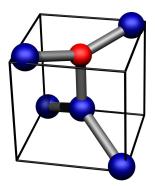
Simulations of Deep-Level Defects in Semiconductors


António Resende

School of Physics, University of Exeter, Exeter EX4 4QL, UK

April 19, 1999

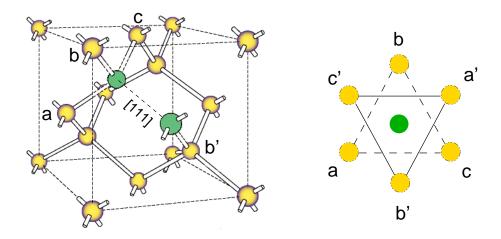
Abstract

Experimental and theoretical investigations into divacancies in Si are reviewed. The results of EPR, DLTS and theoretical modelling are described in detail.

ENDEASD

European Network on Defect Engineering of Advanced Semiconductor Devices

Talk overview


The lattice divacancy in silicon

- □ How is this native defect created?
- \Box What techniques are used to detect and study it?
- □ What are its structural and electrical properties?
- \Box Recent advances in theory

The lattice divacancy in silicon

The lattice divacancy (V_2) is one of the most important native defects in irradiated and/or implanted silicon...

It can be defined as two nearby monovacancies sharing a unpaired 'dangling-bond'.

- \Box V₂ defects are unavoidably created during any of the following processing steps:
 - ion-implantation, electron-beam lithography or plasma etching
- \Box Intentionally, by irradiation or implantation at roomtemperature of: electrons (e^-), protons (H^+), α -particles (He^{2+}), heavier ions, neutrons (n) or γ -rays
- □ Appears in both Czochralski (O-rich) and float-zone Si, irrespectively of the dopant type

Experimental tools

 V_2 is known to:

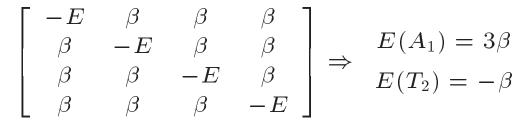
- \Box be immobile and stable at room temperature
- $\Box\,$ anneal out \sim 200–300 $^{\circ}{\rm C}$

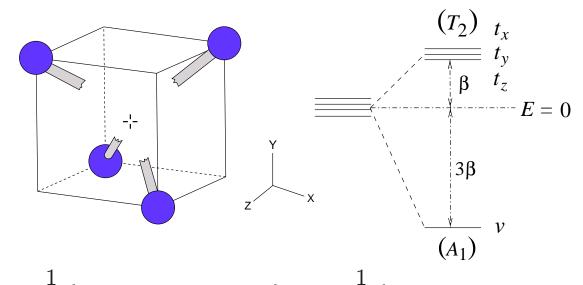
Its properties have been studied over the last 3 decades by:

□ Electron-paramagnetic resonance (EPR)

- □ Electron-nuclear double resonance (ENDOR)
- \Box Photoluminescence (PL)
- □ Infra-red (IR) absorption
- □ Photoconductivity measurements
- □ Deep-level transient spectroscopy (DLTS)
- □ Positron-annihilation spectroscopy

The "defect-molecule" model

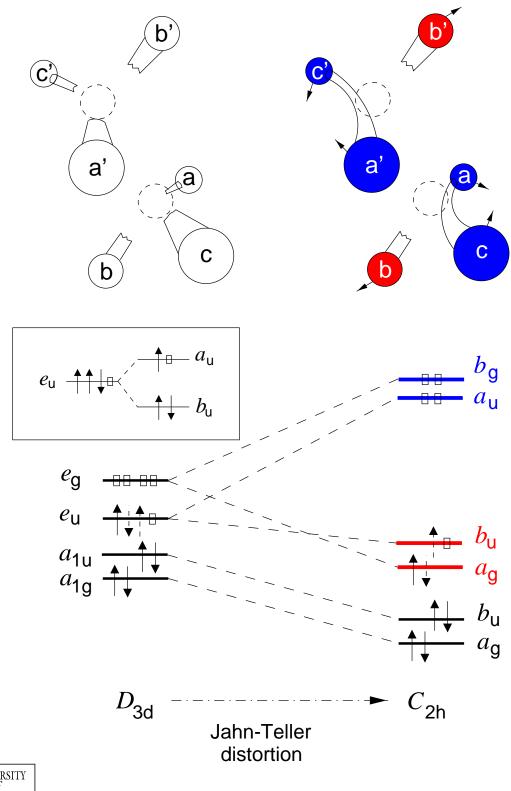

One-electron model for the single vacancy in Si (LCAO-MO):


$$\Psi = \sum_{i}^{4} \eta_{i} (a_{i} (\psi_{s})_{i} + b_{i} (\psi_{p})_{i}) \text{ with } a_{i}^{2} + b_{i}^{2} = 1$$

Eigenvalue problem: $\widehat{\mathcal{H}} \Psi = E \Psi$

$$\det |\widehat{\mathcal{H}} - E \,\widehat{\mathcal{S}}| = 0 \quad \text{with} \quad \begin{cases} < \psi_i \mid \mathcal{H} \mid \psi_i > = 0 \\ < \psi_i \mid \widehat{\mathcal{H}} \mid \psi_j > = \beta \\ S_{ij} = < \psi_i \mid \psi_j > \equiv \delta_{ij} \end{cases}$$

- Diagonalization of



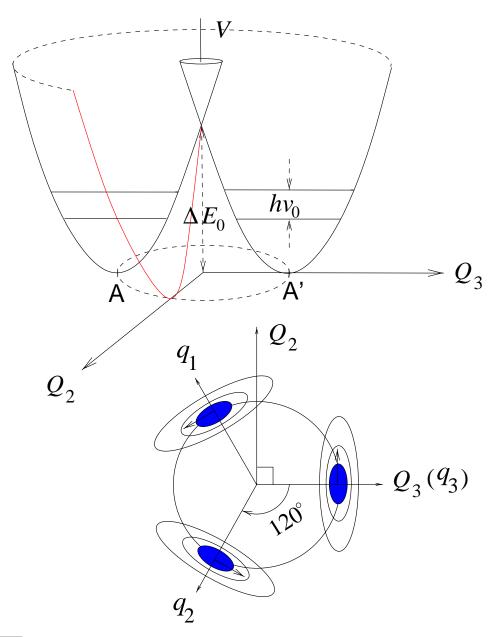
 $v = \frac{1}{2} \{ \psi_1 + \psi_2 + \psi_3 + \psi_4 \}; t_x = \frac{1}{2} \{ \psi_1 + \psi_2 - \psi_3 - \psi_4 \}$

19/4/1999 4

LCAO-MO model of V_2 from EPR

Information derived from EPR

The divacancy is a perfect example of the power of EPR. From the experiments of Watkins and Corbett...


It is known that	From
G6 (V_2^+) & G7 (V_2^-) : $S=rac{1}{2}$	\overleftrightarrow{g} , fine structure
2 equivalent Si nuclei	²⁹ Si hf satellites vs. \overrightarrow{B} (4.7%, $I = \frac{1}{2}$) $\overrightarrow{A}_{b} = \overrightarrow{A}_{b'}$
C_{2h} symmetry at $T<40$ K	$\stackrel{\leftrightarrow}{A}_i$ & $\stackrel{\leftrightarrow}{g}$ shifts with $\stackrel{ ightarrow}{B}$ Low- T stress studies
60% of wf localised on b & b' \sim 70% on the 6 atoms	hf interaction analysis via a_i^2 , b_i^2 and η_i^2
$E_{\rm Jahn-Teller}({ m V}_2^+)\sim 1.3~{ m eV}$ $E_{\rm Jahn-Teller}({ m V}_2^-)\sim 2.4~{ m eV}$ 'bond switching' $\Delta E\sim 0.06~{ m eV}$	Low- T stress studies
Motional narrowing: $C_{2h} \rightarrow D_{3d}$ T-activated reorientation	Linewidth vs. T $(40 < T < 110$ K)
ΔE for diffusion: ~ 1.3 eV (V $_2^0$)	High- T stress studies

Structural manifestation of the Jahn-Teller effect

A "Mexican Hat" ...

The potential surface V for a doubly degenerate state and a contour map of $V(Q_2, Q_3)$ including anharmomic terms

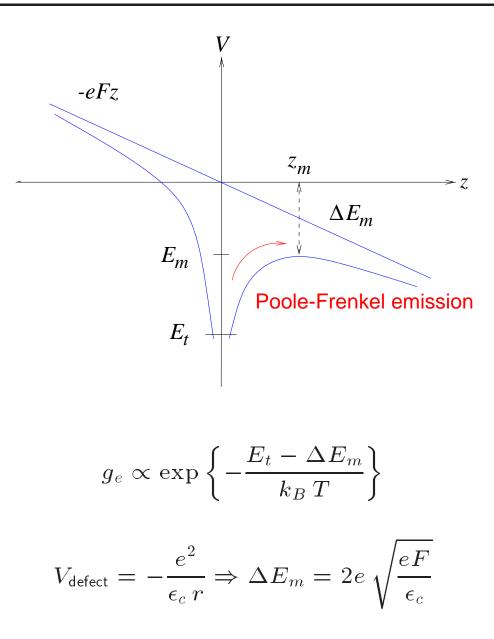
Electrical activity

EPR and DLTS studies have provided two slightly different pictures for the level structure of the lattice divacancy in Si:¹

EPR <i>E_c</i> -		DLTS	
N-EPR	=	$=$ $E_{\rm c} - 0.23$	
G7	$ E_{\rm c} - 0.4$	$ E_{\rm c} - 0.42$	
N-EPR	0	0	
G6	$+ E_v + (\sim 0.25)$	$ E_v + 0.25$	
	$L_{ m V}$		

It is importante to note that:

- □ For $T \leq 40$ K (EPR), the unpaired electron is trapped in one of its 3 equivalent JT distortion directions $\Rightarrow C_{2h}$ symmetry.
- \Box In DLTS, 80 < T < 250 K, the electronic jump rate between equivalent Jahn-Teller directions and the rate for electron emission relate as follows:


$$\frac{1}{\tau} \left(\text{jump EPR} \right) \gg \frac{1}{\tau} \left(\text{emission DLTS} \right)$$

 \Rightarrow "Motionally average" state (D_{3d})

¹EPR: G. D. Watkins and J. W. Corbett, Phys. Rev. **138**, A543 (1965); DLTS: A. O. Evwaraye and E. Sun, J. Appl. Phys. **47**, 3776 (1976).

The Poole-Frenkel effect

Electron emission enhancement under an electrical field

▷ The study of the ΔE_m vs. $F(\Delta E_m \propto F^{1/2})$ is a possible way of determining the donor or acceptor character of the centre!

19/4/1999 9

DLTS results

There is still some debate on the assignments of the charge states 2-, - and 0, of V₂ to the peaks observed by DLTS...

□ The reported electron-capture cross-sections (σ_n) have not confirmed a double acceptor character for the $E_c - 0.23$ eV DLTS trap (H⁺-irradiated samples), *e.g.*

$$\sigma_n(=/-) = 2.6 \times 10^{-15} \text{ cm}^2 : E_c - 0.23 \text{ eV}$$

 $\sigma_n(-/0) = 1.7 \times 10^{-15} \text{ cm}^2 : E_c - 0.43 \text{ eV}$

 $\triangleright \sigma_n$ for a (=/-) level is typically $\sim 10^{-18} - 10^{-21}$ cm²; unexpectedly, no Poole-Frenkel was ever reported for $V_2(=/-)!$

□ From depth profiling studies, it was observed that:

- MeV-e irradiation - H⁺, He²⁺ or heavier ions

$$\frac{[V_2(-/0)]}{[V_2(=/-)]} = 1 \qquad \qquad \frac{[V_2(-/0)]}{[V_2(=/-)]} \gg 1$$

▷ It has been argued² that the formation of V_2^{2-} (D_{3d}) is improbable in highly damaged regions of the sample – the high-T bond-switching does not occur, with the distortion acting to relief the strain around the defect.

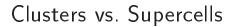
²Svensson *et al.*, Phys. Rev. B **43**, 2292 (1991).

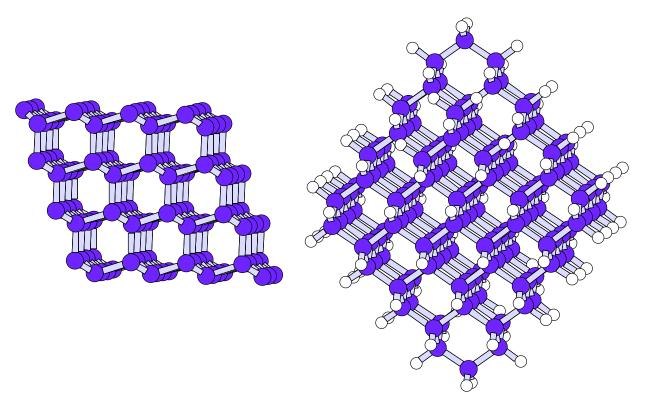
Modelling

The common denominator to all the recent theoretical studies on V_2 is...

Density Functional Theory (DFT):

Electron density is a quantity of fundamental importance


The Kohn-Sham scheme allows a description of the many body-problem as a set of self-consistent one-electron equations:


$$\left\{-\frac{1}{2}\nabla^2 + V_{\text{eff}}(\vec{r})\right\}\psi_j(\vec{r}) = \varepsilon_j\psi_j(\vec{r})$$

 $V_{\text{eff}} = v_{i-e} + v_{\text{Hartree}} + v_{xc}$ and $n(\vec{r}) = \sum_{j} |\psi_j(\vec{r})|^2$

- \Box v_{xc} (exchange-correlation term) assumed to be something simple – Local density approximation (LDA): electron-gas of slow-varying density
- □ Core electrons are removed by using norm-conserving pseudopotentials: only valence electrons come into play
- \Box Write $\psi_i \mathbf{s}$ as sum of plane-wave or Cartesian <u>Gaussian</u> orbitals
- □ The crystalline environment of the defects is simulated by: periodic super-cells or H-terminated atomic <u>clusters</u>

Simulating bulk silicon

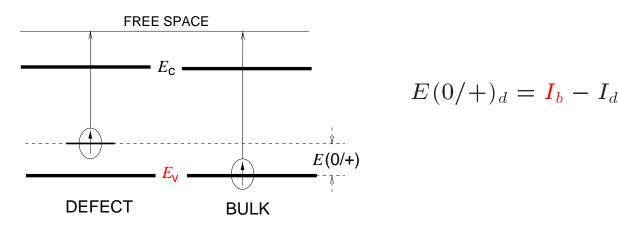
128-atom *fcc* supercell

bond-centred Si₁₄₈H₉₈ cluster

▷ The spatial extent of the divacancy wavefunction is of particular importance. The system size has to be large enough to avoid:

□ defect-defect interactions (supercells)

□ defect-surface interactions (clusters)



19/4/1999 12

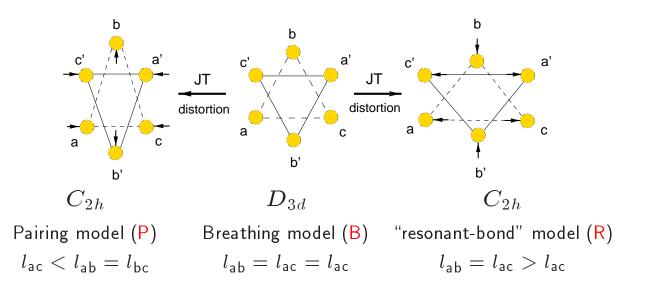
Calculation of electrical levels

In order to understand the electrical properties of V_2 , the prediction of its electrical-level structure is of great importance...

 \triangleright A donor level with respect to E_v is the difference between the ionization energy of bulk Si and that of the defect, i.e.

▷ To overcome difficulties on calculating the ionization energy of bulk Si, we compare the ionization energies of the defect and a standard defect with well-known electrical levels

$$E(0/+)_{d} = \overbrace{(I_{s} + (E(0/+)_{s}))}^{I_{b}} - I_{d}$$


 $E(0/+)_s \equiv$ observed donor level of the standard defect.

▷ The affinity and ionisation potentials are calculated by applying Slater's "transition state" scheme.

Previous theoretical studies: A. Saito & Oshiyama

Recently, Saito and Oshiyama³ have proposed a new model for the structure of V₂, and in particular V₂⁻...

 \triangleright For V₂⁻, the sense of the Jahn-Teller (JT) distortion is the inverse of that proposed by Watkins & Corbett (pairing model)

According to this model, the one-electron configurations of V_2 in its paramagnetic charge states are:

$$\mathsf{V}_2^+:\left(a_u
ight)^1\left(b_u
ight)^0$$
 and $\mathsf{V}_2^-:\left(a_u
ight)^2\left(b_u
ight)^1$

 \triangleright Note that the a_u level has no amplitude on the mirror plane!

³64-atom cubic supercells – M. Saito and A. Oshiyama, Phys. Rev. Lett. **73**, 866 (1994).

Previous theoretical studies: B. Pesola, von Boehm, Pöykkö and Nieminen

Pesola *et al.*⁴ have suggested that the distortion exhibited by V_2^- is mixture between a "rebonding-by-pairs" distortion and a "resonant-bond" one.

 \triangleright This group was able to predict the electrical structure of V₂ by first principles...

Table I. Calculated and electrical levels of V_2 for different supercell sizes.

	supe	ercell	Ob) 5.
Level	216	128	EPR	DLTS
			$E_{c} - 0.40$	
(-/0)	$E_{c} - 0.78$	$E_{c} - 0.84$	$E_c - 0.61^*$	$E_{c} - 0.42$
(0/+)	$E_v + 0.04$	$E_{v} + 0.03$	$E_v + 0.25$	$E_v + 0.25$

 st Positron annihilation spectroscopic studies

⁴M. Pesola, J. von Boehm, S. Pöykkö and R. M. Nieminen, Phys. Rev. B, **58**, 1106 (1998).

Results: A. Energetics

▷ The structure proposed by Saito and Oshiyama was found to be unstable, relaxing spontaneously to a metastable "rebonding-by-pairs"-like structure: weak pairing

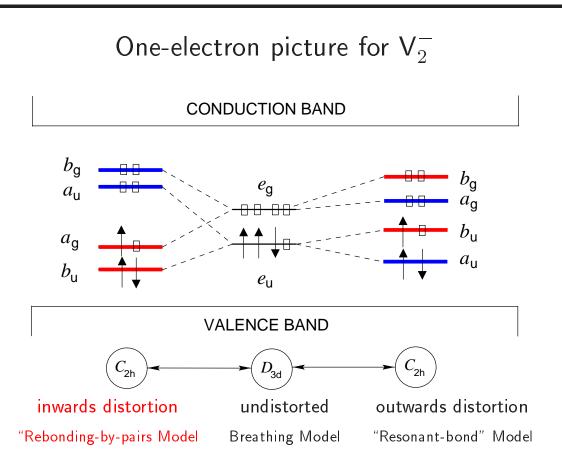
Table II. Differences in total energies (eV) for the several competing configurations of V_2 in four difference charge states.

Energy diff.	V_2^{2-}	V_2^-	V_2^+
strong pairing	0	0	0
D_{3d}	+0.5	+0.4	+0.3
weak pairing	+0.4	+0.3	+0.6

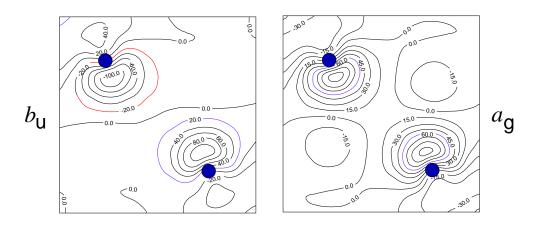
Results: B. Structural parameters

Table III & IV. Calculated distances (Å) for Si atoms surrounding a V_2 defect, for two different charge states.

	$l_{\sf ab}$	$l_{\sf bc}$	$l_{\sf ac}$	Туре	Symm.	Ref.
V_2^+		3.75		P P	C_{2h}	[1] [2]
V_2		3.78		P	$C_{2h} \ C_{2h}$	[2]


	$l_{\sf ab}$	$l_{ m bc}$	$l_{\sf ac}$	Туре	Symm.	Ref.
V_2^-	3.55		3.45	M(P)	$C_{2h}\ S_2\ C_{2h}$	[1] [2]

[1] M. Saito and A. Oshiyama, PRL **73**, 866 (1994).


(64-atom supercells; 8-Ry cut-off)

[2] M. Pesola, J. von Boehm, S. Pöykkö and R. M. Nieminen, PRB, 58, 1106 (1998).
 (64-supercell; 15-Ry cut-off)

Results: C. Spin density localisation

Below: Projection of the wavefunction of the 2 highest occupied states onto the defect's mirror plane – inwards distortion.

Results: D. Electrical levels

Table V. Calculated & observed electrical levels of V_2 in two different configurations: distorted (P) and undistorted (B). Values in eV.

Levels	C_{2h}	D_{3d}	Obs.
(=/-)	$E_c - 0.36^{(a)} \ E_c - 0.59^{(b)}$	$E_c - 0.33^{(a)} \ E_c - 0.56^{(b)}$	$E_c - 0.23$ $E_c - 0.23$
(-/0)	$E_{c} - 0.63$	$E_{c} - 0.61$	$E_{c} - 0.43$
(0/+)	$E_{v} + 0.31$	$E_v + 0.46$	$E_{v} + 0.25$

The standard defect levels (markers) were the following:

 $\triangleright (=/-): \begin{array}{c} (a) \text{ Au-H}_1 \text{ at } E_c - 0.19 \text{ eV} \\ (b) \text{ Pt-H}_2 \text{ at } E_c - 0.18 \text{ eV} \end{array}$ $\triangleright (-/0): \text{ interstitial-carbon } (C_i) \text{ level at } E_c - 0.1 \text{ eV}$ $\triangleright (0/+): C_i \text{ level at } E_v + 0.28 \text{ eV}$

