of odd rank vanish. Thus, as expected, the d, D, f and F tensors are restricted to the

21 non-centrosymmetric point groups. By their nature the tensors e and E are also limited to these

groups even though in general tensors of even rank can be defined for all 32 point groups. The

rhombohedral and hexagonal classes are rather labour-intensive and, again, require care. Symmetry

analysis and direct inspection methods are fully described in [10] where complete results are given

for the SOECs. These apply equally to the partial elastic constants introduced in the previous

Chapter. Corresponding results for TOECs (and thus for partial TOECs also) are given in [2].

The analysis applies to each distinct sublattice tensor and inner elastic constant and has been

carried out with the results displayed in the following six Tables. With one exception the results

relate to the standard settings of axes set out in [11] and [12]. The exception relates to the point

group 6̄m2 where it was recommended that the 0x1 axis be set parallel to a twofold axis. As I

showed in [4], this violates two principles that underlie the recommendations: in fact the 0x1 axis

should be set perpendicular to a mirror plane m, a rotation of the axes through 30Æ about 0x3.

The maximum number of independent components that may be possessed by a tensor of a

particular form for a particular point group may be found by group-theoretical methods. The

numbers found here agree in all cases with the expectations listed in Table VIII(a) in [1, ch. 7] if

the tensors d�i , d�iJ , d�iJK , e��ij , e��ijK and f��ijk are identified with Properties number 2, 5, 11, 4,

9 and 6 respectively for the cases where �, � and  are all different. If two or more sublattice

indices are equal commutative relations may reduce the number still further. Table 2.7 displays this

information.

The Tables in the compilation of [13] can be compared with the ones presented here after some

minor adjustments, such as symmetrizing the fifth-order polar tensors for comparison with my

Table 2.3. Strangely Thurston’s footnote to his Table 16.5 states that a -30Æ rotation of axes about

0x3 is required for the point groups 3, 32 and 3m as well as 6̄m2 in order to conform to the standards
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Table 2.1: Non-zero components of the tensors d�i and D�
i

Point group i

1 1, 2, 3

m 1, 3

2 2

mm2, 4, 4mm, 3, 3m, 6, 6mm 3

222, 4̄, 4̄2m, 422, 23, 4̄3m, 432, 32, 6̄, 6̄m2, 622 none

Table 2.2: Non-zero components of the tensors d�iJ , D�
iJ and A�

iJ

Point group iJ

1 All 18 possible pairs

m 11, 12, 13, 15, 24, 26, 31, 32, 33, 35

2 14, 16, 21, 22, 23, 25, 34, 36

mm2 15, 24, 31, 32, 33

222 14, 25, 36

4 14=�25, 15=24, 31=32, 33

4̄ 14=25, 15=�24, 31=�32, 36

4mm 15=24, 31=32, 33

4̄2m 14=25, 36

422 14=�25

23, 4̄3m 14=25=36

432 None

3 Sets A, B, C and D (see below)

3m Sets C and D

32 Sets A and B

6 Sets B and C

6̄ Sets A and D

6mm Set C

6̄m2 Set D

622 Set B

Set A 11=�12=�26

Set B 14=�25

Set C 15=24, 31=32, 33

Set D 16=21=�22
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Table 2.3: Non-zero components of the tensors d�iJK , D�
iJK and A�

iJK . Only components with

J � K are shown as d�iJK � d�iKJ etc.

Point group iJK

1 All 63 possible triplets

m Sets A(2), B(1) and B(3) (see below)

2 Sets A(1), A(3) and B(2)

mm2 115, 125, 135, 146, 214, 224, 234, 256,

311, 312, 313, 322, 323, 333, 344, 355, 366

222 114, 124, 134, 156, 215, 225, 235, 246,

316, 326, 336, 345

4 Sets C(�) and D(+), 312, 333, 366

4̄ Sets C(+) and D(�), 336, 345

4mm Set D(+), 312, 333, 366

4̄2m Set C(+), 336, 345

422 Set C(�)

23 Sets E, F and G

4̄3m Sets E, F and G with F=G

432 Sets F and G with F=�G

3 Sets H, I, J and K 6 Sets J and K

3m Sets I and K 6̄ Sets H and I

32 Sets H and J 6mm Set K

6̄m2 Set I

622 Set J

Set A(p) p14, p16, p24, p26, p34, p36, p45, p56

Set B(q) q11, q12, q13, q15, q22, q23, q25, q33, q35, q44, q46, q55, q66

Set C(�) 114=�225, 124=�215, 134=�235, 156=�246, 316=�326

Set D(�) 115=�224, 125=�214, 135=�234, 146=�256, 311=�322, 313=�323, 344=�355

Set E 114=225=336, 156=246=345

Set F 124=235=316

Set G 134=215=326

Set H 111= 1
2f(216)+3(226)g, 112=166= 1

2f226�216g, 122= 1
2f3(216)+(226)g,

113=�123=�236, 144=�155=245, 315=�325=�346

Set I 211= 1
2f(116)+3(126)g, 212=266= 1

2f116�126g, 222=� 1
2f3(116)+(126)g,

213=�223=136, 244=�255=�145, 314=�324=356

Set J 114=�225, 124=�215, 134=�235, 156=�246=�1
2f114�124g

Set K 115=224, 125=214, 135=234, 146=256= 1
2f115�125g,

311=322=312 + 2(366), 313=323, 344=355, 333
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Table 2.4: Non-zero components of the tensors e��ij and E��
ij

Point group ij

1 All 9 possible pairs

m, 2 11, 22, 33, 13, 31

mm2, 222 11, 22, 33

4, 4̄, 3, 6, 6̄ 11=22, 33, 12=�21

4mm, 4̄2m, 422, 32, 3m, 6mm, 6̄m2, 622 11=22, 33

23, 4̄3m, 432 11=22=33

Table 2.5: Non-zero components of the tensors e��ijK and E��
ijK

Point group ijK

1 All 54 possible triplets

m, 2 Sets A(1), A(2), A(3), A(5), B(4) and B(6) (see below)

mm2, 222 111, 112, 113, 221, 222, 223, 331, 332, 333, 126, 135, 216, 234, 315, 324

4, 4̄ Sets C and D

4mm, 4̄2m, 422 Set C

23 Sets E, F, G, H, I

432, 4̄3m Sets E, F, G, H, I with F=G and H=I

3 Sets J, K, L and M

32, 3m Sets J and L

6, 6̄ Sets J and K

6mm, 6̄m2, 622 Set J

Set A(P) 11P, 13P, 22P, 31P, 33P

Set B(Q) 12Q, 21Q, 23Q, 32Q

Set C 111=222, 112=221, 113=223, 126=216, 234=315, 331=332, 333

Set D 116=�226, 121=�212, 122=�211, 123=�213, 134=�235, 314=�325

Set E 111=222=333

Set F 112=223=331

Set G 113=221=332

Set H 126=234=315

Set I 135=216=324

Set J 111=222, 112=221, 126=216= 1
2f111�112g,

113=223, 135=234, 315=324, 331=332, 333

Set K 121=�212, 122=�211, 116=�226= 1
2f122�121g,

123=�213, 134=�235, 314=�325

Set L 114=125=215=�224, 136=231=�232, 316=321=�322

Set M �115=124=214=225, 131=�132=�236, 311=�312=�326
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Table 2.6: Non-zero components of the tensors f��ijk and F���
ijk

Point group ijk

1 All 27 possible triplets

m Sets A(1), A(3) and B(2) (see below)

2 Sets A(2), B(1) and B(3)

mm2 113, 131, 223, 232, 311, 322, 333

222 123, 132, 213, 231, 312, 321

4 Sets C(+) and D(�), 333

4̄ Sets C(�) and D(+)

4mm Set C(+), 333

4̄2m Set D(+)

422 Set D(�)

23 Sets E and F

4̄3m Sets E and F with E=F

432 Sets E and F with E=�F

3 Sets G, H, I and J

3m Sets H and I

32 Sets G and J

6 Sets I and J

6̄ Sets G and H

6mm Set I

6̄m2 Set H

622 Set J

Set A(p) p11, p13, p22, p31, p33

Set B(q) q12, q21, q23, q32

Set C(�) 113=�223, 131=�232, 311=�322

Set D(�) 123=�213, 132=�231, 312=�321

Set E 123=231=312

Set F 132=213=321

Set G �111=122=212=221

Set H 112=121=211=�222

Set I 113=223, 131=232, 311=322, 333

Set J 123=�231, 132=�231, 312=�321
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in [11]. This is incorrect—it restores and compounds the inconsistency that I exposed in [4].

Consistency requires that the non-zero components of a tensor in class 6̄m2 be a subset of those

of the same tensor in class 3m, from which 6̄m2 is derived by the addition of further symmetry

elements. Similar arguments relate 6mm to 3m and 622 to 32. The net conclusion is that the

results for the point groups 3 and 6̄m2 are correctly given but that two sets of non-zero components

should be exchanged between 32 and 3m, namely sets I and H in Table 2.3. Thurston’s results for

a third-rank polar tensor in his Table 16.3 is marred only by the 6̄m2 problem–the matrix should

have its upper and middle rows interchanged.

Table 2.7: Total number of independent elements for each tensor by crystal class.

Point d�i d�iJ d�iJK e��ij e��ijK f��ijk

group D�
i A�

iJ , D�
iJ A�

iJK , D�
iJK E��

ij E��
ijK F���

ijk

1 3 18 63 9 54 27

m 2 10 34 5 28 14

2 1 8 29 5 28 13

mm2 1 5 17 3 15 7

222 0 3 12 3 15 6

4 1 4 15 3 14 7

4̄ 0 4 14 3 14 6

4mm 1 3 10 2 8 4

4̄2m 0 2 7 2 8 3

422 0 1 5 2 8 3

23 0 1 4 1 5 2

4̄3m 0 1 3 1 3 1

432 0 0 1 1 3 1

3 1 6 21 3 18 9

3m 1 4 13 2 10 5

32 0 2 8 2 10 4

6 1 4 11 3 12 7

6̄ 0 2 10 3 12 2

6mm 1 3 8 2 7 4

6̄m2 0 1 5 2 7 1

622 0 1 3 2 7 3

In Appendix B are listed the transformation matrices that convert tensor components from the

standard settings in the above Tables to the variant settings most commonly encountered.
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2.2 Transformation of sublattice indices

So far the structure of the tensors has been elucidated in a macroscopic spirit—i.e. without regard

for the effect of space group operations on the sublattice indices or interlattice indices. When these

microscopic considerations are taken into account they lead, if n > 2, to further simplification.

For this purpose the sublattice indices 1 to n are allotted to the different atoms in the basis. This

procedure is arbitrary but can at least be made methodical by numbering all the atoms in a particular

Wyckoff set sequentially and, if appropriate, by taking the least populated Wyckoff sets first. As

an illustration here are the assignments for the hexagonal allotropes of diamond and graphite. In

both cases the space group is P63=mmc and the hexagonal unit cell is defined by the three vectors

~a1 = a[1; 0; 0],~a2 = a[� 1
2 ;

p
3

2 ; 0] and ~a3 = c[0; 0; 1], where a and c are the lattice parameters.

Table 2.8: Assignment of sublattice indices to the atomic sites in the hexagonal

allotropes. The colon separates the non-equivalent pairs in hG.

Structure Wyckoff Site Atomic coordinates at sublattice number

sets symmetry 1 2 3 4

hD f 3m ( 1
3

2
3 z) ( 2

3
1
3 z̄) ( 1

3
2
3

1
2 � z) ( 2

3
1
3

1
2 + z)

hG d : b 6̄m2 (1
3

2
3

3
4 ) ( 2

3
1
3

1
4 ) : (0 0 3

4 ) (0 0 1
4 )

There is in group theory a theorem [9] which asserts that every finite group is isomorphic

with a suitable group of permutations1. In the present context the group of point operations that

transform the various atoms into one another is precisely matched by the group of permutations of

the associated sublattice indices. The following Table, brought forward from Chapter 4, illustrates

this for the hexagonal allotropes. The space group is of order 24 and for hexagonal diamond there

Table 2.9: Permutations of sublattice indices corresponding to spacegroup symmetry operations

for the hexagonal structures. ~t is the fractional translation column vector [0=0= 1
2 ].

Symmetry operations in Subgroup Permutations

space group P63=mmc with row 1 hD hG

f1j0g f3+j0g f3�j0g fmj0g fm0j0g fm00j0g R3m (1)(2)(3)(4) (1)(2) : (3)(4)

fij0g f3̄+j0g f3̄�j0g f2j0g f20j0g f200j0g P 3̄m1 (12)(34) (12) : (34)

f2z j~t g f6+j~t g f6�j~t g fcj~t g fc0j~t g fc00j~t g P63mc (14)(23) (12) : (34)

fmz j~t g f6̄+j~t g f6̄�j~t g f2Æj~t g f20j~t g f200j~t g P 6̄m2 (13)(24) (1)(2) : (3)(4)

1In fact I discovered this for myself and excitedly reported it to the number theorist Bob Odoni over the snooker table

one lunchtime. I had rather mixed feelings on being told that Cayley (1854) had preceded me by more than a century!
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is a single Wyckoff set of 4 atoms. The identity and 5 other operations do not permute the

indices. This is represented by enclosing each index singly in parentheses. A coset of 6 operations

interchanges sublattices 1 and 2 and, simultaneously, 3 and 4. Two further cosets behave similarly.

The hexagonal graphite structure has two Wyckoff sets of 2 atoms. The identity and 11 other

elements produce no permutation whilst the coset of 12 elements permutes each pair. The sequence

of indices within parentheses is termed a cycle.

2.3 Transformation of interlattice indices

To avoid unnecessary complexity it will be assumed from here on that no sublattice sites possess

inversion symmetry.

In a structure formed from n sublattices there are n(n � 1)=2 interlattice indices relating the

sublattices in pairs of which n�1 at most are needed to label independent tensors. This conclusion,

from Chapter 1, can only be arrived at in the general case by detailed analysis. The simplest way

to approach the issue is to use triangular tableaux again, rather than the complicated mesh of semi-

circles used in [5]. A scheme for the indices when n = 4 is set out in Table 2.10. In the upper left

tableau the assignments follow the prescription of the definition of inner displacement in Chapter 1.

The other three tableaux illustrate the effect of the permutations shown, and correspond to the

symmetry operations of Table 2.9: the pair on the left representing hG and all four representing hD.

Certain of the indices are shown barred indicating the polar character of the index assignment: thus
~� 4 which is defined as ~w 3 � ~w 1 initially is equivalent to ~w 2 � ~w 4 via the permutation (14)(23),

i.e. to �~� 5. This can be written as ~� 5̄ in the spirit of crystallographic practice.

Table 2.10: Allocation of interlattice indices and the effect on them of the permutations indicated

hD and hG hD

(1)(2)(3)(4) (14)(23)

1 2 3 4 4 3 2 1

1 2 3 3̄ 2̄ 1̄

4 5 5̄ 4̄

6 6̄

(12)(34) (13)(24)

2 1 4 3 3 4 1 2

1̄ 6 3̄ 3 6̄ 1

5 4 4̄ 5̄

2 2̄
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2.3.1 Indices connecting sublattices in distinct Wyckoff sets

Pairs of sublattice indices taken one from each of two Wyckoff sets u and v give rise to nunv
interlattice indices.

The effect of a symmetry operation on an interlattice index � is completely determined by the

simultaneous permutations of the sublattice indices ui and vp. Consider first the case where u and

v are distinct (although they may be of the same type). Denoting the space group and its order

by Γ and  respectively it can readily be seen that a subgroup Uii of Γ, of order =nu, exists that

leaves ui invariant. The elements of this subgroup are those whose equivalent permutations contain

ui in cycles of unit order, i.e. (ui). The remaining elements of Γ can be grouped into nu � 1

cosets Uij , also of =nu elements, that transform ui into uj . The elements of these cosets are those

whose permutations contain cycles in which ui is followed immediately by uj (including cycles

that commence with uj and end with ui). Similarly Γ can be decomposed into a subgroup Vpp, of

order =nv, that leaves vp invariant and nv � 1 cosets Vpq that transform vp into vq.

The two sublattice indices ui and vp and their associated interlattice index � are left invariant

by a subgroupG� of Γ, of order g�, consisting of those elements common to Uii and Vpp: thus

G� = Uii \ Vpp (2.5)

and

1 � g� � min(=nu; =nv) (2.6)

since G� certainly contains the identity but no more elements than are present in the smaller

subgroup. G� is called the stabilizer of �.

The non-zero components of tensors carrying a single index � and any relations between them

are given by considering the set of equations, one for each element in G�, of the form

T�
ijk:: = a(s)

ip a
(s)
jq a

(s)
kr ::T

�
pqr:: (2.7)

where the a(s)
ip etc. are elements of the point operation in Γs. This procedure defines nunv tensors

of a given kind. Except in the simplest structures many of these tensors are interdependent, being

related by those elements of Γ that change the interlattice indices. Let �0 be the index that relates

the sublattices uj and vq. Then � is transformed into �0 by the elements that are common to the

cosets Uij and Vpq: if this set is denoted by H��0 then

H��0 = Uij \ Vpq (2.8)

with the proviso that j = i and q = p are not taken together. If this is not an empty set the the tensor

with index �0 is totally determined by that with index � according to

T�0
ijk:: = a(s)

ip a
(s)
jq a

(s)
kr ::T

�
pqr:: (2.9)
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where the a(s)
ip etc. are elements of any one point operation in H��0. If the set is empty the two

tensors are independent.

To determine the precise number, puv , of independent tensors of a given kind it is necessary

to decompose the set of interlattice indices into mutually exclusive subsets, each subset containing

a complete collection of related indices. The number of these subsets is the number sought. A

particular subset containing � is called the orbit of � under Γ and is denoted byO�. If the number

of elements in O� is o� the it can be shown that

o� = =g� (2.10)

[7, p.63]. A preliminary look at the bounds of puv is instructive. The bounds on g� given in (2.6)

can be inserted into (2.10) to give

max(nu; nv) � o� � : (2.11)

Now
P
o� = nunv , so upper and lower bounds on puv will be obtained by assuming orbits of equal

size, each containing either the upper or the lower bound of o�. This yields

nunv= � puv � min(nu; nv): (2.12)

Two definite conclusions may be drawn from (2.12): (i) if the set v is a general set (i.e. has as

many elements as the order of the group) then nv =  and puv = nu and (ii) if the set u consists of

a single member then puv = 1 irrespective of nv .

The exact value of puv can be determined using a matrix representation of the permutations.

Let Pu(Γs) be an nu � nu matrix with units in positions (i; j) if Γs carries ui into uj and zeroes

elsewhere. The character �u(Γs) of the matrix is given by

�u(Γs) = trPu(Γs) (2.13)

and a theorem of Frobenius and Burnside states that the number of orbits of ui is given by

qu =
1


X
Γ
s
2Γ

�u(Γs): (2.14)

The permutations of a second Wyckoff set v can be represented in a similar way in terms of the

nv � nv matrices Pv(Γs).
These two representations of Γ may be used to create a third by forming the tensor product of

Pu(Γs) and Pv(Γs). This defines an nunv � nunv matrix of which a specific element is given by

(Puv(Γs))(i;p);(j;q) = (Pu(Γs))ij(Pu(Γs))pq: (2.15)

This new representation reveals the behaviour of the ordered pair (ui; vj) under the operation Γs,
and thus the behaviour of the interlattice index � corresponding to that pair. The number of orbits

of � is given by (2.14):

puv =
1


X
Γ
s
2Γ

�uv(Γs): (2.16)
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It follows from (2.15), by setting j = i and q = p and then summing over i and p, that

trPuv(Γs) = trPu(Γs):trPv(Γs) (2.17)

so that, by (2.13),

�uv(Γs) = �u(Γs)�v(Γs) (2.18)

and finally, by (2.16)

puv =
1


X
Γ
s
2Γ

�u(Γs)�v(Γs): (2.19)

If the set u and v are both of the same kind, say u, then (2.19) becomes

puu =
1


X
Γ
s
2Γ

�2
u(Γs): (2.20)

2.3.2 Indices connecting sublattices within a single Wyckoff set

With some modification the above arguments can be used for the case where the interlattice indices

relate to sublattice indices from the same Wyckoff set. Firstly there are no indices relating a

sublattice to itself, so the n2
u intersections obtained by setting Vpp = Upp in (2.5) are reduced by

nu, since the nu cases in which p = i must be excluded. Secondly, because of the polar nature of

the definition of inner displacement briefly noted in Section 2.3, the remaining nu(nu � 1) fall into

two equal groups—the set f�g and the set f�̄g. Tensors labelled with an odd number of indices

are related by

T �̄
ijk:: = �T�

ijk:: (2.21)

and clearly only one member of each �/�̄ pair is required, reducing the number of interlattice

indices to nu(nu � 1)=2.

Analogous to (2.5) the stabilizers of � and �̄ are given by

G� = G�̄ = Uii \ Upp (2.22)

with

1 � g� = g�̄ � =nu (2.23)

and the tensors carrying a single interlattice index have the form derived by applying (2.7) as before.

A systematic set of �, all positive integers, is implicit in the definition of inner displacement.

This does not however eliminate the set of �̄ from the problem because all symmetry operations

not contained in Uii transform some �s into �̄s. This is easily shown by looking at the permutation

corresponding to such a symmetry operation. It contains at least one cycle of length greater than

unity and in this cycle there is a largest sublattice index, say `. Suppose that ` is flanked by x and

y so the cycle contains the sequence (::x`y::). The symmetry operation will convert the interlattice
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index related to x and `, which will be of �-type because x < `, into that related to ` and y, which

will be of �̄-type since ` > y. Equation (2.8) now gives rise to two possibilities:

H��0 = H �̄�̄0 = Uij \ Upq (2.24)

in cases where i < p, j < q and the simultaneous equalities i = j and p = q are rejected and

H��̄0 = H �̄�0 = Uij \ Upq (2.25)

in cases where i < p and j > q. Corresponding to the non-empty sets of (2.25) the transformation

(2.9) relating T�0
ijk:: to T�

pqr:: can be modified by (2.21) to give

T�0
ijk:: = �a(s)

ip a
(s)
jq a

(s)
kr ::T

�
pqr::: (2.26)

Thus a transformation from � to �̄0 is equivalent to one from � to �0 combined with a change of

sign.

All the orbits of � certainly contain both barred and unbarred indices so it follows that the

number, pu, of independent interlattice indices can be obtained from (2.12) by setting nv = nu and

removing unity from both bounds, one orbit disappearing because no sublattice is displaced relative

to itself. Thus

(n2
u=)� 1 � pu � nu � 1: (2.27)

Two definite conclusions may be drawn from (2.27): (i) that pu =  � 1 if u is a general set and

(ii) that pu = 1 if nu = 2. The exact expression follows from the results (2.14) and (2.20) using the

matrix representation of permutations:

pu = puu � qu =
1


X
Γ
s
2Γ

(�2
u(Γs) � �u(Γs)): (2.28)

2.4 In conclusion

General results in the manner of those for point group symmetry are not possible for the interlattice

indices. Even with the same space group and the same number of atoms in the basis the outcomes

for two different crystals can be very different.

Thus, referring to hG in Table 2.9, it can be seen that �d(Γs) = �b(Γs) = 2 for the six Γs in row

1 and the six in row 4. Since  = 24 (2.19) reveals a single orbit of pdb = 2 elements (� = 2 or 6

and � = 4 or 5), and (2.28) reveals two orbits of pd = pb = 1 element each (� = 1) and (� = 3).

The results for hD are �f (Γs) = 4 for just the six Γs in row 1, and there is a single orbit with

pf = 3 elements (� = 1 or 3, � = 2 or 6 and � = 4 or 5).
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Chapter 3

Experimental interlude: the internal strain parameter of cubic

diamond

3.1 Introduction

Inner displacement ceased to be an abstruse theoretical concept when Kleinman delivered a paper

entitled Covalent bonding in semiconductors to the 1962 Conference on Semiconductors held

appropriately, but before my time, at Exeter. He drew attention to some problems relating to energy

band calculations and covalency in silicon under uniaxial stress in the [111] direction [11]. The

central atom in each tetrahedral group may participate in bond-bending with minimal stretching,

bond-stretching with minimal bending or in something in between. Since the central atom moves

along the body-diagonal of the cube to an extent not controlled by macroscopic elasticity he

suggested that the displacement be measured by looking at the X-ray structure factor of the 200

reflection under stress. For a strain � = 0:003 he predicted F200 � 0:04�K where 0 � �K � 1, an

easily measurable structure factor. �K has ever since been known as the Kleinman internal strain

parameter. Experimental work was quickly undertaken and results announced for germanium [18]

and silicon [19]. Additional analysis was provided in [20]. No further work was published for ten

years when two papers on GaAs appeared [12, 13]. What seemed a reasonable result I realized later,

after developing a detailed theory for zincblende-structure material, to be totally unreliable [1].

It was in 1980 that I set up the group1 that made, as far as I know, all but one of the subsequent

internal strain parameter measurements so far published: Si [2, 4], Ge [3, 4], GaAs [5], cD [6]

and InSb [7]. The exception was the Si measurement of d’Amour et al. [9] which appeared

simultaneously with ours. All these materials had either the diamond or the zincblende structure:

simple high-symmetry structures with only two atoms in the basis and a single internal strain

tensor with one independent component. All the measurements were difficult and it was due to

my obsession with sublattice displacement that they were undertaken. Si and Ge were certainly

the easiest because large, high-quality single crystals could be obtained. GaAs and InSb were
1My co-workers for some or all of the time were Brian Sheldon and Roy Meads at Exeter, Leif Gerward and Birger

Selsmark at the Technical University of Denmark and Janus Staun Olsen of the Ørsted Institute, Copenhagen University
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more difficult because they were brittler and thus less able to sustain sufficiently large stress. The

problem with cD was its very small X-ray form factor (a neutron diffraction method would have

been much better) and an internal strain predicted to be about six times smaller than Si or Ge:

nevertheless we succeeded.

In fact cD is the only one of the allotropes under discussion whose internal strain tensor could

have been determined. The following account illustrates the principles of how it was done but

without including the more mundane theoretical and experimental details.

3.2 Inner displacement due to uniaxial stress

At the level of experiment the distinction between the infinitesimal and the finite strain approaches

vanishes. Equation (1.9) can thus be shorn of superscripts and higher-order terms to give

Æi = AiJ�J : (3.1)

Hooke’s law in its simplest manifestation is

�J = SJK�K (3.2)

whence

Æi = AiJSJK�K : (3.3)

The forms of A and S for cD are

A =

2
64

0 0 0 A14 0 0

0 0 0 0 A14 0

0 0 0 0 0 A14

3
75 (3.4)

and

S =

2
6666666664

S11 S12 S12 0 0 0

S12 S11 S12 0 0 0

S12 S12 S11 0 0 0

0 0 0 S44 0 0

0 0 0 0 S44 0

0 0 0 0 0 S44

3
7777777775
: (3.5)

The components of a stress of magnitude � parallel to the unit vector ~̀ = [`1; `2; `3] are given by

�K = `i`j�; (3.6)

where ij is the Voigt contraction of K and where � is positive for a tensile stress and negative for

a compressive one. Combining (3.4), (3.5) and (3.6) converts (3.3) into2
64
Æ1

Æ2

Æ3

3
75 = A14S44�

2
64
`2`3

`3`1

`1`2

3
75 : (3.7)
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This equation is deceptively simple and its interpretation is not intuitive. If the stress axis is parallel

to a 4̄ axis then two of the `i are zero and ~Æ = 0. If just one of the `i is zero then ~Æ:~̀ = 0 and

the inner displacement is perpendicular to the stress axis and maximizes if the non-zero direction

cosines are each of magnitude 1=
p

2. If none of the `i is zero then ~Æ:~̀ = 3A14S44�`1`2`3 which

is maximized simultaneously with j~Æj if the magnitudes of the `i are each 1=
p

3. These different

situations are illustrated in the following Figure.

(a)

1

1
1

1

2

(b)

1

1
1

1

2

(c)

1

1
1

1

2

Figure 3.1: The inner displacement of the central atom in the tetrahedral cluster induced by uniaxial

stresses along different axes. (a) � k [001], ~Æ = 0; (b) � k [11̄0], ~Æ k [001]; (c) � k [111], ~Æ k [111].

The displacement of atoms on sublattice 2 relative to those on sublattice 1 due to the application

of uniaxial stress is thus given by

ui = �ijRj + Æi (3.8)

where ~R is the vector from an atom on 1 to an atom on 2.

3.3 Change in structure factor due to inner displacement

The internal strain parameters are obtained from intensity measurements of X-ray reflections.

Because the crystal is under stress the appropriate diffraction theory is the ‘kinematic’ theory in

which reflection intensity is proportional to the square of the structure factor.

The X-ray structure factor for Bragg diffraction from planes whose reflection vector is ~H is

FH = f [1 + exp(2�i ~H:~R)]; (3.9)

where ~R = (a=4)[1 1 1] is the position vector of the second carbon atom in the basis relative to the

first and f is the atomic scattering factor of a carbon atom.

In the conventional cubic description the components (h; k; `) in ~H = (1=a)(h; k; `) must be all

odd or all even and the square of the structure factor becomes

jFH j20 = 32f 2(1 + cos�H ); (3.10)

where

�H = 2� ~H:~R =
�

2
(h + k + `) (3.11)
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and the subscript zero denotes the unstrained crystal.

If the crystal is strained ~R undergoes a change due to the macroscopic deformation and an

additional change due to inner displacement. The first of these effectively cancels with the covariant

deformation of ~H and (3.10) is replaced by

jFH j2� = 32f 2[1 + cos(�H +  H)]; (3.12)

where

 H(�; `) = 2� ~H:~Æ =
2�
a
A14S44�(h`2`3 + k`3`1 + ``1`2): (3.13)

The effect of inner displacement on the square of the structure factor is presented, to lowest order,

in Table 3.1.

Table 3.1: Effect of stress on structure factor

Reflection type Unstressed Stressed

h + k + ` jFH=8f j20 jFH=8f j2� � jFH=8f j20 ∆I=I0

4n 1 � 2
H=4 � 2

H=4

4n + 1 1
2 � H=2 � H

4n + 2 0  2
H=4

4n + 3 1
2  H=2  H

It can be seen that the allowed reflections show varying behaviour: the fractional intensity

changes are linear in  H for the (4n+ 1)- and (4n+ 3)-type reflections but are opposite in direction.

For the 4n-type the fractional change is quadratic in  H and probably very difficult to detect. Two

kinds of (4n+2)-type reflection may be distinguished: if each ofh, k and ` is of the form (4n+2) the

reflection is forbidden if the atoms are spherically symmetric and vibrate harmonically, otherwise

it is weak. Such is the case for the 222 reflection in cD where tetrahedral symmetry induces

asphericity and appreciable anharmonicity is present. If only one of h, k or ` is (4n + 2)-type and

the others are 4n-type, then space group symmetry forbids the reflection strictly. The 002 and 006

reflections are in this category. If stress is applied suitably these reflections are weakly induced

with an intensity that varies quadratically with  H .

In a nutshell the internal strain parameter is obtained from the stress-dependence of the inten-

sities, Iw and Is, of a weak reflection and a strong reflection. For cD the 006 and 008 reflections

were used and the parameter obtained from

A14 /
a

3�S44

p
I�s

d
p
Iw

d�
; (3.14)

where a multiplier involving temperature factors, X-ray polarization, mass attenuation coefficient

and other configuration-dependent parameters is needed to produce equality and I�s is a limiting

high-stress value.
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3.4 X-ray methods

The original experiments [18, 19, 9] on Si and Ge used characteristic K� radiation from conven-

tional X-ray tubes. This is the angle-dispersive method and requires sample rotation between the

measurements of the two reflections. There is thus the danger that the two reflections are actually

from slightly different regions of the crystal and therefore sample different conditions of crystal

quality. This particular problem is avoided if the energy-dispersive method is used. The full

Bremsstrahlung distribution from the tube is used and the crystal reflects those energies in the

beam that satisfy the Bragg law for the working angle selected. Diffracted beams are collected by

a solid-state detector and the constituent photons sorted by energy into a multi-channel analyzer.

Typically a 40 keV range of photons will be divided with near-perfect linearity between 2048

channels. Thus a series of harmonics may be obtained together: the 0 0 2n reflections at photon

energies En given by

En = n
hc

2d002 sin�
: (3.15)

All my group’s measurements were made this way except for cD. The very small atomic scattering

factor of carbon and the anticipated small internal strain made it desirable to use synchrotron

radiation. Experiments were carried out on Station 9.1 of the Synchrotron Radiation Source at

Daresbury and on the Energy-Dispersive Scattering Station at HASYLAB-DESY in Hamburg. The

details that follow relate to the latter source.

3.5 Experimental details

A series of horizontal and vertical slits limit the cross-section of the horizontally-polarized syn-

chrotron radiation (SR) to a 100� 100�m2 square.

MSR

C
A

IC

SSD
MCA

Figure 3.2: The layout of the components in the determination of the internal strain parameter of

cD.
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An ionization chamber (IC) is used to monitor the incident beam intensity and the diffracted

radiation is collected by a solid-state detector (SSD) linked to a multi-channel analyzer (MCA). The

sample (C) is held between the anvils (A) of the press in the configuration of Figure 3.1(b), turned

so that the stress axis [11̄0] is vertical and the 0 0 2n reflection vectors are horizontal. Transmission

geometry was used so that errors due to surface distortion were minimized if not eliminated. The

function of the mirror (M) is explained below.

3.5.1 Sample

This was a type IIA diamond cuboid with approximate dimensions 2� 1� 3 mm3 corresponding

to the [001], [110] and [11̄0] directions. A type IIA diamond has an exceptionally low nitrogen

content compared to 98% of natural diamonds which contain up to 0.3% nitrogen.

3.5.2 Uniaxial press

Stressing a sample of the hardest substance known requires special measures. Our press consisted

of a maraged steel frame holding a hydraulic cell and a pair of anvils made of a sintered material

based on tungsten carbide. The sample was gripped over its (11̄0) faces with zirconium shims to

accommodate any residual surface irregularity. The highest stress attained in the experiment was

6.2 GPa.

3.5.3 Working angle

With white X-rays the beam can be incident at any angle � and the crystal will diffract the energies

that satisfy the Bragg equation. Careful choice of angle is required, however, in order to avoid

multiple diffraction that could otherwise totally confuse and invalidate the measurement. This

phenomenon was first described by Renninger [17], who called it Umweganregung or ‘detour

radiation’, and much later developed by me and my coworkers [8] in relation to energy-dispersive

X-ray methods and the 222 reflection in Si. Briefly if the indices of three reflections ~Hi =

(1=a)(hi; ki; `i) satisfy

(h1; k1; `1) + (h2; k2; `2) = (h; k; `) (3.16)

then if ~H and either ~H1 or ~H2 both lie on the Ewald sphere the ( ~H1;
~H2)-pair cooperate to simulate a

~H reflection. If the latter is weak and the components of the pair are medium or strong the intensity

of the weak reflection will be swamped if the scattering planes for ~H and the ( ~H1;
~H2)-pair coincide.

Rotation of the crystal about ~H brings this condition into and out of being. By determining the

scattering plane orientations for all potentially damaging pairs, (113; 1̄1̄3), (11̄3; 1̄13), (131; 1̄3̄5)

etc., we discover optimum Bragg angles for observing an unadulterated 006 reflection. The one we

chose was � = 34:4Æ, an angle that allows the stress axis to be set normal to the scattering plane

with a comfortable tolerance of �5Æ.
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3.5.4 Beam-tailoring by total external reflection

The high intensity of the synchrotron beam and the limited maximum count-rate achievable by a

solid-state detector makes it desirable to cut out as much of the beam as possible, leaving just those

energies required for the 006 and 008 reflections and maximizing the proportion of the diffracted

beam due to the 006 reflection. This situation is closely approached by exploiting the total reflection

of X-rays which occurs at very small glancing angles and is due to the X-ray refractive index being

just less than unity. A gold-plated mirror, M in Fig. 3.2, is used to intercept the synchrotron beam

and eliminate photons whose energies exceed 30 keV. The reflected component is then diffracted,

in transmission geometry, by the sample and only the 004, 006 and 008 reflections are collected.

Furthermore the beam intensity at 18.6 keV, where the 006 occurs, is considerably greater than it is

at 24.8 keV, where the 008 occurs, thereby strongly enhancing the diffracted intensity of the weaker

reflection.

3.6 Result

We found

A14 = �0:111� 0:018 Å and �K = 0:125� 0:020 (3.17)

which agreed nicely with the later, and more sophisticated, calculations in a series of studies.

Musgrave found �K = 0:268 using a simple valence-force-field model [15]; Keating’s original

model [10] gave �K = 0:21; Lawætz used elastic constants and the Raman frequency to predict

�K = 0:23 [14] and Weber obtained �K = 0:12 using his bond-charge model [21]. Nielsen’s

calculations of �K = 0:108 (and �K = 0:093) using an ab initio pseudopotential are discussed later,

in Chapter 6.
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Chapter 4

Inner elastic constants, internal strain tensors, zone-centre optic mode

frequencies and their pressure dependence

Carbon is particularly rich in the number of its allotropes: besides the common forms of diamond

and graphite there is a hexagonal form (lonsdaleite) of the former, a rhombohedral form of the

latter and the fullerenes, of which C60 is the most famous example. A number of hypothetical

metastable forms have also been proposed: graphyne, a layer structure in which benzene rings

are arranged in 6-fold coordination, by Baughman et al. [1]; H6, a three-dimensional network of

sp2-bonded carbon atoms capable of continuous transformation to cD without bond-breaking, by

Tamor and Hass [15]; and a group of other purely sp2-bonded structures, such as R6 (space group

R3̄m), consisting of 8-membered rings in chair conformation; BCT8, 8-membered boat-shaped

rings (I41md); and SC24, a simple-cubic structure with 6-membered rings (Pn3̄m) by Jungnickel

et al. [8] in the quest to develop a nitrogen-dopable, and thus n-type, material.

This and the next Chapter contain a full description of the elasticity, through third order, of two

diamond and two graphite allotropes of carbon. They pave the way for detailed individual studies in

the four subsequent Chapters. To be fully comprehensive it is necessary to look at as many related

properties as possible: not solely macroscopic elastic constants, but optic-mode frequencies, their

stress- and/or pressure-dependence, and internal strain. In other words it is necessary to focus on

microscopic aspects—the consequences of the relative movements of sublattices—that were given

detailed treatment in the first two Chapters.

A full symmetry analysis of the sublattice tensors and inner elastic constants is given, for each

structure, in Sec. 4.1. The results for cubic diamond (cD), some of which have been published

before [4, 11], are given here in two versions: in standard form and in a non-conventional form,

obtained by transformation of axes, which will facilitate comparison with rhombohedral graphite

(rG) and with intermediate structures along the possible solid-state transformation path from rG to

cD [6, 9], as treated in Chapter 9.

General expressions for the linear and quadratic internal strain tensors are given in Sec. 4.2.

The independent components of the linear tensors are presented for all four allotropes. Those of

the quadratic tensor are given only for cD and hG.
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The frequencies of optic modes at the zone centre and their eigenvectors are treated in Sec. 4.3

via a secular equation that relates to the optic modes alone. Explicit solutions for each allotrope

are given. The variation of frequency with strain can be followed if the secular equation for the

strained crystal can be obtained. This is possible in terms of effective inner elastic constants that

are defined in a way similar to that used for the macroscopic elastic constants. Results are listed

for each allotrope in Sec. 4.4. Finally expressions for the pressure-dependence of the optic mode

frequencies have been deduced and presented in Sec. 4.5.

4.1 Symmetry

The essential geometry of the structures—the space groups, primitive unit cell vectors, atomic

coordinates and the allocation of sublattice indices—is summarised in Table 4.1.

Table 4.1: Essential geometry and the assignment of sublattice indices to the atomic sites in the

various structures. In cD a is the lattice parameter of the cubic cell; in rG a and c are the lattice

parameters of the non-primitive triple hexagonal cell and � = c=a is the axial ratio.

cD rG hD hG

Space group Fd3̄m R3̄m P63=mmc

Unit ~a1
a
2 [0; 1; 1] a

6 [3;
p

3; 2�] a[1; 0; 0]

cell ~a2
a
2 [1; 0; 1] a

6 [�3;
p

3; 2�] a[� 1
2 ;

p
3

2 ; 0]

vectors ~a3
a
2 [1; 1; 0] a

3 [0;�p3; �] a[0; 0; �]

Wyckoff sites a c f d : b

Site symmetry 4̄3m 3m 3m 6̄m2

Sublattice 1 �( 1
8

1
8

1
8 ) �(u u u) ( 1

3
2
3 z) ( 1

3
2
3

3
4 ) :

indices 2 (1
8

1
8

1
8 ) (u u u) ( 2

3
1
3 1� z) ( 2

3
1
3

1
4 ) :

3 (1
3

2
3

1
2 � z) : (0 0 3

4)

4 (2
3

1
3

1
2 + z) : (0 0 1

4)

To make comparison easy the four structures are shown in Fig. 4.1 in relation to hexagonal

cells: triple cells for cD and rG (with u = 1
6 ) and primitive ones for hD (with z = 1

16) and hG.

Although the inner elastic constants are free of redundancy, a certain arbitrariness has been

introduced: a relabelling of the sublattices will lead to a shuffling of values of the components of

the tensors. For this reason it is much simpler to treat the symmetry of the sublattice tensors d, e

and f and subsequently to deduce that of the inner elastic constantsD, E and F . The simpler part

has already been done. The forms of the individual tensors of the d�, e�� and f�� families, their

non-zero components and any interdependencies, have been extracted from Tables 2.1 through 2.6
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in Chapter 2 at the appropriate point group and are presented in Tables 4.2 and 4.3. Some additional

simplification follows from the commutative nature of differentiation: e��ij� = e��ji� when � = �,

d�iJK = d�iKJ and several similar relations for f��ijk .

(a)

1
1

1
1

2
2

2
2

1

2

1

2

1
1

1
1

a2a1

a3

(b)

1
1

1
1

3
3

3
3

4

2

1
1

1
1

a2a1

a3

(c)

1
1

1
1

2

2
2

2
2

1

21

1
1

1
1

2

a2a1

a3

(d)

3
3

3
3

1

4
4

4
4

2

3
3

3
3

1

a2a1

a3

Figure 4.1: Unit cells of four carbon allotropes. In (a) a triple hexagonal cell is used for cD to

facilitate comparison with hD in (b). In (c) a triple cell is used similarly for rG to contrast its layer

structure (ABCA) with that of hG (ABA) in (d). In hG the distinction between non-equivalent pairs

of atoms is made by colour. sp3 or sp2 bonds have been emphasised.

Table 4.2: The symmetry of the individual sublattice tensors in cD: the non-zero components and

their interrelationships. �, � and  take the values 1 or 2.

d�14 = d�25 = d�36

e��11 = e��22 = e��33 f��123 = f��132 = f��213 = f��231 = f��312 = f��321

d�114 = d�225 = d�336 e��111 = e��222 = e��333

d�124 = d�134 = d�215 = d�235 = d�316 = d�326 e��112 = e��113 = e��221 = e��223 = e��331 = e��332

d�156 = d�246 = d�345 e��126 = e��135 = e��216 = e��234 = e��315 = e��324
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Table 4.3: The symmetry of the individual sublattice tensors in rG, hD and hG: the non-zero

components of each and their interrelationships. �, � and  take the values 1 or 2 in rG; 1, 2, 3 or

4 in hD and hG.

hG (left column), rG and hD (both columns)

6̄m2 6mm

d�3

d�16 = d�21 = �d�22 d�15 = d�24

d�31 = d�32

d�33

d�116 = � 1
4

�
d�211 + 3d�222

�
d�115 = d�224

d�126 = 1
4

�
3d�211 + d�222

�
d�125 = d�214

d�136 = d�213 = �d�223 d�135 = d�234

d�145 = �d�244 = d�255 d�146 = d�256 = 1
2

�
d�115 � d�125

�
d�212 = d�266 = 1

2

�
d�116 � d�126

�
d�311 = d�322 = d�312 + 2d�366

d�314 = �d�324 = d�356 d�313 = d�323

d�333

d�344 = d�355

f��112 = f��121 = f��211 = �f��222 f��113 = f��223

f��131 = f��232

f��311 = f��322

f��333

6̄m2, 6mm, part of 3m : : : : : : rest of 3m

e��11 = e��22

e��33

e��111 = e��222

e��112 = e��221

e��113 = e��223

e��126 = e��216 = 1
2

�
e��111 � e��112

�
e��114 = e��125 = e��215 = �e��214

e��135 = e��234 e��136 = e��231 = �e��232

e��315 = e��324 e��316 = e��321 = �e��322

e��331 = e��332

e��333
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4.1.1 Cubic diamond and rhombohedral graphite

A major simplification occurs for structures in which the basis comprises two atoms only, so that

n = 2. Then �, � and � take only the value 1 and the superscripts on D, E and F become

redundant. It also follows that the summations in (1.37) disappear, leaving only single terms on

the right involving p = q = r = 1 and giving the simplest possible general set of independent

components:

Di:: = �d1
i::

Eij: = e11
ij: (4.1)

Fijk = �f 111
ijk :

A full collection of specific independent components is shown in Table 4.4 and the complete

collection of all non-zero components is obtained by collating the entries in this Table with those

in Tables 4.2 and 4.3. The alternative description of the inner elasticity of cD that will facilitate

comparison with the intermediate structures along the cD to rG transformation path is produced by

a rotation of axes. The matrix

a =

2
6664

1p
2
� 1p

2
0

1p
6

1p
6
� 2p

6
1p
3

1p
3

1p
3

3
7775 (4.2)

transforms the usual cD coordinate system (0x1, 0x2 and 0x3 along [100], [010] and [001] respec-

tively) to one in which 0x01 lies along [11̄0], 0x02 along [112̄] and 0x03 along [111]. Tensors in the

new system are related to those in the old by the transformation law [13]

T 0
ijk::: = aipajqakr : : :Tpqr::: (4.3)

The tensors that are in contracted form must first be uncontracted, then transformed, then re-

contracted. These results have been added to Table 4.4. Rotation of axes cannot increase the

actual number of independent components of any tensor. The apparent increase conceals numerous

relations between the members of the modified set.

4.1.2 Hexagonal diamond and hexagonal graphite

The space group symmetry of hD and hG was briefly introduced in the previous Chapter. Both

allotropes belong to the space group P63=mmc, (no. 194 in the International Tables for Crystal-

lography [7]), which is non-symmorphic, indicating the presence of screw and glide symmetry

elements. The 24 symmetry elements are represented by augmented 4� 4 partitioned matrices

fRij~t g =

"
Ri

~t

0 1

#
(4.4)
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where the Ri are 3 � 3 point symmetry operations and ~t is a 3 � 1 column vector representing

the fractional translation associated with Ri. Half the operations have ~t = [0=0=0] and half have
~t = [0=0= 1

2].

Table 4.4: Independent components of the inner elastic constants: cD in columns 1 and 4, and rG

in columns 2 and 5. For columns 3 and 6 cD is referred to a quasi-rhombohedral system (0x01 along

[11̄0], 0x02 along [112̄] and 0x03 along [111]): linear combinations of elements from columns 1 or 4

are equivalent to the elements in columns 2 or 5. The full sets of non-zero components are obtained

by reading columns 1 and 4, and 2 and 5, in conjunction with the relations in Tables 4.2 and 4.3.

cD rG quasi-rD cD rG quasi-rD

D3 � 0

D14 D16

q
2
3D14 F123 F112

2p
6
F123

D15 � 1p
3
D14 F113 � 1p

3
F123

D31 � 1p
3
D14 F333

2p
3
F123

D33
2p
3
D14

E11 E11 E11

E33 E11

D114 D116
1p
6
(D114 +D124 + 2D156) E111 E111

1
2(E111 + E112 + 2E126)

D124 D126
1

3
p

6
(�D114 + 7D124 � 2D156) E112 E112

1
6(E111 + 5E112� 2E126)

D156 D136
2

3
p

6
(2D114 + D124� 2D156) E126 E113

1
3(E111 + 2E112� 2E126)

D145
2

3
p

6
(�D114 +D124 + D156) E126

1
6(E111 �E112 + 4E126)

D314
1

3
p

6
(D114 �D124 + 2D156) E135

1
3(E111 �E112 + E126)

D115 � 1
2
p

3
(D114 +D124 + 2D156) E331

1
3(E111 + 2E112� 2E126)

D125
1

6
p

3
(�5D114 �D124 + 2D156) E333

1
3(E111 + 2E112 + 4E126)

D135
1

3
p

3
(D114 � 4D124 + 2D156) E114

1
3
p

2
(E111 � E112� 2E126)

D311 � 2p
3
D124 E136

1
3
p

2
(E111 � E112� 2E126)

D312 � 2
3
p

3
(2D114 + D124 � 2D156)

D313
1

3
p

3
(D114 + 2D124� 4D156)

D333
4

3
p

3
(D114 + 2D124 + 2D156)

D344
1

3
p

3
(�2D114 + 2D124�D156)

The position coordinates and the indices assigned to the sublattices are shown in Table 4.1. In

Table 4.5 are shown the permutations of the sublattice indices induced by the 24 operations of the

space group.
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Table 4.5: Permutations of sublattice indices corresponding to spacegroup symmetry operations for

the hexagonal structures. ~t is the fractional translation column vector [0=0= 1
2 ]. The colon separates

the non-equivalent pairs in hG.

Symmetry operations in Subgroup Permutations

space group P63=mmc with row 1 hD hG

f1j0g f3+j0g f3�j0g fmj0g fm0j0g fm00j0g R3m (1)(2)(3)(4) (1)(2) : (3)(4)

fij0g f3̄+j0g f3̄�j0g f2j0g f20j0g f200j0g P 3̄m1 (12)(34) (12) : (34)

f2z j~t g f6+j~t g f6�j~t g fcj~t g fc0j~t g fc00j~t g P63mc (14)(23) (12) : (34)

fmz j~t g f6̄+j~t g f6̄�j~t g f2Æj~t g f20j~t g f200j~t g P 6̄m2 (13)(24) (1)(2) : (3)(4)

The latter divide into four subsets of six operations. Those in the first row form a subgroup

of point symmetry 3m and leave the sublattice indices in hD unchanged. Those in the first and

fourth rows together form a subgroup of point symmetry 6̄m2 and leave the hG indices unchanged.

This determines the fundamental form of the individual sublattice tensors and indicates that those

in hD will have more non-zero components than those in hG. The two structures therefore require

individual treatment.

4.1.2.1 Hexagonal diamond

The components of the d and f tensors in hD are divided conveniently into mutually exclusive 6̄m2

and 6mm sets, as shown in Table 4.3. The operations in rows 1 and 2 of the Table 4.5 together

constitute the subgroup P 3̄m1. Because half the operations interchange the sublattice indices

1 $ 2 and 3 $ 4 simultaneously the point group 3̄m determines the non-zero elements of sum

tensors such as d1
i:: + d2

i::. Since 3̄m is centrosymmetric all elements of sum tensors bearing an odd

number of superscripts vanish. Thus

d1
i:: + d2

i:: = 0

d3
i:: + d4

i:: = 0:

The operations in rows 1 and 3 similarly comprise the subgroup P63mc, with row 3 operations

producing the interchanges 1$ 4 and 2$ 3. The point group 6mm now determines the non-zero

elements of sum tensors such as d1
i:: + d4

i::. Finally operations in rows 1 and 4 together constitute

the subgroup P 6̄m2, with row 4 operations producing the interchanges 1 $ 3 and 2 $ 4. The

point group 6̄m2 now determines the non-zero elements of sum tensors such as d1
i:: + d

3
i::. Thus the

following deductions can be made:
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d1
i:: + d3

i:: = �(d2
i:: + d4

i::) 6= 0 6̄m2 elements

= 0 6mm elements

d1
i:: + d4

i:: = �(d2
i:: + d3

i::) 6= 0 6mm elements

= 0 6̄m2 elements.

In summary

d1
i:: = �d2

i:: = �d3
i:: = �d4

i::

with the upper(lower) signs applicable to 6̄m2(6mm) elements. In conjunction with (1.37) or

(1.39) and (1.38) these give independent, zero and dependent components as follows

D1
i:: = �d1

i::

D2
i:: = 0 (4.5)

D3
i:: = �D1

i::;

with the same interpretation of signs.

Similarly it is possible to use the above arguments to generate sixteen relations that are satisfied

by the f tensors:
f 111
ijk = �f 222

ijk = �f 333
ijk = �f 444

ijk

f 112
ijk = �f 221

ijk = �f 334
ijk = �f 443

ijk
...

...
...

f 144
ijk = �f 233

ijk = �f 322
ijk = �f 411

ijk :

Equations (1.37), (1.38) and (1.39) are then invoked many times to establish a preliminary maximum

number of independent components (13) and a minimum number of dependent components (also

13)

F���
ijk = �

�X
p=1

�X
q=1

�X
r=1

fpqrijk ��� < 222

F 222
ijk = 0 (4.6)

F���
ijk = �F 4��;4��;4��

ijk ��� > 222;

reading ��� as a 3-digit number and with the same interpretation of � as before. There is only a

single independent sublattice tensor component in the 6̄m2 set, which may be taken as f��222 . As the

three subscripts are equal the commutative property of differentiation implies that all components

with permuted superscripts are equal. This property carries over to the inner elastic constantsF���
ijk

and reduces the number of independent constants to three and renders six more zero. For the 6mm

set the component f��333 gives the same result. The remaining three independent components each
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permit the interchange of a different pair of superscripts. The net result is that six F���
113 may be

chosen as independent and the remaining F���
131 and F���

311 components related to them. All these

results are embodied in Table 4.6.

All the components of the second-order e tensors and most of those of the third order belong

in common to 3m, 3̄m, 6̄m2 and 6mm symmetry, the remainder to 3̄m and 3m only. The

difference between these sets lies in the effect of the symmetry operations on the signs of individual

components: in the main set the (uncontracted) subscript sequences have the form ii, iiii, iijj or

ijij and the components do not change sign under any operation; in the residual set the sequences

are iijk, ijik, ijii or ijkk (one 3 and an odd number of 2s, in fact) and the components change

sign under operations in rows 3 and 4 of Table 4.5. In the main set attention therefore focuses on

difference tensors, such as e11
ij: � e22

ij:, whose signs are reversed by operations in rows 2, 3 and 4 of

the Table. This shows that all such difference tensors are null and thus that

e11
ij: = e22

ij: = �e33
ij: = �e44

ij:

e12
ij: = e21

ij: = �e34
ij: = �e43

ij:

e13
ij: = e24

ij: = �e31
ij: = �e42

ij:

e14
ij: = e23

ij: = �e32
ij: = �e41

ij:

where the plus signs are taken throughout. The residual set of third-order terms gives rise to the

minus signs via the nullification of sum tensors, such as e11
ij: + e33

ij: and e23
ij: + e32

ij:, by the operations

of rows 3 and 4 in Table 4.5.

The inner elastic constants follow from (1.37) or (1.39) and (1.38). Independent and dependent

constants for the main set are

E11
ij: = e11

ij:

E12
ij: = e11

ij: + e12
ij:

E13
ij: = �e14

ij:

E22
ij: = 2E12

ij: (4.7)

E21
ij: = E23

ij: = E32
ij: = E12

ij:

E31
ij: = E13

ij:

E33
ij: = E11

ij:

and for the residual set are

E11
ij: = e11

ij:

E13
ij: = �e14

ij:

E12
ij: = E21

ij: = E22
ij: = E23

ij: = E32
ij: = 0 (4.8)

E31
ij: = �E13

ij:

E33
ij: = �E11

ij::

This concludes the analysis for hD.
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Table 4.6: Interrelation of components of the inner elastic constants of hD. The left-hand elements

in column 1 and the lower part of column 2, associated with the subscript sequence in column 2

if any, may be taken as an independent set. The full sets of non-zero components are obtained by

reading columns 1 and 2 in conjunction with the appropriate relations in Table 4.3. All components

D2
iJ , D2

iJK and F 222
ijk are zero.

D1
3 = �D3

3

D1
16 = D3

16

D1
iJ = �D3

iJ iJ = 15; 31; 33

E11
ii = E33

ii ii = 11; 33

E12
ii = E21

ii = 1
2E

22
ii = E23

ii = E32
ii "

E13
ii = E31

ii "

D1
iJK = D1

iKJ = D3
iJK = D3

iKJ iJK = 116; 126; 136; 145; 314

D1
iJK = D1

iKJ = �D3
iJK = �D3

iKJ iJK = 115; 125; 135; 311; 312; 313; 333; 344

E11
ijK = E33

ijK ijK = 111; 112; 113; 126; 135; 315; 331; 333

E12
ijK = E21

ijK = 1
2E

22
ijK = E23

ijK = E32
ijK "

E13
ijK = E31

ijK "

E11
ijK = �E33

ijK ijK = 114; 136; 316

E13
ijK = �E31

ijK ijK = 136; 316

F 111
112 = F 333

112

F 112
112 = F 121

112 = F 122
112 = F 211

112 = F 212
112 = F 221

112

= F 123
112 = F 132

112 = F 213
112 = F 231

112 = F 312
112 = F 321

112

= F 223
112 = F 232

112 = F 233
112 = F 322

112 = F 323
112 = F 332

112

F 113
112 = F 131

112 = F 133
112 = F 311

112 = F 313
112 = F 331

112

F 111
113 = �F 333

113

F 112
113 = F 122

113 = F 212
113 = �F 232

113 = �F 322
113 = �F 332

113

F 113
113 = �F 331

113

F 121
113 = F 211

113 = �F 233
113 = �F 323

113

F 123
113 = F 213

113 = �F 231
113 = �F 321

113

F 131
113 = �F 133

113 = F 311
113 = �F 313

113

F 221
113 = �F 223

113

F 111
333 = �F 333

333

F 112
333 = F 121

333 = F 122
333 = F 211

333 = F 212
333 = F 221

333

= �F 223
333 = �F 232

333 = �F 233
333 = �F 322

333 = �F 323
333 = �F 332

333

F 113
333 = F 131

333 = �F 133
333 = F 311

333 = �F 313
333 = �F 331

333
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4.1.2.2 Hexagonal graphite

The arguments for hG are largely a repeat of those above but with outcomes that differ because

the basis consists of two non-equivalent pairs rather than a single quartet. All the individual d, e

and f tensors have 6̄m2 symmetry. Operations in rows 1 to 4 combined constituteP63=mmc and

all elements of sum tensors, such as d1
i:: + d2

i::, vanish as the associated point group 6=mmm is

centrosymmetric. Thus

d1
i:: + d2

i:: = 0

d3
i:: + d4

i:: = 0

with no further interrelations. Thus, using (1.37) and (1.38),

D1
i:: = �d1

i::

D2
i:: = 0 (4.9)

D3
i:: = +d4

i::

giving two independent inner elastic constants where hD had one.

For the f tensors there are sixteen pairs of relations:

f 111
ijk = �f 222

ijk f 333
ijk = �f 444

ijk

f 112
ijk = �f 221

ijk f 334
ijk = �f 443

ijk
...

...

f 144
ijk = �f 233

ijk f 322
ijk = �f 411

ijk :

In conjunction with (1.37), (1.38) and (1.39) it is found that the independent and zero elements are

F 111
ijk = �f 111

ijk

F 112
ijk = �(f 111

ijk + f 112
ijk )

F 113
ijk = +f 114

ijk

F 123
ijk = +(f 114

ijk + f 124
ijk ) (4.10)

F 133
ijk = �f 144

ijk

F 223
ijk = �(f 144

ijk + f 244
ijk )

F 333
ijk = +f 444

ijk

F 222
ijk = 0:

The numerous dependent elements, related by permutation of superscripts for the reason given

above for hD, are displayed in Table 4.7.

The analysis of the e and E tensors follows that of the main group in hD though with a slightly

different outcome:

E11
ij: = e11

ij:
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E12
ij: = e11

ij: + e12
ij:

E13
ij: = �e14

ij:

E22
ij: = 2E12

ij: (4.11)

E21
ij: = E23

ij: = E32
ij: = E12

ij:

E31
ij: = �e41

ij:

E33
ij: = e44

ij::

Table 4.7: Interrelation of components of the inner elastic constants of hG. The left-hand elements

in column 1, associated with the subscript sequence in column 2 if any, may be taken as an

independent set. The full sets of non-zero components are obtained by reading columns 1 and 2 in

conjunction with the appropriate relations in Table 4.3. All components D2
iJ , D2

iJK and F 222
ijk are

zero.

D1
16

D3
16

E11
ii ii = 11; 33

E12
ii = E21

ii = 1
2E

22
ii = E23

ii = E32
ii "

E13
ii = E31

ii "

E33
ii "

D1
iJK = D1

iKJ iJK = 116; 126; 136; 145; 212; 314

D3
iJK = D3

iKJ iJK = 116; 126; 136; 145; 212; 314

E11
ijK ijK = 111; 112; 113; 126; 135; 315; 331; 333

E12
ijK = E21

ijK = 1
2E

22
ijK = E23

ijK = E32
ijK "

E13
ijK = E31

ijK "

E33
ijK "

F 111
112

F 112
112 = F 121

112 = F 122
112 = F 211

112 = F 212
112 = F 221

112

F 113
112 = F 131

112 = F 311
112

F 123
112 = F 132

112 = F 213
112 = F 231

112 = F 312
112 = F 321

112

F 133
112 = F 313

112 = F 331
112

F 223
112 = F 232

112 = F 322
112 = F 233

112 = F 323
112 = F 332

112

F 333
112
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4.2 Internal strain tensors

The symmetry of these tensors is the same as that of the D� tensors and the elements that are

non-zero for the structures under discussion can be read from Tables 4.4, 4.6 or 4.7 as appropriate

(except that the condition A2
iJ = 0 does not always apply, as shown below). In principle these

tensors may be determined experimentally by analysing x-ray diffraction from stressed single

crystals. In practice the measurements are either difficult because the effect is very small, as in

cD [5], or impossible because a sufficiently large single crystal cannot be obtained, as in hG, rG

and hD. Theoretically their values may be obtained from the internal equilibrium conditions given

in equations (1.22) and (1.24) in Chapter 1.

Only the independent linear tensor components are given for rG and hD in the following lists.

4.2.1 Cubic diamond

Equation (1.22) yields a single linear component given by

A14 = �D14=E11 (4.12)

and (1.24) gives three quadratic components

A114 = �G114=E11

A124 = �G124=E11 (4.13)

A156 = �G156=E11

in which

G114 = D114 + A14E111

G124 = D124 + A14E112 (4.14)

G156 = D156 + 2A14E126 + (A14)2F123:

4.2.2 Rhombohedral graphite

The four independent linear tensor components are

A16 = �D16=E11

A15 = �D15=E11 (4.15)

A31 = �D31=E33

A33 = �D33=E33:
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4.2.3 Hexagonal diamond

The solutions of (1.22) for hD, invoking the dependencies to be found in Table 4.6, lead to

A1
16 = A3

16 = �D1
16=(E11

11 � E12
11 + E13

11)

A1
15 = �A3

15 = �D1
15=(E11

11 �E13
11) (4.16)

A1
31 = �A3

31 = �D1
31=(E11

33 �E13
33)

A1
33 = �A3

33 = �D1
33=(E11

33 �E13
33)

with A2
iJ = � 1

2 (A1
iJ + A3

iJ ) giving

A2
16 = �A1

16 (4.17)

A2
15 = A2

31 = A2
33 = 0:

4.2.4 Hexagonal graphite

The independence of D1 and D3 leads to similarly independentA1 and A3 given by

A1
16 =

(E33
11 � 1

2E
12
11)D1

16 � (E13
11 � 1

2E
12
11)D3

16

(E13
11 � 1

2E
12
11)2 � (E11

11 � 1
2E

12
11)(E33

11 � 1
2E

12
11)

(4.18)

and

A3
16 =

(E11
11 � 1

2E
12
11)D3

16 � (E13
11 � 1

2E
12
11)D1

16

(E13
11 � 1

2E
12
11)2 � (E11

11 � 1
2E

12
11)(E33

11 � 1
2E

12
11)
: (4.19)

As for hD, the solutions of (1.22) for hG, invoking the dependencies to be found in Table 4.7, lead

to

A2
iJ = �1

2
(A1

iJ +A3
iJ ): (4.20)

The inner displacement is confined to the basal plane.

For the quadratic internal strain the solutions of (1.24) are

A1
iJK =

(E33
ii � 1

2E
12
ii )G1

iJK � (E13
ii � 1

2E
12
ii )G3

iJK

(E13
ii � 1

2E
12
ii )2 � (E11

ii � 1
2E

12
ii )(E33

ii � 1
2E

12
ii )

(4.21)

and

A3
iJK =

(E11
ii � 1

2E
12
ii )G3

iJK � (E13
ii � 1

2E
12
ii )G1

iJK

(E13
ii � 1

2E
12
ii )2 � (E11

ii � 1
2E

12
ii )(E33

ii � 1
2E

12
ii )
: (4.22)

Five pairs of solutions, with A2
iJK = � 1

2 (A1
iJK + A3

iJK ), correspond to the following composite

expressions, in which summation over repeated superscripts is implied,

G�
136 = D�

136 + E��
113A

�
16

G�
145 = D�

145

G�
211 = D�

211 + 2E��
112A

�
16 � F���

112 A
�
16A

�
16 (4.23)

G�
222 = D�

222 � 2E��
111A

�
16 � F���

112 A
�
16A

�
16

G�
314 = D�

314 + E��
315A

�
16:



4.3 The zone-centre optic modes 68

4.3 The zone-centre optic modes

The relationship of theE�� tensors to the more familiar coupling constants Φ�� was demonstrated

in Chapter 1

E��
ij = Q̃��Φ��

ij Q
�� (4.24)

and shown to lead to a secular equation relating to optic modes alone:

jE��
ij � !2K��Æij j = 0 (4.25)

whereK�� = Q̃�����Q��. The matrices Q and � defined in (1.44) and (1.55) are much simplified

because all atoms in the basis of any allotrope are equal. This leads to �k = k=n and � = (�0=n)In,

where In is the n� n unit matrix.

In general to each value of !2 there corresponds an eigenvector given by

E��
ij z

�
j = !2K��z�i : (4.26)

For cD and rG it is indeterminate whilst for hD and hG it is Z, a triad of relative sublattice

displacement vectors ~z: Z = [~z 1; ~z 2; ~z 3].

Where relevant the mode frequencies have been labeled with subscripts R or I to indicate

Raman or infra-red activity.

4.3.1 Cubic diamond and rhombohedral graphite

For both cD and rG Q is the column vector [�1
2=

1
2] and K reduces to the scalar �0=4. As E is

diagonal the secular equation for optic modes reduces to

jE11 � 1
4�0!

2j3 = 0

for cD, giving the triply-degenerate frequency

!2
R(T2g) =

4
�0

E11: (4.27)

The eigenvectors are indeterminate: a set such as ~z = [1; 0; 0], ~z = [0; 1; 0] and ~z = [0; 0; 1] could

be chosen to represent an LO mode and two TO modes in the limit ~k ! 0 along one of the cubic

axes. For rG the equation reduces to

jE11 � 1
4�0!

2j2 jE33 � 1
4�0!

2j = 0

giving a doubly-degenerate frequency

!2
R(Eg) =

4
�0

E11 (4.28)
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with eigenvectors ~z = [cos �; sin �; 0] with arbitrary � and a non-degenerate one

!2
R(A1g) =

4
�0

E33 (4.29)

whose eigenvector is ~z = [0; 0; 1]. This and two values of � differing by �=2 will then represent an

LO mode and two TO modes in the limit~k ! 0 along the unique axis or any direction perpendicular

to it. All other directions see a mixing of longitudinal and transverse character.

4.3.2 Hexagonal diamond

When n = 4 Q and K are given by

Q =
1
4

2
6664
�3 �2 �1

1 �2 �1

1 2 �1

1 2 3

3
7775

and

K =
�0

16

2
4 3 2 1

2 4 2

1 2 3

3
5 :

The resulting secular equation is a product of three 3� 3 subdeterminants

j∆1j j∆2j j∆3j = 0

where the matrix ∆i is

∆i =

2
4E

11
ii � 3

16�0!
2 E12

ii � 1
8�0!

2 E13
ii � 1

16�0!
2

E12
ii � 1

8�0!
2 2(E12

ii � 1
8�0!

2) E12
ii � 1

8�0!
2

E13
ii � 1

16�0!
2 E12

ii � 1
8�0!

2 E33
ii � 3

16�0!
2

3
5

and symmetry imposes ∆1 = ∆2. Each of the subdeterminants factorizes into a linear and quadratic

part: the repeated determinant has the roots

!2(E2u) =
8
�0

E12
11

!2
R(E1g) =

8
�0

(E11
11 �E13

11) (4.30)

!2
R(E2g) =

8
�0

(E11
11 �E12

11 + E13
11)

resulting in three degenerate pairs of frequencies. The third determinant has the same form and

gives

!2(B1u) =
8
�0

E12
33

!2
R(A1g) =

8
�0

(E11
33 � E13

33) (4.31)

!2(B2g) =
8
�0

(E11
33 � E12

33 + E13
33)
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for the remaining frequencies.

The ith components of the ~z � for a specific mode are the solutions of j∆i[z
1
i ; z

2
i ; z

3
i ]j = 0 when

!2 in ∆i has been replaced by its eigenvalue. The results for the above modes are

Z(E2u) = [[0; 0; 0]; [cos�; sin �; 0]; [0; 0; 0]]

Z(E1g) =
h
[ 1p

2
cos �; 1p

2
sin�; 0]; [0; 0; 0]; [� 1p

2
cos �;� 1p

2
sin �; 0]

i
Z(E2g) =

h
[ 1p

3
cos �; 1p

3
sin�; 0]; [� 1p

3
cos �;� 1p

3
sin �; 0]; [ 1p

3
cos �; 1p

3
sin�; 0]

i
Z(B1u) = [[0; 0; 0]; [0; 0; 1]; [0; 0; 0]] (4.32)

Z(A1g) =
h
[0; 0; 1p

2
]; [0; 0; 0]; [0; 0;� 1p

2
]
i

Z(B2g) =
h
[0; 0; 1p

3
]; [0; 0;� 1p

3
]; [0; 0; 1p

3
]
i
:

Vibrational patterns corresponding to these eigenvectors are shown in Fig. 4.2.
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Figure 4.2: A representative set of vibration patterns for hD. x and o indicate motions into and out

of the page.
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4.3.3 Hexagonal graphite

The hexagonal allotropes have identical complements ofE��
ii components and thus the same secular

equation. The only difference arises from the dependency E11
ii = E33

ii that holds for hD but not

for hG. This is responsible for the slightly more complicated expressions that follow. The three

degenerate pairs of frequencies are given by

!2
I (E1u) =

8
�0

E12
11

!2
R(E2g2) =

4
�0

h
E11

11 �E12
11 + E33

11 + Ey
11

i
(4.33)

!2
R(E2g1) =

4
�0

h
E11

11 �E12
11 + E33

11 � Ey
11

i

where

(Ey
11)2 = (E12

11 � 2E13
11)2 + (E11

11 � E33
11)2

and the three non-degenerate frequencies by

!2
I (A2u) =

8
�0

E12
33

!2
R(B1g2) =

4
�0

h
E11

33 � E12
33 + E33

33 +Ey
33

i
(4.34)

!2
R(B1g1) =

4
�0

h
E11

33 � E12
33 + E33

33 �Ey
33

i

where

(Ey
33)2 = (E12

33 � 2E13
33)2 + (E11

33 �E33
33)2:

The eigenvectors for theE1u and A2u modes have the same form as their hD counterparts. The

remainder are slightly less constrained: the parameters a and b are, in every case, arbitrary.

Z(E1u) = [[0; 0; 0]; [cos�; sin �; 0]; [0; 0; 0]]

Z(E2g2) =
�
[a cos �; a sin�; 0]; [ 1

2(b� a) cos �; 1
2 (b� a) sin�; 0]; [�b cos �;�b sin�; 0]

�
Z(E2g1) =

�
[a cos �; a sin�; 0]; [� 1

2(a + b) cos �;� 1
2 (a + b) sin�; 0]; [b cos�; b sin�; 0]

�
Z(A2u) = [[0; 0; 0]; [0; 0; 1]; [0; 0; 0]] (4.35)

Z(B1g2) =
�
[0; 0; a]; [0; 0; 1

2 (b� a)]; [0; 0;�b]�
Z(B1g1) =

�
[0; 0; a]; [0; 0;� 1

2(a + b)]; [0; 0; b]
�
:

Vibrational patterns corresponding to these eigenvectors are shown in Fig. 4.3.
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Figure 4.3: A representative set of vibration patterns for hG. x and o indicate motions into and out

of the page.

The present approach has been checked against the traditional lattice dynamical treatment of

hG by Maradudin [10]. After allowing for a different labelling of sublattices agreement is total.

4.4 Effective inner elastic constants

When an initially-strained crystal is further deformed its energy can be expressed in two ways:

either in terms of the additional deformation and effective elastic constants or in terms of the

overall deformation and the elastic constants of the crystal in the unstrained state. The procedure

is described fully, in the context of the macroscopic elastic constants, by Wallace in [16, Sec. 8]

and is readily extended to cover the microscopic constants.

The effective E tensors, denoted by Ē��
ij , may be used in the secular equation (with the

appropriate density �) to obtain the optic mode frequencies in stressed crystals. Strains can

be chosen to introduce off-diagonal elements and remove degeneracies. Phonon deformation

parameters, which characterise the strain dependence of the frequency [3, 14], are easily derived

from the Ē tensors below. It will be seen that these expressions can be very lengthy. The results

for the simplest case, that of hydrostatic pressure, are presented in Sec. 4.5.
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4.4.1 Cubic diamond

Ē11 = E11(1 + �1 � �2 � �3) + E111�1 + E112(�2 + �3)

Ē22 = E11(1� �1 + �2 � �3) + E111�2 + E112(�1 + �3)

Ē33 = E11(1� �1 � �2 + �3) + E111�3 + E112(�1 + �2)

Ē12 = (E11 + E126 +A14F123)�6 (4.36)

Ē13 = (E11 + E126 +A14F123)�5

Ē23 = (E11 + E126 +A14F123)�4:

4.4.2 Rhombohedral graphite

Ē11 = E11(1 + �1 � �2 � �3) +E111�1 + E112�2 + E113�3 + E114�4

+F112A16(�1 � �2) + F113(A31(�1 + �2) +A33�3)

Ē12 = Ē21 = E11�6 + E114�5 +E126�6 + F112A16�6

Ē13 = 1
2 (E11 +E33)�5 + E135�5 + E136�6 + F113A16�6

Ē22 = E11(1� �1 + �2 � �3) +E111�2 + E112�1 + E113�3 � E114�4

�F112A16(�1 � �2) + F113(A31(�1 + �2) + A33�3) (4.37)

Ē23 = 1
2 (E11 +E33)�4 + E135�4 + E136(�1 + �2) + F113A16(�1 � �2)

Ē31 = 1
2 (E11 +E33)�5 + E315�5 + E316�6 + F113A16�6

Ē32 = 1
2 (E11 +E33)�4 + E315�4 + E316(�1 + �2) + F113A16(�1 � �2)

Ē33 = E33(1� �1 � �2 + �3) +E331(�1 + �2) +E333�3 + F333(A31(�1 + �2) + A33�3):

4.4.3 Hexagonal diamond

Ē��
11 = E��

11 (1 + �1 � �2 � �3) +E��
111�1 + E��

112�2 + E��
113�3 + E��

114�4

+F���
112 A

�
16(�1 � �2) + F���

113 (A�
31(�1 + �2) + A�

33�3)

Ē��
12 = Ē��

21 = E��
11 �6 + E��

114�5 + E��
126�6 + F���

112 A
�
16�6

Ē��
13 = 1

2(E��
11 +E��

33 )�5 + E��
135�5 +E��

136�6 + F���
131 A

�
16�6

Ē��
22 = E��

11 (1� �1 + �2 � �3) +E��
111�2 + E��

112�1 + E��
113�3 � E��

114�4

�F���
112 A

�
16(�1 � �2) + F���

113 (A�
31(�1 + �2) +A�

33�3) (4.38)

Ē
��
23 = 1

2(E��
11 +E��

33 )�4 + E��
135�4 +E��

136(�1 + �2) + F���
131 A

�
16(�1 � �2)

Ē��
31 = 1

2(E��
11 +E��

33 )�5 + E��
315�5 +E��

316�6 + F���
311 A

�
16�6

Ē��
32 = 1

2(E��
11 +E��

33 )�4 + E��
315�4 +E��

316(�1 + �2) + F���
311 A

�
16(�1 � �2)

Ē��
33 = E��

33 (1� �1 � �2 + �3) +E��
331(�1 + �2) +E��

333�3

+F���
333 (A�

31(�1 + �2) +A�
33�3):
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4.4.4 Hexagonal graphite

Ē
��
11 = E

��
11 (1 + �1 � �2 � �3) + E��

111�1 + E��
112�2 +E��

113�3 + F���
112 A

�
16(�1 � �2)

Ē��
12 = Ē��

21 = E��
11 �6 + E��

126�6 + F���
112 A

�
16�6

Ē
��
13 = 1

2(E��
11 + E��

33 )�5 +E��
135�5 (4.39)

Ē��
22 = E��

11 (1� �1 + �2 � �3) + E��
111�2 + E��

112�1 +E��
113�3 � F���

112 A
�
16(�1 � �2)

Ē��
23 = 1

2(E��
11 + E��

33 )�4 +E��
135�4

Ē��
31 = 1

2(E��
11 + E��

33 )�5 +E��
315�5

Ē��
32 = 1

2(E��
11 + E��

33 )�4 +E��
315�4

Ē��
33 = E��

33 (1� �1 � �2 + �3) + E��
331(�1 + �2) + E��

333�3:

4.5 The pressure dependence of the optic mode frequencies

Under hydrostatic pressure �4 = �5 = �6 = 0, �1 = �2 = �3 = �kp for cD and �1 = �2 = �kap,

�3 = �kcp in the remaining three cases, where k, ka and kc are linear compressibilities. These

strains are inserted into the effective constants above, the effective constants into the appropriate

eigenvalue equations (again with the appropriate density, which is also pressure-dependent) and the

latter differentiated with respect to p. No degeneracies are lifted by hydrostatic pressure.

Some composite constants are defined below in order to shorten the lengths of some of the

expressions in hG and hD.

4.5.1 Cubic diamond

d!2
R(T2g)

dp
= �4k

�0

�
2E11 +E111 + 2E112

�
: (4.40)

4.5.2 Rhombohedral graphite

d!2
R(Eg)

dp
= � 4

�0

�
ka(2E11 + E111 +E112 + 2F113A31) + kc(E113 + F113A33)

�
d!2

R(A1g)

dp
= � 4

�0

�
2ka(E331 + F333A31) + kc(2E33 + E333 + F333A33)

�
: (4.41)

4.5.3 Hexagonal diamond

The composite constants are

Eaa
ii: � E11

ii: �E12
ii: + E13

ii:

Ebb
ii: � E11

ii: �E13
ii:
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F aa�
ii3 � F 11�

ii3 � F 12�
ii3 + F 13�

ii3

F bb�
ii3 � F 11�

ii3 � F 13�
ii3

and the pressure derivatives are

d!2(E2u)

dp
= � 8

�0

�
ka(2E12

11 + E12
111 + E12

112 + 2F 12�
113 A

�
31) + kc(E

12
113 + F 12�

113 A
�
33)
�

d!2
R(E1g)

dp
= � 8

�0

�
ka(2Eaa

11 + Eaa
111 + Eaa

112 + 2F aa�
113 A

�
31) + kc(E

aa
113 + F aa�

113 A
�
33)
�

(4.42)

d!2
R(E2g)

dp
= � 8

�0

�
ka(2Ebb

11 +Ebb
111 + Ebb

112 + 2F bb�
113A

�
31) + kc(E

bb
113 + F bb�

113A
�
33)
�

and

d!2(B1u)

dp
= � 8

�0

�
2ka(E12

331 + F 12�
333 A

�
31) + kc(2E

12
33 +E12

333 + F 12�
333 A

�
33)
�

d!2
R(A1g)

dp
= � 8

�0

�
2ka(Eaa

331 + F aa�
333 A

�
31) + kc(2E

aa
33 + Eaa

333 + F aa�
333 A

�
33)
�

(4.43)

d!2(B2g)

dp
= � 8

�0

�
2ka(Ebb

331 + F bb�
333A

�
31) + kc(2E

bb
33 + Ebb

333 +A�
33F

bb�
333 )

�
:

4.5.4 Hexagonal graphite

The composite constant is

Ecc
ii: � E11

ii: �E12
ii: +E33

ii:

and the pressure derivatives are

d!2
I (E1u)

dp
= � 8

�0

�
ka(2E12

11 +E12
111 + E12

112) + kcE
12
113

�
d!2

R(E2g2)

dp
= � 4

�0

 
ka(2(Ecc

11 + Ey
11) + Ecc

111 + Ecc
112) + kcE

cc
113 +

dĒy
11

dp

!
(4.44)

d!2
R(E2g1)

dp
= � 4

�0

 
ka(2(Ecc

11 � Ey
11) + Ecc

111 + Ecc
112) + kcE

cc
113 �

dĒy
11

dp

!

where

dĒy
11

dp
=

E12
11 � 2E13

11

Ey
11

�
ka(E12

111� 2E13
111 + E12

112� 2E13
112) + kc(E

12
113 � 2E13

113)
�

+
E11

11 �E33
11

Ey
11

�
ka(E11

111 � E33
111 + E11

112� E33
112) + kc(E

11
113 �E33

113)
�
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and

d!2
I (A2u)

dp
= � 8

�0

�
2kaE

12
331 + kc(2E

12
33 + E12

333)
�

d!2
R(B1g2)

dp
= � 4

�0

 
2kaE

cc
331 + kc(2(Ecc

33 + Ey
33) + Ecc

333) +
dĒy

33

dp

!
(4.45)

d!2
R(B1g1)

dp
= � 4

�0

 
2kaE

cc
331 + kc(2(Ecc

33 � Ey
33) +Ecc

333)� dĒy
33

dp

!

where

dĒy
33

dp
=

E12
33 � 2E13

33

Ey
33

�
2ka(E12

331 � 2E13
331) + kc(E

12
333� 2E13

333)
�

+
E11

33 �E33
33

Ey
33

�
2ka(E11

331 �E33
331) + kc(E

11
333 �E33

333)
�
:

4.6 Summary

The different microscopic tensors that arise in connection with the elasticity and with the frequencies

and eigenvectors of the zone-centre optic modes in four carbon allotropes have been analysed in

detail. Expressions for the internal strain tensor components have also been derived and may be

seen to relate to the frequencies of the Raman-active modes. This illustrates a general symmetry

requirement, first given by Miller and Axe, in [12], that only Raman-active modes contribute to the

internal strain part of the elastic constants. These results are carried forward to the next Chapter

where the macroscopic elasticity of the four allotropes is subjected to similar detailed treatment.

Finally the effective inner elastic constants under arbitrary strain have been determined and

used to obtain the pressure derivatives of the optic mode frequencies.
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Chapter 5

Total elastic constants, compressibilities and pressure derivatives

5.1 Anatomy of the macroscopic constants

The treatment of crystal equilibrium presented in Chapter 1 leads to expressions for the total elastic

constants in terms of partial and inner elastic constants, and internal strain tensors.

Apart from cD, treated in [2], there has been no previous analysis of the composition of the

elastic constants of any of the other allotropes, all of which have a rich complement of inner elastic

constants.

Some constants may be selected as independent and these constitute the set that must be

evaluated in order to get a full description of the elasticity. They are presented for hD and hG in

Table 5.1, and for cD and rG in Table 5.2. Also shown in the latter are the elastic constants of cD

transformed to a quasi-rhombohedral system of axes, a form suitable for considering the cD to rG

solid-state transition.

Table 5.1: The symmetry of the elastic constants of hD and hG. The odd columns contain the

components of each constant that have been selected as independent and the even columns contain

the relationships between them and the remaining non–zero components ones.

C1 C2 = C1 C111 C112 = C111 � C166 � 3C266

C3 C113 C122 = C111 � 2C166� 2C266

C133 C222 = C111 +C166 � C266

C11 C22 = C11 C333 C123 = C113 � 2C366

C12 C23 = C13 C144 C223 = C113

C13 C55 = C44 C244 C233 = C133

C33 C66 = 1
2

�
C11 � C12

�
C344 C155 = C244

C44 C166 C255 = C144

C266 C355 = C344

C366 C456 = 1
2

�
C244 � C144

�
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Table 5.2: Top: The symmetry of the elastic constants of cD. Odd columns show the components

selected as independent, even columns the relationships between them and the remaining non–zero

components. Bottom: The symmetry of the elastic constants of rG. First two columns as for cD.

The third column shows the elastic constants of quasi-rD in terms of those of cD.

cD

C1 C2 = C3 = C1 C111 C222 = C333 = C111

C112 C113 = C122 = C133 = C223 = C233 = C112

C11 C22 = C33 = C11 C123

C12 C13 = C23 = C12 C144 C255 = C366 = C144

C44 C55 = C66 = C44 C155 C166 = C244 = C266 = C344 = C355 = C155

C456

rG quasi-rD

C1 C2 = C1 C1

C3 C1

C11 C22 = C11 (C11 +C12 + 2C44)=2

C12 C66 = (C11 � C12)=2 (C11 + 5C12 � 2C44)=6

C13 C23 = C13 (C11 + 2C12 � 2C44)=3

C33 (C11 + 2C12 + 4C44)=3

C44 C55 = C44 (C11 � C12 + C44)=3

C14 C24 � C56 = �C14 (C11 � C12 � 2C44)=3
p

2

C111 C112 = C111 � C166 � 3C266

�
C111 + 3C112 + 12C155

�
=4

C113 C122 = C111 � 2C166� 2C266

�
C111 + 4C112 + C123 + 2C144� 4C155

�
=6

C133 C222 = C111 +C166 � C266

�
C111� 3C112 + 2C123 � 8C456

�
=9

C333 C123 = C113 � 2C366

�
C111 + 6C112 + 2C123 + 12C144 + 24C155 + 16C456

�
=9

C144 C223 = C113

�
C111 + 3C112� 4C123 + 9C144 � 3C155� 2C456

�
=18

C244 C233 = C133

�
C111� C112 + C144 + C155 + 2C456

�
=6

C344 C155 = C244

�
C111� C123 � 3C144 + 6C155 � 2C456

�
=9

C166 C255 = C144

�
C111� C112 + 4C144 + 4C155 + 8C456

�
=12

C266 C355 = C344

�
C111 + 3C112� 4C123 � 12C144 + 36C155� 8C456

�
=36

C366 C456 =
�
C244� C144

�
=2

�
C111� C123 + 12C144� 8C456

�
=18

C114 C224 = �(C114 + 2C124)
�
C111 + C112� 2C123� 4C144 � 4C155

�
=6
p

2

C124 C156 = (C114 + 3C124)=2
�
C111� 3C112 + 2C123 � 8C456

�
=18
p

2

C134 C256 = (C114 � C124)=2
�
C111� C123 � 6C155 + 4C456

�
=9
p

2

C444 C234 = �C356 = �C134 � �C111 � 3C112 + 2C123 + 3C144� 3C155� 2C456

�
=9
p

2

C446 = C124

C455 = �C444
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The final expressions for CIJ and CIJK as sums of partial and inner elastic constants were

given in Chapter 1. They are recapitulated here with extra definitions that simplify the presentation

for the individual allotropes:

CIJ = C0
IJ � A�

iIA
�
jJE

��
ij

= C0
IJ � ∆IJ (5.1)

and

CIJK = C0
IJK + A�

iID
�
iJK + A�

iJD
�
iIK + A�

iKD
�
iIJ

+A�
iIA

�
jJE

��
ijK +A�

iIA
�
jKE

��
ijJ + A�

iJA
�
jKE

��
ijI

+A�
iIA

�
jJA

�
kKF

���
ijk

= C0
IJK + ∆IJK : (5.2)

The expressions for the non-zero components ∆IJ and ∆IJK for the different allotropes are obtained

by taking appropriate sets of independent non-zero inner elastic constants and internal strain tensor

components from Tables 4.4, 4.6 and 4.7 in Chapter 1.

The considerable differences between the two hexagonal allotropes is a direct consequence of

the different site symmetries in the two structures: the two distinct pairs of equivalent sites in hG

each have 6̄m2 symmetry whereas the four equivalent sites in hD have the lower 3m symmetry.

5.1.1 Cubic diamond

At the second order

∆44 = (A14)2E11 (5.3)

and at the third

∆144 = 2A14D114 + (A14)2E111

∆155 = 2A14D124 + (A14)2E112 (5.4)

∆456 = 3A14D156 + 3(A14)2E126 + (A14)3F123:

5.1.2 Rhombohedral graphite

At the second order

∆11 = (A31)2E33 + (A16)2E11

∆12 = (A31)2E33 � (A16)2E11

∆13 = A31A33E33 (5.5)

∆33 = (A33)2E33

∆44 = (A15)2E11

∆14 = A15A16E11:
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At the third order

∆111 = 3A16D211 + 3A31D311

+3(A16)2E112 + 6A16A31E136 + 3(A31)2E331

�(A16)3F112 + 3(A16)2A15F113 + (A31)3F333

∆113 = 2A16D136 + A33D311 + 2A31D313

+(A16)2E113 + 2A16A33E136 + 2A31A33E331

+(A31)2E333 + (A16)2A33F113 + (A31)2A33F333

∆133 = 2A33D313 + A31D333 + (A33)2E331 + 2A31A33E333 + A31(A33)2F333

∆333 = 3A33D333 + 3(A33)2E333 + (A33)3F333

∆144 = �A16D145 + 2A15D125 + A31D344 + 2A31A15E315 + (A15)2E112

�A16(A15)2F112 + A31(A15)2F113

∆244 = A16D145 + 2A15D115 + A31D344 + 2A31A15E315 + (A15)2E111

+A16(A15)2F112 + A31(A15)2F113

∆344 = 2A15D135 + A33D344 + 2A33A15E315 + (A15)2E113 + A33(A15)2F113 (5.6)

∆166 = �A16(D211 + 2D222) + 1
2A31(D311 �D312)

+(A16)2(2E111 �E112) + 2A31A16E136

+(A16)3F112 +A31(A16)2F113

∆266 = A16(2D211 + D222) + 1
2A31(D311�D312)

�(A16)2(E111 � 2E112) + 2A31A16E136

�(A16)3F112 + A31(A16)2F113

∆366 = 2A16D136 + 1
2A33(D311 �D312)

+(A16)2E113 + 2A33A16E136 +A33(A16)2F113

∆114 = 2A16D125 + A15D211

+2A16A15E112 + 2A31A15E136

�(A16)2A15F112 + 2A16A15A31F113

∆124 = �A16D125 + A15D212 +A31D314

+A16A15(E111 �E112) + (A16)2A15F112

∆134 = A16D135 + A15D136 + A33D314

+A16A15(E113 +E135) + A33A15E136 + A16A15A33F113

∆444 = �3A15D145 � (A15)3F112
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5.1.3 Hexagonal diamond

In Chapter 4 it was useful to define some composite constants in order to simplify expressions for

the pressure derivatives of the optic mode frequencies. A similar need arises here. The composite

constants are

Eaa
ij: � E11

ij: �E12
ij: + E13

ij:

Ebb
ij: � E11

ij: �E13
ij:

F 11a
112 � F 111

112 � 3F 112
112 + 3F 113

112

F 1bb
113 � F 111

113 � F 113
113 � 2F 121

113 + 2F 123
113 + 2F 131

113 + F 221
113

F 1cc
113 � F 111

113 � 2F 131
113 � F 113

113

At the second order

∆11 = 2(A1
31)2Ebb

33 + 2(A1
16)2Eaa

11

∆12 = 2(A1
31)2Ebb

33 � 2(A1
16)2Eaa

11

∆13 = 2A1
31A

1
33E

bb
33 (5.7)

∆33 = 2(A1
33)2Ebb

33

∆44 = 2(A1
15)2Ebb

11:

At the third order

∆111 = 6A1
16D

1
211 + 6A1

31D
1
311 + 6(A1

16)2Eaa
112 + 12A16A31E

bb
136

+6(A1
31)2Ebb

331� 2(A1
16)3F 11a

112 + 6(A1
16)2A1

31F
1bb
113 + 2(A1

31)3(F 111
333 � 3F 113

333 )

∆113 = 4A1
16D

1
136 + 2A1

33D
1
311 + 4A1

31D
1
313 + 2(A1

16)2Eaa
113 + 4A16A33E

bb
136 + 4A1

31A
1
33E

bb
331

+2(A1
31)2Ebb

333 + 2(A1
16)2A1

33F
1bb
113 + 2(A1

31)2A1
33(F 111

333 � 3F 113
333 )

∆133 = 4A1
33D

1
313 + 2A1

31D
1
333 + 2(A1

33)2Ebb
331 + 4A1

31A
1
33E

bb
333 + 2A1

31(A1
33)2(F 111

333 � 3F 113
333 )

∆333 = 6A1
33D

1
333 + 6(A1

33)2Ebb
333 + 2(A1

33)3(F 111
333 � 3F 113

333 )

∆144 = �2A1
16D

1
145 + 4A1

15D
1
125 + 2A1

31D
1
344 + 4A1

31A
1
15E

bb
315 + 2(A1

15)2Ebb
112 (5.8)

�2A1
16(A1

15)2(F 111
112 � F 113

112 ) + 2A1
31(A1

15)2F 1cc
113

∆244 = 2A1
16D

1
145 + 4A1

15D
1
115 + 2A1

31D
1
344 + 4A1

31A
1
15E

bb
315 + 2(A1

15)2Ebb
111

+2A1
16(A1

15)2(F 111
112 � F 113

112 ) + 2A1
31(A1

15)2F 1cc
113

∆344 = 4A1
15D

1
135 + 2A1

33D
1
344 + 4A1

33A
1
15E

bb
315 + 2(A1

15)2Ebb
113 + 2A1

33(A1
15)2F 1cc

113

∆166 = �2A1
16(D1

211 + 2D1
222) +A1

31(D1
311 �D1

312) + 2(A1
16)2(2Eaa

111�Eaa
112)

+4A1
31A

1
16E

bb
136 + 2(A1

16)3F 11a
112 + 2A1

31(A1
16)2F 1bb

113

∆266 = 2A1
16(2D1

211 + D1
222) + A1

31(D1
311 �D1

312)� 2(A1
16)2(Eaa

111 � 2Eaa
112)

+4A1
31A

1
16E

bb
136 � 2(A1

16)3F 11a
112 + 2A1

31(A1
16)2F 1bb

113

∆366 = 4A1
16D

1
136 + A1

33(D1
311 �D1

312) + 2(A1
16)2Eaa

113 + 4A1
33A

1
16E

bb
136 + 2A1

33(A1
16)2F 1bb

113



5.2 Compliances and compressibilities 83

5.1.4 Hexagonal graphite

The following composite constants are useful:

E1c
11: � E11

11: � 1
2E

12
11:

E3c
11 � E33

11: � 1
2E

12
11:

F 1cc
112 � 1

4F
112
112 � F 123

112 + F 133
112

At the second order, after usingE22
11 = 2E12

11 = 2E23
11 and A2

16 = � 1
2 (A1

16 +A3
16) (see Chapter 4), we

obtain

∆11 = (A1
16)2E1c

11 + (A3
16)2E3c

11

+2A1
16A

3
16(E13

11 � 1
2E

12
11) (5.9)

∆12 = �∆11

At the third order

∆111 = 3A1
16D

1
211 + 3A3

16D
3
211 + 3(A1

16)2E1c
112 + 3(A3

16)2E3c
112 + 6A1

16A
3
16(E13

112 � 1
2E

12
112)

�(A1
16)3(F 111

112 � 3
4F

112
112 )� 3

4(A1
16)2A3

16F
223
112 � 3A1

16(A3
16)2F 1cc

112 � (A3
16)3(F 333

112 � 3
4F

223
112 )

∆113 = 2A1
16D

1
136 + 2A3

16D
3
136 + (A1

16)2E1c
113 + (A3

16)2E3c
113 + 2A1

16A
3
16(E13

113 � 1
2E

12
113)

∆144 = �A1
16D

1
145 �A3

16D
3
145

∆244 = �∆144 (5.10)

∆166 = �A1
16(D1

211 + 2D1
222)� A3

16(D3
211 + 2D3

222) + (A1
16)2(2E1c

111� E1c
112)

+(A3
16)2(2E3c

111 �E3c
112) + 2A1

16A
3
16(2E13

111� E13
112� E12

111 + 1
2E

12
112)

+(A1
16)3(F 111

112 � 3
4F

112
112 ) + (A3

16)3(F 333
112 � 3

4F
223
112 ) + 3

4(A1
16)2A3

16F
223
112 + 3A1

16(A3
16)2F 1cc

112

∆266 = A1
16(2D1

211 + D1
222) +A3

16(2D3
211 + D3

222) + (A1
16)2(2E1c

112� E1c
111)

+(A3
16)2(2E3c

112 �E3c
111) + 2A1

16A
3
16(2E13

112� E13
111� E12

112 + 1
2E

12
111)

�(A1
16)3(F 111

112 � 3
4F

112
112 )� (A3

16)3(F 333
112 � 3

4F
223
112 ) � 3

4 (A1
16)2A3

16F
223
112 � 3A1

16(A3
16)2F 1cc

112

∆366 = ∆113

5.2 Compliances and compressibilities

Measurements of lattice parameter and volume change under pressure by means of X-ray or neutron

diffraction may be used to extract elasticity information from crystals too small to subject to more

conventional techniques, such as ultrasonics. The primary quantities obtained are the harmonic and

anharmonic linear compressibilities,kI andKI , defined implicitly in the extended form of Hooke’s

law (in which ÆJ = 1 if J = 1, 2 or 3 and is zero otherwise):

�I = �pSIJÆJ + 1
2p

2SIJKÆJÆK

= �kIp + 1
2KIp

2: (5.11)
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The compliances, SIJ and SIJK , have the same patterns of independent components as the

CIJ and CIJK and can thus be read from Tables 5.1 and 5.2. The relations of dependence however

are slightly different: each occurrence of a subscript 4, 5 or 6 must be associated with a factor of 2

(see [4]), thus for instance

C222 = C111 + C166� C266

has the analogue

S222 = S111 + 4S166� 4S266:

5.2.1 Cubic diamond

When �1 = �2 = �3 we have (dropping subscripts)

k = S11 + 2S12 (5.12)

and

K = S111 + 6S112 + S123: (5.13)

On setting 2�1 = 2�2 = 2�3 = ∆a2=a2
0 we obtain

∆a=a0 = �kp + 1
2(K � k2)p2 (5.14)

for the change in lattice parameter.

The exact expression for the volume V of a finitely strained crystal is

�
V

V0

�2

= det(I + 2�) (5.15)

and leads to volume change given by

∆V
V0

= �3kp + 3
2 (K + k2)p2: (5.16)

5.2.2 Hexagonal diamond, hexagonal graphite and rhombohedral graphite

For the axial allotropes, in which 2�1 = 2�2 = ∆a2=a2
0 and 2�3 = ∆c2=c2

0, there are two compress-

sibilities of each kind:

ka = S11 + S12 + S13

kc = 2S13 + S33 (5.17)

Ka = S111 + 2S112 + 2S113 + S122 + 2S123 + S133

Kc = 2S113 + 2S123 + 4S133 + S333:
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The lattice parameters change as

∆a=a0 = �kap + 1
2 (Ka � k2

a)p2

∆c=c0 = �kcp + 1
2(Kc � k2

c )p2 (5.18)

and the volume as
∆V
V0

= �kvp + 1
2 (Kv + 4kakc � k2

c)p
2 (5.19)

where kv = 2ka + kc and Kv = 2Ka + Kc:

5.3 Effective elastic constants and their pressure derivatives

Ultrasonic velocity measurements made on an initially-stressed crystal yield effective elastic con-

stants. When such a crystal is further deformed its energy can be expressed either in terms of the

additional deformation and the effective elastic constants or in terms of the overall deformation

and the elastic constants of the crystal in the unstrained state. The procedure is described fully for

arbitrary strain in [6, Sec. 8]. The expressions so obtained are differentiated to give the pressure

derivatives of the second-order constants.

5.3.1 Cubic diamond

The effective constants are

C̄11 = C11(1 + 3�1 � �2 � �3) + C111�1 +C112(�2 + �3)

C̄12 = C12(1 + �1 + �2 � �3) + C112(�1 + �2) +C123�3 (5.20)

C̄44 = C44(1� �1 + �2 + �3) + C144�1 + C155(�2 + �3):

Differentiation of the above, after setting �1 = �2 = �3 = �kp, gives the following pressure

derivatives:

�C0
11 = k(C11 +C111 + 2C112)

�C0
12 = k(C12 + 2C112 + C123) (5.21)

�C0
44 = k(C44 +C144 + 2C155):

5.3.2 Hexagonal diamond and hexagonal graphite

For both allotropes the effective constants are

C̄11 = C11(1 + 3�1 � �2 � �3) + C111�1 +C112�2 + C113�3

C̄12 = C12(1 + �1 + �2 � �3) + C112�1 + C122�2 +C123�3

C̄13 = C13(1 + �1 � �2 + �3) + C113�1 + C123�2 +C133�3 (5.22)
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C̄33 = C33(1� �1 � �2 + 3�3) + C133(�1 + �2) + C333�3

C̄44 = C44(1� �1 + �2 + �3) + C144�1 + C244�2 +C344�3:

Differentiation, after setting �1 = �2 = �kap and �3 = �kcp, then gives the following pressure

derivatives:

�C0
11 = ka(2C11 + C111 + C112) + kc(�C11 +C113)

�C0
12 = ka(2C12 + C112 + C122) + kc(�C12 +C123)

�C0
13 = ka(C113 + C123) + kc(C13 + C133) (5.23)

�C0
33 = 2ka(�C33 + C133) + kc(3C33 + C333)

�C0
44 = ka(C144 + C244) + kc(C44 + C344):

It was not possible, using the above procedure, to reproduce the expressions for the effective elastic

constants of hexagonal crystals under isotropic pressure given in [5].

5.3.3 Rhombohedral graphite

The effective constants are

C̄11 = C11(1 + 3�1 � �2 � �3) + C111�1 + C112�2 + C113�3 + C114�4

C̄12 = C12(1 + �1 + �2 � �3) + C14�4 + C112�1 + C122�2 +C123�3 + C124�4

C̄13 = C13(1 + �1 � �2 + �3) + C14�4 + C113�1 + C123�2 +C133�3 + C134�4 (5.24)

C̄33 = C33(1� �1 � �2 + 3�3) + C133(�1 + �2) + C333�3 +C334�4

C̄44 = C44(1� �1 + �2 + �3)� C14�4 +C144�1 + C244�2 + C344�3 + C444�4

C̄14 = C14(1 + �1) + 1
2(C12 + C13)�4 + C114�1 + C124�2 + C134�3 + C144�4:

As �4 = 0 under hydrostatic pressure their pressure derivatives are simply the same as those of hD

and hG augmented by

�C0
14 = ka(C14 + C114 + C124) + kcC134: (5.25)

5.4 Summary

Starting with the general results in Chapter 1 the composition of the second- and third-order elastic

constants of the four carbon allotropes in terms of their inner elastic constants and internal strain

tensors has been presented. Certain properties derived from these constants, such as compliances,

compressibilities and the pressure derivatives, are closely related to parameters that can be obtained

directly by X-ray or neutron diffraction or from ultrasonic velocity measurements. These have also

been exposed explicitly.
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Chapter 6

Cubic diamond: optimization of an anharmonic Keating model and

its subsequent modification

6.1 Introduction

Over the years a number of valence-force-field approaches have been developed and/or used to treat

elasticity [9, 10, 11, 13, 16, 24], lattice dynamics [14, 23] and piezo-Raman spectroscopy[1, 3, 4, 8]

in covalently bonded materials. These range from Keating’s original 2-parameter model [10]

dealing with harmonic properties to the massive 21-term database of Vanderbilt et al. [24] that

handles harmonic, third-order and fourth-order anharmonic properties of silicon.

In the desire to achieve a good description of both harmonic and third-order anharmonic

properties of cubic diamond with the smallest number of parameters I have chosen to develop and

optimize the original Keating model [10, 11] by including only such further interactions as were

strictly necessary.

Most of the formal aspects of the elasticity of cD have been covered in Chapters 4 and 5.

The key results are summarised in Sec. 6.2, together with an elegant representation of the com-

pliances. Sec. 6.3 extends the previous results concerning the optic mode frequency to cover the

uniaxial stress-dependence of the frequencies (phonon deformation potentials) so that a wealth of

experimental data [1, 3, 4, 8] can be considered.

Previous applications of the Keating model are reviewed in Sec. 6.4 and the method is extended

to include all three nearest-neighbour 3-body interactions at the second order. The optimization of

the four parameters of its harmonic part is carried out. It is shown that the bond-bending parameter

obtained this way always contains implicitly a 4-body contribution that cannot be separated from

the normal 3-body contribution by consideration of elasticity alone. Separation is achieved by

fitting phonon frequencies at the X and L points of the Brillouin zone.

Additionallysix anharmonic terms have been considered at the third order [1, 11]. In an exact fit

of these to experimental values of the three pressure derivatives of the second-order elastic constants

and of the three phonon deformation potentials that describe the stress dependencies of the Raman

frequency [1, 8] it was found that one parameter was insignificant. For the optimized anharmonic
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potential the other five force constants were fitted by least squares with almost no change in values.

The full array of results is summarized in Sec. 6.5. Finally in Sec. 6.6 the elasticity of cD is

expressed relative to rhombohedral axes. When compared with the standard cubic approach this

reveals the drawback to the Keating model: namely that the parameters depend on some unit cell

dimension. The situation is avoided by redefining the strain so that all parameters at the second

and third order have the dimension of energy. The modified parameters have the virtue that they

are then transferable between structures.

6.2 Elastic constants, compliances and pressure derivatives

The total elastic constants are given by

C11 = C0
11

C12 = C0
12 (6.1)

C44 = C0
44 � (A14)2E11

at the second order and by

C111 = C0
111

C112 = C0
112

C123 = C0
123 (6.2)

C144 = C0
144 + 2A14D114 + (A14)2E111

C155 = C0
155 + 2A14D124 + (A14)2E112

C456 = C0
456 + 3A14D156 + 3(A14)2E126 + (A14)3F123

at the third, where

A14 = �D14=E11 (6.3)

is the internal strain parameter.

Second-order compliances SIJ enter the general expressions for the effective elastic constants

that are needed in the anharmonic parametrization. They are obtained from the stiffnesses CIJ

through the following relations, [18]

k � S11 + 2S12 = 1=(C11 + 2C12)

k0 � S11 � S12 = 1=(C11� C12) (6.4)

k00 � S44 = 1=C44:

The abbreviations k, k0 and k00 serve to simplify the following expressions for the third-order

compliances [5], which take a particularly neat form as a result of the high symmetry of cD:

K = S111 + 6S112 + 2S123 = �k3(C111 + 6C112 + 2C123)



6.3 The zone-centre optical modes 90

S111 � 3S112 + 2S123 = �k3
0 (C111 � 3C112 + 2C123)

S111 � S123 = �kk2
0 (C111 � C123) (6.5)

S144 + 2S155 = �kk2
00(C144 + 2C155)

S144 � S155 = �k0k2
00(C144� C155)

S456 = �k3
00C456:

where k and K are the harmonic and anharmonic linear compressibilities respectively.

The hydrostatic pressure derivatives of the elastic constants are given by

C0
11 = �k(C11 + C111 + 2C112)

C0
12 = �k(C12 + 2C112 + C123) (6.6)

C0
44 = �k(C44 + C144 + 2C244)

and

B0 = �1
3
� k

3
(C111 + 6C112 + 2C123); (6.7)

where the bulk modulus B = (C11 + 2C12) = 1=3k.

6.3 The zone-centre optical modes

The general approach to optic mode frequencies given in Chapter 4 led to the following expressions

for the triply-degenerate Raman frequency

!2
0(T2g) =

4
�0

E11 =
a3

2m
E11 (6.8)

and its pressure derivative 
d!2(T2g)

dp

!
0

= �4k
�0

�
2E11 +E111 + 2E112

�
(6.9)

where �0 is the equilibrium density,m is the mass of a carbon atom and k the linear compressibility.

6.3.1 The secular equation under stress

The effective inner elastic constants, Ē, for arbitrary strain are given by (4.37).

The secular equation for the optical modes under a stress � is���Ēij �
�

4
!2
��� = 0 (6.10)

in which
�0

�
= 1 + k�: (6.11)
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The phonon deformation potentials that describe the stress-dependence of the mode frequencies

depend on the stress derivatives of both Ēij and �.

Under hydrostatic pressure p the effective constants are

Ē11 = Ē22 = Ē33 = E11(1 + pk)� pk(E111 + 2E112) (6.12)

and the eigenvalues remain triply degenerate with

!2
H =

4
�
Ē11: (6.13)

For a uniaxial stress � in the direction ~̀ the stress components are given by �J = �`i`j , where

J is the conventional contraction of ij. Hooke’s law, �I = SIJ�J , can now be used to eliminate �I
from the effective inner elastic constants in favour of �`i`j and derivatives with respect to stress

found. Three situations are relevant to the work described here:

6.3.1.1 � along [0 0 1]

This is a tetragonal deformation and the effective E tensor now has two different diagonal compo-

nents:

Ē11 = Ē22 = E11(1� �S11) + �(S12E111 + (S11 + S12)E112) (6.14)

Ē33 = E11(1� �(2S12 � S11)) + �(S11E111 + 2S12E112):

The eigenvalues consist of a doublet and a singlet given by

!2
d =

4
�
Ē11 (6.15)

and

!2
s =

4
�
Ē33: (6.16)

6.3.1.2 � along [1 1 1]

This is a trigonal deformation in which

Ē11 = Ē22 = Ē33 = E11(1� 1
3�(S11 + 2S12)) + 1

3�(S11 + 2S12)(E111 + 2E112) (6.17)

Ē12 = Ē13 = Ē23 = 1
3�S44(E11 + E126 + A14F123)

The eigenvalues are

!2
d =

4
�

(Ē11 � Ē12) (6.18)

and

!2
s =

4
�

(Ē11 + 2Ē12): (6.19)
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6.3.1.3 � along [1 1 0]

In this orthorhombic deformation an off-diagonal component is introduced:

Ē11 = Ē22 = E11(1� �S12) + 1
2�((S11 + S12)E111 + (S11 + 3S12)E112)

Ē12 = 1
2�S44(E11 + E126 + A14F123) (6.20)

Ē33 = E11(1� �S11) + �(S12E111 + (S11 + S12)E112):

Degeneracy has now been removed and three eigenvalues are obtained:

!2
� =

4
�

(Ē11 � Ē12) (6.21)

and

!2
3 =

4
�
Ē33: (6.22)

6.3.2 Phonon deformation potentials

There are several different ad hoc definitions and notations used to describe the strain dependence

of the optic mode frequencies at the zone centre [4, 20]: Kij � @!2=@�ij and K̃ij � @ln!2=@�ij =

(1=!2
0)Kij are general expressions whilst p = K11, q = K12 and r = K44 are parameters specific

to cubic symmetry. When the eigenvalue expressions in the previous subsections are differentiated

with respect to stress, relations precisely the same as those given in [4] are obtained with

p

2!2
0

= 1 +
E111

2E11

q

2!2
0

=
E112

2E11

(6.23)

r

!2
0

= 1 +
E126 +A14F123

E11

;

together with the mode Grüneisen parameter

G = �1
3

�
1 +

E111 + 2E112

2E11

�
: (6.24)

A slighty different approach has been adopted by Nielsen [17] who defines a phonoelastic

tensor Ω as the square root of the dynamical matrix. Elements of this tensor, expanded in powers of

�, then combine to give frequencies under strain. Certain of the linear coefficients then correspond

to phonon deformation potentials: Ω11;Ω12 and 2Ω44 corresponding to the lefthand sides of the

three members of (6.23) above.
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6.4 The Keating model

The Keating formalism [10] models the strain energy only and does not provide values for the

cohesive energy or the lattice parameter, a (=3.567 Å). The value of a is assumed when forming

the strain variables ∆ij � (~r i:~r j � ~r i0:~r j0), where i and j label atoms neighbouring a particular

reference atom, s, and i0 and j0 label the unstrained configuration.

The connection between ∆ij , the finite strain tensor � and the inner displacement vector ~�

follows from the definition of homogeneous deformation. If H is the deformation gradient matrix

then ~r i = H~r i0 � H̃�1~�, where the sign depends on which sublattice the reference atom lies on,

∆ii = 2ri0p �pqr
i0
q � 2ri0p �p + �p�p (6.25)

and

∆ij = 2ri0p �pqr
j0
q � (ri0p + rj0

p )�p + �p�p (6.26)

where terms of order three and higher have been omitted.

6.4.1 Harmonic interactions

The harmonic energy per cell derives here from a nearest-neighbour 2-body interaction, three

nearest-neighbour 3-body interactions and a certain 4-body interaction. It takes the form, [19],

E(2) =
1
a2

2X
s=1

4X
i=1

�
�∆2

ii +
4X
j=1

0�
�∆2

ij + 1
2�(∆ii + ∆jj)∆ij + �∆ii∆jj + �∆ij∆ik

��
(6.27)

where the prime on the summation over j indicates that j 6= i. The � term is related to the f���
valence force field parameter introduced by McMurry et al. [14] as an essential ingredient in the

treatment of the flattening of the transverse acoustic dispersion curves towards the X and L points

in the Brillouin zone. It relates to a chain of three bonds in a 180Æ dihedral-angle configuration.

The absence of a summation over k arises as follows. The bonds labelled j and k are attached

to opposite ends of bond i and are parallel. Under homogeneous deformation the outer bonds

are strained in the same way, forcing the two angles of the chain to change in the same way.

This results in ∆ij∆ik=∆2
ij and the interaction becomes formally indistinguishable from the simple

3-body bond-bending interaction. Elastic constants and the zone-centre frequency cannot be used

to separate � from �. However the expressions for some of the phonon frequencies at the zone

boundary mix � and � in different proportions thereby enabling the separation to be made.

The second-order elastic, inner elastic and internal strain parameters are given by the following,

in which �� denotes � + �:

C11 =
1
a

(� + 3�� � � + 3� )

C12 =
1
a

(�� �� � � + 3� )
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B =
1
a

(� + 1
3�

� � � + 3� ) (6.28)

C0
44 =

1
a

(� + �� � � � � )

D14 =
4
a2 (� � �� � � )

E11 =
16
a3 (� + �� + � � � )

A14 = �a
4

�
�� �� � �

� + �� + � � �
�

�K = �4
a
A14

where B is the bulk modulus, �K is the Kleinman internal strain parameter and the remaining total

second-order constant,C44, is given by (6.1).

In addition, because ∆ii and ∆ij contain terms in �2, the ‘harmonic’ energy contains small

anharmonic contributions via E111 and E112. These are given by

E(2)
111 = E(2)

112 =
16
a3 (� � �� + � + 3� ) (6.29)

Initially the model was limited to the � and �� terms alone and applied to Group IV elements and

III-V semiconductors [10, 13]. The targets for fitting were C11, C12 and C44.

Table 6.1: Parametrization of the harmonic part of the Keating model. As explained in the text all

fits of ‘�’ to experimental data are in fact fits of � + �: this is indicated below by the use of ��.

Units are GPa for CIJ and B, GPa Å�2 for E11, and GPa Å for � etc.

 � �; �� fittings �! �; ��; � �; ��; � Present work

 � Exact �! LSq ? Exact Exact LSq Observed

C11 Fit Fit 756 433 990 1051 Fit Fit 1072 1079(5)a

C12 Fit �199 Fit 447 69 100 Fit Fit 131 124(5)a

E11 756 Fit Fit Fit 666 770 Fit Fit 562 553.4(8)b

C44 576 350 567 �13 520 589 593 Fit 574 578(2)a

B (Fit) 226 335 Fit 376 417 (Fit) (Fit) 445 442(4)a

�K 0.206 �0.45 0.28 1.02 0.131 0.20 0.12 0.074 0.093 0.125(20)c

� 1294 430 1006 1582 1068 1304 1056 987 1009

�� 852 1140 564 �12.2 821 848 852 852 840

� �238 �250 �234

� �33 19 21

a Reference [15] b Reference [25] c Reference [6]

Values of � and �� deduced from C11 and C12 [15] gave C44 to better than 0.3% [10]. This very

encouraging result hid a 37% error in E11 or a 17% error in the Raman frequency !0 [25]. It also
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predicted a value of 0.21 for �K . This was later measured by my research collaborators and the

much smaller value of 0.125�0.020 obtained [6]. With more experimental data available different

fits can be made and these are listed in Table 6.1. For columns 2 through 5 two data are used to

determine � and �� and the implications set out: at least one quantity is very poorly predicted

each time and �K in particular is bad. In column 6 a least-squares fit to four data by Anastassakis

et al. [1] leads to � = 1068 GPa Å and �� = 821 GPa Å. This gives a value of �K close to that

measured, though !0 is still 10% too large and C12 is 44% too small.

The first extension of the Keating model to include an additional interaction was made by

Bashenov et al. [2] who introduced (using ) the term denoted here by � . Column 7 lists the quoted

values; the precise method of calculation is unclear.

The case for the inclusion of the other 3-body term was discussed by Rücker and Methfessel[19].

They pointed out that a good agreement for C11, C12, C44 and !0 in diamond could be obtained

using just �, �� and � ( in their paper) whereas it appeared important to introduce � to improve

the fit to the phonon dispersion in Si and Ge. Column 8 shows the result of this fitting. Each fit

generates a unique relation for �K in terms of the fitted parameters—in this case

1� 2�K =

�
4a(C11 � 3C12)

M!2
0

�1=2

: (6.30)

This gives a value �K = 0:102 that is close to a theoretical calculation [17] and reasonably close to

experiment [6]. The predicted value for C44 is now 593 GPa, much closer to the observed 578 GPa.

The inclusion of both extra terms will now be considered. Inversion of the earlier equations for

C11, C12, E11 and D14 (as �KE11) yields

� =
a

8
(C11 + C12) +

a3

64
E11(1 + 2�K)

�� =
a

4
(C11 � C12) (6.31)

� = �a
2

(C11 � C12) +
a3

16
E11(1� �K)

� = �a
8

(C11 � 3C12) +
a3

64
E11(1� 2�K):

These then imply

1� �K =

�
8a(C11 � C12� C44)

M!2
0

�1=2

(6.32)

giving �K = 0:074, a value that is somewhat lower than either the measured value or theoretical

predictions. If the tolerances on the experimental data are taken into account a range of values

is obtained: �K = 0:074� 0:009. Although this is not quite enough to bracket the experimental

range there are reasons, discussed in Sec. 6.5, for supposing that the experimental value may have

been slightly overestimated. This 4-parameter fit is listed in column 9. A least squares solution

involving the observed value of �K produces the fitting shown in column 10.
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To check further the quality of the fits and to resolve the �/� problem involves consideration of

the zone-boundary phonons [21]. At the X point these have frequencies given by

M!2
LO;LA = 4� + 8� + 4� + 4�

= 4� + 8�� + 4� � 4�

M!2
TO = 8�� 8� (6.33)

M!2
TA = 8�

= 8�� � 8�

and at the L point by

M!2
LO = 2� + 13� + � + 4� + 4�

= 2� + 13�� + � + 4� � 9�

M!2
LA = 6� + � � 3� (6.34)

= 6� + �� � 3� � �
M!2

TO = 8� + 4� + 4� � 8� + 4�

= 8� + 4�� + 4� � 8�

M!2
TA = 4�

= 4�� � 4�:

Table 6.2: Phonon frequencies f (� !=2�) at the Γ, X and L points. Units: THz for f , GPa Å for

�� etc.

Point Mode Exact fit Least-sq. fit Observeda

Γ LO,TO 39.93 39.93 40.23 40.23 39.93

X LO,LA 37.09 35.36 37.09 35.45 35.80

TO 31.36 31.36 31.68 31.68 32.39

TA 29.41 24.78 29.20 24.78 24.04

L LO 40.42 36.77 40.29 36.80 37.21

LA 30.91 30.40 31.05 30.57 31.00

TO 35.90 35.90 36.21 36.21 36.25

TA 20.80 17.52 20.65 17.52 16.55

�� 852 840

� 605 605

� 0 247 0 235

a Reference [25]: errors are estimated at 2-3%
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Columns 3, 5 and 7 in Table 6.2 show the frequencies predicted using the four parameters �, ��,

� and � (i.e. with no explicit � term), in both exact and least-squares versions, and those observed.

The least-squares fit appears to be very slightly better.

The TO modes, which have no explicit � component, are well predicted with errors of only

-2% and -0.1%. Apart from one the remainder are overestimated: in particular the errors in the TA

modes are 22% at X and 25% at L. This characteristic failure to pick up the flattening of the TA

modes near the boundary is markedly reduced by setting � = 247 GPa Å in the exact and � = 235

GPa Å in the least-squares fittings to give the values listed in columns 4 and 6: the errors in the

TA modes are now 3% and 6% respectively and the separation of �� has now been achieved with

� = 605 GPa Å in each case.

With the simple model under consideration there is no way to improve all the zone-boundary

frequencies. I showed in [7] that the most general force constant fitting to nearest and next-nearest

neighbour interactions [12] imposes a condition on the calculated frequencies:

2(!2
LA � !2

LO + !2
TO � !2

TA)L = 3(!2
TO � !2

TA)X : (6.35)

Observed values do not satisfy this equation: the left- and right-hand sides differ from their mean

by 6%, a figure that suggests that the above fit is as good as it can be.

The inner elastic constants and internal strain parameters are collected together in summary Ta-

ble 6.4 in Sec. 6.5 and the decomposition of the calculated constants and the associated compliances

are shown in summary Tables 6.5 and 6.6.

6.4.2 Anharmonic interactions

Keating extended his method to the anharmonic régime [11] by considering the , Æ and � terms in

the following expression for the anharmonic energy per cell

E(3) =
8

3a3

2X
s=1

4X
i=1

�
∆3

ii +
4X
j=1

0�
Æ∆3

ij + 3
2�(∆ii + ∆jj)∆

2
ij (6.36)

+ 3
2�(∆2

ii + ∆2
jj)∆ij + 3�∆ii∆ij∆jj + 3

2�∆ii∆jj(∆ii + ∆jj)
��

where all nearest-neighbour 2-body and 3-body interactions have been written down. He suc-

cessfully applied this model to fitting the third-order elastic constants of Si and Ge. The direct

measurement of these constants for diamond would be extremely difficult for several reasons and

has probably not been attempted. Nevertheless experimental data are available that relate to the

third-order elastic constants, through pressure derivatives of second-order constants, [15] and to

third-order inner elastic constants, in the form of stress derivatives of the Raman frequency [8]. The

pattern of analysis used here is essentially the same as the one developed in [1]. The latter work

however involved only a 2-parameter harmonic fitting and this affects, in principle, the fits to E111
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and E112 and causes poorly fitted quantities (E11, B and, perhaps, �K) to distort the anharmonic

fitting.

The third-order elastic and inner elastic constants are given by the following expressions:

C111 =  � Æ + 9�� 3� � 3� + 9�

C112 =  � Æ + �� 3� � 3� + 9�

C123 =  + 3Æ � 3�� 3� � 3� + 9�

C0
144 =  + Æ � �� 3� + � + �

C0
155 =  � Æ + 3�� 3� � 3� + �

C0
456 =  � 3� + 3� � 3� (6.37)

D114 =
4
a

( � Æ � �� � + 3� + �)

D124 =
4
a

( + Æ � � � � + � + �)

D156 =
4
a

( � � + � � 3�)

E(3)
111 =

16
a2 ( + Æ + 3� + � + 5� + �)

E(3)
112 =

16
a2 ( � Æ � � + � + � + �)

E126 =
16
a2 ( + � � � � 3�)

F123 =
64
a3 ( + 3� � 3� � 3�):

The full E111 and E112 are then given by

E111 = E(2)
111 + E(3)

111 (6.38)

E112 = E(2)
112 + E(3)

112

and the remaining total third-order constants,C144, C155 and C456, by expressions in (6.2).

The target quantities related to the pressure derivatives of the second-order constants are

C111 + 2C112, 2C112 +C123 andC144 + 2C155, given by (6.6), where values ofC0
IJ have been derived

from [15]. The latter work actually determines pressure derivatives of ultrasonic wave propagation

coefficients and theirC0
11 andC0

44 values must be increased by unity andC0
12 decreased by unity for

consistency with the definitions in (6.6). The targets related to the phonon deformation potentials

are E111 + 2E112, E111�E112 and E126 +A14F123, given by (6.23), where values of p, q and r have

been deduced from [8] and E11 and A14 have been carried forward from the least-squares harmonic

fit. The (equal) values of E(2)
111 and E(2)

112 arising from the fitting of the harmonic energy should be

removed from the first of the above three targets. This quantity is, however, very small: for the

exact fitting it is �20.6 GPa Å and a minute �0.4 GPa Å for the least-squares fitting.
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Table 6.3: Parametrization of the anharmonic part of the Keating model using pressure derivatives

of the second-order elastic constants and the phonon deformation potentials. All input quantities

are dimensionless. The units for  etc. are GPa

Input Ref. [8] Ref. [1] Present work Observed

C0
11 7.31 Fit 6.97 6.98(70)a

C0
12 3.23 Fit 2.09 2.06(70)a

C0
44 4.40 3.95 Fit 3.98 3.98(30)a

(C0
11 � C0

12)=2 2.45 2.46(10)a

(C0
11 +C0

12 + 2C0
44)=2 8.65 8.50(60)a

(p + 2q)=2!2
0 -3.35 �3.19 Fit �3.18 �3.18(24)b

(p� q)=2!2
0 �0.50 �0.52 Fit �0.52 �0.52(8)b

r=!2
0 �1.2 �1.89 Fit �1.88 �1.9(2)b

 �1670 �1478 �1200 �1198

Æ 95 140 164 166

� �499 �654 �567 �566

� �227 �139 �138

� 181 145 143

� 0.55

a Reference [15] b Reference [8]

With six targets and six force constants an exact fitting is possible. This gives a value for �

(0.55 GPa) that is over 250 times smaller than the next smallest. It quantifies and confirms the

observation in [1] that this term, which indicates anharmonic crosstalk between contiguous bonds,

should probably be small. When � is neglected and the remaining five constants fitted by least-

squares the new values differ from the old by no more than 1.4%. The results of these fittings

are displayed in Table 6.3 together with the earlier fitting based on two harmonic terms and three

anharmonic ones [8], and that of [1]. Differences between the present results and those in [1] are

initially puzzling since the same basic approach and the same input data have been used in each

case. Small differences are to be expected as a consequence of the use of different values of �K ,E11

and B. The force constants derived in [1] are consistent with the values of the third-order constants

and with the three phonon deformation potentials but return values of 5.21, 3.32 and 11.33 for the

three pressure derivatives on which they are supposed to be based. A clue is provided by Eqs. (7)

in [1] where two of the three expressions contain twice the correct contribution of second-order

constants: in fact all three derivatives have been so used. The error arises from the inappropriate use

of equations developed by Thurston and Brugger [22] to facilitate the determination of third-order

elastic constants from ultrasonic measurements by including compensation for changes in specimen
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dimensions under stress.

One of the conclusions drawn in [1] was that the force constants � and � made a relatively small

contribution to the elastic constants but were crucial to fitting the phonon deformation potentials.

The present results make this point even more strongly: the two constants almost completely cancel

and provide less than 0.5% of the elastic constants.

All the calculated anharmonic constants have been entered in Tables 6.4 and 6.6 in the next

Section.

6.5 Summary of results

The inner elastic constants and internal strain parameters are shown in Table 6.4. Most of these are

appearing for the first time.

Table 6.4: The inner elastic constants and internal strain parameters. Units are GPa Å�1 for D,

GPa Å�2 for E, GPa Å�3 for F and Å for A.

Inner elastic constants Internal strain

D14 46.6 E11 561.9 A14 �0.083

�K 0.093 0.108a

D114 �259 E111 �2705 A114 0.06 1.39a

D124 �529 E112 �998 A124 0.79 1.11a

D156 �1028 E126 �1860 F123 �2879 A156 1.32 1.96a

a Reference [17]

Only E11 and A14=�K are known experimentally (see Table 6.1). The calculated value of E11

is just 1.5% too large whereas �K at 0.093 is somewhat smaller than the 0.125 measured. The

only other calculation of �K is due to Nielsen [17] who used local density functional theory with

ab initio pseudopotentials. It is intriguing that the value he obtained in the course of fitting all the

elastic constants to the LDA output was 0.092(2), essentially the same as the present one. The value

he actually reported, 0.108(1), was obtained by a quite separate, albeit more direct, calculation.

The possibility that the experimental value is too large follows from the fact that the sample was

subjected to a uniaxial stress of 6.2 GPa parallel to [1; 1; 0]. This is large enough to induce quadratic

components in the inner displacement and leads to an effective parameter

�K = �4
a

�
A14 + �(S12A114 + (S11 + S12)A124)

�
: (6.39)

Inserting calculated values shows that the experiment probably yielded too high a value in the

ratio 0.087 to 0.083. This would reduce �K to 0.119, a shift of 5%, well within the already large
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experimental uncertainty. At the third order the present values are rather less than those obtained

in [17].

The decomposition of the elastic constants into partial and internal contributions is shown in

Tables 6.5 and 6.6.

Table 6.5: The second-order elastic constants: stiffnesses are in GPa, compliances are in (TPa)�1.

Present work Observed Ab initio Observed

CIJ Partial Internal Total Ref. [15] Ref. [17] Ref. [19] SIJ Total Ref. [15]

C11 1072.3 1072.3 1079(5) 1050(10) 1104. S11 0.958 0.949(5)

C12 130.7 130.7 124(5) 127(4) 149. S12 �0.104 �0.098(3)

C44 577.8 �3.9 574.0 578(2) 550(5) 581. S44 1.742 1.730(6)

Table 6.6: The third-order elastic constants: stiffnesses are in GPa, compliances are in (TPa)�2.

Present work ; Æ; � fit Ab initio

CIJK Partial Internal Total Ref. [8] Ref. [17] SIJK Total

C111 �6475. �6475. �6260 �6300(300) S111 4.609

C112 �1947. �1947. �2260 �800(100) S112 0.936

C123 982. 982. 112 0(400) S123 �1.698

C144 91. 24. 115. �674 0(300) S144 �2.230

C155 �3079. 81. �2998. �2860 �2600(100) S155 7.808

C456 �355. 219. �135. �823 �1300(100) S456 0.716

At the second order additional ab initio calculations, in which the full-potential linear muffin-tin

orbital (FP-LMTO) method has been used, are available [19]. These are clearly of similar quality

to those in [17]. In spite of its simplicity the 4-parameter Keating model clearly matches the

predictions of more sophisticated calculations with regard to elastic constants and the zone-centre

phonons.

At the third order the present results are quite similar to the previous 3-parameter fit of Grims-

ditch et al. [8] This is expected as it is known that the extra two parameters introduced in [1] and

used here have their major impact on the phonon deformation potentials. Nielsen’s calculations

provide the only theoretical comparison. These have been included even though they are quoted to

only 2 significant figures. The two largest constants, C111 and C155, are in reasonable agreement

with this work but C456 seems rather inflated, the present value is much more in keeping with the

relative size of this constant in other diamond-structure materials.

The calculated compliances are essentially of the same quality as the stiffnesses. They can be

used directly to give the linear compressibilities at second and third order: k = 0:749 TPa�1 and
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K = 6:83 TPa�2. The corresponding volume compressibilities are kv = 3k = 2:25 TPa�1 and

Kv = 3K = 20:5 TPa�2.

6.6 A modified Keating model

There is a drawback to the use of the Keating model: its parameters are not transferable. This fact

apears to have passed unnoticed because the model has been applied exclusively to structures with

the same atomic configuration, i.e. the tetrahedral arrangement common to diamond and zincblende.

The problem arises from Keating’s inclusion of the structure-specific lattice parameter a into his

definition of strain [10]. It manifests itself most clearly in the attempt to account for the elasticity

of hD which should be almost the same as that of cD insofar as the atoms in the two structures have

precisely the same nearest neighbour configuration. The issue is resolved by a simple redefinition

of strain.

6.6.1 Cubic diamond referred to rhombohedral axes

The simplest way to illustrate the non-transferability problem is to refer the elasticity of cD to

rhombohedral axes. If these are taken to be Ox1 k [11̄0], Ox2 k [112̄] and Ox3 k [111] the

resulting sets of elastic and inner elastic constants have the forms appropriate to the rhombohedral

Laue group RI. Each set divides into two subsets: the group of elements that correspond to hexagonal

symmetry and the group of elements that disappear if there is no rhombohedral symmetry. The

transformed partial elastic and inner elastic constants are given in terms of the cubic constants by

the expressions listed in Table 4.4 and Table 5.2. Total elastic constants transform in the same way

as the partial constants because any inner elastic contributions to them transform compatibly.

The Keating parameters are not tensor components and there is no rule for their transformation.

The Keating expressions for the partial and inner elastic constants can be transformed, however,

and give rise, for example, to

C0
11 =

2
a

(� + �� � � + � )

etc., where a is the lattice parameter of the cubic unit cell. The harmonic energy per cell in the

cubic system is given by (6.27). This energy does not change when the axes are rotated and nor

do the ∆ii and ∆ij , being differences of scalar products and thus independent of coordinate system.

Yet we would not expect to find a appearing in the equation if we were starting directly from the

rhombohedral description, which involves a unit cell containing six atoms and lattice parameters

ah = a=
p

2 and ch =
p

3a, see Fig. 4.1. If (6.27) is used with ah in place of a (explicitly in the

initial factor and implicitly in ∆ii and ∆ij) it is necessary to halve the harmonic Keating parameters

to regain acceptable second-order constants, the same bulk modulus for example. Similarly, for the

anharmonic energy and third-order constants, division by 2
p

2 is necessary. Using the parameters
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deduced earlier in this way generates the quasi-rhombohedral partial and inner elastic constants

listed in Tables 6.7 and 6.8.

Table 6.7: Calculated second-order partial and inner elastic constants of cubic diamond with respect

to both cubic and rhombohedral axes. Units are GPa for C0
IJ , GPa Å�1 for DiJ and GPa Å�2 for

Eij .

Cubic Rhombohedral Cubic Rhombohedral

C0
11 1072.3 C0

11 1179.3 D14 46.6 D16 38.0

C0
12 130.7 C0

12 95.0 D15 �26.9

C0
44 577.8 C0

13 59.4 D31 �26.9

C0
33 1215.0 D33 53.8

C0
44 506.5 E11 561.9 E11 561.9

C0
14 �50.5 E33 561.9

Table 6.8: Calculated third-order partial and inner elastic constants of cubic diamond with respect

to both cubic and rhombohedral axes. Units are GPa for C0
IJK , GPa Å�1 for DiJK , GPa Å�2 for

EijK and GPa Å�3 for Fijk .

Cubic Rhombohedral Cubic Rhombohedral Cubic Rhombohedral

C0
111 �6475 C0

111 �12317 D114 �259 D116 �1161 E111 �2705 E111 �3711

C0
112 �1947 C0

113 �130 D124 �529 D126 �189 E112 �998 E112 �662

C0
123 982 C0

133 �1484 D156 �1028 D136 275 E126 �1860 E113 �327

C0
144 91 C0

333 �10520 D145 �353 E126 �1525

C0
155 �3079 C0

144 �304 D314 �243 E135 �1189

C0
456 �355 C0

244 �1371 D115 821 E331 �327

C0
344 �2833 D125 �23 E333 �4047

C0
166 �1610 D135 �39 E114 474

C0
266 �3482 D311 610 E136 474

C0
366 �196 D312 �389

C0
114 185 D313 538 F123 �2879 F112 �2351

C0
124 164 D333 �2596 F113 1662

C0
134 754 D344 94 F333 �3324

C0
444 �908
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6.6.2 Recasting the energy expressions

The simplest satisfactory solution emerges if the a�2 and a�3 factors are removed from E(2) and

E(3). Additionally a cosmetic alteration in the coefficients of individual terms in E(2) and E(3) will

remove various powers of 2 whose presence is due to Keating’s use of a=2 in place of a in his

original definition of strain. The modified energies per cell become

E(2) = 1
2

2X
s=1

4X
i=1

�
�∆2

ii +
4X
j=1

0�
��∆2

ij + �(∆ii + ∆jj)∆ij + �∆ii∆jj

��
(6.40)

and

E(3) = 1
2

2X
s=1

4X
i=1

�
∆3

ii +
4X
j=1

0�
Æ∆3

ij + �(∆ii + ∆jj)∆
2
ij (6.41)

+�(∆2
ii + ∆2

jj)∆ij + �∆ii∆ij∆jj + �∆ii∆jj(∆ii + ∆jj)
��

where the prime on the summation indicates that j 6= i. The previous notation has been retained so

that confusion is avoided: expressions for elastic constants will change (as shown below) but the

conceptual foundation of the model remains the same.

6.6.3 Modified Keating parameters

Identification of the old and the new energy expressions indicates how the parameters of the model

must be modified: for example

�mod =
2
a2� (6.42)

and

mod =
16
3a3 : (6.43)

The modified results for all the parameters deduced for cD by least squares fitting in Sec. 6.4 are

listed in Table 6.9 in two different units.

Table 6.9: Modified Keating parameters

Previous Modified

� 1009 GPa Å 158.6 GPa Å�1 0.990 eV Å�4

�� 840 132.0 0.824

� �234 �18.4 �0.115

� 21 3.3 0.021

 �1198 GPa �140.8 GPa Å�3 �0.879 eV Å�6

Æ 166 19.5 0.122

� �566 �99.7 �0.623

� �138 �24.3 �0.152

� 143 50.6 0.316
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6.6.4 Modified cubic diamond referred to cubic axes

All that remains is to collect together the modified expressions for the different categories of elastic

constant. Powers of 4=a in the unmodified expressions for the inner elastic constants and the

internal strain arose from components of the unstretched bond and are replaced here by powers ofp
3=r0. At the second order

C11 =
a

2
(� + 3�� � 2� + 3� )

C12 =
a

2
(�� �� � 2� + 3� )

B =
a

2
(� + 1

3�
� � 2� + 3� ) (6.44)

C0
44 =

a

2
(� + �� � 2� � � )

D14 =
a

2

p
3
r0

(�� �� � � )

E11 =
a

2
3

r2
0

(� + �� + 2� � � )

A14 = � r0p
3

�
�� �� � �

� + �� + 2� � �
�

�K = �
p

3
r0

A14

where r0 is the equilibrium bond length. Also

E(2)
111 = E(2)

112 =
a

2
3

r2
0

(� � �� + 2� + 3� ) (6.45)

represent the anharmonic contribution to the harmonic energy.

At the third order

C111 =
3a3

16
( � Æ + 6�� 2� � � + 6�)

C112 =
a3

16
(3 � 3Æ + 2� � 6� � 3� + 18�)

C123 =
3a3

16
( + 3Æ � 2�� 2� � � + 6�)

C0
144 =

a3

16
(3 + 3Æ � 2� � 6� + � + 2�)

C0
155 =

a3

16
(3 � 3Æ + 6� � 6� � 3� + 2�)

C0
456 =

3a3

16
( � 2� + � � 2�) (6.46)

D114 =
a3

16

p
3
r0

(3 � 3Æ � 2�� 2� + 3� + 2�)

D124 =
a3

16

p
3
r0

(3 + 3Æ � 2�� 2� + � + 2�)
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D156 =
a3

16

p
3
r0

(3 � 2� + � � 6�)

E(3)
111 =

a3

16
3

r2
0

(3 + 3Æ + 6� + 2� + 5� + 2�)

E(3)
112 =

a3

16
3

r2
0

(3 � 3Æ � 2� + 2� + � + 2�)

E126 =
a3

16
3

r2
0

(3 + 2� � � � 6�)

F123 =
a3

16
3
p

3

r3
0

(3 + 6� � 3� � 6�):

The full E111 and E112 are then given by

E111 = E(2)
111 + E(3)

111 (6.47)

E112 = E(2)
112 + E(3)

112

as before.

6.7 Summary

The original goal of finding a simple model to characterize both the harmonic and anharmonic

aspects of the elasticity of diamond has been achieved: the 4/5-parameter harmonic model provides

an excellent fit to the second-order experimental data and the 5-parameter anharmonic fitting

predicts third-order elastic constants that are in reasonable agreement with both a previous 3-

parameter model and an ab initio calculation. Fewer parameters always lead to a poorer fit.

The single unexpected outcome has been the implication, supported by an earlier ab initio

calculation, that the internal strain parameter, �K , is possibly even smaller than observed, where it

is already less than 25% of the values found for other group IV elements and III-V semiconductors.

Finally the Keating model has been recast in a form that makes the parameters characteristic

of the bonds alone, and not dependent on the dimensions of the unit cell chosen to describe the

structure. This means that the elasticity of cD can be referred to rhombohedral axes without altering

the model parameters and that these parameters can be transferred unchanged to hD, as exemplified

in Chapter 8.
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Chapter 7

Hexagonal graphite: review of data, previous calculations and a fit to

the modified anharmonic Keating model

7.1 Introduction

The (almost?) exclusive use of the Keating formalism in connection with cubic diamond- and zinc-

blende-stucture materials has led to its identification as a model of the covalent bond. In fact there

is no ‘physical’ content in the Keating model—it is simply a way of associating strain derivatives of

energy with the structural variables, interatomic separations and angles, that are thought likely to be

significant for whatever reason. In this Chapter I extend the modified Keating model to hexagonal

graphite.

The elasticity of hG is a challenge from both theoretical and experimental points of view on

account of the extreme anisotropy of the structure. If the elasticity of cD is referred to cartesian

axes with Ox1 k [11̄0] and Ox3 k [111] the greater part of the resulting quasi-rhombohedral set of

elastic constants (given in full in Chapter 6, Tables 6.5 and 6.6) may be compared directly to the

hG set. Both the differences and the similarities are startling: hG’s C33 at 38 GPa is a mere 3%

of its cD equivalent, 1212 GPa, whilst the combination that relates to uniform strain within layers,

C11 + C12, is 1240 GPa in hG and 1270 GPa in cD. Thus hG is as stiff as cD within a layer but 30

times more compliant between layers. A consequence of this is the ease with which irregularity of

stacking can take place and accounts for the fact that single crystalline regions of natural graphite

are always both limited in extent and contain a mixture of the hexagonal and rhombohedral forms.

Such material cannot be used for ultrasonic determinations of elastic constants but, in powder form,

can be compressed and changes in the lattice parameters followed by X-ray diffraction, [22, 27]. In

this way both second- and third-order compressibilities may be determined.

Second-order elastic constants may be obtained from ultrasonic experiments on compression-

annealed pyrolytic graphite, [5, 11, 12]. This material consists of layers that are stacked with high

precision (c-axes parallel within 0.5Æ) but whose a-axes are distributed at random. In spite of this

it is still possible to find the single-crystal constants because second-order elasticity is isotropic in

the basal plane, rendering the randomness invisible. This isotropy does not extend to the third-
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order elastic constants. Since the latter are usually measured by determining the uniaxial stress

dependence of ultrasonic wave velocities through single crystals it is unlikely that they will be

determined directly in the foreseeable future. Some combinations may be determined indirectly

through the pressure dependence of the second-order constants, however.

The theoretical challenge arises from two sources. Firstly there is the relative complexity of

the structure. The basis consists of four atoms, none of which occupies a site with inversion

symmetry. Thus, as shown in Chapters 4 and 5, there are numerous inner elastic constants besides

the 5 independent second-order and 10 independent third-order constants for a material belonging

to Laue group HI. To extract a full complement of components using any model in which the energy

is not a simple function of interatomic separations, unit cell volume etc., requires the calculation of

the energy for more than 280,000 configurations! This makes the development of a parametrization

of the bonding in hG highly desirable.

Secondly there is the anisotropy. It is often reasonable in the case of close-packed structures,

such as the FCC and the HCP, to fit Lennard-Jones potentials to second-order elastic constants and

to transfer the parameters to defect situations. This cannot be done for hG: there is no way to

define a pair potential that can represent a binding energy of 5 eV/atom and a nearest-neighbour

distance 1.42 Å within a layer as well as the values 0.02 eV/atom and 3.35 Å between layers, [7].

To improve the situation an empirical potential for carbon invoking 3-body contributions was

introduced by Stillinger and Weber, [36], and Tersoff produced another that takes variable atomic

coordination into account via a many-body term, [38], giving a reasonable account of the in-plane

bonding. This was extended by Nordlund et al., [34], who added an interaction to accommodate

the weak interlayer bonding. A further development, due to Heggie, [19], resulted in a carbon

potential capable of interpolating smoothly between sp2 and sp3 configurations. Part of this

potential involved Keating-like terms, though these were limited to just the bond-stretching and

bond-bending ones of the original [23] model. As the development and optimization of a Keating

model has been so successful for cD, [3, 15, 23, 24] (and Chapter 6!) I felt it worthwhile to extend

the ideas to hG. The elastic constants fall into two groups: one contributed to principally by the

sp2-bonding interactions within the graphene planes and the other by �-bonding between planes.

In Sec. 7.2 I review the experimental data and justify my model. The development of the model

is carried out in Sec. 7.3 and the fitting and the results are presented and discussed in Sec. 7.4.

7.2 Modelling the elasticity

7.2.1 Appraisal of input data

7.2.1.1 At the second order

The five second-order elastic constants of pyrolytic graphite were determined by Blakslee et al. [5]

and three of these are taken as target values here. Revised values are used for C13 and C44.
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Values for C44 ranged from 0.18 to 0.35 GPa and are very small. They arise from the anoma-

lously low velocities of transverse ultrasonic waves propagated along the c-axis and stem from

the mobility of dislocations. When the latter is eliminated by neutron irradiation values up to 5

GPa are found. The high values are believed to be characteristic of ideal single crystal material.

Sensitivity to the state of the crystal has been demonstrated by Grimsditch [16] using Brillouin

surface scattering. He confirms the value 5.05�0.35 GPa found earlier for a sample of natural

graphite [17] and confirms also what appeared at first sight to be a contradictory value 3.25�0.015

GPa, reported in [26] for highly oriented pyrolytic graphite. The difference is consistent with the

influence of crystallite grain size on the speed of surface waves. The higher value has been adopted

here.

Zhao and Spain [41] have used their compressibility data to probe the linear modulus Ba(�
1=ka) and present a case for raising the value of C13 from 15 GPa to 22�2 GPa. Unfortunately

they have inadvertently used the expression for the planar modulus! If their procedure is carried

through correctly the value of C13 is lowered to 7.9�3.5 GPa.

Five of the six zone-centre optic mode frequencies are known of which two can be converted

directly to inner elastic constant values. The E1u mode [30, 31] at 1587 cm�1 (47.58 THz) gives

E12
11 = 253:0 GPa Å�2 and the A2u mode [32] at 868 cm�1 (26.0 THz) givesE12

33 = 75:66 GPa Å�2.

7.2.1.2 At the third order

The anharmonic part of the potential determines the non-linear part of the compressibility and the

pressure derivatives of the second-order constants and of the zone-centre optic mode frequencies.

The early work on the compressibility of graphite carried out by Lynch and Drickamer [27] has

been examined and their tabulated values of a=a0 and c=c0 fitted to quartics in p. This gives for the

linear compressibilities ka = 14:4� 10�4 GPa�1 and kc = 2:24� 10�2 GPa�1. The former value

is high compared to that derived by inversion of the CIJ , 6:4� 10�4 GPa�1, and casts some doubt

on the a(p) measurements. The value of kc is much closer to the inversion value of 2:7 � 10�2

GPa�1. Other experiments [5, 12] gave (2:68�0:13)�10�2 GPa�1 and (2:4�0:2)�10�2 GPa�1.

The non-linear compressibilities are Ka = 2:8 � 10�4 GPa�2 and Kc = 4:66 � 10�3 GPa�2.

This value of Ka is actually rather large and indicates a perceptible non-linearity in the in-plane

compressibility. Kelly [25] observes that this non-linear variation of a cannot be correct in the light

of the work of Hershbach and Laurie [20], in which indirect information on the anharmonicity of

in-plane bonds is obtained by analysing C-C bond force constants. Zhao and Spain [41] report

that the pressures in [27] are probably overestimated increasingly with higher pressure, thereby

introducing the suspect non-linearity into the pressure dependence of a. Their own work shows no

such behaviour.

A more recent study of finely ground natural graphite by Hanfland et al. [18] presents com-
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pressibility data via a one-dimensional analogue of the Murnaghan equation of state [29]:

r=r0 =
�
(�0=�0)p + 1

��1=�0

where r is a or c, ��1
0 = �(d lnr=dp)p=0 = kr is the linear compressibility and �0 is the pressure

derivative of �. The values ka = 8:0 � 10�4 GPa�1 and kc = 2:8 � 10�2 GPa�1 are implied.

Expansion of the above expression to second order in p leads to the identification

�0 = �2 +
Kr

k2
r

and their value of 10.8 for �0 when r = c then implies that Kc = 10:0� 10�3 GPa�2.

The full set of pressure derivatives of second-order elastic constants was first presented by

Gauster and Fritz [11]. The value ofC0
44 at 0.0023 was problematic, likeC44 a victim of dislocation

mobility. A later study [12] reassesses the derivative to be 0.81�0.15 and also raises the earlier

value of C0
33 from 9.6 to 14.6�1.1.

The Raman shifts under pressure of the E2g modes have been measured [18] and yield df=dp of

0.140 and 0.145 THz(GPa)�1 for the E2g2 and E2g1 modes respectively. Similar measurement [2]

on the B1g1 mode gives df=dp = 0:572 THz(GPa)�1.

7.2.2 Justification of model

As indicated in the Introduction it is the large anisotropy of graphite that makes the modelling of

elastic constants particularly difficult. Most early work, as reviewed in Kelly, [25], concentrated

on explaining the interlayer constants, C33, C44 and their pressure derivatives. In particular the

experimental work of Blakslee et al. [5] and Green et al. [12] was followed by theoretical studies

using, firstly, simple pairwise potentials (Lennard-Jones and exponential core) in [13] and, secondly,

parabolic and other band models for the electronic contributions to the constants in [14].

In a separate investigation I have used the Ewald summation technique [10] to calculate the full

spectrum of contributions to elastic and inner elastic constants through third order for all inverse

powers of atomic separation from n = 4 to n = 14. It was impossible (a) to combine any two of

these in such a way that the structure was in equilibrium at the observed lattice parameters, i.e. with

the first-order constantsC1 and C3 simultaneously zero, or (b) to combine any three in such a way

that C1 = C3 = 0 withoutC33 being negative and C44 always far too small or negative. In addition

all zone-centre optic mode frequencies involving theE��
33 were imaginary.

The notion that elastic constants may be simulated by any combination of pair potentials can

be ruled out by reference to one of the two second-order Cauchy relations. Central forces within

the graphene planes imply C0
11 = 3C0

12. The observed values are C11 = C0
11 � ∆ = 1060 GPa and

C12 = C0
12 + ∆ = 180 GPa, where ∆ is the internal strain contribution. This gives C0

11 = 930 GPa,

C0
12 = 310 GPa and ∆ = �130 GPa. A value of j∆j equal to 40% of C0

12 is unreasonably large,

implying enormous internal strain in total contrast to cD where it is very small. Thus one expects
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strong non-central forces within the layers. The second relation is C13 = C44. As shown above the

relevant values areC13 = 7:9� 3:5 GPa andC44 = 5:05� 0:35 GPa. Within the large experimental

error the Cauchy relation is satisfied although the quoted value of C13 exceeds that of C44 by 60%.

I therefore suspect and assume the presence of weak non-central forces between the layers.

Nemanich et al. [32] who reported the first experimental determination of the A2u mode fre-

quency, 868 cm�1, drew attention to previous calculations based on various force field models in

which frequencies in a wide range from 600 cm�1 to 1300 cm�1 were predicted. They asserted

that the nature of the lattice dynamics of graphite is such that even a valence force model with

bond-stretching, bond-bending and three-body terms cannot describe the A2u mode: a four-body

force, characterized by a puckering of the layer planes, is required. This problem is not found with

the model developed here.

Nemanich et al. [30] measured the E2g2 frequency as well as that of the E1u mode and found the

splitting between them to be 150 GHz. They argued that to fit the !(E1u) > !(E2g2) observation it

is necessary to include second-nearest-neighbour out-of-plane interactions, a conclusion supported

by Al-Jishi and Dresselhaus in their lattice-dynamical model [1]. Such interactions are included in

this development.

7.3 The modified Keating model

The structure of hG is shown in Fig. 7.1 and fully described in Chapter 4.
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Figure 7.1: The structure of hG with a unit cell indicated.

I also use Bernal notation [4] in which the inequivalent sites are designated A (sublattices 3 and

4) and B (sublattices 1 and 2).
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7.3.1 The strain variables

With four atoms in the basis the strain variables are more complicated than those of cD because of

the three distinct inner displacement vectors, ~� �. The strains may be expressed as

∆ii = 2ri0p �pqr
i0
q + 2ri0p z

�
p + z�p z

�
p (7.1)

and

∆ij = 2ri0p �pqr
j0
q + ri0p z

�
p + rj0

p z
�
p + z�pz

�
p (7.2)

where terms of order three and higher have been omitted and the significance of ~z � and ~z � is as

follows. Consider the reference atom belonging to sublattice 2 in the central layer in Fig. 7.2. It

has three bonds to atoms on sublattice 4 within the layer and four sets of three bonds to sublattices

1 and 3 in the layers above and below. When i refers to sublattice 1 ~z � = �~� 1 (minus because a

positive value indicates 2 relative to 1, 3 relative to 2 or 1, or 4 relative to 3, 2 or 1). Similarly when

i refers to sublattice 3 ~z � = +~� 2 and when it refers to sublattice 4 then ~z � = ~� 2 + ~� 3 because ‘4

relative to 2’ is equivalent to ‘3 relative to 2’ plus ‘4 relative to 3’. Similarly for j and ~z �, and for

the remaining reference atoms.

7.3.2 The model parameters

The electronic structure of graphite is successfully approached by the Slonczewski-Weiss-McClure

(SWMcC) model [8, 9, 28, 35, 37] and leads to a parametrization in which the energy of �-bonding

is associated with various vectors (AA0, AB0, BA0 and BB0) between adjacent layers, vectors (AA00

and BB00) between alternate layers, and with the nearest-neighbour in-plane vectors (AB and BA).

Table 7.1 shows the SWMcC parameters deduced by Charlier, Gonze and Michenaud [8] in their

first-principles study of the electronic properties of hG, together with a brief indication of

Table 7.1: The SWMcC model parameters i (data and attribution taken from [8]) and the bond

interactions selected for the Keating model.

i Value (eV) Arising from Bond-stretching Bond-bending

0 2:598 AB and BA in-plane interactions AB BA AB/AB BA/BA

1 0:364 AA0 interlayer interactions AA0 AA0/AB0

(determines width of � bands at the K point)

4 0:177 AB0 and BA0 interlayer interactions AB0 BA0 AB0/AB0 BA0/BA0

3 0:319 BB0 interlayer interactions BB0 BB0/BA0

5 0:036 AA00 alternate layer interactions

2 �0:014 BB00 alternate layer interactions

(determines � band overlap)

6 �0:026 Chemical shift between A and B atoms
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the significance of these parameters, as given in their Appendix. This provides a guide to selecting

specific sets of vectors to parametrise the elasticity of hG. Corresponding to the four largest

parameters I focus initially on four sets: one planar and three interlayer.

1. The planar part of the energy per cell is modelled analogously to cD. The three nearest-

neighbour A atoms to a B atom, see upper right portion of Fig. 7.2, give rise to three 2-body

‘bond-stretching’ BAi interactions, three 3-body ‘bond-bending’ BAi BAj interactions and

various couplings between them. The same number of interactions arise from each A atom.

Up to four harmonic parameters (�, �, � and � ) and six anharmonic parameters (, Æ, �, �, �

and �) may be needed here.
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Figure 7.2: Configurations of bonds in the Keating model. Filled atoms are Bernal type A, empty

atoms are type B. Upper right: three in-plane BA bonds. Lower right: an AA0 and three AB0 bonds.

Lower left: three AB0 bonds. Upper left: a BB0 and two BA0 bonds. The associated interactions

are described in the text.

2. This set comprises the 2-body AA0
i interaction between nearest-neighbours (NN) in adjacent

planes, see lower right portion of Fig. 7.2, and the 3-body interactions that couple the AA0
i

with the three neighbouring oblique interlayer vectors AB0
j . Up to ten more parameters may

be needed (with superscript 0).

3. This set comprises the three 2-body AB0
inext-nearest neighbour (NNN) interlayer interactions

and the three 3-body interactions involving AB0
i AB0

j pairs, see lower left portion of Fig. 7.2,

together with the symmetrical group of 2-body BA0
i and 3-body BA0

i BA0
j interactions. Up to

ten more parameters may be needed (with superscript 00).

4. This set comprises the three 2-body BB0
i interaction between nearest-neighbours in adjacent
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planes and the 3-body interactions that couple each BB0
i with the two closest neighbouring

oblique interlayer vectors BA0
j see upper left portion of Fig. 7.2.

These sets are also shown in Table 7.1 in line with the SWMcC parameters i with which they are

associated. One set can be discarded, however, because of geometrical interdependence. This arises

as follows. Starting and finishing at a B site there are several loops of four vectors, symbolically

BB0 + B0A + AA0 + A0B = 0, which may be used to express all ∆ii and ∆ij belonging to set 4 in

terms of the strain variables of the other three sets.

With a possible 12 harmonic and 18 anharmonic parameters arising from the remaining three

sets I am loth to introduce the AA00 and BB00 interactions. In fact these involve vectors joining pairs

of atoms on the same sublattice and their ‘bond-stretching’ aspect thus makes no contribution to

the inner elastic constants.

7.3.3 The energy

The three sets of parameters defined above, together with the bookkeeping, result in expressions

considerably lengthier than those relating to cD. Not all terms are destined for use. In keeping with

the streamlining introduced in the modified model all numerical coefficients are unity. The halves

outside the summations compensate for double counting. The second-order energy per unit cell is

E(2) = 1
2

4X
s=1

3X
i=1

�
�∆2

ii +
3X
j=1

0�
�∆2

ij + �(∆ii + ∆jj)∆ij + �∆ii∆jj

�
(7.3)

+ �00∆2
ii +

3X
j=1

0�
�00∆2

ij + �00(∆ii + ∆jj)∆ij + � 00∆ii∆jj

��

+ 1
2

4X
s=3

2X
i=1

�
�0∆2

ii +
3X
j=1

�
�0∆2

ij + �0(∆ii + ∆jj)∆ij + � 0∆ii∆jj

��
:

The third-order energy per unit cell is

E(3) = 1
2

4X
s=1

3X
i=1

�
∆3

ii +
3X
j=1

0�
Æ∆3

ij + �(∆ii + ∆jj )∆
2
ij

+ �(∆2
ii + ∆2

jj)∆ij + �∆ii∆ij∆jj + �∆ii∆jj(∆ii + ∆jj)
�

(7.4)

+ 00∆3
ii +

3X
j=1

0�
Æ00∆3

ij + �00(∆ii + ∆jj)∆
2
ij

+ �00(∆2
ii + ∆2

jj )∆ij + �00∆ii∆ij∆jj + �00∆ii∆jj(∆ii + ∆jj)
��

+ 1
2

4X
s=3

2X
i=1

�
0∆3

ii +
3X
j=1

�
Æ0∆3

ij + �0(∆ii + ∆jj)∆
2
ij

+ �0(∆2
ii + ∆2

jj)∆ij + �0∆ii∆ij∆jj + �0∆ii∆jj(∆ii + ∆jj)
��
:
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7.3.4 The elastic constants

Every independent elastic and inner elastic constant has been obtained in terms of these parameters

by applying the generalized method of homogeneous deformation (described in AppendixA) to

a unit contribution of each Keating parameter in turn. Writing each constant Mi as a linear

combination of Keating parameters Kj with coefficients �j and a common factor Fi: Mi =

Fi �
P
�jKj gives the results set out in Tables 7.2, 7.3 and 7.4.

Table 7.2: Coefficients of the modified Keating parameters in the second-order partial and inner

elastic constants. The common factors are expressed in terms of the lattice parameter a = 2:46 Å

and the interlayer spacing d = 3:3495 Å. t stands for
p

3.

Planar Interlayer: NN Interlayer: NNN

Factor � � � � �0 �0 �0 � 0 �00 �00 �00 � 00

C0
11 2ta2=3d 1 1 �2 1 2 2 �4 2

C0
12 2ta2=9d 1 �1 �2 5 2 �2 �4 10

C13 4td=3 2 2 4 �4 4 8

C33 16td3=a2 1
3 2 4 2 2 4 8 4

C44 4td=3 1 2 4 2 4 �4

D1
16 a=3d 2 �2 �1 �2 4 �4 �2 �4

D3
16 a=3d �2 2 1 2 2 4 �4 �2 �4

E11
11 2t=3d 2 1 2 �2 4 2 4 �4

E12
11 2t=3d 2 1 2 �2 4 2 4 �4

E13
11 2t=3d 1 4 2 4 �4

E33
11 2t=3d 2 1 2 �2 2 2 4 2 4 �4

E11
33 4td=a2 1 2 4 8 16 8

E12
33 4td=a2 1 2 4 8 16 8

E13
33 4td=a2 2 4 2 4 8 16 8

E33
33 4td=a2 4

3 5 10 4 4 8 16 8

E11 (2)
111;112;331 2t=3d 2 �2 2 4 4 �4 4 8

E12 (2)
111;112;331 2t=3d 2 �2 2 4 4 �4 4 8

E13 (2)
111;112;331 2t=3d 1 4 �4 4 8

E33 (2)
111;112;331 2t=3d 2 �2 2 4 2 4 4 �4 4 8

E11 (2)
113;333 8td=a2 1 1 2 4 8 4

E12 (2)
113;333 8td=a2 1 1 2 4 8 4

E13 (2)
113;333 8td=a2 1 2 1 2 4 8 4

E33 (2)
113;333 8td=a2 2

3 2 5 1 2 4 8 4
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The common factors have been expressed in terms of the interlayer spacing d rather than the

lattice parameter c to facilitate comparison with the treatment of rG in Chapter 9.

Table 7.3: Coefficients of the modified Keating parameters in the third-order partial elastic constants

and the D and F tensors. Numerical data as for Table 7.2

Planar Interlayer: NN Interlayer: NNN

Factor  Æ � � � � 0 Æ0 �0 �0 �0 �0 00 Æ00 �00 �00 �00 �00

C0
111 ta4=d 1 �1 2 �2 �1 2 2 �2 4 �4 �2 4

C0
113 8ta2d=3 1 1 3 3 �2 �1 8

C133 32td3=3 1 2 1 3 3 �3 6 3 12

C333 32td5=a2 1 6 12 12 6 12 6 12 24 24 12 24

C0
144 2ta2d=9 1 4 12 �12 �6 12 24

C0
244 2ta2d=3 1 4 12 2 4 �8

C344 8td3=3 3 6 8 2 4 12 6 12 24

C0
166 ta4=9d 3 2 �6 1 �2 6 4 �12 2 �4

C0
266 ta4=9d 1 �4 6 �2 �3 2 2 �8 12 �4 �6 4

C0
366 8ta2d=9 1 1 3 6 �3

D1
136 4ad=3 2 2 6 �6 �6 6 �3

D3
136 4ad=3 2 4 1 2 6 �6 �6 6 �3

D1
145 2ad=3 1 4 12 �3 �6 12 �12 �24

D3
145 2ad=3 3 5 8 12 �3 �6 12 �12 �24

D1
211 a3=3d 3 3 �2 �3 �1 2 6 6 �4 �6 �2 4

D3
211 a3=3d �3 �3 2 3 1 �2 2 6 6 �4 �6 �2 4

D1
222 a3=3d �5 �1 2 5 �1 2 �10 �2 4 10 �2 4

D3
222 a3=3d 5 1 �2 �5 1 �2 � 10

3 �10 �2 4 10 �2 4

D1
314 2ad=3 1 4 12 �12 �12 12 �6

D3
314 2ad=3 3 8 2 8 12 �12 �12 12 �6

F 111
112 a=3d 12 �3 �6 12 �12 �24 24 �6 �12 24 �24 �48

F 112
112 a=3d 12 �3 �6 12 �12 �24 24 �6 �12 24 �24 �48

F 113
112 a=3d 4 24 �6 �12 24 �24 �48

F 123
112 a=3d 4 24 �6 �12 24 �24 �48

F 133
112 a=3d 2 8 24 �6 �12 24 �24 �48

F 223
112 a=3d �12 3 6 �12 12 24 8 24 �6 �12 24 �24 �48

F 333
112 a=3d �12 3 6 �12 12 24 6 6 12 24 �6 �12 24 �24 �48
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Table 7.4: Coefficients of the modified Keating parameters in the third-orderE tensors. Numerical

data as for Table 7.2

Planar Interlayer: NN Interlayer: NNN

Factor  Æ � � � � 0 Æ0 �0 �0 �0 �0 00 Æ00 �00 �00 �00 �00

E11 (3)
111 ta2=3d 6 1 2 �4 12 2 4 �8

E12 (3)
111 ta2=3d 6 1 2 �4 12 2 4 �8

E13 (3)
111 ta2=3d 12 2 4 �8

E33 (3)
111 ta2=3d 6 1 2 �4 12 2 4 �8

E11 (3)
112 ta2=9d 6 �6 �3 6 12 12 �12 �6 12 24

E12 (3)
112 ta2=9d 6 �6 �3 6 12 12 �12 �6 12 24

E13 (3)
112 ta2=9d 2 12 �12 �6 12 24

E33 (3)
112 ta2=9d 6 �6 �3 6 12 2 4 12 �12 �6 12 24

E11 (3)
113 4td=3 4 4 12 6 12 24

E12 (3)
113 4td=3 4 4 12 6 12 24

E13 (3)
113 4td=3 2 6 1 4 12 6 12 24

E33 (3)
113 4td=3 6 8 8 2 4 12 6 12 24

E11 (3)
135 2td=3 2 8 24 12 24 48

E12 (3)
135 2td=3 2 8 24 12 24 48

E13 (3)
135 2td=3 4 12 2 8 24 12 24 48

E31 (3)
135 2td=3 3 6 12 24 12 24 48

E33 (3)
135 2td=3 9 16 16 6 8 24 12 24 48

E11 (3)
331 4td=3 1 4 12 �12 24 12 48

E12 (3)
331 4td=3 1 4 12 �12 24 12 48

E13 (3)
331 4td=3 2 6 1 4 12 �12 24 12 48

E33 (3)
331 4td=3 5 8 6 16 12 �12 24 12 48

E11 (3)
333 8td3=a2 3 6 8 2 4 12 24 48 48 24 48

E12 (3)
333 8td3=a2 3 6 8 2 4 12 24 48 48 24 48

E13 (3)
333 8td3=a2 6 12 12 6 12 12 24 48 48 24 48

E33 (3)
333 8td3=a2 4 15 30 32 14 28 12 24 48 48 24 48

7.4 The fitting and the results

As there is only a limited amount of experimental data it is not possible to fit more than a few

parameters. Even with an excellent match to all data there is no guarantee of uniqueness. At the

second order the interlayer constants are fitted first. The primary target data, see Table 7.5, are C13,

C33, C44 and E12
33, deduced from the frequency of the A2u mode.
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Table 7.5: Target data for the harmonic part of the modified Keating model. Units are GPa forCIJ

and GPa Å�2 for Eii.

Target Experiment Assumed Fit

C13 7.9�3.5a 7.9

C33 36.5�1.0b 36.5

C44 5.05�0.35c 5.05

E12
33 75.66�0.09d 75.663

E11
33 � E12

33 + E33
33 75.65 75.65

1
2(C0

11 + C0
12) 620.�28. 620.

1
2(A3

16 �A1
16) -0.082 -0.082

‘�K’ 0.115 0.115

C0
11 1063.85 1063.85

C0
12 176.15 176.15

C11 1060.�20.b 1060.

C12 180.�20.b 180.

E12
11 253.0�0.5e 253.0

E11
11 � E12

11 + E33
11 251.6�0.5e 251.6

aRe-evaluation of conclusion drawn in Ref. [41]
bRef. [5] cRef. [16] dRef. [32] eRef. [30]

In addition the combinationE11
33�E12

33 +E33
33 is tentatively deduced from the values of the frequencies

of the B1g1 and the B1g2 modes. No experimental value exists for the latter but in the lattice

dynamical literature [1, 33] it is shown as nearly degenerate with the A2u mode—so a close value

has been assumed. Interlayer interactions are responsible for the splitting between the E1u and

E2g2 modes. A near-perfect fit is found by scanning possible sets of parameters interactively using

Mathematica software [39]. The parameters so found contribute to bothC0
11 and C0

12. These values

are subtracted from the observed values and, together with the frequency of the E1u mode, are

used to determine the planar parameters. A degree of freedom exists because the experimental data

does not fix the (unknown) internal strain. In view of the extremely small value found in cD I set

this arbitrarily so that 1
2 (A3

16 � A1
16), which governs the in-plane inner displacement, was equal to

-0.082 and equivalent to a quasi-Kleinman parameter �K of 0.115. The harmonic parameters are

listed in the upper part of Table 7.7.

The anharmonic parameters were fitted by a similar process using the target data in Table 7.6.

The quality of the experimental data is mixed and it was very difficult at first to find a realistic fit

at all.
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Table 7.6: Target data for the anharmonic part of the modified Keating model. Units are GPa�2 for

the Ki and THzGPa�1 for the f 0. The C0
IJ are dimensionless.

Target Experiment Assumed Fit

C0
13 3.1�0.5a 3.2

C0
33 9.6�0.8a

15.2�1.1b 14.6 12.9

C0
44 0.81�0.15b 1.9

f 0(E2g1) 0.145�0.012c 0.147

f 0(B1g1) 0.572�0.020d 0.673

C0
11 39.0�3.9a 39.0

C0
12 11.0�1.1a 11.0

f 0(E2g2) 0.140�0.001c 0.140

106Ka 282e 1.92c O(7.5) 8.0

103Kc 4.66e 10.0c O(10) 11.9
aRef. [11] bRef. [41] cRef. [18] dRef. [2] eRef. [27]

Eventual success depended on solving two problems. The first of these occurred in the interlayer fit

where a value near to zero was always predicted for f 03, the pressure dependence of the frequency

of the E2g1 mode [18], one of the more reliable pieces of experimental information. It was resolved

when it was realised that C0
44 and f 03 have identical dependence on the Keating parameters and

that a fit could be achieved by raising the target value of C0
44 from 0.81 to 1.9, about 60% of C0

13.

This appears to be totally reasonable in that C44 is about 60% of C13. The quantities C0
33 and f 06

are similarly linked. Remarkably only three interlayer parameters are required and none of them

involves bond-bending. The second problem is the prediction of the third-order compressibilities

Ka and Kc. The former is heavily dominated by C133 and the latter by C333. Although these

stiffnesses are fully determined by the interlayer parameters the planar fit has to be obtained before

Ka and Kc can be found. There is no reliable value for Ka but I have assumed that it will be

similar to that of cD in view of the great similarity of the planar elasticity of hG to that of cD, to

which attention was drawn in the Introduction. Interlayer fits that were otherwise satisfactory were

discriminated by the planar fit value of Ka.

The planar fit is based on C0
11, C0

12, f 02 and Ka. These involve the six parameters in only four

combinations: 2 + 3�, Æ, � + � � 4� and � + 2�� 4�. In addition there is a linear relation between

the four targets limiting the number of planar parameters to three. I have set � = � = � = 0 and

solved for , Æ and �. The results of the anharmonic fitting are summarized in the lower half of

Table 7.7.
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Table 7.7: The modified Keating parameters. Note the smaller units for the anharmonic interlayer

parameters.

Planar Interlayer

GPa Å�1 eV Å�4 GPa Å�1 eV Å�4 GPa Å�1 eV Å�4

� 266.21 1.662 �0 39.55 0.2469 �00 3.231 0.0202

� 240.53 1.501 �0 3.005 0.0188 �00 0.288 0.0018

� 30.12 0.188 �0 �5.037 �0.0314

� 53.50 0.334 � 0 �6.120 �0.0382 � 00 1.447 0.0090

GPa Å�3 eV Å�6 MPa Å�3 meV Å�6 MPa Å�3 meV Å�6

 �687.13 �4.289 0 211.3 1.312 00 �35.62 �0.2247

Æ �961.91 �6.004

� �365.19 �2.279

�00 �6.05 �0.0378

The most striking feature of the parameters overall is their relative size. The harmonic ones

drop roughly an order of magnitude in going from set to set: � to �0 to �00, for example. Whilst

this is expected on the basis of the relative sizes of the various second-order elastic constants it

is no guide to the startling anharmonic patterns. Firstly the expected order of magnitude increase

in passing from harmonic to anharmonic planar parameters, � to  say, is totally reversed for the

two interlayer sets. Secondly it appears that 0 is more than 3000 times smaller than  implying

that anharmonicity is almost exclusively a planar feature. Thirdly the planar set has bond-bending

parameters of similar size to its bond-stretching ones in marked contrast to the interlayer sets where

bond-stretching dominates.

The above fit translates into the internal strain tensors and inner elastic constants shown in

Tables 7.8 and 7.9.

Table 7.8: The internal strain tensors in Å. The actual in-plane internal strain is given byA1
iJ: +A

2
iJ:

in one layer and by A2
iJ: +A3

iJ: in the other. These components are equal and opposite and the first

of them is given in the fifth column.

iJ: A1
iJ: A2

iJ: A3
iJ: A1

iJ: +A2
iJ:

16 -1.21 1.29 -1.37 0.082

136 0.7 -0.7 0.7 0

145 7.1 -7.1 7.1 0

211 -53.8 78.2 -102.6 24.4

222 54.4 -79.3 104.2 -24.9

314 -1.2 1.2 -1.2 0
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The value of the linear internal strain was arbitrarily pre-selected. The components of the quadratic

internal strain have been included because they follow directly from the inner elastic constants, as

shown in Chapter 4. They do not affect elasticity below the fourth order. From a formal perspective

they appear well-behaved: for example the A1
1JK + A2

1JK are all zero. This is certainly to be

expected as y-components alone would be involved in the relative displacement of sublattices if

A and B sites were equivalent. The A1
2JJ + A2

2JJ are the only components that involve the planar

parameters, hence their large values.

Table 7.9: The inner elastic constants. The D tensors are in GPa Å
�1

, the E tensors in GPa Å
�2

and the F tensors in GPa Å
�3

D1
16 -19.5 D3

16 20.0

D1
136 -2.4 D3

136 -2.4

D1
145 -1.6 D3

145 -1.6

D1
211 -6248. D3

211 6247.

D1
222 5434. D3

222 -5433.

D1
314 -2.4 D3

314 -2.4

E11
11 253.0 E12

11 253.0 E13
11 0.92 E33

11 251.6

E11
33 75.66 E12

33 75.66 E13
33 1.63 E33

33 75.65

E11
111 -4562. E12

111 -4562. E13
111 5.9 E33

111 -4574.

E11
112 1074. E12

112 1074. E13
112 6.1 E33

112 1062.

E11
113 13.9 E12

113 13.9 E13
113 -1.7 E33

113 13.9

E11
135 -3.4 E12

135 -3.4 E13
135 -3.4 E31

135 -3.4 E33
135 -3.4

E11
331 114.7 E12

331 114.7 E13
331 0.7 E33

331 102.8

E11
333 -45.0 E12

333 -45.0 E13
333 -60.5 E33

333 27.8

F 111
112 -775.9 F 112

112 -775.9 F 113
112 -0.1 F 123

112 -0.1

F 133
112 -0.1 F 223

112 775.6 F 333
112 775.6

The inner elastic constants clearly reflect the contrast just noted between constants that involve

the planar parameters and those that don’t.

The decomposition of the elastic stiffnesses and compliances is shown in Table 7.10. The five

second-order constants selected as targets came from various sources, including a re-analysis of a

previously modified value of C13. Their inversion therefore generates a novel set of second-order

compliances which, since the fitting procedure reproduced the experimental stiffnesses exactly, may

be taken as the de facto experimental values also. Derived quantities, such as the compressibilities,

follow directly, as shown in Chapter 5.
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Table 7.10: The composition of the calculated elastic stiffnesses and the corresponding compliances

and compressibilities. Stiffnesses are in GPa, second-order compliances in TPa�1 and third-order

compliances in TPa�2.

 � CIJ �! SIJ  � CIJK �! SIJK
IJ Partial Internal Total Total IJK Partial Internal Total Total

11 1063.85 �3.85 1060.0 0.973 111 �8629.8 �3022.5 �11672.3 7.0

12 176.15 3.85 180.0 �0.164 113 �14.6 6.7 �7.9 �3.3

13 7.9 7.9 �0.175 133 �125.4 �125.4 1.0

33 36.5 36.5 27.48 333 �579.0 �579.0 11910.

44 5.05 5.05 198.0 144 �4.5 �4.1 �8.6 �219.2

244 �9.0 4.1 �4.9 �382.3

344 �75.0 �75.0 80696.

166 �5874.8 �899.7 �6774.5 34.9

266 2039.5 �1070.3 968.1 �10.6

366 �3.4 6.8 3.4 �5.7

ka 0.634 Ka 8.0

kc 27.1 Kc 11906.

kv 28.4 Kv 11922.

The spectrum of the third-order stiffnesses of hG is shown, I believe, for the first time. The

CIJK display the now-familiar planar/interlayer contrast. Whereas the magnitudes of the internal

strain contributions to the second-order constants were from 0.4 to 2%, at the third order they range

from 15 to 200%. On inversion to compliances just two components dominate, S333 and S344, as

do S33 and S44 at the second order. The great disparity between S333 on the one hand and S111,

S113 and S133 on the other is precisely what is needed to achieve the disparity betweenKa and Kc.

The zone-centre optic mode properties are shown in Table 7.11. The modes and eigenvectors

are described in Chapter 4. The two larger in-plane mode frequencies were targeted and there was

no difficulty in reproducing the experimentally observed 150 GHz difference. In their Born-von

Kármán lattice dynamical study [1], Al-Jishi and Dresselhaus found, in agreement with Nemanich

et al. [30], that the above difference could be accounted for only by the inclusion of a second

neighbour interlayer interaction. They further added that all the zone-centre frequencies and elastic

constants, apart fromC13, could be fitted using only two interlayer and four planar neighbourhoods.

To fit both C13, which they took to be 15 GPa, and the frequency difference required extension to

four interlayer neighbourhoods. Whether the value of 7.9 GPa that has been used here would have

improved their fit is unknown: what I have shown is that all the second-order elastic constants and

zone-centre frequencies can be fitted using one in-plane and two interlayer sets of interactions.
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Table 7.11: The zone-centre optic modes. Experimental frequencies are given in both cm�1 and

THz, the pressure derivatives in THz GPa�1.

Frequency f Derivative df=dp

Mode Eigenvector Experiment Calculated Experiment Calculated

E1u z2
1 = 1; z1

1 = z3
1 = 0 1587.a 47.58 47.58 0.142

z2
2 = 1; z1

2 = z3
2 = 0

E2g
2

z1
1 � �z3

1 � 1p
2
; z2

1 � 0 1582.a 47.43 47.43 0.140e 0.140

z1
2 � �z3

2 � 1p
2
; z2

2 � 0

E2g
1

z1
1 � �z2

1 � z3
1 � 1p

3
42.b 1.26 1.41 0.145e 0.147

z1
2 � �z2

2 � z3
2 � 1p

3

A2u z2
3 = 1; z1

3 = z3
3 = 0 868.c 26.02 26.02 -0.52

B1g
2

z1
3 � �z3

3 � 1p
2
; z2

3 � 0 25.74 -0.97

B1g
1

z1
3 � �z2

3 � z3
3 � 1p

3
127.d 3.81 3.82 0.572f 0.673

aRef. [31] bRef. [30] cRef. [32] dRef. [33] eRef. [18] fRef. [2]

The pressure derivatives of the frequencies were based on three experimental data, two of which

were very well matched with the third overestimated by 18%. Of the remaining three derivatives

that of the E1u mode is clearly very reasonable. The other two are larger in magnitude and opposite

in sign. The actual variation of frequency with pressure for all the modes is shown in Fig. 7.3.
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Figure 7.3: Pressure-dependence of the zone-centre optic-mode frequencies.
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These results are particularly satisfying because they characterize the behaviour of a material

approaching a pressure-induced phase transition: the axial modes A2u and B1g2 show immediate

softening whilst an initial hardening of B1g1 is followed by increasing softening from about 9 GPa.

The frequency becomes zero, and the structure unstable, at 16 GPa. This value is perhaps a little

high because of propagation of error from the overestimated value of the initial hardening.

Numerous investigations have shown that hG undergoes some sort of transition in just that

range: Bundy and Kasper [6] achieved the first synthesis of hD by subjecting well-crystallized hG

to a static pressure exceeding 13 GPa and temperature above 1000ÆC; Hanfland et al. [18] observed

the E2g2 Raman line, noting a broadening that began at 9 GPa and the disappearance of the signal

at 14 GPa; Yagi et al. [40] used a variety of high pressure devices and synchrotron radiation to

clarify structural details of the transition, finding that it occurred at about 14 GPa and that the

martensitically-transformed phase was hD.

7.5 Commentary

A widely-used alternative to valence force field or Keating models is the Tersoff potential for

carbon [38]. Its parametrization was undertaken by optimizing a large number of cohesive energies

of carbon polytypes, vacancy formation energies, together with the lattice constant and the bulk

modulus of cD. The emphasis was thus on energy rather than energy derivatives. Recently an

interlayer potential of the Tersoff type was proposed for graphite in [34]. I have tested this modified

energy algorithm by incorporating it in place of the Keating energy algorithm. The results were

poor. For example C11 was down by 60%, C12 was very negative and C33 was down by 75%.

In addition C13 and C44 were essentially zero and some zone-centre frequencies were imaginary,

results indicating insufficient bond-bending content in the interlayer modification. This highlights

the importance of having realistic energy derivatives.

The Keating model is a simple vehicle for carrying such derivatives through third order. I

believe that this is the first time the model has been extended rigorously to a non-cubic structure.

As a preliminary it was necessary to review experimental data and an erroneous modification to

C13 was identified and corrected. The parametrization is compact and involves only the nearest

neighbours within a layer and the nearest- and next-nearest neighbours between layers. The quality

of the harmonic fitting is very good, there was no difficulty in achieving a convincing fit, though

it must be borne in mind that the fit is not unique. The planar parameters have substantial bond-

bending character, qualitatively similar to those of cD (see Table 6.9), whilst the interlayer ones are

biassed in favour of bond-stretching.

A single target, C0
44, had to be changed (from 0.81 to 1.9) in order to obtain any credible

anharmonic fitting. The final result is particularly impressive in three respects. Firstly it gives a

good account of the pressure dependence of the remaining four second-order elastic constants, three

optic-mode frequencies and the two third-order compressibilities in terms of just six parameters,
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only one more than was necessary for cD. Secondly it gives an excellent account of the optic-mode

behaviour to be expected of a material that undergoes a pressure-induced phase transition. Thirdly

the huge contrast between the sizes of the planar and the interlayer parameters emphasises the

difference between the covalent, strongly angularly-dependent, in-plane interaction and the weak,

almost central, interlayer interaction.

At first sight it appears paradoxical that the linear variation of a (small Ka) and the quadratic

variation of c (large Kc) as functions of pressure [27] should be associated with the strong planar

and weak interlayer anharmonicities respectively. The paradox arises in the inversion of third-order

stiffnesses to compliances and stems from the strong anisotropy of hG. Because C111 is so much

larger than C333 the reciprocal nature of the inversion makes S111 very much smaller than S333 and

so on. Thus Kc is dominated by planar anharmonicity, Ka by interlayer anharmonicity and the

paradox is resolved. This argument will apply to other layer structures, such as hBN.
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Chapter 8

Hexagonal diamond: elasticity and zone-centre optic modes via

transferred Keating parameters

8.1 Introduction

The possibility of a hexagonal form of diamond was first suggested by Kathleen Lonsdale in

1944 [7]. When a mineral having the expected X-ray diffraction pattern was subsequently found to

comprise over 30% of the diamonds in the Canyon Diablo and Goalpara meteorites it was named

lonsdaleite [4] in her honour. It was suggested that the mineral formed from crystalline graphite

inclusions by impact shock, either on collision with Earth or by earlier collisions in space [5]. More

recently there has been a different suggestion: various laboratory simulations seem to favour its

formation by vapour deposition,most probably in a presolar, circumstellar condensation process [3].

It has also been found, again accompanying cD, as an inclusion in Vietnamese rubies [2]. Far less

exotic but of more pertinence to this thesis, however, is its appearance in studies of hG under

pressure. As briefly indicated in Chapter 7 hG undergoes a pressure-induced phase transition to

hD at about 14 GPa, behaviour that is almost perfectly predicted by the modified Keating model to

which the hG elasticity data has been fitted.

hD is more complex than cD, with more elastic constants at both second and third order, and

with many more inner elastic constants. The formal details of the inner elastic constants and

the zone-centre optic modes were treated in Chapter 4 and the anatomy of the total second- and

third-order elastic constants in Chapter 5.

As both cD and hD are sp3-bonded it is to be expected that total energies, bond lengths, and

elastic constants will be very similar when compared in the appropriate manner. In fact some of

the lattice properties of cD and hD have been calculated recently [11] by a total energy method

using density functional theory within the local density approximation. Small differences in total

energies, bond lengths, and bulk moduli reflect the fact that both structures have the same first- and

second-neighbourenvironments, but different third-neighbourones. The frequencies of zone-centre

optic phonons were also calculated: the triple-degeneracy of the cD Raman mode was partially

lifted and the frequencies of the hD modes were about 2% smaller than their cubic counterpart.
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8.2 The hexagonal diamond structure

Even though the Keating model is limited to first- and second-neighbours small differences can still

be accommodated as a result of the lower symmetry of hD. The extra degree of freedom, resulting

from two lattice parameters in place of one, allows the equality of the four bond lengths to be

relaxed: the axial bond may differ in length from the three non-axial bonds. The structures of the

two diamond allotropes are described in Chapter 4.

8.2.1 The quasi-cD case

This case, in which the atomic volume and all bond lengths are taken to be the same as those in cD,

is depicted in Fig. 8.1.
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Figure 8.1: (a) The triple-hexagonal cell for cD and (b) the primitive hexagonal cell of hD. The

numbers indicate the distinct sublattices on which the atoms lie.

Taking ac = 3:567 Å the lattice parameters in the quasi-cD case are a = ac=
p

2 = 2:5222 Å and

c = 2ac=
p

3 = 4:1188 Å. The volume per atom Ω0 =
p

3ca2=8 = 5:6731 Å3. The common bond

length is given by

r0 = 3
8c =

q
3
8a (8.1)

and has the value 1.5446 Å.

8.2.2 The actual hD case

The detailed study of the hG to hD transformation undertaken in [12] reveals a small departure

from the quasi-cD case. The lattice parameters extrapolated to ambient pressure are a = 2:513(6)

Å and c = 4:171(5) Å, indicating a slight decrease in the value of a but a 1.3% expansion in c. The
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c=a ratio goes up from the ideal 1.6330 to 1.66 and remains constant to at least 30 GPa pressure.

In this case three bond lengths are given by

r0a =
q

1
3a

2 + 4z2c2 (8.2)

and the fourth by

r0c = 1
2 (1� 4z)c (8.3)

where z is the structural coordinate that is equal to 1/16 in the quasi-cD case, see Table 2.8. The

measurements undertaken in [12] are not sufficient to give this parameter. If it is assumed that

the structure retains equal bond lengths then r0a = r0c = 1:5474 Å and z, which is given by

1 � 8z = 4a2=3c2, changes from 0.0625 to 0.0645. This scenario seems unlikely—it appears to

take no advantage of the extra degree of freedom available. On the other hand the assumption that z

remains at 1/16 produces a marked inequality of bond lengths: r0a = 1:5417 Å and r0c = 1:5641 Å,

a difference of 1.5%. The actual behaviour of hD probably lies somewhere in between. Calculations

for both these extremes are presented below, together with those for the quasi-cD case.

8.3 Modified Keating model

Now that the Keating model has been modified to use transferable parameters it is a simple matter

to produce a complete description of the elasticity of hD.

8.3.1 The strain variables

The strains in the modified model for hD are formally the same as those for hG:

∆ii = 2ri0p �pqr
i0
q + 2ri0p z

�
p + z�p z

�
p (8.4)

and

∆ij = 2ri0p �pqr
j0
q + ri0p z

�
p + rj0

p z
�
p + z�pz

�
p (8.5)

where terms of order three and higher have been omitted. The significance of ~z � and ~z � is as

follows. Consider the reference atom belonging to sublattice 2 in Fig. 8.1(b). It has three bonds

to atoms on sublattice 1 and one bond to an atom on sublattice 4. When i refers to sublattice 1

~z � = �~� 1 (minus because a positive value indicates 2 relative to 1, 3 relative to 2 or 1, or 4 relative

to 3, 2 or 1). If i refers to sublattice 4 then ~z � = ~� 2 + ~� 3 (because 4 relative to 2 is equivalent to 3

relative to 2 plus 4 relative to 3). Similarly for j and ~z �, and for the remaining reference atoms.

8.3.2 The energy

The expressions for the modified energies per cell are the same as those for cD, (6.40) and (6.41),

except that the summations are now over four sublattices rather than two. The anharmonic term in
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� has been retained for the sake of formal completeness even though it was found to be insignificant

vis-à-vis cD.

E(2) = 1
2

4X
s=1

4X
i=1

�
�∆2

ii +
4X
j=1

0�
��∆2

ij + �(∆ii + ∆jj)∆ij + �∆ii∆jj

��
(8.6)

and

E(3) = 1
2

4X
s=1

4X
i=1

�
∆3

ii +
4X
j=1

0�
Æ∆3

ij + �(∆ii + ∆jj)∆
2
ij

+ �(∆2
ii + ∆2

jj )∆ij + �∆ii∆ij∆jj + �∆ii∆jj (∆ii + ∆jj)
��
: (8.7)

There is one important detail relating to the transferable parameters that needs attention: the value

of ��. In the analysis of cD �� was introduced as the combination � + �, where � represented

the interactions of planar chains of three bonds, and the separation of � from � was achieved by

analysing phonon frequencies at the Brillouin zone boundary. In hD there are only nine chains

per atom whereas cD has twelve. Thus where �� was 132:0 = 95:1 + 36:9 GPa Å�1 before it is

replaced now by 95:1 + 3
4 � 36:9 = 122:8 GPa Å�1.

Table 8.1: Modified Keating parameters

Harmonic Anharmonic

GPa Å�1 eV Å�4 GPa Å�3 eV Å�6

� 158.6 0.990  �140.8 �0.879

�� 122.8 0.767 Æ 19.5 0.122

� �18.4 �0.115 � �99.7 �0.623

� 3.3 0.021 � �24.3 �0.152

� 50.6 0.316

� 0.0 0.000

8.4 The partial and inner elastic constants

Expressions for the partial and inner elastic constants have been obtained by identifying the Keating

energy density with the free energy per unit initial volume quoted in (1.10), ignoring first order

terms. They have been confirmed by using the generalised method of homogeneous deformation,

given in the Appendix, with a unit contribution from each of the model parameters in turn. As

they are rather more numerous than those of hG they are presented in tabular form. The numerical

coefficients relate only to the two cases where z = 1=16.
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Table 8.2: Coefficients of the modified Keating parameters in the second-order partial and inner

elastic constants and evaluation of the constants under the three régimes described in the text. The

lattice parameters are a and c, and t is an abbreviation for
p

3. The coefficients are valid only for

the z = 1=16 cases.

r0a 6= r0c r0a = r0c

Constant Factor � �� � � Quasi-cD z = 0:0625 z = 0:0645

C0
11 4ta2=3c 1 1 �2 1 1146. 1132. 1132.

C0
12 4ta2=9c 1 �1 �2 5 106.0 104.7 104.7

C0
13 tc=12 1 �1 �2 11 64.8 66.1 67.4

C0
33 tc3=32a2 7 5 �14 5 1188. 1252. 1247.

C0
44 tc=12 1 5 �2 �1 479.0 488.7 490.1

D1
16 2a=3c �2 2 1 2 �34.1 �33.8 �33.8

D1
15 t=3 �1 1 1 �18.8 �18.9 �23.4

D1
31 t=3 �1 1 1 �18.8 �18.9 �19.1

D1
33 tc2=8a2 1 �1 �1 37.6 39.1 29.6

E11
11 4t=3c 2 2 3 �2 280.9 279.4 279.4

E12
11 4t=3c 1 68.8 68.5 68.5

E13
11 4t=3c �1 10.3 10.2 10.2

E11
33 tc=8a2 8 11 6 �2 350.7 360.4 361.4

E12
33 tc=8a2 6 1 �6 166.0 170.6 169.2

E13
33 tc=8a2 3 �10 6 80.2 82.4 83.2

E11 (2)
111;112 4t=3c 2 �2 3 6 20.4 20.3 20.3

E12 (2)
111;112 4t=3c 2 3.7 3.7 3.7

E13 (2)
111;112 4t=3c �1 10.3 10.2 10.2

E11 (2)
113 tc=8a2 4 �1 3 12 139.1 143.0 145.0

E12 (2)
113 tc=8a2 3 �3 1 149.8 153.9 151.4

E13 (2)
113 tc=8a2 3 �5 129.0 132.6 134.4

E11 (2)
331 tc=2a2 2 �2 3 6 20.4 20.3 20.3

E12 (2)
331 tc=2a2 2 3.7 3.7 3.7

E13 (2)
331 tc=2a2 �1 10.3 10.2 10.2

E11 (2)
333 3tc3=64a4 4 �1 3 12 139.1 143.0 145.0

E12 (2)
333 3tc3=64a4 3 �3 1 149.8 153.9 151.4

E13 (2)
333 3tc3=64a4 3 �5 129.0 132.6 134.4
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Table 8.3: Coefficients of the modified Keating parameters in the third-order partial elastic constants

and the D and F tensors.

r0a 6= r0c r0a = r0c

Constant Factor  Æ � � � � Quasi-cD z = 0:0625 z = 0:0645

C0
111 2ta4=c 1 �1 2 �2 �1 2 �12317. �12118. �12118.

C0
113 tca2=24 3 3 �2 �6 �1 26 �130.5 �132.6 153.6

C133 tc3=128 1 �1 6 �2 �17 70 �1484.2 �1558.4 �1595.7

C333 3tc5=1024a2 61 �13 46 �122 �13 46 �10520. �11411. �11148.

C0
144 tca2=24 1 �1 1 �2 1 2 �304.4 �309.4 �308.8

C0
244 tca2=24 3 5 �6 1 �2 �1370.8 �1393.3 �1421.8

C344 tc3=128 1 �13 22 �2 �9 6 �2832.9 �2974.6 �2978.3

C0
166 2ta4=9c 3 2 �6 1 �2 �1609.7 �1583.8 �1583.8

C0
266 2ta4=9c 1 �4 6 �2 �3 2 �3482.0 �3425.8 �3425.8

C0
366 tca2=24 1 2 �2 �1 6 �196.0 �199.2 �216.3

D1
116 2a3=3c �3 1 3 �1 2 517.4 511.0 511.0

D1
126 2a3=3c �1 �2 1 1 1 �2 73.2 72.3 72.3

D1
136 ca=16 �2 2 2 2 1 �12 80.0 81.6 89.7

D1
145 ca=32 �4 1 �4 4 4 8 352.8 360.0 369.1

D1
314 ca=16 �2 2 �1 2 1 274.3 279.8 283.8

D1
115 ta2=6 �3 1 2 �1 2 410.5 412.0 442.7

D1
125 ta2=18 �3 3 3 2 �2 �6 �11.3 �11.3 �5.9

D1
135 tc2=96 �3 �15 6 2 9 �18 �19.3 �20.0 3.7

D1
311 ta2=6 �3 �3 2 2 1 �2 305.2 306.3 321.9

D1
312 ta2=18 �3 3 6 2 �3 �18 �19.4 �19.5 �20.0

D1
313 tc2=96 �3 3 �6 2 �3 30 269.2 279.1 279.8

D1
333 tc4=64a2 15 3 �6 �10 3 �6 �1298. �1390. �1234.

D1
344 tc2=96 �18 12 2 �9 6 47.0 48.7 79.0

F 111
112 2a=3c �4 1 1 �6 4 8 1019. 1012. 1012.

F 112
112 2a=3c �2 81.4 81.0 81.0

F 113
112 2a=3c �1 2 20.9 20.8 20.8

F 111
113 t=4 �8 �3 �2 �12 4 8 708.9 716.6 746.6

F 112
113 t=6 �3 4 6 �1.6 �1.5 �1.0

F 113
113 t=12 �9 2 4 �24 �65.0 �65.7 �67.0

F 121
113 t=12 3 8 6 �4.2 �4.0 �2.8

F 123
113 t=4 �3 2 2.6 2.5 1.8

F 131
113 t=6 �2 2 �3 �28.6 �29.0 �30.0

F 221
113 t=6 6 4 �6.8 �6.6 �4.6

F 111
333 3tc2=64a2 32 9 �14 12 �20 �40 �1078. �1121. �1043.

F 112
333 tc2=32a2 54 3 �10 6 �36 �740.8 �778.6 �738.4

F 113
333 tc2=64a2 9 �14 �52 12 24 194.8 205.1 196.5
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Table 8.4: Coefficients of the modified Keating parameters in the third-order E tensors.

r0a 6= r0c r0a = r0c

Constant Factor  Æ � � � � Quasi-cD z = 0:0625 z = 0:0645

E11 (3)
111 4ta2=3c 3 1 1 1 �2 �1769. �1753. �1753.

E12 (3)
111 2ta2=3c 1 �177.9 �176.3 �176.3

E13 (3)
111 4ta2=3c �1 86.7 85.9 85.9

E11 (3)
112 4ta2=9c 3 �3 �1 3 6 �301.9 �259.3 �259.3

E12 (3)
112 2ta2=9c 1 �59.3 �58.8 �58.8

E13 (3)
112 4ta2=9c �1 28.9 28.7 28.7

E11 (3)
113 tc=24 6 �6 10 2 9 36 �461.7 �472.8 �501.4

E12 (3)
113 tc=24 �9 10 �348.9 �357.2 �354.5

E13 (3)
113 tc=24 6 �2 �9 �298.7 �305.9 �305.7

E11 (3)
135 tc=96 24 21 82 8 6 �24 �820.4 �840.0 �863.6

E12 (3)
135 tc=48 �9 20 �6 �367.8 �376.6 �374.3

E13 (3)
135 tc=96 �27 18 �8 �18 24 �225.9 �231.3 �230.8

E11 (3)
331 tc=24 6 �6 7 2 9 48 �372.7 �381.7 �398.7

E12 (3)
331 tc=24 1 �6 36 �119.8 �122.7 �126.6

E13 (3)
331 tc=24 3 �2 �9 12 �209.8 �214.7 �212.7

E11 (3)
333 tc3=256a2 168 �51 106 �52 �12 �24 �2561. �2717. �2651.

E12 (3)
333 tc3=256a2 162 �9 46 �216 �6 36 �1682. �1779. �1723.

E13 (3)
333 tc3=256a2 �27 90 �164 �36 120 �545.6 �577.2 �603.1

E11
114 a=12 12 �3 �12 4 �12 �24 �263.8 �265.7 �282.3

E11
136 a=12 12 �12 �15 4 �6 �12 �174.1 �175.4 �186.4

E13
136 a=4 �1 4 62.9 63.4 62.7

8.5 The internal strain parameters

Using the appropriate inner elastic constants in (4.16) yields the internal strain parameters that are

shown in Table 8.5. The accidental degeneracy displayed by the quasi-cD parameters is removed on

passing to real hD. If A1
16 is to be compared with the A14 of cD both parameters need to be scaled:

the former by a=2, the latter by ac=4, these being the projections of the bonds along the Ox1 axes.

This gives the values 0.121 and 0.093 respectively. Without the �� adjustment A1
16 = 0:117 which

scales to 0.093 as is to be expected. This shows that the �� adjustment has a significant effect on

the internal strain.
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Table 8.5: The internal strain parameters. The final entry relates to cubic diamond. Units are Å.

r0a 6= r0c r0a = r0c

Constant Quasi-cD z = 0:0625 z = 0:0645

A1
16 0.153 0.153 0.153

A1
15 0.069 0.070 0.087

A1
31 0.069 0.068 0.069

A1
33 -0.139 -0.141 -0.107

A14 0.083

8.6 The total elastic constants and associated pressure derivatives

Armed with values of the internal strain and the inner elastic constants Eqs. (5.1), (5.2), (5.7) and

(5.8) can be used to anatomize the macroscopic constants. Firstly I summarize in Table 8.6 the

results for the total elastic constants at the second and third order, the bulk modulus and the pressure

derivatives of the second-order constants for the three régimes under consideration.

Table 8.6: The second- and third-order elastic constants, the bulk modulus and the pressure

derivatives of the second-order constants. Constants are in GPa, derivatives are dimensionless.

r0a 6= r0c r0a = r0c r0a 6= r0c r0a = r0c

Constant Quasi-cD z = 0:0625 z = 0:0645 Constant Quasi-cD z = 0:0625 z = 0:0645

C11 1133.4 1119.2 1119.2 C111 �11912. �11720. �11714.

C12 113.8 112.4 112.4 C113 �101.1 �102.7 �105.7

C13 70.0 71.4 71.5 C133 �1746.6 �1833.9 �1831.2

C33 1177.2 1240.6 1240.7 C333 �9662.2 �10481. �10494.

C44 476.4 486.0 486.0 C144 �424.6 �431.5 �434.0

B 439.1 442.9 443.0 C244 �1169.4 �1188.6 �1183.9

C344 �2831.0 �2972.6 �2974.6

C0
11 8.78 8.70 8.71 C166 �1321.6 �1300.3 �1299.0

C0
12 1.54 1.54 1.53 C266 �3432.5 �3377.1 �3375.8

C0
13 0.98 0.97 1.00 C366 �214.7 �218.2 �219.7

C0
33 9.34 9.82 9.69

C0
44 3.06 3.09 3.12

B0 3.77 3.80 3.80

There does not appear to be any distinct trend in the changes from column to column. The bulk

modulus is in all cases very close to the observed cD value of 442 GPa. The fitted value of 445 GPa
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drops to 439 GPa as a result of the �� adjustment. The calculations in [11] give hD a bulk modulus

2.3% larger than that of cD, whilst the measurements of Yagi et al. give 425�25 GPa—equality

within experimental error. The pressure derivative of the bulk modulus is about 2% larger than the

value 3.72 found for cD. Secondly I single out the ‘unequal bonds’ régime to show, in Table 8.7, the

full decomposition of all constants into partial and internal contributions, together with the elastic

compliances and the compressibilities.

Table 8.7: The composition of the calculated elastic stiffnesses and the corresponding compli-

ances and compressibilities for the ‘unequal bonds’ régime. Stiffnesses are in GPa, second-order

compliances in TPa�1 and third-order compliances in TPa�2.

 � CIJ �! SIJ  � CIJK �! SIJK
IJ Partial Internal Total Total IJK Partial Internal Total Total

11 1132.1 �12.9 1119.2 0.905 111 �12118.1 398.3 �11719.8 8.7

12 104.7 7.7 112.4 �0.088 113 �132.6 29.9 �102.7 �0.4

13 66.1 5.3 71.4 �0.047 133 �1558.4 275.5 �1833.9 0.7

33 1251.6 �11.0 1240.6 0.811 333 �11410.7 929.9 �10480.8 5.3

44 488.7 �2.7 486.0 2.058 144 �309.4 �122.1 �431.5 0.6

244 �1393.3 204.7 �1188.6 3.8

344 �2974.6 2.0 �2972.6 9.9

166 �1583.8 283.5 �1300.3 3.4

266 �3425.9 48.8 �3377.1 11.6

366 �199.2 �19.0 �218.2 �0.2

ka 0.770 Ka 7.24

kc 0.717 Kc 6.56

kv 2.258 Kv 21.04

The inner elasticity contributes to every constant in hD, in marked contrast to the situation for

cD and hG. The internal share varies between 0.5% and 7.5% for the second-order constants and

between 0.1% and 30% for the third-order ones.

The compressibilities are no longer isotropic as they are in cD and in the quasi-cD version of

hD. The results for cD, from Chapter 6, are k = 0:749 TPa�1, K = 6:83 TPa�2, kv = 2:25 TPa�1,

Kv = 20:5 TPa�2.

8.7 The zone-centre optic modes

The frequencies and eigenvectors follow from the analysis in Chapter 4 and are presented in

Table 8.8. The calculated triply-degenerate T2g mode frequency of 40.23 THz in cD corresponds to

the triple degeneracy of the two E1g and the A1g modes at 39.49 THz in the quasi-cD calculation.
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The 1.8% lower value is due entirely to the reduced value of �� and falls nicely in the middle

of the range of 0.5% to 2.8% reduction observed in [6]. The E2g frequency is well predicted,

only exceeding the observed value by about 2%. For the Raman active modes the Keating model

is in near-perfect agreement with the density functional calculations of Wu and Xu [11]. For the

optically-inactive modes, however, the agreement is poorer. Calculations for the real hD case reveal

no change in the three doubly-degenerate modes but show the lifting of the triple degeneracy by an

increase in frequency of the A1g mode of about 650 GHz. This is rather larger than the 270 GHz

found in [11].

Table 8.8: The zone-centre optic modes. Experimental frequencies have been converted to THz.

Comparative information for cD is given at the bottom.

Calculated�! r0a 6= r0c r0a = r0c

Mode Eigenvector Experiment Ref. [11] Quasi-cD z = 0:0625 z = 0:0645

E1g z1
1 = �z3

1 = 1p
2
; z2

1 = 0 39.42–39.75a 39.12 39.49 39.49 39.49

z1
2 = �z3

2 = 1p
2
; z2

2 = 0

E2g z1
1 = �z2

1 = z3
1 = 1p

3
35.08b/35.22c 35.77 35.80 35.80 35.80

z1
2 = �z2

2 = z3
2 = 1p

3

E2u z2
1 = 1; z1

1 = z3
1 = 0 15.62 19.91 19.91 19.91

z2
2 = 1; z1

2 = z3
2 = 0

A1g z1
3 = �z3

3 = 1p
2
; z2

3 = 0 39.42–39.75a 39.39 39.49 40.13 40.15

B2g z1
3 = �z2

3 = z3
3 = 1p

3
37.56 39.07 39.71 39.94

B1u z2
3 = 1; z1

3 = z3
3 = 0 33.55 30.93 31.44 31.31

T2g 39.93d 39.99 40.23
aRef. [6] bRef. [9] cRef. [8] dRef. [10]

The pressure derivatives of the frequencies are shown in Table 8.9. Apart from the E2u modes

they all have approximately the same value as cD.

Table 8.9: Pressure-derivatives of optic-mode frequencies. The final entry relates to cubic diamond.

Units are THz GPa�1.

r0a 6= r0c r0a = r0c r0a 6= r0c r0a = r0c

Mode Quasi-cD z = 0:0625 z = 0:0645 Mode Quasi-cD z = 0:0625 z = 0:0645

E1g 0.098 0.099 0.099 A1g 0.098 0.099 0.099

E2g 0.092 0.092 0.092 B2g 0.093 0.095 0.096

E2u 0.032 0.031 0.031 B1u 0.101 0.102 0.101

T2g 0.097 T2g 0.097
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The unexciting variation of frequency with pressure up to 20 GPa is presented in Fig. 8.2.
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Figure 8.2: Pressure-dependence of the zone-centre optic-mode frequencies.

8.8 Summary and sting in the tail

It has been possible to provide a full and plausible picture of the elasticity of a material, about

which very little is known, by transferring parameters from a well-characterized close relative.

The adjustment of one of these parameters, ��, in recognition of geometrical differences at the

third-neighbour level, proved to be just what was required to give an accurate prediction of all three

Raman frequencies. There is no obvious significant difference between the three structure régimes

considered but: : :

: : :experiments have indicated [12] that the c=a ratio remains constant under

pressure at 1.66, slightly greater than the quasi-cD value of 1.633, up to at least 30 GPa. This result

generates a paradox. It implies that ka > kc, making the hD crystal more compressible in the Ox1

and Ox2 directions than it is in the Ox3 direction, in which case the application of pressure must

increase the c=a ratio! The only way in which the ratio can remain constant is if ka = kc, and that

implies the quasi-cD scenario. It may well turn out that the original synthesizers of hD, Bundy

and Kasper [1], were nearer the mark with their values of a = 2:52 Å, c = 4:12 Å and c=a = 1:635.

Clearly more experimental work needs to be done to clarify this issue.
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Chapter 9

Rhombohedral graphite: elasticity, zone-centre optic modes and the

rG-to-cD transformation via transferred Keating parameters

9.1 Introduction

The Chapters of this thesis follow closely the chronological order of my involvement with their

content. Up to this point I have believed in the existence of a rhombohedral allotrope because

I have been aware of papers about it: the bandstructure treatment of Haering [8], the theoretical

investigations of the rG-to-cD conversion by Kertesz and Hoffman [10] and Fahy et al. [4], and

the comparative ab initio studies of a number of forms of graphite by Charlier et al. [3]. These

papers refer to the fact that rG has never been isolated and state that it constitutes from 5 to 15%

of most naturally-occurring graphite. Since an allotrope is defined as a distinct crystalline form of

an element I think that rG may not be a genuine allotrope but that there is nevertheless something

whose nature is worthy of study. To get a clearer idea of what it is one must return to the original

structure investigations.

9.2 Does the rhombohedral allotrope exist?

The original work of Lipson and Stokes [11] is frequently cited but, I suspect, rarely read. The

authors were led to study an X-ray powder photograph of graphite that had been crystallized by

arcing in order to elucidate some faint lines that could not be explained by the accepted structure

of hG [2, 9, 12]. Such lines had been found quite generally in photographs from a wide variety

of natural and artificial specimens. When the faint lines were indexed on the basis of a hexagonal

cell they were found to have simple fractional ` indices that were always multiples of 2
3 . The

simplest way to explain the lines was to postulate a structure with a unit cell whose c-axis was 3
2

times as long as the usual one and to see the sample as a small amount of the new structure mixed

with the ordinary one. Careful measurements of the intensities of all the lines showed that some

had contributions from both structures, some were unique to the hexagonal form and some to the

rhombohedral. Quantitatively, however, the enhancement of the intensities of the common lines

was not quite right and Lipson and Stokes attempted to remove the new structure by digestion with
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concentrated sulphuric and nitric acids. The faint lines were removed but the enhanced lines were

as enhanced as before. It was concluded that the action of the acid had been ‘to rearrange the

layers of atoms, rather than to remove the new structure’, a view supported by the broadening of

lines with ` non-zero (the regular arrangement of layers had been disturbed) and the unchanged

width of lines with ` zero (the integrity of planar layers had been preserved). They also concluded

that there would always be a proportion of disordered material. All the intensity data would be

consistent if their sample comprised 14% of the rhombohedral, 80% of the hexagonal and 6% of the

disordered structures. The structure they proposed for rG is that given in Table 4.1 with a = 2:456

Å, c = 10:044 Å and u = 1
6. They did add a comment which as far as I know has been disregarded

although, as I discuss later, it may well have some significance: ‘The parameter u cannot, of course,

be determined exactly; we have chosen this value as it gives plane hexagonal rings. Actually the

value u = 0:164 would give slightly better agreement with the intensities, and this would mean that

the atoms were �0:03 Å out of the planes. The intensities, however, are too small for this point to

be stated definitely.’

The other major study was made by Freise and Kelly [6]. They deformed natural graphite

single crystals and polycrystals at room temperature and coupled optical and electron microscopic

investigations of these with X-ray investigations of the appearance and disappearance of the peaks

corresponding to the rhombohedral form. Before detailing their own experiments they summarized

earlier work on the dislocation structure of natural graphite: all total dislocations are observed to

have Burgers vectors of the type a=3 h112̄0i. In addition these dislocations are observed to split

into partial dislocations with Burgers vectors of the type a=3 h11̄00i. In a graphite crystal with the

layer planes arranged in the hexagonal stacking sequence, the associated stacking fault becomes a

region arranged in the rhombohedral stacking sequence. They report values of the stacking-fault

energy centred on 0.55 erg/cm2 [1, 14], equivalent to 0.09 meV per atom in the plane.

Their first experiment showed that their starting material, both single crystal and polycrystalline

samples, had no rhombohedral component. Next they compressed their single crystals along the

c-axis between not-quite-parallel platens. This axial loading was necessary to enable shear to be

applied in the basal plane without wholesale cleavage. No rhombohedral form was induced by

shear. However, when they took filings from the single crystal, a process that involves much greater

shear deformation, a large fraction of the rhombohedral form was detected. Extensive annealing

studies were then carried out to characterize the rhombohedral domains. Directly after deformation

they were about 10 layers thick. With increasing annealing temperature both the thickness of

the domains and the volume fraction of the rhombohedral material decreased. The annealing

behaviour is independent of time at a particular temperature, indicating that the disappearance of

the rhombohedral form is not an activated process. The authors emphasize that randomly arranged

isolated stacking faults will not give rise to rhombohedral reflections, only broadened hexagonal

ones. The only regular arrangement that fits observation is one stacking fault on every other plane.

Any other sequence must give rise to extra reflections, and these are not observed. They further
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conclude, on the basis that the chance of finding 10 planes in the correct sequence is about 0.1%, that

some ordered arrangement of dislocations occurs during deformation. Regions of rhombohedral

stacking can become unobservable if just one or two dislocations glide through the stack. The work

of Baker et al. [1] and Siems et al. [14] had shown that the total dislocations lying on the basal planes

in graphite were always split into widely separated partial dislocations between 1000 and 2000 Å

apart. This large separation means that a dislocation density of 1012 cm�2 will produce stacking

faults over half the area of every layer plane. A larger density does not increase the proportion of

stacking faults over a single plane. In the work under discussion the dislocation density in annealed

samples was 100 to 1000 times smaller, and smaller still in the undeformed material.

All in all their work suggests that rhombohedral stacking

� is produced by severe basal shear;

� is around 10 layers thick;

� extends over an area of around 2 105 unit rhombi;

� is limited to half a layer;

� is reduced by annealing (and completely removed if the temperature reaches 3000ÆC);

� and can be removed by dislocation glide.

This interpretation clearly explains why isolated rhombohedral graphite cannot be produced from

hexagonal graphite. There is no true allotrope—just a mosaic distributionof microcrystalline defect

regions embedded in the hG host. Each defect region is, however, large enough to justify theoretical

study of its structure as a quasi-allotrope, and the rest of this Chapter is written in that spirit.

9.3 Cohesive energy

hG and rG consist of strongly-bonded graphene layers stacked under the influence of relatively

weak forces in ABAB and ABCABC sequences respectively, to use a common description. One

expects their energies to be very close and this turns out to be the case. Measured stacking fault

energies in hG [1, 14] are always positive (around 0.09 meV/atom) showing that hG is the more

stable allotrope. This is confirmed by energy calculations: for example, Furthmüller et al. find that

the cohesive energy of hG exceeds that of rG by 0.9 meV/atom [7]. This value is reduced to a mere

0.11 meV/atom, suggestively close to the stacking fault energy, in the work of Charlier et al. [3].

There is a lack of calculations of the elasticity, though some naı̈ve expectations have been

expressed. Thus Fahy et al. [5] assert : ‘Because the number of bonds between the layers is the same

in rhombohedral graphite and in hexagonal graphite we expect their behavior under compression

to be very similar.’ The bonds between layers may be the same in number but their distributions

are significantly different. The most important difference is a consequence of symmetry: in hG,
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where each graphene layer is a mirror plane, the internal strain is entirely confined to those layers

but in rG, whose only mirror planes are normal to the layers, the internal strain is free to occur

along the unique axis as well. By taking the Keating parameters for hG and transferring them to

rG it is possible to make good the previous lack.

9.3.1 Equilibrium structure

In Sec. 9.2 I drew attention to the tentative comment that the experimental results in [11] were

better served by u = 0:164 than by the planar value u = 1
6 . This implies buckling of �0:03 Å,

a shortening of the 3.35 Å bond by 1.8%. A very simple picture, Figure 9.1, explains the origin

of such buckling. An eclipsed atom in hG, say 3, has equal and opposite ‘large’ interlayer forces

acting on it due to the eclipsing atoms above and below it, similarly an uneclipsed atom, say 1,

experiences equal and opposite ‘small’ interlayer forces due to the non-eclipsing atoms above and

below it. Both atoms have extremely large and balanced in-plane forces acting on them. No net

forces act upwards or downwards and the integrity of the planes is ensured. Now consider those

forces transferred to planar rG. No atoms are eclipsed on both sides and each atom has one ‘large’

and one ‘small’ interlayer force acting on it besides the very large in-plane forces. Atom 2 is drawn

towards the atom below it and atom 1 towards the atom above. Small components of what were the

in-plane forces will now be sufficient to augment the ‘small’ forces so that together they balance

the ‘large’ forces.

2 4 2
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3 1
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2 1 2
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Figure 9.1: Force diagram for (a) hG, (b) planar rG and (c) buckled rG

This could give rise to buckled rG, a structure near the beginning of a transformation path from

rG to cD. However, an observable effect is unlikely. Ab initio calculations1 of the total energy for

a small range of values of u around the planar value show a minimum for u = 0:1666� 0:0003

which indicates that the net axial force on an atom is no greater than 0.2% of the in-plane force, a

realistic figure that is consistent with the very small interlayer Keating parameters.
1I am most grateful to my colleague Professor G. P. Srivastava for making these calculations on my behalf.
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9.4 Modified Keating model

The structure of rG is fully described in Chapter 4. Two layers are shown in Fig. 9.2 and the three

sets of interactions corresponding to those used for hG are indicated. Bernal notation is no longer

meaningful but it is useful to refer to the atoms on sublattices 1 and 2 by A and B, with superscript

primes to indicate adjacent layers.

1

1
2 1 1

1

11

1
2 2

22

2

2 2 2

1
2

1
22

1

2
1 1

11

Figure 9.2: Configurations of bonds in the Keating model. The interactions are described in the

text.

1. The planar part of the energy per cell is the same as that in hG. The three nearest-neighbour

A atoms to a B atom, see lower centre portion of Fig. 9.2, give rise to three 2-body ‘bond-

stretching’ BAi interactions, three 3-body ‘bond-bending’ BAi BAj interactions and various

couplings between them. The same number of interactions arise from each A atom. Four

harmonic parameters (�, �, � and � ) and six anharmonic parameters (, Æ, �, �, � and �) may

be defined though not all of them are used.

2. This set comprises the 2-body AB0 interaction between nearest-neighbours in adjacent planes,

see right-hand portion of Fig. 9.2, and the 3-body interactions that couple AB0 with the three

neighbouring oblique interlayer vectors AA0
i. Unlike the hG case this set is limited to the

plane above. There is a corresponding set of BA0 interactions confined to the plane below.

Ten more parameters may be defined (with superscript 0, corresponding to the equivalent

parameters in hG).

3. This set comprises the three 2-body AA0
i interactions and the three 3-body interactions

involving AA0
i AA0

j pairs, see left-hand portion of Fig. 9.2, together with the symmetrical

group of 2-body BB0
i and 3-body BB0

i BB0
j interactions. There is a set of each above the plane

and below the plane. Ten more parameters may be defined (with superscript 00).

In hG it was possible to ignore a potential fourth set of interactions, BB0, by noting a geometrical

dependence between its strains and the strains of the other three sets. Any Keating parameters
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associated with this set were implicitly included in the parametrization of the other sets. The

corresponding case applies here through the numerous equivalences of the form B0B=B0A + AB.

Because this is a different relation from the one in hG the implicit contribution of these interactions

to the parameters above will also be different.

9.4.1 The strain variables

The strains in the modified model for rG are the same as those for cD:

∆ii = 2ri0p �pqr
i0
q � 2ri0p �p + �p�p (9.1)

and

∆ij = 2ri0p �pqr
j0
q � (ri0p + rj0

p )�p + �p�p (9.2)

where terms of order three and higher have been omitted. Where the sign is undetermined the +

sign is taken when the reference atom lies on sublattice 1, the � when it is on 2.

9.4.2 The energy

The expressions for the modified energies per cell are the same as those for hG except that

summations are now limited to two sublattices. As always the subscripts i and j are solely for the

sake of bookkeeping—keeping in touch with the numbers of neighbours. Where, for the first time,

there is only a single neighbour to consider (the AB0 interaction set) the bond has been indicated

by a subscript 1. The second-order energy per unit cell is

E(2) = 1
2

2X
s=1

3X
i=1

�
�∆2

ii +
3X
j=1

0�
�∆2

ij + �(∆ii + ∆jj)∆ij + �∆ii∆jj

�
(9.3)

+ �00∆2
ii +

3X
j=1

0�
�00∆2

ij + �00(∆ii + ∆jj)∆ij + � 00∆ii∆jj

��

+ 1
2

2X
s=1

�
�0∆2

11 +
3X
j=1

�
�0∆2

1j + �0(∆11 + ∆jj)∆1j + � 0∆11∆jj

��
:

The third-order energy per unit cell is

E(3) = 1
2

2X
s=1

3X
i=1

�
∆3

ii +
3X
j=1

0�
Æ∆3

ij + �(∆ii + ∆jj)∆
2
ij + �(∆2

ii + ∆2
jj)∆ij

+ �∆ii∆ij∆jj + �∆ii∆jj(∆ii + ∆jj)
�

(9.4)

+ 00∆3
ii +

3X
j=1

0�
Æ00∆3

ij + �00(∆ii + ∆jj)∆
2
ij + �00(∆2

ii + ∆2
jj )∆ij

+ �00∆ii∆ij∆jj + �00∆ii∆jj (∆ii + ∆jj)
��



9.5 Elasticity of rhombohedral graphite 147

+ 1
2

2X
s=1

�
0∆3

11 +
3X
j=1

�
Æ0∆3

1j + �0(∆11 + ∆jj)∆
2
1j + �0(∆2

11 + ∆2
jj)∆1j

+ �0∆11∆1j∆jj + �0∆11∆jj(∆11 + ∆jj)
��
:

Table 9.1: The modified Keating parameters.

Planar Interlayer

GPa Å�1 eV Å�4 GPa Å�1 eV Å�4 GPa Å�1 eV Å�4

� 266.21 1.662 �0 39.55 0.2469 �00 3.231 0.0202

� 240.53 1.501 �0 3.005 0.0188 �00 0.288 0.0018

� 30.12 0.188 �0 �5.037 �0.0314

� 53.50 0.334 � 0 �6.120 �0.0382 � 00 1.447 0.0090

GPa Å�3 eV Å�6 MPa Å�3 meV Å�6 MPa Å�3 meV Å�6

 �687.13 �4.289 0 211.3 1.312 00 �35.62 �0.2247

Æ �961.91 �6.004

� �365.19 �2.279

�00 �6.05 �0.0378

9.5 Elasticity of rhombohedral graphite

Expressions for the partial and inner elastic constants in terms of modified Keating parameters have

been obtained for the planar rG structure, as they were for hG, by the method of homogeneous

deformation. The second-order constants are presented in Table 9.2. At the third-order only those

planar parameters that were non-zero in hG, and the bond-stretching interlayer parameters have

been included in Table 9.3. Comparison with Tables 7.2, 7.3 and 7.4 shows that all the partial

constants have the same expressions in both graphite allotropes. The most notable difference is the

lack of any contribution to the inner elastic constants from the NNN interlayer interactions. This is

because the AA0 (and BB0) connect points on the same sublattice. At the third order five of the six

DiJK that involve �0 will be zero because the transferred parameters do not include it.

The partial and inner elastic constants derived from Tables 9.2 and 9.3, and checked by a

homogeneous deformation calculation, are shown in Table 9.4. The large number of null DiJK

and EijK components is a pseudo-symmetry effect arising from the limited number of interactions

taken in the model combined with the assumption of planar layers. A similar effect is shown by hD

when the lattice parameters are chosen to give the quasi-cD configuration: the linear compressibility

becomes isotropic. A new feature is the appearance of additional anharmonic contributions, F (2)
113

and F (2)
333, to the harmonic energy.
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Table 9.2: Coefficients of the modified Keating parameters in the second-order partial and inner

elastic constants. The common factors are expressed in terms of the lattice parameter a and the

interlayer spacing d. t stands for
p

3.

Planar Interlayer: NN Interlayer: NNN

Factor � � � � �0 �0 �0 � 0 �00 �00 �00 � 00

C0
11 2ta2=3d 1 1 �2 1 2 2 �4 2

C0
12 2ta2=9d 1 �1 �2 5 2 �2 �4 10

C0
13 4td=3 2 2 4 �4 4 8

C0
33 16td3=a2 1

3 2 4 2 2 4 8 4

C0
44 4td=3 1 2 4 2 4 �4

C0
14 2a=3 1 4 �4 �2 �4

D16 2a=3d �2 2 1 2 1

D15 4t=3 1 1

D31 4t=3 1 2

D33 4td2=3a2 1 3 6 3

E11 4t=3d 2 1 2 �2 1

E33 8td=3a2 2 3 6

E(2)
111;112;331 4t=3d 1 �1 1 2 1

E(2)
113;333 8td=3a2 1 3 3

F (2)
113 8t=3a2 2 3

F (2)
333 8t=a2 2 3

When the pseudo-symmetry is broken by the buckling of layers then u is no longer 1
6 , but

smaller, and many coefficients that are zero (i.e. blank spaces) in Tables 9.2 and 9.3 will become

non-zero, as will the associated constants.

The internal strain component common to the two allotropes is slightly different, as shown in

Table 9.5, and the null value for A33 is another pseudo-symmetry consequence.

The full decomposition of the constants is given in Table 9.6. The overall picture reveals that

the two graphite allotropes are remarkably similar. The calculated values of C11 and C12 in rG are

a little smaller than they are in hG on account of the extra contributions of internal strain and this

in turn makes ka a little bigger than it is in hG. At the third order it is only C133 that is greatly

changed by internal strain, but this gives S133 the value �40:1 TPa�2 whereas it is +1:0 TPa�2 in

hG. This causes the one upset in the fitting: it produces a negative Ka. This was the most difficult

target to fit in hG because, as explained in Chapter 7, it depends on the interlayer anharmonicity

and particularly on the smallness of S133 relative to S333. The remaining compressibilities kc, Kc,

kv and Kv are essentially identical in the two allotropes.
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Table 9.3: Coefficients of the modified Keating parameters in the third-order partial elastic constants

and inner elastic constants. The common factors are expressed in terms of the lattice parameter a

and the interlayer spacing d. t stands for
p

3.

Planar NN :Interlayer: NNN

Factor  Æ � 0 �0 00 �00

C0
111 ta4=d 1 �1 2 2 4

C0
113 8ta2d=3 1 3 8

C0
133 32td3 1 1 4

C0
333 32td5=a2 1 12 6 24

C0
144 8ta2d=3 1 2

C0
244 8ta2d=3 3 �2

C0
344 32td3=3 1 3

C0
166 ta4=9d 3 2 6 �4

C0
266 ta4=9d 1 �4 6 2 4

C0
366 8ta2d=9 2 3

C0
114 4a3=3 3 2

C0
124 4a3=3 1 �2

C0
134 16ad2=3 2 3

C0
444 16ad2 �1 2

D116 2a3=3d �3 1

D126 2a3=3d �1 �2 1

D211 2a3=3d �3 �3 2

D222 2a3=3d 5 1 �2

D314 16ad=3 1

D311 8ta2=3 1

D312 8ta2=9 1

D313 64td2=3 1

D333 32td4=a2 1 6

D344 32td2=3 1

E(3)
111 2ta2=3d 6 1

E(3)
112 2ta2=3d 2 �2 �1

E(3)
331 32td=3 1

E(3)
333 32td3=a2 1 2

F (3)
112 2a=d �4 1 2

F (3)
333 32td2=a2 1
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Table 9.4: Calculated second- and third-order partial and inner elastic constants. Units are GPa for

C0
IJ:, GPa Å�1 for DiJ:, GPa Å�2 for Eij: and GPa Å�3 for Fijk.

Partial Inner Partial Inner

C0
11 1063.85 D16 39.5 C0

111 �8630.4 D116 5026. E111 �9148

C0
12 176.15 D15 �4.7 C0

113 �14.6 D126 6655. E112 2125

C0
13 7.9 D31 �39.9 C0

133 �125.4 D136 0.0 E113 31.1

C0
33 36.5 D33 �0.04 C0

333 �583.8 D145 0.0 E135 0.0

C0
44 5.05 C0

144 �4.5 D314 0.0 E331 216.1

C0
14 1.6 E11 502.8 C0

244 �9.0 D115 0.0 E333 103.5

E33 148.0 C0
344 �75.0 D125 0.0 E114 0.0

C0
166 �5875.2 D135 0.0 E136 0.0

C0
266 2039.6 D311 0.0

C0
366 �3.4 D312 0.0 F112 1552.

C0
114 �2.4 D313 0.0 F113 48.8

C0
124 �0.5 D333 242.3 F333 168.1

C0
134 �15.9 D344 0.0

C0
444 10.6

Table 9.5: The internal strain tensors in Å. The values for rG appear on the left. The actual in-plane

internal strain in hG is shown on the right for comparison.

iJ AiJ A2
iJ + A3

iJ

16 �0.079 �0.083

15 0.009

31 0.269

33 0.000
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Table 9.6: The composition of the calculated elastic stiffnesses, the corresponding compliances

and compressibilities and the pressure derivatives of the second-order stiffnesses. Stiffnesses are

in GPa, second-order compliances in TPa�1 and third-order compliances in TPa�2. The pressure

derivatives are dimensionless.

 � CIJ �! SIJ  � CIJK �! SIJK
IJ Partial Internal Total Total IJK Partial Internal Total Total

11 1063.85 �13.86 1049.99 0.980 111 �8630.4 �2856.9 �11487.3 7.35

12 176.15 �7.64 168.51 �0.157 113 �14.6 7.7 �6.9 �2.80

13 7.90 �0.01 7.89 �0.178 133 �125.4 65.3 �60.1 �40.1

33 36.5 0.0 36.5 27.47 333 �583.8 0.2 �583.6 12052.8

44 5.05 �0.04 5.01 200.1 144 �4.5 0.2 �4.3 �226.6

14 1.56 0.37 1.93 �0.438 244 �9.0 �0.8 �9.8 �339.2

344 �75.0 0.0 �75.0 82207.8

166 �5875.2 �853.4 �6728.6 35.1

266 2039.6 �1026.9 1012.7 �10.4

366 �3.4 0.2 �3.2 �5.0

114 �2.4 113.3 110.9 �20.9

124 �0.5 0.8 0.3 �4.6

134 �15.9 0.0 �15.9 �75.1

444 10.6 0.0 10.6 �84196.7

ka 0.645 Ka �31.2

kc 27.1 Kc 11886.

kv 28.4 Kv 11824.

C0
11 38.8 (39.0)

C0
12 10.9 (11.0)

C0
13 3.2 (3.2)

C0
33 13.1 (12.9)

C0
44 1.9 (1.9)

C0
14 0.4

The first five pressure derivatives are essentially the same as the fitted values of the anharmonic

targets for hG, shown in parentheses.

9.5.1 Zone-centre optic modes

The Eg mode in rG mimics the E2g2 mode of hG with a frequency of 47.43 THz and a pressure

derivative of 0.14 THz/GPa. Likewise the A1g mode mimics the B1g2 with values of 25.74 THz and
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-0.97 THz/GPa. The behaviour under pressure is shown in Fig. 9.3 and indicates a phase transition

in the vicinity of 22 GPa.
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Figure 9.3: Pressure dependence of the zone-centre frequencies.

9.6 The rG-to-cD transformation

Although rG has never been isolated this has not inhibited study of its possible conversion to

cD. A continuous transformation between the two structures can be envisaged because cD can be

described by a primitive rhombohedral cell with two atoms in the basis in just the same way as

rG. The quasi-rD picture is illustrated in Chapter 5. The top two rows of Table 9.7 show the lattice

parameters (of the triple hexagonal cell), the volume (of the primitive rhombohedral cell) and the

atomic coordinate of the two structures involved. Also listed are the lengths of the axial bonds, R,

the non-axial bonds, r, and the buckling angle, �.

Table 9.7: End-points and transition-state parameters.

a c Vc u R r � EB

rG 2.460 10.048 17.554 1
6 3.350 1.420 90.00

cD 2.522 6.178 11.346 1
8 1.545 1.545 109.47

Ref. [10] 2.519 6.684 12.243 0.139 1.86 1.50 104.2 0.6

Ref. [4](1) 2.513 7.088 12.920 0.182 2.07 1.48 101.4 0.33

Ref. [4](2) 2.372 6.770 11.0 0.155 2.1 1.38 97.0
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These latter parameters, indicated in Fig. 9.4, are related to the former by

R = 2uc; (9.5)

r cos � = 2c

�
u� 1

6

�
(9.6)

and

r sin � =
ap
3
: (9.7)

The volume per pair of atoms is

Vc =

p
3

6
ca2: (9.8)

2 1 2

121

2 1

(a)

2
1

2

11

R=2uc

r

θ

2c/3

a ˆ/3

(b)

2

1

2

1

2

1

2

1

(c)

Figure 9.4: rG-to-cD transformation path (a) initial rG, (b) intermediate stage, showing the essential

parameters and (c) final cD.

R, r and � all change continuously during a concerted transformation and there is no uniquely

constrained path. Several procedures may be followed. From a purely geometrical viewpoint the

values of a, c and u could be uniformly interpolated between their extreme values and R, r and

� calculated by the equations above. This would be to ignore the physics, though. One physical

approach is to take the parameter of greatest change, R, and to interpolate it regularly between

its extreme values. At each value the total energy is minimized with respect to r and �. The

implied values of a, c and u are then deduced. A second approach is to postulate a process such as

hydrostatic compression, interpolate between the extremes of the cell volume Vc and minimize the

associated enthalpy, E + pVc, at each value. Both these approaches have been published and will

now be briefly discussed and further illustrated by use of the Keating model.

9.6.1 Energy minimization calculations

In [10] Kertesz and Hoffmann presented an orbital model for this solid-state, high-pressure, trans-

formation, relating it to chemical reactions having orbital symmetry constraints. They took R as
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the independent reaction coordinate and optimized r and � at each value using extended Hückel

band calculations. They identified a transition state at the maximum of the total energy versus R

curve. This occurred at R = 1:86 Å, r = 1:5 Å and � = 104:2Æ. The energy barrier EB was about

0.6 eV/atom. The transition state therefore occurs for a = 2:519 Å, c = 6:684 Å and u = 0:139.

These results have been entered in the third row of Table 9.7.

They used the small initial rate of increase of r with R to argue that the graphene layers do

not buckle at low pressure. In connection with the (unstable) transition state they remark that it is

customary to relate different solid-state structures by studies of hypothetical, sometimes unstable,

structural models.

Fahy, Louie and Cohen [4] subsequently made a pseudopotential total-energy study of the

transformation. In the first of two calculations they followed the rationale of the above work and

found an energy barrier of 0.33 eV/atom when R = 2:07 Å, r = 1:48 Å and � = 101:4Æ. This result

has been entered in row four of Table 9.7. In their study they follow the charge density in the plane

of Fig. 9.4b along energy-minimizing path. They conclude, firstly, that only when R < 2:1 Å does

the charge density between the layers become substantially inhomogeneous and accumulate along

the axial bond and, secondly, that not until R < 1:8 Å does the double peak, characteristic of the

sp3 bond in cD, appear.

The Keating model does not support energy minimization but does provide a means of following

the elasticity and optic-mode frequency behaviour along a transformation path. In the following

illustration R is taken as the independent variable and interpolated between its extremes. The

lattice parameters are adjusted proportionately and the values of the other bondlengths and of the

parameter u follow (this procedure is not as unphysical as the purely geometric variation mentioned

earlier: effectively both c and uc are changed proportionately which means that u itself does not

change very much initially; buckling is therefore slow to start, in keeping with the studies under

discussion). The question of how the cD parametrization should merge with and ultimately replace

the rG parametrization is answered by considering the charge density conclusions just reported. I

take the Keating energy as

E = fErG + (1� f )EcD (9.9)

where, withRmin = 1:8 and Rmax = 2:1, the switching function is

f =

8>><
>>:

0 when R < Rmin;
1
2 � 1

2 cos
�
�(R�R

min
)

R
max

�R
min

�
when Rmin � R � Rmax;

1 when Rmax < R:

(9.10)

The results for the second-order elastic constants are illustrated in Fig. 9.5, for the internal strain

parameters in Fig. 9.6 and for the zone-centre optic-mode frequencies in Fig. 9.7. Each display2

2I have inadvertently used R
min

= 1:7 in the switching function when preparing these displays. The effect is of no

great significance as the results are essentially qualitative.
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is divided into three by the upper and lower limits of the switching function. On the left only the

rG parameters are involved, any variations being due solely to the changes in the geometry of the

cell, and on the right only cD parameters are involved. The mixing of the two régimes occurs in

between.
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Figure 9.5: Second-order elastic constants along a transformation path. C13 and C14 are shown at

�10 magnification. Terminal values on the right are quasi-rD values.

It is partly the geometrical aspect of the partial constants, the disposition of a and d in the

common factors in Table 9.2, and partly the internal strain that determines the overall variation of

the total constants seen in the rG region. Thus both C0
11 and C0

12 increase as a2=d and double

in size as 68% of the path is traversed. Roughly equal contributions from inner displacement are

subtracted from each, about 5% of C0
11 but 25% of C0

12 at the limit, leaving the variation of C11 to

dominate the picture. The only other feature that merits comment is the variation of C13: this very

small constant makes a negative excursion in the rG region and then, uniquely, rises to a maximum

in the middle of the transition region. The significance of this eludes me, however!
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Figure 9.6: Internal strain parameters along a transformation path. Terminal values on the right are

quasi-rD values.

The apparent constancy of A16(= �D16=E11) is due to its net common factor of a which

increases by only about 2% across the rG region. In view of the general manifestation of pseudo-

symmetry in planar rG it is a little surprising that A31(= �D31=E33) does not start at zero, as do

A15 and A33.
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Figure 9.7: Zone-centre frequencies along a transformation path. The terminal value on the right

is the quasi-rD value.
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The one interesting feature of the optic-mode frequencies is their (accidental?) degeneracy in

the transition region atR = 1:8 Å. This is the very value of the onset of peaks in the electron density

along the axial bond, [4], and close to the value 1.76 Å, deducible from measurements on Fig. 3

in [10], at which a symmetry-imposed level crossing at the Γ point occurs. The latter is related to

the change from sp2 + pz to sp3 bonding, essentially the same fact.

9.6.2 Hydrostatic compression path

Fahy, Louie and Cohen’s second calculation followed a hydrostatic pressure path with results that

were very different from those based on energy minimization. The path for example does not lead

continuously to the cD structure but terminates when p = 80 GPa and Vc = 11:0 Å3 at which point

R = 2:1 Å, r = 1:38 Å and � = 97Æ. This result has been entered in row five of Table 9.7. The logic

behind this calculation is not clear. The authors state that they have treated Vc as an independent

variable and have varied r and � to minimize the enthalpy at each value of Vc. For a hexagonal

cell, however, a given value of Vc does not fix the lattice parameters, only the product ca2. A

complete energy minimization should sample a range of (a; c) pairs and optimizeR, r and � at each

(simultaneously via u). There is no indication that this has been done.

Further doubt is raised by the present elasticity results. The harmonic and anharmonic axial

compressibilities, kc = 0:0271 GPa�1 and Kc = 0:0119 GPa�2, imply that the effective compress-

ibility at a pressure p GPa is, by (5.18), k�c = kc� 0:5(Kc� k2
c )p = 0:0271� 0:0056pGPa�1. This

goes to zero at a pressure of 4.84 GPa. However, if the anharmonic part is neglected and a path is

chosen that (i) changes a and c according to ka and kc and (ii) changes uc in the same way as c,

then a modest pressure of just over 14 GPa leads to a structure very close to that of diamond. The

process is illustrated in Table 9.8 below.

Table 9.8: Hydrostatic compression path.

p=GPa a=Å c=Å Vc=Å3 u R=Å r=Å �=Æ

0 2.460 10.048 17.55 0.167 3.350 1.420 90.0

2 2.457 9.503 16.56 0.163 3.095 1.420 92.9

4 2.454 8.958 15.57 0.159 2.841 1.424 95.8

6 2.450 8.413 14.58 0.154 2.587 1.431 98.7

8 2.447 7.868 13.60 0.148 2.333 1.442 101.6

10 2.444 7.323 12.63 0.142 2.079 1.457 104.4

12 2.441 6.778 11.66 0.135 1.824 1.475 107.2

14 2.438 6.233 10.69 0.126 1.570 1.496 109.8

14.2 2.437 6.178 10.60 0.125 1.545 1.498 110.1

The axial bond has reached its ideal value 1.545 Å but the other bonds are still slightly short.
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Some discrepancy will always be present since a is forced to shorten in a hydrostatic compression.

It is no coincidence that this pressure is close to the value at which hG undergoes a transformation

to hD.

It may be that this speculative discussion is of academic interest only. In a molecular dynamics

simulation of the conversion by Scandolo et al. [13] it was found that hG was converted into both

cD and hD via an intermediate orthorhombic phase of graphite. This process resulted in different

orientation relationships between the initial and final crystal structures from the one implicit in the

discussions above. Although they did not explicitly study rG it seems likely that rG will behave in

a similar way.

If there is a technological interest in actually achieving the rG-to-cD conversion then a uniaxial

stress route might be worth investigation. A compressive stress �3 changes the lattice parameters

according to
∆a
a0

= S13�3 + 1
2S133�

2
3 (9.11)

and
∆c
c0

= S33�3 + 1
2S333�

2
3 (9.12)

Since S13 < 0 and S33 > 0 a compressive stress (which is negative) causes a to increase and c to

decrease simultaneously.

9.7 Summary

The Chapter began with an exploration of the precise nature of rhombohedral graphite, focusing

on the initial structural studies of natural graphite and work on defects to be seen therein. It

was concluded that the rhombohedral form was not a true allotrope but a mosaic distribution of

microcrystalline defect regions embedded in the hG host. These regions could be sufficiently large,

however, to merit their study as if they were truly allotropic. The issue of whether the equilibrium

state consisted of planar or buckled layers was resolved in favour of planar layers.

The elasticity in terms of the modified Keating model was then calculated for the planar structure.

The transfer of Keating parameters from hG to rG showed that the two allotropes were elastically

extremely similar. The possession of a set of elastic constants for this as-yet-uncharacterized

material provided an opportunity to explore the rG-to-cD transformation in greater detail. There

were no surprises, but there was a hint that changes in the nature of the bonding were indicated in

the behaviour of the optic-mode frequencies.
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Chapter 10

Bond-order potentials

The Keating model is not a potential—it is a way of storing second and third derivatives of the energy

with respect to significant structural parameters, the scalar products of interatomic vectors. There

are no preconceptions about the forms of interactions between atoms and crystal equilibrium is not

addressed. Every elastic and inner elastic constant is a linear combination of some of the Keating

parameters and if the (possibly) many of the former can be well reproduced by the (probably) few of

the latter then it is likely that all significant variables have indeed been considered. This is certainly

the case for cD and hG as I have shown in Chapters 6 and 7. In a manner of speaking the Keating

parameters are just a distilled set of elastic constants and are not greatly illuminating.

Illumination comes from understanding the nature of the interactions in the crystal. Early work

focused on the �(r) / 1=rn potentials which could describe the Coulomb interaction (n = 1)

and the van der Waals interaction (n = 6) rigorously, and the short-range repulsive interaction

(n = 9 to 12) effectively. Later work introduced exponential terms �(r) / exp(��r) on the ground

that these mimicked the spatial variation of electron wavefunctions. In reality all central potentials

imply the satisfaction of Cauchy relations: equality between their contributions to different partial

elastic constants at each order such as C0
12 = C0

66 and C0
123 = C0

144 = C0
456. As satisfaction of

Cauchy relations was never found it could be concluded that interatomic distances alone could not

form a complete set of significant variables and/or other contributions to the energy of the crystal

had been ignored. Additional variables might be volume or angle and neglected contributions

vibrational energy and electron energy.

The main factor that defeated these early attempts to define a simple analytical potential was the

nature of bonding. Non-metals, with their networks of localized bonds, are the prime candidates

for angular dependencies in energy. But an analytic form, as general as the Coulomb potential for

ionic bonding, is unlikely to exist.

The introduction of the pseudopotential concept and the development of high-speed computing

have led to ever-increasing sophistication in the treatment of the energy and bandstructure of solids.

This might be thought to have made the computation of elastic constants a routine accompaniment

and rendered unimportant the need for interatomic potentials. This is not the case for at least
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two reasons. Firstly, the full extraction of the multitude of elastic and inner elastic constants for a

crystal of relative simplicity, such as hG, still requires the computation of the energy at an enormous

number of strained configurations. Thus if a few minutes suffice for one computation of energy the

full elasticity may require several weeks! Secondly, large-scale molecular-dynamical simulations

require computationally-rapid updating of system energies and forces. Simple algorithms based

on effective short-range potentials are essential here. Such are the empirical bond-order potentials

developed by Abell [1], Tersoff [16, 17, 18, 19] and Brenner [2, 3], together with a refinement

due to Burgos, Halac and Bonadeo, [4]. They have the form of a short-range pair potential in

which the attractive term has a factor that depends on local coordination and bond angles. Their

parametrization has been carried out by considering the energies of atomic clusters, of defects, of

bonds in hydrocarbon molecules, of cohesion of crystalline phases, of optical phonons etc. With

relatively few parameters to fit it is not surprising that the derived potentials are only ‘good in

parts’. The Tersoff/Brenner formulation involves angular dependencies that reflect only � bonding

and behaves poorly when applied in other situations, [11]. This drawback appears to have been

overcome in the last two years through the development, by Pettifor and Oleinik, of an analytic

bond-order potential that includes � bonding explicitly, [10, 11, 12].

As the empirical bond-order approach has similarities to the Keating approach I have shown in

detail in Appendix C how they are related. Incidentally I have exposed certain general dependencies

connecting the various Keating parameters at each order. In the remainder of this Chapter I report

on the bond-order work with some changes in notation to prevent confusion with notation used

earlier in the thesis: thus my interatomic vector ~r i and its magnitude ri, which relate atomic site i

to an implied reference site s, is used where the bond-order literature has ~rij and rij . Similarly Bi

replaces Bij as the bond order function. Various switching functions that define cut-off distances,

and which are irrelevant in a crystalline environment, have been omitted.

10.1 Empirical bond-order potentials

Abell’s stated motivation was the goal of developing a general description of bonding that would

(i) isolate key features that determine whether a species prefers molecular or metallic bonding and

(ii) would explain outstanding differences, as well as similarities, between molecular and metallic

bonding, [1]. He was persuaded that such similarities existed from the observation of an apparently

universal relation between binding energy and interatomic spacing discovered by Ferrante, Smith

and Rose [6, 14]. His basic method was LCAO parametrization in the context of the chemical

pseudopotential. His central result for the binding energy is

Es =
ZX
i=1

Ei (10.1)
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where Es is the binding energy of the atom at site s, Z is its atomic coordination and

Ei =
1
2

�
VR(ri)�BiVA(ri)

�
(10.2)

is the pair potential relating atoms at s and i. The repulsive and attractive parts of the potential are

given by

VR(ri) = A exp(��Rri) =
De

S � 1
exp

�
��p2� S(ri � re)

�
(10.3)

and

VA(ri) = B exp(��Ari) =
SDe

S � 1
exp

�
��
p

2=S(ri � re)
�
: (10.4)

ri is the magnitude of the vector from site s to site i and A, �R, B and �A are characteristic

constants. The right-hand members of these equations contain alternative constants designed to

expose the connection between the potential and the Morse potential that underlies the universal

relationship referred to above. re and De are the bondlength and binding energy of the C2 dimer

and S = �R=�A. For the original Morse potential S = 2 and a critical value of the ratio, Sc � 2:7,

appears to discriminate between close-packed structures for which S > Sc, and more open ones for

which S < Sc. Eq. (10.2) is not a central potential because of Bi, the first-shell bond order in the

nearest-neighbour approximation. Bi is related to the distributionof valence electrons over bonding

and anti-bonding states. It is unaffected by uniform expansion but is ‘quite sensitive’ to structural

changes at constant volume, thereby making Eq. (10.2) non-central. Bi is crucial to the elasticity

of carbon: it is the source of the bond-bending terms in the Keating formalism. The remainder of

Abell’s paper is concerned only with the energetics of metals and molecules, Bi plays no further

part. Elemental carbon is referred to only once, when Abell reports Lannoo’s calculation [9] of

S = 1:4.

It is in Tersoff’s work on silicon that the bond-order term Bi is given functional form. In [16]

he asserts that all deviations from a simple pair potential are ascribed to the dependence of Bi

upon the local atomic environment. SpecificallyBi should be a monotonically decreasing function

of the number of bonds rj competing with ri (i.e. Z � 1 in a regular crystalline environment),

the strength of the competing bonds and the cosines of the angles between the competing bonds,

cos �isj . A trial representation of such a function is then presented which I shall not repeat here

as Tersoff changes his mind in [17] in which he proposes (though with n where I write l and with

1=2n where I have n)

Bi =
�

1 + (azi)
l
��n

(10.5)

where

zi =
ZX
j=1

0
g(�isj) exp

�
�3

3(ri � rj)3� (10.6)

with

g(�) = 1 + c2=d2 � c2=
�
d2 + (cos � � h)2�: (10.7)
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I have replaced his use of � by a to avoid possible confusion. In subsequent papers [18, 19] the

factor exp[�3
3(rij�rik)3] was omitted. Application of the potential to carbon was presented in [18].

The parameters were said to have been fitted by calculating ‘the energy and structure of numerous

polytypes of carbon, and the elastic properties, phonons, defect energies and migration barriers

in diamond and graphite’. ‘Graphite’ meant graphitic layers and ‘elastic properties and phonons’

referred only to diamond. In Tersoff’s opinion the elastic properties of graphite are ‘adequately

described’ even though he finds C11 at 12.1 Mbar too large by 14% and (C11 � C12)=2 at 7.0

Mbar too large by about 40%, reflecting ‘excessive bond-angle stiffness’. His arithmetic is faulty

somewhere, the latter error is 59% in fact, and the figures translate toC12 = �1:9 Mbar as opposed

to the +1:8 Mbar observed—hardly ‘adequate’. The parameters deduced are shown in Table 10.1.

Table 10.1: Empirical bond-order potential parameters. Parameters in parentheses have been

deduced from Eqs. 10.3 and 10.4.

Parameter Tersoff Brenner 1 Brenner 2 Burgos et al.

A (eV) 1393.6 (476.45) (518.37) (625.67)

�R (Å�1) 3.4879 (2.4094) (2.4094) (2.9090)

B (eV) 346.74 (307.26) (328.02) (225.14)

�A (Å�1) 2.2119 (1.8677) (1.8677) (1.8446)

De (eV) (5.1645) 6.325 6.325 6.362

re (Å) (1.4472) 1.28 1.315 1.3883

� (Å�1) (1.964) 1.5 1.5 1.638

S (1.577) 1.29 1.29 1.577

a 1.5724�10�7 0.0113 0.0113 1.5724�10�7

l 0.72751 1.0 1.0 0.891

n 0.687276 0.8047 0.8047 0.687276

c 38049.0 19.0 19.0 38049.0

d 4.3484 2.5 2.5 4.745

h -0.57058 -1.0 -1.0 -0.7171

m (Å�1) 0.0 2.25 0.0 0.0

Brenner, independently, applied the Tersoff formalism to carbon [2, 3]. His bond-order term

takes the form

Bi =
�

1 +
ZX
j=1

0
azj

��n
(10.8)

where

zj = g(�isj ) exp
�
m(ri � rj)� (10.9)
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with

g(�) = 1 + c2=d2 � c2=
�
d2 + (cos � � h)2�: (10.10)

The parameter a is missing from these equations in [2] although its value is reported. It appears,

however, in the later paper, [3] where it multiplies the right-hand side of g(�). My placing it inBi is

equivalent, and facilitates comparison with the Tersoff form. As there are two differences between

the two accounts, re goes from 1.28 Å to 1.315 Å and m goes from 2.25 to 0, I have listed sets 1

and 2 for Brenner.

Brenner felt that it was not obvious that the formalism was capable of describing the strong

�-bonding that stabilizes the graphite planes whilst maintaining an almost equally energetically-

stable diamond phase. To achieve these ends at the same time he used the following data: the

binding energies and equilibrium bond distances of the C2 molecule, the graphite layer and the

diamond phase, the binding energies of hypothetical simple cubic and face-centred cubic phases

and the energy barrier calculated for the rG-to-cD transition by Fahy et al. [5]. The parameters

thereby deduced give rise to the entries for set 1 in the Table above. For set 2 the value of the dimer

bondlength appears to have been relaxed.

Burgos, Halac and Bonadeo, [4], were not satisfied with the quality of fit achieved by either

Tersoff or Brenner and set out to refine the computation. They focused on dynamic properties

as these are particularly poorly predicted. One specific observation on the calculated ratio of the

frequencies of out-of-plane modes at the Γ and M points of the Brillouin zone showed that the gross

failure to agree with experiment was due to the form of the potential and would only be eliminated

by altering Eq. (10.2). They decided to add a new term that would not disturb the static properties

and chose a torsional one. Stripped of switching functions and couched in different notation this

was

V tor
i = �

X
(j;k)6 =i

Tijk (10.11)

where � = �0:208 eV and

Tijk =
(~r j � ~r i) � (~r i � ~r k)

rj(ri)2rk
: (10.12)

Physically ~r k represents an interatomic vector from atom i to one of its nearest neighbours other

than the reference atom, geometrically it is the negative of a vector from the reference atom to one

of its nearest neighbours other than atom i. Table 2 in [4] shows the static and dynamical predictions

of Tersoff, Brenner and Burgos et al. and compares them with experiment. Root-mean-square

deviations for Tersoff and Brenner are 30.1% and 28.8% respectively. The inclusion of the torsional

term and the refinement of De, re, �, l, d and h produced a seemingly remarkable improvement

with the deviation brought down to 9.7%. This figure is heavily weighted by the predictions of

various frequencies and does not reflect improvement in predicting the elastic constants: in that

respect Tersoff’s work is far superior, as evident in Table 10.2 below. A noteworthy outcome of

this fitting was the increase in the binding energies of diamond and graphite. Care was taken to
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maintain the difference between them small but their magnitudes increased to about 8.56 eV. The

authors note that this is in keeping with recent ab initio calculations, [8, 13, 20].

There is no unique connection between bond-order potential parameters and Keating parameters.

Two approaches will be described.

10.1.1 Matched elastic constant predictions

In this approach subsets of the spectrum of elastic and inner elastic constants obtained from the

bond-order potential by the generalized homogeneous deformation program are fitted by least

squares, or even exactly, to the appropriate Keating expressions. Firstly the program was run with

the experimental values of lattice parameters and nearest-neighbour separations. Sizable positive

values ofC1 showed that the energy was not minimized at the experimental value of r0 and that the

crystal was under pressure to reduce the value. Self-consistent recalculation at the implied values

of r0 resulted in C1 close to zero and a marginal improvement in predicted values. The results for

the first- and second-order constants are shown in Table 10.2 (columns headed BHB 1 and BHB 2

refer to calculations without and with the torsional term).

Table 10.2: SOECs of cD predicted by bond-order potentials and equivalent Keating parameters.

Units: GPa for C, GPa Å�1 for D and � etc., and GPa Å�2 for E. Also shown are the Raman

frequency (in THz), the bulk modulus and the Kleinman internal strain parameter.

Parameter Tersoff Brenner 1 Brenner 2 BHB 1 BHB 2 This work

C1 0.5 17.2 19.1 12.6 12.6 0.0

r0 1.5440 1.5055 1.5406 1.5248 1.5248 1.5446

C1 -0.01 -0.03 -0.01 0.02 0.02 0.00

C11 1074.2 363.2 350.0 763.7 763.7 1072.3

C12 101.7 199.4 197.1 140.3 140.3 130.7

C0
44 671.2 392.2 351.9 554.8 535.6 577.8

C44 641.6 320.0 277.2 531.0 483.2 574.0

B 425.9 254.0 248.1 348.1 348.1 445.0

E11 766.7 287.7 333.5 624.8 525.2 561.9

fR 47.0 27.7 30.9 41.6 38.2 40.2

�K 0.220 0.576 0.532 0.220 0.360 0.093

� 1.282 0.672 0.718 1.018 1.021 0.990

� 0.851 0.147 0.134 0.552 0.552 0.824

� -0.019 0.018 0.082 0.117 -0.091 -0.115

� -0.038 0.076 0.091 0.088 -0.051 0.021

The self-consistent constants are used to determine a set of equivalent Keating parameters by
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inverting Eq. (6.44). There are various ways of doing this and I have chosen to take C11, C12, D14

and E11. The results have been added to Table 10.2. Qualitatively they appear in closer agreement

than do the data from which they are derived. At the third order the situation is much more chaotic

and the Keating parameters vary wildly depending on the elastic constant set chosen for inversion.

Parameters based on an exact fit to the first five TOECs and D114 are given in Table 10.3. The

Tersoff  is -0.064 for this fit but becomes -0.183 if just the five Keating parameters excluding �

are fitted by least squares. If C0
144 is replaced by E111 then the least squares procedure leads to a 

of -2.761!

Table 10.3: TOECs of cD predicted by bond-order potentials and equivalent Keating parameters.

Units: GPa for C, GPa Å�1 for D, GPa Å�2 for E and GPa Å�3 for  etc.

Parameter Tersoff Brenner 1 Brenner 2 BHB 1 BHB 2 This work

C111 -6526. -1612. -1558. -4059. -4059. -6475.

C112 -1653. -765. -761. -1170. -1170. -1947.

C123 685. -496. -506. 189. 189. 982.

C0
144 -1230. -712. -757. -883. -870. 91.

C0
155 -2741. -1264. -1135. -1989. -1957. -3079.

C0
456 -1763. -962. -867. -1261. -1251. -355.

D114 -700. -349. -502. -572. -689. -259.

E111 -6281. -1342. -1487. -3884. -3419. -2705.

 -0.064 -0.424 -0.398 -0.338 -0.445 -0.879

Æ -0.018 0.031 -0.027 -0.016 -0.016 0.122

� -0.671 -0.126 -0.110 -0.413 -0.413 -0.623

� 0.548 0.131 0.117 0.273 0.212 -0.152

� -0.482 0.122 0.029 -0.169 -0.180 0.316

� -0.018 0.043 0.024 0.014 0.009 0.000

10.1.2 Matched energy derivatives

In this approach an analytic link is established between derivatives of the bond-order potential and

the first-, second- and third-order Keating energy expressions. AppendixC contains the derivation

of these relations together with a demonstration of the arbitrariness of the Keating parameters. The

results are presented in Table 10.4. Brenner 1 is not considered because of its more complex form

of Bi. A single result suffices for the two BHB versions.
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Table 10.4: Keating parameters of cD from derivatives of the bond-order potential. Units: GPa Å

for � and �, GPa Å�1 for � etc., and GPa Å�3 for  etc.

Parameter Tersoff Brenner 2 BHB 1 This work

� 0.974 0.579 1.013 0.000

� 0.974 0.578 1.012 0.000

� 0.887 0.527 0.644 0.990

� 0.579 0.111 0.404 0.824

� -0.451 -0.267 -0.439 -0.115

� -0.163 -0.076 -0.141 0.021

 -0.895 -0.409 -0.603 -0.879

Æ -0.363 -0.036 -0.146 0.122

� -0.647 -0.100 -0.380 -0.623

� 0.214 0.121 0.190 -0.152

� -0.103 0.050 -0.000 0.316

� -0.057 0.029 0.050 0.000

Table 10.5: Keating parameters of graphene from derivatives of the bond-order potential. Units:

GPa Å for � and �, GPa Å�1 for � etc., and GPa Å�3 for  etc.

Parameter Tersoff Brenner 2 BHB 1 This work

� 1.099 0.788 1.216 0.000

� 1.099 0.786 1.216 0.000

� 1.924 0.892 1.283 1.662

� 2.542 0.298 1.100 1.501

� 0.321 -0.312 -0.209 0.188

� -0.162 -0.147 -0.184 0.334

 -2.173 -0.776 -1.283 -4.289

Æ -4.342 -0.080 -0.458 -6.004

� -5.197 -0.309 -1.253 -2.279

� -1.115 0.105 -0.145 0.000

� -2.886 -0.062 -0.646 0.000

� -0.237 0.045 -0.012 0.000
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10.2 Analytic bond-order potentials

Analytic bond-order potentials (BOPs) have been developed by Pettifor and Oleinik [10, 11] by

approximating the many-atom expansion for the bond order within the two-centre, orthogonal tight-

binding model. These go beyond Tersoff-Brenner in that (i) they address both � and � bond orders

and (ii) they consider self-returning hopping paths of length 4 as well as length 2 in computing their

potential functions. In the context of hydrocarbon systems the BOPs handle correctly the breaking

of � bonds on radical formation.

Unfortunately the approximation involved in deriving equation (80) in [11] for the� bond order

proved to lead to unphysical behaviour in molecular dynamics simulations. Properly bounded

BOPs were obtained in [12] and this refined approach resulted in the quantification of single,

double, triple and conjugate bonds in carbon systems to within 1% of the accurate tight-binding

calculations for � bonds, and to within 15% for � bonds. A problem has now arisen in connection

with the binding energy. The data necessary for its computation are contained in Horsfield et

al. [7]. I have confirmed all the entries for cD and graphene in Table V of [10] except U� , which I

find is �24.775 rather than �24.749 eV/bond and which makes the binding energy �8.797 rather

than �8.759 eV/atom. Thus graphene appears more stable by some 291 meV/atom although a

figure near zero is expected on the grounds that the binding energy of hG exceeds that of cD by

25 meV/atom whilst the interplanar binding energy of hG is also about 25 meV/atom [15]. In the

revised work the bond potentials are unaltered but the bond orders are different and the two binding

energies become -7.631 and -6.997 eV/atom, respectively. These now make cD more stable than

graphene by an enormous 634 meV/atom. In the light of this discrepancy I do not feel it worth

pursuing the numerical implications. The ingredients of the formalism however remain of interest

and are presented below.

Equations (9) and (12) for ΘBOP
ij;� and ΘBOP

ij;� in [12] are the general expressions for the � and �

bond order, equivalent to two B functions. They and their associated equations are simplified in

treating purely elemental carbon. The notation used below has been changed to accommodate my

bookkeeping by atoms rather than bonds. The � bond order is

B�
i =

1s
1 +

Æ̂2
i

+ 2Φi

2�h
1 +
p

Φi

4�
=Φi

2�
�Φi

2�

i2

(10.13)

where Æ̂i = [2pp�=(1 + p�)]Æi=V
�
A (~r i0) represents a normalized sp atomic energy level separation,

with Æ = �p � �s = 6:7 eV, p� = 1:1 is the ratio of two bond integrals (pp�=jss�j) and

Φi
2� =

ZX
j=1

0� p�
1 + p�

�2�
cos �isj +

1
p�

�2

: (10.14)

The 4-hop term begins in the same way as the 2-hop term, but also includes summations over cubic
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and quartic factors which are not shown here:

Φi
4� =

ZX
j=1

0� p�
1 + p�

�2�
cos �isj +

1
p�

�2

+
ZX
j=1

0 ZX
k=1

00 � � � (10.15)

The � bond order is

B�
i =

1r
1 + Φi

2� +
q

Φi
4�

+
1r

1 + Φi
2� �

q
Φi

4�

; (10.16)

where

Φi
2� =

ZX
j=1

0
8<
:(1� cos2 �isj )

�
p�

1 + p�

� 
V �
A (~r j0 )

V �
A (~r i0)

!2

+
�

1 + cos2 �isj

�9=
; (10.17)

and

Φi
4� =

ZX
j=1

0 ZX
k=1

00
(1� cos2 �isj )(1� cos2 �isk)�̂2

j �̂
2
k cos 2(�j � �k); (10.18)

where

�̂2
j =

�
p�

1 + p�

� 
V �
A (~r j0 )

V �
A (~r i0)

!2

� 1 (10.19)

and the �j and �k are dihedral angles.

As the � and � bond terms are additive the Keating parameters implied by the BOP can be

obtained from the expressions in Appendix C by including terms for each bond type.
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Chapter 11

In conclusion

My twofold task has been: firstly, to display the development of inner elasticity in general terms,

with a complete exposure of the underlying symmetry implications and a detailed analysis not only

of how sublattice displacements contribute to the macroscopic elastic constants but also of how they

determine the frequencies and eigenvectors of the optic modes at the zone centre; and secondly, to

illustrate that development by detailed treatment of the elasticity and zone-centre optic modes of

four carbon allotropes.

I have carried out the first task much as I did originally. I have however sharpened-up some

of the argument and focused on the relation between sublattice tensors and inner elastic constants

with the intention of showing the inherent, though unimportant, arbitrariness of the latter. In the

connection with lattice dynamics at the zone centre it is satisfying to have derived a secular equation

for the optic modes alone, a development I have not seen elsewhere.

It was part-time employment on the study of hG that triggered the parallel study of the other

three allotropes and ultimately the writing of this thesis. The four allotropes made an interesting

group: the two with two atoms in the basis have the highest and the lowest symmetries, the

two with four atoms in the basis have the same intermediate macroscopic symmetry but different

microscopic symmetry; a different pairing contrasts the sp3-bonded diamonds with the sp2-bonded-

layer structures of the graphites and the remaining pairing comprises two stable materials on the

one hand with a pair that consists of a crystal rarely seen outside the high-pressure cell and a crystal

that has never been isolated on the other.

I felt that a common approach was the best way to handle the elasticity and that the Keating

model would be a good vehicle. The main, and initially only, problem was that the model had

never been applied rigorously to material in any structures other than cubic diamond or zincblende.

Formal extension of the model to hG revealed a large number of parameters to be found and a large

number of elastic constants to be fitted. Mercifully the elasticity within the graphene layers proved

to require less parameters than cD and the weak bonding between the layers required only three

bond-stretching and no bond-bending parameters to deal with the anharmonicity. The exciting

reward of this fitting was the revelation of soft optic modes at the zone centre and the prediction of

a pressure-induced phase-transformation at about the correct pressure.
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The minor problem, that appeared only after I began applying the method to hD, was simply

that Keating’s original formulation of strain contained a divisor (half the lattice parameter a) that

was dependent on the choice of unit cell. By omitting this divisor, effectively absorbing it into

the Keating parameters, a modified set of Keating parameters is obtained for cD which can be

transferred successfully to hD. In a similar way Keating parameters derived for hG were transferred

to rG.

The validity of treating the elasticity of the poorly-characterized hD by transfer of parameters

was supported by good accounts of the Raman frequencies and the bulk modulus. A small

problem was identified: the reported constancy of a non-ideal axial ratio to high pressures is

inconsistent with the anisotropy of linear compressibility inherent in a crystal with hexagonal

symmetry. Symmetry-related problems also arise with the hypothetical structure of rG: there is

no mirror plane perpendicular to the axis, as there is in hG, to guarantee the planar character of

the graphene layer. The lower symmetry of rG is also associated with an internal strain tensor

having four independent components as opposed to hG’s one. The strong axial components are

implicitly reponsible for a negative anharmonic compressibility that may be the single reason for

the non-existence of the pure crystalline form.

The formal part of this thesis can be considerably extended by passing from the mechanical to the

thermodynamic régime and investigating the effects of electric and/or magnetic fields on sublattice

displacements, generalizing the internal strain concept and anatomizing the related tensor properties

in a manner analogous to that used for the elastic constants. Ferroelectricity in particular, with its

phase transitions, should be rewarding.

The lattice dynamical aspects have been restricted to the zone centre, an adequate treatment

for the present purpose, but could be extended usefully and with little difficulty to cover the entire

Brillouin zone.

The successful use of the modified Keating model with hG suggests that the model might well

be suited to studying the elasticity and the vibrational properties of nanotubes and fullerenes.

The development of the Keating model can be used in conjunction with specific interatomic

potentials if that appears appropriate—to handle the Coulomb interaction in an ionic solid, for

example. In such cases a first-order Keating energy has to be introduced to balance the first-order

part of the additional potential and render zero the first-order elastic constants that arise.

Further possible synoptic studies of cases where a particular structural motif underlies a variety

of crystal structures spring to mind: SiO2 units in quartzes, tridymites, cristobalites, coesite and

stishovite; H2O in various ices (in IceI the O atoms occupy a quasi-hD configuration) and BN in its

zincblende, wurtzite and graphitic versions. Rationalization of data via the modified Keating model

can serve as a useful preliminary in the derivation of a more sophisticated transferable interatomic

potential.



Appendix A

Generalised homogeneous deformation

The elastic constants of finite strain theory can only be computed directly when the contributions

to the energy of the system are simple analytical functions of the interatomic separations or of

the unit cell volume. The favoured alternative is to use infinitesimal strain theory with suitably

tailored homogeneous deformations. In the traditional approach two such ad hoc deformations

were sufficient to determine the two second-order elastic shear constants of FCC metals, such as

copper [1] and aluminum [2], in which there is no inner elasticity. In the latter work the deformation

was not defined in terms of a parameter that tended to zero in the unstrained state and in neither

case was the volume conserved to better than first order. If the method is to be applied to higher-

order elastic constants and to hexagonal and rhombohedral material, where there are at least five

second-order, ten third-order and numerous inner elastic constants, a rigorous formal procedure is

necessary.

A.1 Homogeneous deformation

Homogeneous deformations are represented by deformation gradient matrices and may operate on

the crystal structure with or without sublattice displacements. They may be defined in a generalised

way in terms of a uniform volume-changing part and a shape-changing part. The latter is represented

by

J(x) = S(x)[I + xP ] (A.1)

where P is a 3 � 3 matrix of small integers or zeroes that determines a particular deformation of

shape, I is the unit 3� 3 matrix and x is a measure of the strain. S(x) is a scaling function used

to ensure that the determinant of J(x) is unity, so that the volume of the crystal is undisturbed by

the shape-changing part. It is given in terms of the trace and determinant of P (tp and dp) and the

trace of the matrix of the cofactors of the elements of P (cp) by

[S(x)]�3 = 1 + tpx + cpx
2 + dpx

3: (A.2)
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The uniform volume-changing part is a factor (1 + v)1=3, where v is the relative change of volume

of the unit cell under strain, giving

H(x; v) = (1 + v)1=3J(x) (A.3)

for the net deformation gradient matrix.

The displacement of sublattice � is defined by a small vector ~u� such that the position vector

~r �0 of a particular atom on the sublattice in the unstrained crystal becomes ~r � after strain where

~r � = H(x; v)~r �0 + ~u�: (A.4)

An individual contribution to the free energy per unit initial volume in this approach may be

written

�0F (u�; v; x) = �0F (0; 0; 0) + c0
vv + c0

xx + d�i u
�
i

+ 1
2c

0
vvv

2 + c0
vxvx + 1

2c
0
xxx

2 + d�ivu
�
i v + d�ixu

�
i x + 1

2e
��
ij u

�
i u

�
j

+ 1
6c

0
vvvv

3 + 1
2c

0
vvxv

2x + 1
2c

0
vxxvx

2 + 1
6c

0
xxxx

3

+ 1
2d

�
ivvu

�
i v

2 + d�ivxu
�
i vx + 1

2d
�
ixxu

�
i x

2

+ 1
2e

��
ijvu

�
i u

�
j v + 1

2e
��
ijxu

�
i u

�
j x + 1

6f
��
ijk u�i u

�
j u


k ; (A.5)

for a specific choice of P . Summation over repeated subscripts i, j and k and over the superscripts

�, � and  is implied: the former run from 1 to 3 and the latter from 1 to 2 (cD and rG) or 1

to 4 (hD and hG). The coefficients labelled with vs and/or xs are linear combinations, e.g. d�ivx
is a combination of several of the d�iJK . Lower case symbols c, d, e and f have been used

for the different tensors to indicate their kinship with the upper case versions used in the finite

strain approach. Coefficients defined in the above way are called Fuchs constants following their

introduction in [1].

The Lagrangian strain is given by

2�(x; v) + I = H̃(x; v)H(x; v) (A.6)

where the tilde denotes matrix transposition. The rotationally-invariant measures of inner displace-

ment ~� � are defined from the relative displacements of atoms on two sublattices by

~� �(x; v) = H̃(x; v)(~u�+1� ~u�) (A.7)

or
~� �(x; v) = H̃(x; v)Λ��~u� (A.8)

where

Λ =

2
66666664

�1 1 � � � � � �
� �1 1 � � � � �
...

...
...

. . .
...

...

� � � � � � 1 �
� � � � � � �1 1

3
77777775
: (A.9)
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No generality is lost if P is taken to be symmetric and thus finally we have

2�(x; v) + I = (1 + v)2=3[S(x)]2[I + 2xP + x2P 2] (A.10)

and
~� �(x; v) = (1 + v)1=3S(x)(I + xP )Λ��~u�: (A.11)

The constants calculated directly from Eq. (A.5) are related to those appearing in Eq. (1.10) through

chain rule differentiation with the operators

@

@x
=

�
@�I
@x

�
@

@�I
@

@v
=

�
@�I
@v

�
@

@�I
(A.12)

@

@u�i
=

 
@��j
@u�i

!
@

@��j
= Hij(x; v)Λ̃�� @

@��j
:

Coefficients are evaluated at zero strain when differentiation is complete.

A.1.1 Fuchs constants in terms of Brugger constants

The completely general relationships between Fuchs and Brugger constants are given by the

expressions below in which summation over repeated subscripts is assumed. The convention

ÆI = 1 when I =1, 2 or 3 and is zero otherwise, is used. The coefficients ti are related to those in

Eq. (A.2) by t1 = �tp, t2 = 5t2p � 6cp and t3 = �(20t3p � 45tpcp + 27dp). P and Q each appear in

two guises: as 3� 3 matrices with elements Pij , Qij , and as 6� 1 matrices with elements PI , QI .

The latter relate to the former in the same way as �I relates to �ij .

Under volume strain alone:

3c0
v = ÆIC

0
I

9c0
vv = �ÆIC0

I + ÆIÆJC
0
IJ (A.13)

27c0
vvv = 4ÆIC

0
I � 3ÆIÆJC

0
IJ + ÆIÆJÆKC

0
IJK :

Under shape strain alone:

3c0
x = (t1ÆI + 3PI )C0

I

9c0
xx = (t2ÆI + 12t1PI + 9QI )C0

I + (t21ÆIÆJ + 3t1(ÆIPJ + ÆJPI ) + 9PIPJ )C0
IJ

54c0
xxx = 4(t3ÆI + 9t2PI + 27t1QI )C0

I + 3
�
2t1t2ÆIÆJ + 3(t2 + 4t21)(ÆIPJ + ÆJPI )

+72t1PIPJ + 9t1(ÆIQJ + ÆJQI ) + 27(PIQJ + PJQI )
�
C0
IJ

+2
�
t31ÆIÆJÆK + 3t21(ÆIÆJPK + ÆIÆKPJ + ÆJÆKPI )

+9t1(ÆIPJPK + ÆJPIPK + ÆKPIPJ ) + 27PIPJPK
�
C0
IJK :
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Under volume and shape strain together:

18c0
vx = 4(t1ÆI + 3PI )C0

I +
�
2t1ÆIÆJ + 3(ÆIPJ + ÆJPI )

�
C0
IJ

54c0
vvx = �4(t1ÆI + 3PI )C0

I + 3
�
2t1ÆIÆJ + 3(ÆIPJ + ÆJPI )

�
C0
IJ

+2
�
t1ÆIÆJ ÆK + (ÆIÆJPK + ÆIÆKPJ + ÆJÆKPI )

�
C0
IJK (A.14)

54c0
vxx = 4(t2ÆI + 12t1PI + 9QI )C0

I +
�
2(t2 + 4t21)ÆIÆJ + 36t1(ÆIPJ + ÆJPI )

+72PIPJ + 9(ÆIQJ + ÆJQI )
�
C0
IJ + 2

�
t21ÆIÆJÆK

+2t1(ÆIÆJPK + ÆIÆKPJ + ÆJÆKPI ) + 3(ÆIPJPK + ÆJPIPK + ÆKPIPJ )
�
C0
IJK :

Under sublattice displacement(s) alone:

d�p = Λ̃��D�
p

e��pq = Λ̃��Λ̃��E��
pq (A.15)

f��pqr = Λ̃��Λ̃��Λ̃�F���
pqr :

Under volume strain and sublattice displacement(s) together:

3d�pv = Λ̃��
�
D�
p + ÆJD

�
pJ

�
9d�pvv = Λ̃��

��2D�
p + ÆJD

�
pJ + ÆJÆKD

�
pJK

�
(A.16)

3e��pqv = Λ̃��Λ̃��
�
2E��

pq + ÆKE
��
pqK

�
:

Under shape strain and sublattice displacement(s) together:

3d�px = Λ̃��
�
t1D

�
p + 3PipD

�
i + (t1ÆJ + 3PJ )D�

pJ

�
9d�pxx = Λ̃��

�
(t2 � t21)D�

p + 6t1PipD
�
i +
�
(t2 + 2t21)ÆJ + 18t1PJ + 9QJ

�
D�
pJ (A.17)

+6Pip(t1ÆJ + 3PJ )D�
iJ + (t21ÆJÆK + 3t1(ÆJPK + ÆKPJ ) + 9PJPK)D�

pJK

�
3e��pqx = Λ̃��Λ̃��

�
(2t1E

��
pq + 3PjqE

��
pj + 3PipE

��
iq ) + (t1ÆK + 3PK)E��

pqK

�
:

Under volume and shape strain, together with sublattice displacement:

18d�pvx = Λ̃��
�

2t1D
�
p + 6PipD

�
i + 2(4t1ÆJ + 9PJ )D�

pJ + 6ÆJPipD
�
iJ

+
�
2t1ÆJÆK + 3(ÆJPK + ÆKPJ )

�
D�
pJK

�
: (A.18)

A.2 Computational procedures

A sufficient variety of deformations must be selected to ensure that all the independent elastic and

inner elastic constants can be uniquely determined. Several dozen distinct ones are used. These

involve
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1. uniform volume change on its own,

2. a set of different shape-changing matrices P , detailed for the four carbon allotropes under

discussion in Table A.1, each to be used both with and without volume change,

3. one of the components of sublattice displacement u�i , or one of the pairs u�i ,u�j , or one of the

triplets u�i ,u�j ,uk , either alone or combined with the previous items.

Table A.1: Specification of the shape-changing matricesP and the corresponding scaling functions.

Pij = Pji in each case.

Number P11 P22 P33 P12 P13 P23 S(x)�3

c–Diamond

1 1 0 0 0 0 0 1 + x

2 0 0 0 1 1 1 1� 3x2 + 2x3

3 0 1 �1 1 1 0 1� 3x2 � x3

h–Graphite (1–5), h–Diamond (1–7) and r–Graphite (1–9)

1 0 0 3 0 0 0 1 + 3x

2 0 0 3 0 0 1 1 + 3x� x2

3 0 0 3 1 0 0 1 + 3x� x2 � 3x3

4 1 �1 0 0 0 0 1� x2

5 0 0 0 1 1 1 1� 3x2 + 2x3

6 0 0 3 0 0 �1 1 + 3x� x2

7 0 0 0 �1 1 1 1� 3x2 + 2x3

8 1 1 0 1 1 0 1 + 2x� x2 � x3

9 1 1 0 �1 1 0 1 + 2x� x2 � x3

Each deformation is used with a grid of seven equally spaced values of x, v and/or each u�i as

appropriate. The energy is determined at each point in the grid and partial energy derivatives

are calculated by numerical differentiation, using least-squares fitting of a polynomial (a cubic is

completely satisfactory) to seven equally spaced points.

The full set of relationships for each of the four structures featuring in this thesis are laid out

in the next four subsections. The Fuchs constants are most simply expressed in terms of linear

combinations of Brugger constants. Abbreviations for some of the latter are tabulated prior to the

full listings. The letters indicate combinations relating solely to volume change (bi), solely to shape

change (gi) or to volume and shape change (mi). Additional auxiliary combinations may make

their appearance in various third derivatives (ai). The multiplier Λ̃�� is defined in (A.9) above.
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A.2.1 c-Diamond

It is useful to abbreviate certain strings of Brugger constants to prevent some of the expressions

below from becoming unwieldy.

Table A.2: Linear combinations of Brugger constants for cubic crystals.

Abbreviation Brugger combination Abbreviation Brugger combination

b1 C1 (!) b3
1
9(C111 + 6C112 + 2C123)

g3 �C1 + 1
8 (C111� 3C112 + 2C123)

b2
1
3(C11 + 2C12) g4 �C1 + C456

g1 C1 + 1
2(C11 � C12) g5 C1 + 1

2(C144 � C155)

g2 C1 + C44 m1 �C1 + 1
2 (C111� C123)

m2 �C1 + (C144 + 2C155)

The expressions are further simplified because � = � = � = 1, leading to Λ̃�� = (�1)�, etc.

Under sublattice displacements alone

e
��
11 = (�1)�+�E11

f��123 = (�1)�+�+F123:

Under volume deformation

c0
v = b1

c0
vv = � 1

3b1 + b2

c0
vvv = 4

9b1 � b2 + b3

e
��
11v = (�1)�+� 1

3

�
2E11 + (E111 + 2E112)

�
:

Under shape deformation #1

c0
xx = 4

3g1

c0
xxx = � 4

3g1 + 16
9 g3

c0
vxx = � 4

9b1 + 4
3b2 + 16

9 g2 + 4
9m1

e��11x = (�1)�+� 2
3

�
2E11 + (E111 �E112)

�
:

Under shape deformation #2

c0
xx = 12g2

c0
xxx = 36g2 + 48g4

c0
vxx = �4b1 + 12b2 + 16g2 + 4m2
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Under shape deformation #3

c0
xx = 4g1 + 8g2

c0
xxx = �6g1 � 12g2 + 24g5

d�1x = (�1)�2D14

d�2xx = (�1)�2
�
D14 + 2(D114�D124)

�
d�3xx = (�1)�2

�
5D14 + 4D156

�
d�1vx = (�1)� 2

3

�
3D14 + (D114 + 2D124)

�
e��13x = (�1)�+�2

�
E11 + E126

�
e��22x = (�1)�+�2

�
2E11 + (E111 � E112)

�
:

A.2.2 h-Graphite, h-Diamond and r-Graphite

The linear combinations in the following Table are valid for all three allotropes due to their common

description in terms of a hexagonal cell.

Table A.3: Linear combinations of Brugger constants for hexagonal and rhombohedral crystals.

Two combinations that appear several times are further abbreviated: Ca � C111 � C166 � 2C266

and Cb � C113 � C366.

Abbreviation Brugger combination Abbreviation Brugger combination

b1
1
3(2C1 +C3) b3

1
27(8Ca + 12Cb + 6C133 + C333)

g1 C1 � C3 g5 C1 + 1
6(Ca � 3Cb + 3C133� C333)

g6 C1 + 1
2

�
C144 + C244� 2C344

�
b2

1
9(2C11 + 2C12 + 4C13 + C33) g7 �C1 + 1

4

�
C166 +C266 � 2C366

�
g2 C1 + 1

6

�
C11 +C12 � 4C13 + 2C33

�
g8 C166� C266

g3 C1 + 1
2

�
C11 � C12

�
g9 C1 + 1

2

�
C144� C244

�
g4 C1 + C44 m2 4Ca � 3C133 � C333

m1 C11 +C12 � C13 � C33 m3 �C1 + 1
3 (2Ca � 3Cb + C333)

a1 �C1 +
�
C11 + C12 + C13

�
m4 �C1 +

�
C144 + C244 +C344

�
a2 C1 + 1

2

�
C11 +C12 � 2C13

�
m5 �C1 +

�
C166 + C266 +C366

�

The relations below apply to all three allotropes. Where � and � signs occur they precede

terms deriving from 3m symmetry relevant to certain inner elastic constants of hD and to certain

partial and inner elastic constants in rG. Additionally, in the case of rG, the �; � and � superscripts

can all be dispensed with and the Λ̃ factors replaced by powers of �1 exactly as for cD.
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Under sublattice displacements alone

e
��
11 = Λ̃��Λ̃��E

��
11

e��33 = Λ̃��Λ̃��E��
33

f��112 = Λ̃��Λ̃��Λ̃�F���
112

f��113 = Λ̃��Λ̃��Λ̃�F���
113

f��333 = Λ̃��Λ̃��Λ̃�F���
333 :

Under volume deformation

c0
v = b1

c0
vv = � 1

3b1 + b2

c0
vvv = 4

9b1 � b2 + b3

e��11v = 1
3 Λ̃��Λ̃��

�
2E��

11 + (E��
111 + E��

112 + E��
113)
�

e��33v = 1
3 Λ̃��Λ̃��

�
2E��

33 + (2E��
331 + E��

333)
�
:

Under shape deformation #1

c0
x = �2g1

c0
xx = �2g1 + 12g2

c0
vx = � 4

3g1 � 2
3m1

c0
xxx = 4g1 + 36g2 � 72a2 � 48g5

c0
vxx = � 4

3g1 � 2
3m1 + 4a1 + 16g2 + 4m3

c0
vvx = 4

9g1 � 2
3m1 � 2

9m2

d�3x = 2Λ̃��
�
D�

3 � (D�
31 �D�

33)
�

d�3xx = 2Λ̃��
��D�

3 + (D�
31 + 5D�

33) + (D�
311 + D�

312� 4D�
313 + 2D�

333)
�

d�3vx = 2
3Λ̃��

�
D�

3 � (D�
31 � 4D�

33)� (D�
311 + D�

312 �D�
313 �D�

333)
�

e��11x = �Λ̃��Λ̃��
�
2E��

11 + (E��
111 +E��

112 � 2E��
113)
�

e��33x = 2Λ̃��Λ̃��
�
2E��

33 � (E��
331 �E��

333)
�
:

Under shape deformations #2 (upper signs) and #6 (lower signs)

c0
xxx = 8g1 + 66g2� 96a2 � 12g4 � 48g5 � 24g6 � C14 � 8C444

d�2xx = Λ̃��
��(D�

16 + 4D�
145) � (D�

3 + 3D�
15 + 2(D�

31 �D�
33) + 2(D�

115 + D�
125� 2D�

135)
�

d�3xx = 1
3Λ̃��

��4D�
3 + 12D�

15 + 13D�
31 + 35D�

33 + 6(D�
311 + D�

312� 4D�
313 + 2D�

333) + 12D�
344

�
d�2vx = � 1

3 Λ̃��
�
D�

3 + 6D�
15 + (2D�

31 +D�
33) + 2(D�

115 + D�
125 + D�

135)
�

e��11x = �Λ̃��Λ̃��
�
2E��

11 + (E��
111 +E��

112 � 2E��
113)� 2E��

114

�
e��23x = �Λ̃��Λ̃��

�
E��

11 + E��
33 + 2E��

135

�
e��32x = �Λ̃��Λ̃��

�
E��

11 + E��
33 + 2E��

315

�
:
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Under shape deformation #3

c0
xxx = �4g1 + 48g2 � 96a2 � 48g3 � 48g5� 48g7

d�1x = 2Λ̃��D�
16

d�3x = 2Λ̃��
�
D�

3 � (D�
31 �D�

33)
�

d�1xx = �2Λ̃��
�
6D�

16 + (D�
211�D�

222 � 4D�
136)
�

d�2xx = 2Λ̃��
�
2D�

16 � (D�
211 + D�

222)
�

d�3xx = 4
3Λ̃��

��D�
3 + 4(D�

31 + 2D�
33) + 3(D�

311� 2D�
313 + D�

333)
�

d�1vx = 1
3Λ̃��

�
6D�

16 + (D�
211 �D�

222 + 2D�
136)
�

d�3vx = 2
3Λ̃��

�
D�

3 � (D�
31 � 4D�

33)� (D�
311 +D�

312 �D�
313 �D�

333)
�

e��12x = Λ̃��Λ̃��
�
2E��

11 + (E��
111� E��

112)
�

e��13x = 2Λ̃��Λ̃��E��
136

e��31x = 2Λ̃��Λ̃��E��
316:

Under shape deformation #4

c0
xx = � 2

3g1 + 4g3

c0
xxx = �4g8

c0
vxx = � 4

9g1 + 16
3 g3 � 2

9m1 + 4
3a1 + 4

3m5

d�3xx = 2
3Λ̃��

�
D�

3 + (5D�
31 + D�

33) + 3(D�
311�D�

312)
�
:

Under shape deformations #5 (upper signs) and #7 (lower signs)

c0
xx = �4g1 + 4g3 + 8g4 � 8C14

c0
xxx = �(4g1 + 12g3 + 24g4 � 48g9) + 8(3C14 + 3C124� 2C444)

c0
vxx = � 8

3g1 + 16
3 g3 + 32

3 g4 � 4
3m1 + 4a1 + 8

3m4 + 4
3m5 � 8

3

�
4C14 + (C114 +C124 + C134)

�
d�1x = Λ̃��

�
D�

3 + 2D�
15 � 2D�

16

�
d�2x = Λ̃��(D�

3 + 2D�
15)

d�1xx = Λ̃��
�

2(D�
16 + 4D�

145)� (3D�
15 + 2

�
D�

115 �D�
125)
��

d�3xx = Λ̃��
��4(D�

16 + 2D�
314) + 2(D�

3 + 4D�
15 + 4D�

31 + 2D�
33 + D�

311 �D�
312 + 4D�

344)
�

d�1vx = 1
3Λ̃��

�
D�

3 + 6D�
15 + (2D�

31 + D�
33) + 2(D�

115 + D�
125 + D�

135)� (6D�
16 +D�

211 �D�
222 + 2D�

136)
�

d�2vx = 1
3Λ̃��

�
D�

3 + 6D�
15 + (2D�

31 + D�
33) + 2(D�

115 + D�
125 + D�

135)
�

e��13x = Λ̃��Λ̃��
�
E��

11 + E��
33 + 2E��

135� 2E��
136

�
:

Under shape deformations #8 (upper sign) and #9 (lower sign)

c0
xxx = 554

27 g1 � 14
3 g2 � 8g3 � 20g4 + 56

9 m1 + 16
9 g5 + 8g6 + 16g7 � 4

��7C14 + 2(C114 + C124� 2C134)
�
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A.2.3 Formal checks

There are numerous opportunities for errors to arise in a complex calculation. To test the accuracy

of the calculations that are reported in this thesis the extravagance of calculating all possible

components of the d, e and f tensors was indulged. This showed explicitly that all expected crystal

symmetry relations were satisfied. In this test there may be more than a million applications of the

energy algorithm and several hundred applications of the least-squares fitting subroutine. Where

components should have been zero small values arising from statistical noise were found though

in all cases these were a million or more times smaller than the smallest non-zero components of

the same tensor. The positive outcome of the test suggests that instances where two components

of a tensor differ by parts in a thousand or by a factor of the order of a thousand are physically

significant.

The accuracy of the subsequent conversion of the Fuchs constants into Brugger constants was

tested in two ways. In the first the energy algorithm was replaced by the summation of a simple pair

potential �(r) = 1=r6 over a cluster of more than 8000 atoms. The results of this were compared

with the direct calculation of Brugger constants for this potential using the modified Ewald method

described in [1]. In the second test the energy algorithm was replaced by (1.10) with the previously

computed values of all the elastic constants. Self-consistency was total.
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Appendix B

Tensor transformations for non-standard point-group settings

The conventional setting of axes simplifies the approach to macroscopic tensors by requiring only

one analysis for each of the crystal classes. This is exemplified by the Tables in Chapter 2. At the

microscopic level the symmetry elements common to sites on two distinct sublattices (such as are

involved in the forms of inner elastic constants D�, E�� and F��� ) may not be so conveniently

oriented and considerably more than 21 cases may be encountered. In the following two Tables

a number of variant settings have been set out and the transformations that convert the standard

settings into the variants have been listed. Tensor components in the variant setting are then given

by the transformation rule �
T��
ijk::

�
variant

= aipajqakr::
�
T��
pqr::

�
standard

: (B.1)

Table B.1: Transformation matrices to convert tensor components from the standard to variant

settings in trigonal and hexagonal point groups. a = 1=
p

2, b = 1=
p

6 and c = 1=
p

3.

Point Standard Variant Transformation matrix

group setting setting No. a11 a12 a13 a21 a22 a23 a31 a32 a33

3 001 111 1 a b c �a b c 0 �2b c

1̄1̄1 2 a b c a �b �c 0 2b �c
1̄11̄ 3 �a �b �c �a b c 0 2b �c
11̄1̄ 4 �a �b �c a �b �c 0 �2b c

3m 001 100 001 010 5 0 1 0 �1 0 0 0 0 1

32 110 11̄0 Matrix no. 1

11̄1̄ 110 Matrix no. 2

1̄11̄ 1̄1̄0 Matrix no. 3

1̄1̄1 1̄10 Matrix no. 4

6̄m2 001 100 010 001 01̄0 100 Matrix no. 5
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Table B.2: Transformation matrices to convert tensor components from the standard to variant

settings in monoclinic, orthorhombic and tetragonal point groups. a = 1=
p

2.

Point Standard Variant Transformation matrix

group setting setting No. a11 a12 a13 a21 a22 a23 a31 a32 a33

m 010 100 1 0 1 0 0 0 1 1 0 0

2 001 2 0 0 1 1 0 0 0 1 0

110 3 a a 0 �a a 0 0 0 1

11̄0 4 a �a 0 a a 0 0 0 1

101 5 �a a 0 0 0 1 a a 0

101̄ 6 a a 0 0 0 1 a �a 0

011 7 0 0 1 a a 0 �a a 0

011̄ 8 0 0 1 a �a 0 a a 0

mm2 100 010 001 11̄0 110 001 Matrix no. 3

222 101 101̄ 010 Matrix no. 6

011 011̄ 100 Matrix no. 8

001 100 010 Matrix no. 1

010 001 100 Matrix no. 2

4 001 010 Matrix no. 1

4̄ 100 Matrix no. 2

4mm 001 010 110 010 001 101 Matrix no. 1

4̄2m 100 010 011 Matrix no. 2

422 001 110 010 Matrix no. 3



Appendix C

Keating model parameters from bond-order potential parameters

C.1 The Keating model

The Keating energy expressions for cD given in (6.40) and (6.41) relate to the unit cell. If the

summation over the basis is omitted the net contributions per reference atom s are

E(2)
s =

1
2

ZX
i=1

�
�∆2

ii +
ZX
j=1

0�
�∆2

ij + �(∆ii + ∆jj)∆ij + �∆ii∆jj

��
(C.1)

and

E(3)
s =

1
2

ZX
i=1

�
∆3

ii +
ZX
j=1

0�
Æ∆3

ij + �(∆ii + ∆jj)∆
2
ij (C.2)

+�(∆2
ii + ∆2

jj)∆ij + �∆ii∆ij∆jj + �∆ii∆jj(∆ii + ∆jj)
��

where the primes on the summations indicate that j 6= i, the asterisk on � has been dropped and

the atomic coordination has been denoted by Z rather than 4 so that the derivations below have

greater generality. A first-order expression, requiring two further parameters � and �, should also

be considered to accommodate cases where the Keating model represents only a part of the total

energy:

E(1)
s =

1
2

ZX
i=1

�
�∆ii +

ZX
j=1

0
�∆ij

�
: (C.3)

C.1.1 Dependencies amongst the variables

When the atomic coordination is Z there are Z variables ∆ii and Z(Z � 1)=2 variables ∆ij . A

series of relations of dependence between them may be generated from the fact that the Z vectors

~r i satisfy
ZX
i=1

~r i = 0 (C.4)
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whence, on squaring,
ZX
i=1

�
~r i:~r i +

ZX
j=1

0
~r i:~r j

�
= 0: (C.5)

This relation is true whether the structure is homogeneously deformed or not, thus it follows that

ZX
i=1

�
∆ii +

ZX
j=1

0
∆ij

�
= 0; (C.6)

a linear dependence of the variables. Quadratic and cubic dependencies follow from squaring and

cubing this relationship. These procedures lead to nested summations over products of the variables

involving distinct dummy subscripts i; j; k and l in the quadratic case and over i; j; k; l;m and n in

the cubic. In the Keating model the products never involve more than two different subscripts so

the following expressions have been limited to precisely that situation.

ZX
i=1

�
∆2
ii +

ZX
j=1

0�
2∆2

ij + 2∆ij(∆ii + ∆jj) + ∆ii∆jj

��
= 0 (C.7)

and

ZX
i=1

�
∆3
ii +

ZX
j=1

0�
4∆3

ij + 6∆2
ij(∆ii + ∆jj ) (C.8)

+ 3∆ij(∆
2
ii + ∆2

jj) + 6∆ii∆ij∆jj + 3
2∆ii(∆ii + ∆jj)∆jj

��
= 0:

Each of the previous three relations may be multiplied by an arbitrary factor, �p=2 say, and added to

the equivalent pth-order energy expression without changing its value. All the Keating parameters

will change in the following way, however:
�! � + �1 �! � + �2  !  + �3

� ! � + �1 � ! � + 2�2 Æ ! Æ + 4�3

� ! � + 2�2 �! � + 6�3

� ! � + �2 � ! � + 3�3

� ! � + 6�3

� ! � + 3
2�3

Clearly there will be invariant combinations, just one at the first order � � �, but numerous

possibilities at the second and third order. Thus some elastic constants may be invariant, others

not. For example in cD

C11 =
a

2
(� + 3� � 2� + 3� )! a

2
(� + 3� � 2� + 3� + 6�2) (C.9)

whereas in the planar interaction in hG

C0
11 =

2ta2

3d
(� + � � 2� + � ) (C.10)

does not change.
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C.2 The bond-order potential

The bond-order potential associated with the reference atom s is

Es =
1
2

ZX
i=1

�
VR(ri)� VA(ri)Bi(cij)

�
; (C.11)

where the function Bi contains a summation over the Z � 1 other atoms j to which atom s is

coordinated and cij is the cosine of �isj , the angle between ~r i and ~r j. Both Tersoff and Brenner

included ri and rj explicitly in Bi in their original treatments. Subsequently they retained only

the implicit dependence via the cij [1, 5]. Expanded as a Taylor series the bond-order term can be

written

Bi(cij) = B0
i +

ZX
j=1

0
 
@Bi

@cij

!
0

∆cij +
1
2

ZX
j=1

0 ZX
k=1

0
 

@2Bi

@cij@cik

!
0

∆cij∆cik (C.12)

+
1
6

ZX
j=1

0 ZX
k=1

0 ZX
l=1

0
 

@3Bi

@cij@cik@cil

!
0

∆cij∆cik∆cil:

This equation shows thatBi(cij) may be considered as a sum of terms involving 2 bonds, 3 bonds, 4

bonds and so on. The Keating model, however, involves only 2-bond terms so it simplifies matters

to extract these separately, as in

Bi(cij) = B0
i +

ZX
j=1

0
( 

@Bi

@cij

!
0

∆cij +
1
2

 
@2Bi

@c2
ij

!
0

(∆cij)
2 +

1
6

 
@3Bi

@c3
ij

!
0

(∆cij)
3

)
; (C.13)

and to ignore the 3- and 4-bond parts,

B(3)
i (cij) =

ZX
j=1

0 ZX
k=1

00
( 

@2Bi

@cij@cik

!
0

∆cij∆cik (C.14)

+
1
2

 
@3Bi

@c2
ij@cik

!
0

(∆cij)
2∆cik +

1
2

 
@3Bi

@cij@c
2
ik

!
0

∆cij(∆cik)2

)

and

B(4)
i (cij ) =

ZX
j=1

0 ZX
k=1

00 ZX
l=1

000
 

@3Bi

@cij@cik@cil

!
0

∆cij∆cik∆cil; (C.15)

which are relevant only to more sophisticated treatments of bond order, the analytic approach in

[2, 3, 4] for example. The notation
P 00

means that k 6= i or j; and
P 000

means that l 6= i, j or k.

C.3 Equivalent Keating parameters

The relation of the Keating model to the bond-order potential is established by treating VR and

VA as functions of the scalar products Rii = ~r i � ~r i or Rjj = ~r j � ~r j , as appropriate, and Bi as a
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function of Rii, Rij and Rjj through the Z � 1 cosines given by

cij = Rij=
q
RiiRjj : (C.16)

Equation (C.11) can thus be written

Es =
1
2

ZX
i=1

�
VR(Rii)� VA(Rii)Bi(Rii; Rij; Rjj)

�
(C.17)

and its derivatives with respect to each of the Rpq identified with derivatives of the Keating

expressions with respect to ∆pq since @=@Rpq � (d∆pq=dRpq)@=@∆pq and d∆pq=dRpq = 1. Thus

at the first order:

� =

(�
dVR
dRii

�
�
�
dVA
dRii

�
Bi � VA(Rii)

�
@Bi

@Rii

�
�

ZX
k=1

0
VA(Rkk)

�
@Bk

@Rii

�)
0

(C.18)

and

� = �1
2

(
VA(Rii)

 
@Bi

@Rij

!
+ VA(Rjj)

 
@Bj

@Rij

!)
0

; (C.19)

where the single subscript zero indicates that all components are to be evaluated at the equilibrium

configuration.

Bracketted terms in (C.1) and (C.2) indicate pairs of routes to the Keating parameters �, �, �

and � and account for the pairs of definitions embedded in the following sets of relations.

At the second order

� =
1
2

( 
d2VR
dR2

ii

!
�
 
d2VA
dR2

ii

!
Bi � 2

�
dVA
dRii

��
@Bi

@Rii

�
(C.20)
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@R2
ii

!)
0

;

� = �1
4

(
VA(Rii)

 
@2Bi

@R2
ij

!
+ VA(Rjj)

 
@2Bj

@R2
ij

!)
0

;

� = �1
2
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� 
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@Rij

!
+ VA(Rii)

 
@2Bi

@Rii@Rij

!
+ VA(Rjj)

 
@2Bj

@Rii@Rij

!)
0

;
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2
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@Rij

!
+ VA(Rii)

 
@2Bi

@Rij@Rjj

!
+ VA(Rjj)

 
@2Bj

@Rij@Rjj

!)
0

and

� = �1
2
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dRii

� 
@Bi

@Rjj

!
+

 
dVA
dRjj

!�
@Bj

@Rii

�

+VA(Rii)

 
@2Bi

@Rii@Rjj

!
+ VA(Rjj)
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@Rii@Rjj

!
+

ZX
k=1

00
VA(Rkk)
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@Rii@Rjj

!)
0

:
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At the third order

 =
1
6

( 
d3VR
dR3

ii

!
�
 
d3VA
dR3

ii

!
Bi � 3

 
d2VA
dR2

ii

!�
@Bi

@Rii

�
(C.21)
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;
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;
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;
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;
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;
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;

� = �1
4

( 
d2VA
dR2

ii

! 
@Bi

@Rjj

!
+ 2

�
dVA
dRii

� 
@2Bi

@Rii@Rjj

!
+

 
dVA
dRjj

! 
@2Bj

@R2
ii

!
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0

and

� = �1
4
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! 
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!
+

�
dVA
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:

A sufficient condition for the pairs of relations for �, �, � and � to be equal is that Bi and Bj each

be symmetrical with respect to interchanges of Rii and Rjj . Equation(C.16) shows this to be the

case sinceBi and Bj are assumed to be functions of the cosines alone.
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Care is needed in evaluating the various partial derivatives in the above equations. Thus in

(C.18), the expression for �, the partial derivative that multiplies VA(Rii) involves a summation

over the Z � 1 values of j 6= i
�
@Bi

@Rii

�
=

ZX
j=1

0 � @cij
@Rii

� 
@Bi

@cij

!
(C.22)

whereas the partial derivative that multipliesVA(Rjj) inside the summation (i. e. for k = j) consists

of a single term �
@Bj

@Rii

�
=

�
@cij
@Rii

� 
@Bj

@cij

!
: (C.23)

In the expression for �, (C.19), both the partial derivatives are single products because specific

values of i and j are implicit. Similar considerations apply to all the second- and third-order

relations.
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