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I. Introduction

First-principles methods of determining the structure and electronic properties of materials
have become very popular in the fifteen years or so since the pioneering studies of Yin and
Cohen (1980). Usually, these calculations are carried out on a supercell employing a basis of
plane waves. For many applications such an approach is not the most efficient. For example,
molecules, topological defects like dislocations, kinks or adsorbates on surfaces are cases where
a cluster approach has definite advantages. Even for point defects in a crystalline environment,
there are advantages arising from a cluster method using a localized basis set of orbitals. Such
methods can give a direct interpretation of defect wavefunctions in terms of hybridized orbitals
on atoms local to the defect and can treat the strict symmetry of a point defect which is
lost through interaction between defects in different unit cells. Unlike the supercell approach,
the cluster method can easily treat the induced dipole moments of dynamic defects which is
important for determining the integrated absorption intensity of infra-red radiation.

In this review, we shall discuss the basis of the two main ab initio methods: Hartree-Fock
and density functional theories. We then discuss in detail the application to atomic clusters
using a localized basis set. We shall almost exclusively deal with the implementation developed
by us and finally we discuss some applications that have been made of the formalism to defects
in diamond, silicon, and other semiconductors, although the theory has been used to treat many
other systems. However, it seems relevant to begin by discussing our motivation for introducing
the technique in the first place.

In 1985, we became interested in the problem of water reacting with the cores of dislocations
in quartz. It was believed that water molecules could react with the strained Si-O bonds within
the core, or at kinks, breaking them and creating two Si-O-H bonds (Griggs and Blacic, 1965).
This mechanism might then explain the very dramatic effect of hydrolytic weakening where
the yield stress of dry quartz is more than an order of magnitude higher than wet quartz
(Doukhan and Trepied, 1985; Heggie and Jones, 1987). To investigate such a process requires
a theoretical method that is able to account not only for the strength of chemical bonds, but
is able to deal with their unusual environment within dislocation cores. The most satisfactory
technique would be one that did not rely on empirical information whose applicability would be
uncertain in this case. There are two ab initio schemes that do not rely on empirical methods:
the traditional Hartree-Fock method and density functional methods. Hartree-Fock methods
have been championed by chemists but are unable to account for the quasi-particle spectrum of
metals, and perhaps for this reason density functional methods have been favored by physicists.
Moreover, an important consideration is that the latter have a well-developed pseudopotential
scheme which makes applications to materials containing for example germanium no more
difficult than those composed of carbon. In addition, the evaluation of the exchange-correlation
energy is simpler but at a cost of the lack of systematic improvements which progressively reduce
the errors in the energies of bonds or multiplets. Another problem area for density functional
theory is in the description of Mott insulators such as NiO. Spin density functional theory
predicts these materials to be either metallic or narrow gap semiconductors, whereas they are
observed to be highly insulating. It is usually the case that density functional theory finds band
gaps smaller than the experimental values. Hartree-Fock methods on the other hand usually

2



predict band gaps much larger than experimental values. Both methods could be used to treat
clusters or supercells but the problem of dislocations and of kinks is so demanding and requires
so many atoms, that it seemed desirable to use a cluster containing a single dislocation – not
possible in a supercell — whose surface was terminated by hydrogen. So it seemed sensible
at that time to invest a considerable amount of effort in developing an ab initio local density
functional cluster method which incorporated pseudopotentials.

The particular code developed and used by the Exeter, Newcastle, Sussex and Lule̊a groups is
called AIMPRO which is an acronym for Ab Initio Modeling Program. The code has undergone
a great many modifications and improvements since it was first written. These developments
have extended the range of applications and most importantly have led to a considerable speed
up so that nowadays very large clusters of atoms can be considered. At the time of writing,
the largest cluster considered is an 840 atom bucky-onion which was run, without using any
symmetry acceleration options, on a T3D using 256 processors (Heggie et al., 1996a). Typically,
about two hours were required to carry out one conjugate gradient iteration which generates
the relaxed structure. This extreme application illustrates the power of the method but of
course most applications to solid state problems use much smaller 70-150 atomic clusters. Such
clusters can be run on simple RISC workstations taking several days.

We begin by giving an overview of the problem of determining the equilibrium structure of
a multi-atom system, then we shall discuss the cluster method in some detail before describing
some of the applications that have been made.

II. The many-body problem

It is desirable to choose a system of units where the fundamental constants are removed from
the equations. We shall use atomic units throughout except in dealing with applications. In
terms of these units, h̄, e,m, and 4πε0 are taken to be unity. The Schrödinger equation for the
electron in the hydrogen atom for example, then becomes:

{−1

2
∇2 − 1

r
−E}ψ(r) = 0.

The 1s solution is then, ψ = 1√
π
e−r, and has energy, E = −1

2
. This establishes the unit of

energy to be 1 a.u. = 27.212 eV, and as the radius of the atom is 1 a.u., the unit of length is
the Bohr radius of 0.529 Å.

The non-relativistic many-body Schrödinger equation for the electrons in a fixed field due
to ions of charges Za at sites Ra is:

{−1

2

∑
µ

∇2
µ +

1

2

∑
ν 6=µ

1

|rµ − rν|
−
∑
µ,a

Za
|rµ −Ra|

+
1

2

∑
a6=b

ZaZb
|Ra −Rb|

− E}Ψ(r) = 0,

or, in an obvious notation,

(H − E)Ψ(r) = {T + Ve−e + Ve−i + Vi−i −E}Ψ(r) = 0. (1)

Here r denotes the positions and spins of the electrons, ie, (r1, s1, r2, s2, ...). We shall be mainly
concerned with the ground state solution to this equation, and the greater part of this article
is devoted to a discussion of the techniques we employ to obtain this.
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It should be noted that the Hamiltonian of Eq. (1) does not include the kinetic energy
of the ions themselves, if they are also regarded as a quantum–mechanical system. The full
Hamiltonian, HT , includes this kinetic energy :

HT = H −
∑
a

m

2Ma

∇2
a.

We have written the term m/Ma to remind the reader this ratio involves the electron and
atomic masses. The structure and properties of all atomic clusters are contained in the solution
of the Schrödinger equation of the full Hamiltonian. However, to develop a practical method
of solving this equation it is necessary to first decouple the motions of the electrons and ions;
then to construct an effective potential acting on each electron due to the other electrons as
well as the surrounding nuclei; and finally to calculate the forces acting on each ion so that
both the equilibrium structure of the cluster as well as its vibrational modes can be found.

1. THE BORN-OPPENHEIMER APPROXIMATION

The first step in which the dynamical equations of the ions are separated from those of the
electrons is made using this approximation. We assume that the ions are so much more massive
than the electrons that their movement simply modulates the wavefunction of the electrons.
The total wavefunction can then be written

ΨT (r, R) = χ(R)Ψ(r, R),

where χ(R) is an amplitude dependent on the nuclear coordinates alone, and Ψ(r, R) is a so-
lution of Eq. (1). We have denoted the nuclear coordinates by R = (R1,R2, ...). If this is
substituted into the Schrödinger equation for the full Hamiltonian, then we find, after multi-
plying through by Ψ∗(r, R),

{−
∑
a

m

2Ma
∇2
a + E(R) +W (R)− ET}χ(R) =

∑
a

∫
Ψ∗(r, R)

m

Ma
∇aΨ(r, R)∇aχ(R)dr. (2)

The term dr represents the integration over all the electron coordinates, rµ and the summation
over all their spins sµ. The left hand side represents the Schrödinger equation for the ions
moving in a potential E + W, where W is a small correction, invariably neglected, due to the
electrons moving along with the nuclei:

W (R) = −
∑
a

m

2Ma

∫
Ψ∗(r, R)∇2

aΨ(r, R)dr.

The term on the right hand side of (2) vanishes if Ψ(r, R) is real corresponding to a non-
degenerate ground state. Otherwise, it usually represents a small perturbation but can be
particularly important for degenerate ground states — as perturbations usually are — for then
it can lead to symmetry breaking as in the Jahn-Teller effect (Stoneham, 1975). If we neglect
this term, then the ionic and electron motions are decoupled.

E(R) is an effective potential energy of the ions averaged over the state Ψ(r, R). The
minimum value of E(R) is then the ground state energy of the cluster and one of the principal
objectives of the theory is to deduce this energy and the corresponding ionic positions. If E(R)
is expanded about its minimum value, we find:

E(R) = E(Ro) +
1

2

∑
la,mb

( ∂2E

∂Rla∂Rmb

)
∆Rla∆Rmb + .. (3)
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Here ∆Rla represents the displacement of the ion a in direction l from the equilibrium config-
uration Ro. The harmonic frequencies of vibration ωi and their normal coordinates, uila, are
related to the eigenvalues and eigenvectors of the dynamical matrix calculated from the energy
derivatives (Born and Huang, 1954) i.e.,∑

mb

Ela,mbu
i
mb = ω2

i u
i
la,

Ela,mb =
1√

MaMb

( ∂2E

∂Rla∂Rmb

)
.

We shall discuss this further in section VII. Now that we have separated the motions of the
ions and electrons we are confronted by the problem of the interaction between the electrons
implicit in Eq. (1). To deal with this, further approximations are required.

2. HARTREE-FOCK THEORY

The assumption behind this method is that there exists a set of M orthonormal one-electron
spin-orbitals ψλ(r) from which the many-body wavefunction can be constructed as a single
Slater determinant:

Ψ(r) =
1√
M !

det|ψλ(rµ)|, ψλ(r) = ψi(r)χα(s),

and χα(s) is a spin-function satisfying:∑
s

χ∗α(s)χβ(s) = δαβ.

The sum being over 2-values of s and α being ‘up’ or ‘down’. The orbitals ψi(r) satisfy:∫
ψ∗i (r)ψj(r)dr = δij .

The many-body wavefunction is clearly antisymmetric with respect to the interchange of two
particles as is required by the Pauli exclusion principle. As a simple example, we may write
down the wavefunction for a two electron problem such as H2 by expanding the determinant.
We obtain the well-known result for a two-particle fermion system:

Ψ(r1, r2) =
1√
2
{ψ1(r1)ψ2(r2)− ψ1(r2)ψ2(r1)}.

The average energy of the single normalized determinental wavefunction is 〈Ψ|H|Ψ〉 and
can be shown to be (Slater, 1960) :

E =
∑
λ

〈λ|T + Ve−i + Vi−i|λ〉+
1

2

∑
λ,µ

{〈λµ|Ve−e|λµ〉 − 〈λµ|Ve−e|µλ〉}. (4)

Here, the first term involves the matrix elements of one-particle operators: the kinetic, electron-
ion and ion-ion interactions respectively, and the sum is over the occupied spin-orbitals λ. The
second and third terms involve four-center integrals of the electron-electron interaction:

〈λµ|Ve−e|νκ〉 =
∑
s1s2

∫
ψ∗λ(r1)ψ∗µ(r2)

1

|r1 − r2|
ψν(r1)ψκ(r2)dr1dr2.
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We can rewrite E in the form :

E = −1

2

∑
λs

∫
ψ∗λ(r, s)∇2ψλ(r, s)dr +

∫
n(r)Ve−idr + EH + Ex + Ei−i, (5)

EH =
1

2

∫ n(r1)n(r2)

|r1 − r2|
dr1dr2, (6)

Ex = −1

2

∑
λµ

∑
s1s2

∫
ψ∗λ(r1)ψ∗µ(r2)

1

|r1 − r2|
ψµ(r1)ψλ(r2)dr1dr2, (7)

Ei−i =
1

2

∑
a6=b

ZaZb
|Ra −Rb|

. (8)

Here we have introduced the electron density

n(r) =
∑
λs

|ψλ(r, s)|2, (9)

and the Hartree energy EH , the exchange energies Ex, and the ion-ion energy Ei−i.
The ground state orbitals ψλ are determined by the requirement that E is minimized sub-

ject to orthonormal ψλ. This constrained minimization problem can be solved by introducing
Lagrange multipliers, Eλµ, such that the function

E −
∑
s,λ6=µ

Eλµ

∫
ψ∗λψµdr−

∑
λ

Eλ{
∑
s

∫
|ψλ|2dr− 1}

is minimized with respect to ψ∗λ, Eλ and Eλµ without constraint. From Eq. (5), we then get
the Hartree-Fock equations for each orbital λ:

{−1

2
∇2 + Ve−i(r) + V H(r) + V x

λ (r)− Eλ}ψλ(r) =
∑
µ6=λ

Eλµψµ(r), (10)

∑
s

∫
ψ∗µψλdr = δλµ,

V H(r)ψλ(r) =
δEH
δψ∗λ

=
∫ n(r1)ψλ(r)

|r− r1|
dr1,

V x
λ (r)ψλ(r) =

δEx
δψ∗λ

= −
∑
µs1

∫
ψ∗µ(r1)ψλ(r1)

1

|r1 − r|ψµ(r)dr1.

V H , V x
λ are the Hartree and exchange potentials. The last involves a sum over occupied orbitals

µ whose spin is the same as that of λ.
Now we can carry out a unitary transformation on the Slater determinant which diagonalizes

Eλµ and then the right hand side of the differential Eq. (10) vanishes. The exchange potential
can be written in terms of the exchange density, nxλ, as:

V x
λ (r) =

∫ nxλ(r, r1)

|r1 − r| dr1
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nxλ(r, r1) = −
∑
µs1 δ(sλ, sµ)ψ∗µ(r1)ψµ(r)ψ∗λ(r)ψλ(r1)

ψλ(r)ψ∗λ(r)
.

The exchange density satisfies: ∫
nxλ(r, r1)dr1 = −1,

nxλ(r, r) < 0.

These relations show that an exchange hole of total charge unity is introduced around each
electron. The exchange integral is a very difficult term to evaluate numerically as it involves
the product of orbitals, each of which oscillates in a complicated way. Further, as it depends
on λ, it has to be evaluated many times. This makes practical versions of the theory rather
slow even on the fastest computers.

The total energy E can be found by multiplying the Hartree-Fock equations (10) by ψ∗λ(r)
and integrating over r and summing over s and λ. This gives:

E =
∑
λ

Eλ −EH − Ex + Ei−i.

The sum is over occupied orbitals only. Notice that the interaction terms must be subtracted
from the sum of energy eigenvalues.

The Hartree-Fock equations in (10) are solved by a self-consistent method. An initial set of
orbitals ψλ(r) are selected, which are usually related to atomic orbitals, and the Hartree and
exchange potentials found. Then the Hartree-Fock equations are solved for an output set of
orbitals. These are used to construct a new set of input orbitals and the process repeated until
the output and input sets are equal. This process is called the self-consistent cycle.

The energy-eigenvalues, Eλ, can be given an interpretation through Koopman’s theorem
which states that the difference in energy between two configurations differing by the occupation
of an orbital λ, while all the other orbitals ψµ are unchanged, is Eλ. Hence −Eλ as the ionization
energy for the λ electron. The correspondence is not exact as all the orbitals will alter, in
general, whenever the configuration is modified.

Hartree-Fock theory usually predicts structures and vibratory modes of small molecules
quite accurately. However, bond lengths are usually underestimated leading to an overestimate
of mode frequencies. Excitation energies are also overestimated.

3. THE HOMOGENEOUS ELECTRON GAS

As an example, we apply the theory to a homogeneous electron gas, sometimes called jellium,
where the ions form a uniform background of density n. The total spin S is then a good
quantum number and we begin by looking at non-polarized states where S = 0. A solution of
the Hartree-Fock equations consists of orbitals corresponding to plane-waves. Then λ refers to
the wave-vector k and spin state α:

ψλ(r, s) =
1√
Ω
eik.rχα(s).

Here Ω is the volume of the system. The charge density, n, is uniform and hence the Hartree
term, EH , and the ion-ion term Ei−i, which in this case is just the electrostatic energy of the
uniform positive background charge, exactly cancels the electron-ion term, Eel−i, in the total
energy E.
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The energy levels are therefore:

Eλ = Ek,α =
1

2
k2 + V x

k ,

where the exchange potential, V x
λ (r), is given by

V x
k (r) = −

∑
k1<kf

∫ ei(k−k1).(r1−r)

Ω|r1 − r| dr1.

This is in fact independent of r and spin state α and depends on the magnitude k of k alone.

V x
k = −

∑
k1<kf

4π

Ω|k− k1|2
= − 1

8π3

∫
k1<kf

4π

|k− k1|2
dk1.

Here kf is the Fermi wave-vector related to the electron density by n = 1
3π2k

3
f . To carry out

the integral, we write η = k/kf , and a simple calculation shows:

V x
k = −4

(3n

8π

) 1
3F (η),

F (η) =
1

2
+

1− η2

4η
ln(

1 + η

1− η ).

The function F (η) tends to 1 as η → 0, and to 1/2 as η → 1. Its derivative has a weak
singularity as η tends to 1 which has catastrophic implications for the applicability of the
theory to simple metals. This follows as the density of states, per unit energy range and for
each spin, is

N(E) =
4πk2

8π3

1

|∇Ek|
,

and tends to zero as k → kf , thus showing that the density of states is zero at the Fermi
level. This is incorrect and is due to absence of correlation in the theory. The form of the
Hartree–Fock wavefunction does not include correlated movement of the electrons. This can
be included by constructing wavefunctions built out of combinations of determinants. These
are known as configuration interaction (CI) calculations, but the computational demands are
so high and the scaling with the number of electrons so poor that such calculations can only
be done for a very small number of atoms.

The total energy is

E =
1

2

∑
kα

k2 + Ex,

which gives the energy density:

3n

10

(
3π2n

) 2
3 + nεx(n), εx(n) = −3

2

(3n

8π

) 1
3 .

The quantity εx is the exchange energy per electron.

8



4. THE SPIN POLARIZED ELECTRON GAS

We now consider solutions of the Hartree-Fock equations for non-zero spin values S. This means
we have more ‘up’ spins say than ‘down’ spins and each state is specified by the densities of
‘up’ and ‘down’ spins, n↑ and n↓ respectively. The orbitals remain plane waves defined by a
wavevector k but each spin population has its own Fermi wavevector and the total energy is
then:

E = Ω
∑
s

{3ns
10

(
6π2ns

) 2
3 − 3

2

( 3

4π

) 1
3n

4
3
s }. (11)

Improved estimates of the ground state energy can be found by going beyond Hartree-Fock
theory. Ceperley and Alder (1980) used a quantum Monte-Carlo method to find the correlation
energy Ec, — the difference between the ground state and the Hartree-Fock energy — for
polarized and non-polarized electron gases for a low density homogeneous electron gas. This
can be combined with results of perturbation theory for the high density case to produce an
energy for a wide range range of densities. If the correlation energy per electron, εc, polarization
ξ and the Wigner-Seitz radius of each electron rs are defined by:

Ec = Ωnεc(n, ξ), ξ =
(n↑ − n↓)

n
, rs = (4πn/3)−1/3,

then εc for the non-polarized and fully polarized electron gases are given by Perdew and Zunger
(1981) as:

εc =

{
γ{1 + β1

√
rs + β2rs}−1, for rs ≥ 1

B + (A+ Crs)ln(rs) +Drs, for rs < 1

The values of the coefficients are given for both cases in Table 1.
In the case of a partially polarized gas, where 1 > ξ > 0, the correlation energy is averaged

over the polarized and non-polarized cases using the procedure due to von Barth and Hedin
(1972):

εc(n, ξ) = εnpc (n) + f(ξ)(εpc − εnpc )

f(ξ) =
(1 + ξ)4/3 + (1− ξ)4/3 − 2

24/3 − 2
.

We show in Fig. 1 the exchange-correlation energy per unit volume for the non-polarized
and fully polarized gases for the same density. It is clear that, to a good approximation, these
energies are power series in the densities n and ns respectively. In developing the theory of
clusters in IV, it is necessary to simplify the expressions for Exc. For the non-polarized case,
we can write

Exc = ΩAnp, (12)

where p is 1.30917. This fit is accurate to within 0.002 a.u. for n < 1.2. For larger values the
error increases with Exc but the percentage error is less than 3% for n up to 15.

For polarized gases, we use

Exc = Ω
∑
i,s

Ain
pi+1
s nqi1−s, (13)

where Ai, pi and qi are given in Table 1. The error in this expression is less than 0.001 a.u. for
n↑, n↓ < 1. For larger density values it is desirable to use the values of A′i, p

′
i and q′i also given

in Table 1. The error then is less than 3% for large n but is 4% for n around 0.1.
It is necessary when dealing with the core electrons of heavy elements to multiply εx by a

small factor arising from relativistic corrections.
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Figure 1: Variation of polarized (full) and non-polarized (dashed) exchange-correlation energy,
× (-1) a.u., per unit volume with density.

Table 1: Parametrization of the exchange-correlation energy
γ β1 β1

Non-polarized -.1423 1.0529 0.3334
Polarized -.0843 1.3981 0.2611

A B C D
Non-polarized 0.0311 -0.0480 0.0020 -0.0116
Polarized 0.0155 -0.0269 0.0007 -0.0048

i Ai pi qi
1 -0.9305 0.3333 0
2 -0.0361 0 0
3 0.2327 0.4830 1
4 -0.2324 0 1

i A′i p′i q′i
1 -0.9305 0.3333 0.
2 -0.0375 0.1286 0.
3 -0.0796 0. 0.1286
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5. DENSITY FUNCTIONAL THEORY

The difficulty of evaluating the exchange energy and the need to include correlation has
prompted the development of alternative methods. Density functional theory is one such de-
velopment which has proved to be very successful. There are several ways of deducing the
relevant equations. The simplest approach is to argue that the non-local exchange energy in
Hartree-Fock theory is a very complicated integral which is considerably simplified if we treat
the inhomogeneous problem locally as jellium and replace the exchange energy in Eq. (7) with
its known electron gas value: ∫

n(r)εxc(n↑, n↓)dr.

The ‘up’ and ‘down’ spin densities are defined in terms of the orbitals ψλ(r, s) through:

ns(r) =
∑
λ

δ(s, sλ)|ψλ(r, s)|2.

The theory then proceeds by minimizing the total energy with respect to the orbitals.
This approach, called local spin density functional (LSDF) theory, has several advantages.

Many of the problems with Hartree Fock theory are solved and it is far more efficient com-
putationally. Nevertheless, there are problems caused by the replacement of the Hartree-Fock
exchange energy by its electron gas value. In particular we have introduced a self-interaction
term. In Eq. (4) the diagonal term with λ = µ in the expression for the Hartree energy cancels
out the diagonal term in the exchange energy. This is no longer the case in LSDF theory and
there is then a potential due to an electron acting on itself. This has the consequence that
when the theory is applied to the H atom, for example, the 1s energy level is found to be
-0.269 a.u. and the energy of the neutral atom is -0.479 a.u. instead of each being -.5 a.u. For
this reason, the ionization energies of atoms are not in very good agreement with experimen-
tal values. This deficiency can be corrected by incorporating an extra term which removes
the self-interaction (Perdew and Zunger, 1981). This approach has been successful in treating
transition metal oxides (Svane and Gunnarsson, 1990; Szotek et al., 1993).

The more usual approach to LDF theory is based on the work of Hohenberg and Kohn
(1964), and Kohn and Sham (1965). These authors showed there is a 1:1 correspondence be-
tween a non-degenerate non-polarized ground state wavefunction Ψ(r) and the electron density
n(r1) defined by

n(r1) =
∑
µ

∫
δ(r1 − rµ)|Ψ(r)|2dr.

The proof rests on the preliminary result that in the Hamiltonian

H = T + Ve−e + Ve−i,

the ground state electron density is in 1-1 correspondence with the external potential Ve−i.
Suppose this is false, i.e. there exist two external potentials V1 and V2 having the same n. Then
from the variational principle, if Ψ1 and Ψ2 are the corresponding normalized wavefunctions,
and if Hi is the Hamiltonian with potential Vi and energy Ei, then

E1 = 〈Ψ1|H1|Ψ1〉 < 〈Ψ2|H1|Ψ2〉
= E2 + 〈Ψ2|V1 − V2|Ψ2〉
= E2 +

∫
(V1 − V2)n(r)dr.
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But in a similar way we can show

E2 < E1 +
∫

(V2 − V1)n(r)dr.

Adding these equations gives us
E2 + E1 < E1 + E2,

which is a contradiction unless the states are degenerate.
This shows that Ve−i is determined uniquely by n and hence the Schrödinger equation for Ψ

can be solved in terms of n. Thus Ψ is a unique functional of n. Since E is the expectation of
H with respect to Ψ, it also follows that E is determined uniquely by n. This is a remarkable
result as it shows that the many-body wavefunction dependent on the set of rµ and sµ, i.e. 4M
variables where M is the number of electrons, is determined uniquely by a function of three
variables, i.e. n(r). Clearly instead of trying to guess the wavefunction as in Hartree-Fock
theory and minimize this function of 4M variables, it is advantageous to try to find how the
energy depends on n(r) and minimize this as a functional of n(r). In fact, subsequent to the
work of Hohenberg and Kohn, it has been shown that this result also holds if the ground state
is degenerate.

Hohenberg and Kohn went on to show that all the terms in the expression for the total
energy may be evaluated as functionals of the charge density:

E[n] = T [n] + Ee−i[n] + EH [n] + Exc[n] + Ei−i. (14)

Clearly, Ee−i[n] and EH [n] are manifestly functionals of the charge density:

Ee−i[n] = −
∫
n(r)

∑
a

Za
|r−Ra|

dr,

EH [n] =
1

2

∫ n(r1)n(r2)

|r1 − r2|
dr1dr2,

and, as before, the ion-ion term is given by

Ei−i =
1

2

∑
a6=b

ZaZb
|Ra −Rb|

.

The main difficulty is to write down expressions for the exchange-correlation and kinetic energies
as functionals of the charge density. The exchange correlation is apparently the more challenging
of the two, as this is describing the complicated many-body interactions that take place. An
exact expression for this is not available, and in practice a number of approximate forms are
used, the most common being the local density approximation (LDA) and the local spin density
approximation (LSDA). LDA is for systems that are not spin polarized, and the exchange
correlation energy is written as

Exc[n] =
∫
n(r)εxc(n)dr.

where the exchange-correlation energy density, εxc(n) is the function obtained for the homoge-
neous electron gas and detailed in the previous section. It is readily seen that this is a local
approximation – it is assumed that for any small region in the system the contribution made
to the exchange-correlation energy is just the same as in a uniform electron gas with the same
density.
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In the LSDA, we write

Exc[n] =
∫
n(r)εxc(n↑, n↓)dr.

which is similar in principle to the LDA, but uses the expression for the energy density of a
polarized homogeneous electron gas.

The use of this approach in a real system (i.e. with a varying charge density) is an approxi-
mation, but it is one that has been shown to be successful and to have acceptable accuracy for
modeling materials containing atoms from many parts of the periodic table.

Recently, there has been interest in going beyond local expressions for exchange and cor-
relation and to include some terms dependent on the gradient of the density (see Kutzler and
Painter, 1992, for applications to first row diatomic molecules). The general experience is that
the energy is improved but at the cost of an inferior structure.

It is possible to write down a functional for the kinetic energy T [n] using the same approach
as used for the exchange-correlation, i.e. using the result for the homogeneous electron gas:

T [n] =
∫ 3n(r)

10

(
3π2n

) 2
3dr.

We then arrive at a similar result to the Thomas–Fermi theory. Unfortunately, this is not
accurate enough to describe the small changes in total energies that take place on chemical
bonding. This problem was solved by Kohn and Sham (1965). They introduced a set of
orthonormal orbitals as a basis for the charge density. In the spin polarized theory the spin
densities would be written in terms of these as

ns(r) =
∑
λ

δ(sλ, s)|ψλ(r)|2.

This is effectively claiming that the charge density can always be written as that derived
from a wavefunction consisting of a single Slater determinant. It should be emphasised that this
is wholly different to Hartree Fock theory where the many–particle wavefunction was written
as a single determinant and used as a variational function. In the Kohn–Sham procedure, this
wavefunction is used only as a means of expanding the charge density and at no stage is the
energy considered to be obtainable from an expression of the form 〈Ψ|H|Ψ〉. Strictly, therefore,
we cannot interpret the Kohn-Sham orbitals as single particle states.

In terms of these, the kinetic energy can be written down as

T = −1

2

∑
λ,s

∫
ψ∗λ∇2ψλdr

which completes the terms that make up the total energy.
The Kohn–Sham orbitals will be determined by the requirement that E is minimized with

respect to ns subject to the total number of electrons M and spin S being fixed where,

M =
∑
s

∫
ns(r)dr,

S =
∫

(n↑ − n↓)dr.

The Kohn-Sham equations are now derived by a variational principle remembering that the
orbitals ψλ are orthonormal. Thus the quantity,

E −
∑
λ

Eλ{
∑
s

∫
|ψλ(r)|2dr− 1},
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is minimized with respect to ψλ, ψ
∗
λ and Eλ. This yields:

{−1

2
∇2 −

∑
a

Za
|r−Ra|

+ V H(r) + V xc
sλ

(n↑, n↓)− Eλ}ψλ(r) = 0

∑
s

∫
|ψλ(r)|2dr = 1.

Here

V xc
s =

d(nεxc)

dns
.

The main differences with the Hartree-Fock equations are the exchange-correlation term and
the interpretation of the energy levels Eλ. In the case of jellium, the density of states N(E) is no
longer zero at Ef and hence identifying the Kohn-Sham energies Eλ with quasi-particle energies
is natural. This, however, is not strictly correct. Janak’s Theorem (Janak, 1978) asserts that
if we change the occupancy of level λ by δfλ, then the change of energy is Eλδfλ. This is
not the same as the energy change that results from the addition or subtraction of a single
electron. Such quasi-particle energies should be derived from extensions of the theory: theGW
approximation of Hedin (1969) being the most successful. Implementation of this theory has
given fundamental energy gaps to within a few tenths of an eV (Delsole et al., 1994).

The exchange-correlation potential V xc
s depends on the densities of both ‘up’ and ‘down’ spins.

Consequently the spin ‘up’ solutions are not the same as the spin ‘down’ ones if S is non-zero.
This means that there are two sets of equations each corresponding to a particular spin-state.

An alternative formula for E is found by multiplying by ψ∗λ(r) and integrating, followed by
a sum over the occupied orbitals λ.

E =
∑
λ

Eλ + Ei−i − EH +
∑
s

∫
ns(r){εxc − V xc

s )}dr. (15)

This formula is the starting point of approximate methods such as tight binding schemes (Sut-
ton et al., 1988). It is argued that the terms Ei−i and EH largely cancel; as they must for
jellium. For simple systems, the sum of energy eigenvalues acts as an attractive potential —
it gets more positive as the separation between atoms increases — but the other three terms
combine to act as a repulsive potential. It is often assumed that the repulsive one is short
ranged and falls off quickly to zero. The matrix elements of a tight binding Hamiltonian are
constructed by either fitting to a band structure derived by a combination of ab initio the-
ory and experiment, or evaluated from a localized basis set (Porezag et al., 1995; Seifert and
Eschrig, 1985; Seifert et al., 1986) The short ranged repulsive potential is then fitted so that
the structures of representative systems are reproduced. We have not followed this approach
ourselves, and will confine ourselves to this brief comment here.

The derivation of density functional theory presented here shows it to be essentially a ground
state theory. Properties of the ground state can be obtained with quantitative accuracy. To
consider the ground state, the lowest–lying Kohn-Sham orbitals are filled. However, a problem
arises when we have several degenerate orbitals and not all should be occupied. Examples of
this occur in atoms (for example in carbon, two electrons need to be placed into the three
degenerate 2p states) and defects (for example the vacancy in diamond where two electrons
need to be placed into three degenerate states of t2 symmetry. This is essentially a multiplet
problem and should lie beyond density functional theory. However, a method for obtaining
approximate multiplet energies has been given by von Barth (1979). In this approach, the
density functional energy is taken to be the energy of a single Slater determinant, the contents
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Figure 2: The 4s (full) and pseudo- (dashed) radial wavefunction (a.u.) for the Ni atom.

of which are governed by the choice of Kohn–Sham states to be filled. The energies of different
multiplets which can be built out of determinants corresponding to different configurations may
be found by writing each determinant, |D〉, as a linear combination of multiplets, |Ma〉, as

|D〉 =
∑
a

ca|Ma〉.

If we operate on this with the Hamiltonian and identify the expectation value of the left hand
side as the energy E found using density functional theory, then

E =
∑
a

|ca|2〈Ma|H|Ma〉.

We can now choose different configurations – each corresponding to single Slater determinants
— and then deduce several equations relating the multiplet energies which can, in favorable
cases, be solved.

III. Pseudopotential theory

Pseudopotentials are a very important component of first principles calculations as they remove
the need to consider core electrons – only the valence electrons need be considered. This is
extremely important if one wants to be able to treat all the elements of the periodic table. Using
the full Coulomb potential can cause considerable problems. The total energy then becomes
extremely large and since one is interested in differences in energies between similar sized
clusters, there can be a significant loss of accuracy. Secondly, the fitting of core wavefunctions
with Gaussian orbitals, and even more so with plane waves, is extremely difficult and small
errors can make large differences in the core eigenvalues. Fig. 2 shows the 4s wavefunction
and pseudo-wavefunctions in Ni. It is clear that the pseudo-wavefunction is a much simpler
and smoother function to approximate than the all-electron wavefunction. Thirdly, for the
heavier atoms, relativistic effects are important and the Dirac equation is required. However,
the valence electrons can continue to be treated non-relativistically and a spin-orbit potential
can be introduced which describes polarized valence electrons.

The justification for the use of a pseudopotential lies in the fact that the highly localized
core wavefunction cannot take part in the bonding of atoms. Nevertheless, the valence electrons
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undergo exchange interactions with core ones and this makes the problem of constructing
pseudopotentials non-trivial.

The precise description of generating a pseudopotential is a complicated procedure and there
are many different prescriptions given in the literature. These prescriptions differ because the
resulting potentials have different uses. Methods using plane waves require pseudopotentials
whose momentum matrix elements decay as quickly as possible. This is not an important
requirement for the real-space basis used here although it is of great advantage to deal with
smooth wavefunctions which have as few nodes as possible, for such functions are easier to
represent in terms of Gaussian basis sets. Here, we follow closely the prescription given by
Bachelet et al., (1982) who have produced a comprehensive table of pseudopotentials for all the
elements between H and Pu. These potentials are called norm-conserving since they yield the
exact atomic charge density outside the core. This is an important property for self–consistent
calculations.

The first step is the solution of the Kohn-Sham equations for all the electrons in an atom.
This is done by choosing a configuration leading to a spherically symmetric charge density
and hence the atomic Kohn-Sham levels are labeled by angular momentum numbers for light
elements, and j = l ± 1/2 symbols for heavy elements when the Dirac equation must be
used. The final pseudopotentials will possess the same valence eigenvalues and give pseudo-
wavefunctions which agree exactly with the true ones outside a core radius. Now, if one filled up
the Kohn-Sham energy levels in ascending order, choosing for carbon, for example, the 1s22s22p2

configuration, then the 3d level would be empty. It might seem then that these unoccupied
d-levels do not have to be considered in describing the binding of C atoms with other elements.
This, however, is not strictly correct. The wavefunctions for states in solids will be made up
of combinations of all atomic states including d-states and although the atomic d-states may
not play a major role, it is not clear their influence can be neglected. The pseudopotential
then should possess the same s, p and d valence energy levels as the all-electron atom for the
valence states. To accommodate this, the atom is solved in the ground state configuration
1s22s22p2 for l = 0 and 1, but for l = 2 one chooses an ionized excited state configuration such
as 1s22s0.752p1d0.25 in which these d-levels are occupied with a small amount of charge. The
fractional occupancy of the s-shell is chosen to eliminate ‘bumps’ in the potential. Different
configurations are used for other elements. In Si for example, the d-pseudopotential is derived
from the configuration 3s13p0.753d0.25.

The Kohn-Sham equations for the atom using these configurations, ν, yield the all-electron
wavefunctions and energy levels. The spin densities can then be found from the wavefunctions
as well as the all-electron potential V ν(r). This is the sum of the nuclear, Hartree and exchange-
correlation potentials and possesses a Coulomb singularity at r = 0. A first-step pseudopotential
for each configuration and angular momentum index l (or j = l ± 1/2 for the Dirac equation)
is then constructed, eliminating the Coulomb singularity by defining

Vl(r) = V ν(r)(1− f(r/rc,l)) + cνl f(r/rc,l).

Here f(x) is a function which is unity at the origin and vanishes rapidly for x much bigger than
1, e.g. e−x

3.5
. Hence, for r close to the origin, Vl is a constant, cνl , which is chosen so that the

lowest energy level for each l is exactly the same as the solution of the all-electron atom for the
same l.

The corresponding normalized pseudo-wavefunction, wν1l, is clearly equal (up to a normal-
ization factor) to the all-electron wavefunction for large r as the potential Vl(r) is exactly the
same as V ν(r) there. The value of rc,l is called the core radius and it determines when the
all-electron wavefunction approaches the pseudo-wavefunction. Clearly it must not be too big,
but if chosen too small, then it lies in a region where the wavefunction is rapidly varying and
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difficult to represent by any basis. It is usually chosen to be about half-way to the outermost
node and the outermost extrema of the all-electron wavefunction.

The next step is to modify wν1l by introducing a second wavefunction wν2l by

wν2l = γνl {wν1l(r) + δνl r
l+1f(r/rcl)}.

The constants γνl and δνl are selected so that the normalized function wν2l agrees exactly with
the all-electron wavefunction outside the core and is not just proportional to it. The potential
giving rise to the wν2l wavefunctions is then found by inverting the Schrödinger equation using
the energy levels which agree with the all-electron values. This potential then has the correct
eigenvalues and a wavefunction which agrees exactly with the all-electron one outside the core.
Finally, the contribution of the Hartree and exchange-correlation potentials arising from the
pseudo-wavefunctions wν2l are subtracted leaving a bare ion potential Vl(r). This last step is
exact for the Hartree potential as this is linear in the core and valence charge densities. However,
it is an approximation for the non-linear exchange-correlation potential. The approximation
can be improved, along with the transferability of the pseudopotential, by subtracting instead
the exchange-correlation potential corresponding to the all-electron charge density and spin-
polarization (Louie et al., 1982).

For relativistic atoms, where the states are labeled by j ± 1
2
, an average pseudopotential is

defined:

Vl(r) =
1

2l + 1
{lVl−1/2(r) + (l + 1)Vl+1/2(r)}.

This is called the scalar relativistic potential. The spin-orbit potential is:

V so
l (r) =

2

2l + 1
{Vl+1/2(r)− Vl−1/2(r)},

and the full pseudopotential is then:

V ps(r) =
∑
l

|l〉{Vl(r) + V so
l (r)L.S}〈l|. (16)

The potentials have been parametrized by fitting them to simple functions in the following
way:

Vl(r) = −Zν
r
{

2∑
i=1

cci erf(
√
αcir)}+

3∑
i=1

{Ai,l + r2Ai+3,l}e−αi,lr
2

V so
l (r) =

3∑
i=1

{Bi,l + r2Bi+3,l}e−αi,lr
2

.

Here Zν is the valence charge, αci is the inverse of the extent of the core charge density and
erf is the error function. The coefficients cci are independent of l and hence this first term is a
simple function called the local pseudopotential. The sum of the coefficients cci is unity so the
local potential gives rise to a potential −Zν/r for αcir

2 >> 1. The second term does depend on
l and is called the non-local pseudopotential. Tables of values of Zν , c

c
i , α

c
i , Ai,l, Bi,l and αi,l are

given in Bachelet et al., (1982).
A crucial property of the pseudo-wavefunction is that it can accurately describe different

bonding configurations. One test is to compare the energy differences between configurations
corresponding to the promotion of valence electrons. For example, the energy difference between
C in the s2p2 and sp3 configurations is 8.23 eV when the all-electron theory is used and 8.25
eV using the pseudopotential. The agreement is not quite as good for Ni, as the corresponding
d8s2 → d9s1 energies are -1.66 and -1.36 eV respectively.
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IV. The real space cluster method

We now discuss applying LSDF theory described above to a cluster of atoms. The wavefunctions
of the cluster are expanded in a basis of localized orbitals φi(r−Ri) as:

ψλ(r, s) = χα(s)
∑
i

cλi φi(r−Ri). (17)

In this way the Kohn-Sham differential equations are converted to matrix equations for cλi . The
localized orbitals are often taken to be Gaussian ones of the form:

(x−Rix)
n1(y −Riy)

n2(z −Riz)
n3e−ai(r−Ri)

2

,

where n1, n2 and n3 are integers. If these are all zero they correspond to s-orbitals of spherical
symmetry. Orbitals of p-symmetry correspond to one of these integers being unity and the
others zero, whereas five d-like and one s-like orbital can be generated if

∑
i ni = 2.

The advantage with Gaussian orbitals is that the many integrals required can be evaluated
analytically but their disadvantages are that they quickly become ‘over-complete’, and unlike
Slater orbitals they do not individually approximate solutions to the Kohn-Sham equations.
The over-completeness is exemplified by the singular nature of the overlap matrix when two
orbitals with similar exponents are sited too close together. The basis functions are real and
hence all matrix elements are real as well as the coefficients cλi . We can therefore drop complex
conjugates from the equations.

The density for each spin is then given in terms of the density matrix, bij,s,

ns(r) =
∑
ij

bij,sφi(r−Ri)φj(r−Rj),

bij,s =
∑
λ

δ(s, sλ)c
λ
i c
λ
j . (18)

The sum is over occupied orbitals λ with spin s. The charge density n(r) can be written:

n(r) =
∑
s

ns(r) =
∑
ij

bijφi(r−Ri)φj(r−Rj),

bij =
∑
s

bij,s.

Let us now consider the various terms in the LSDF expression for the energy E in Eq. (14)
when this basis of localized orbitals is used. The kinetic energy and pseudopotential terms
involve integrals of the form:

Tij = −1

2

∫
φi(r−Ri)∇2φj(r−Rj)dr

V ps
ij =

∫
φi(r−Ri)

∑
a

V ps
a (r−Ra)φj(r−Rj)dr,

which are easily found. The evaluation of the Hartree energy requires O(N4) integrals, where
N is the number of basis functions, which is prohibitively large for a cluster where N might
be 1000 or more. Many of these integrals are negligible, particularly those associated with
basis functions with fast decay rates. However, many remain. For example, if the smallest
exponent ai is about 0.1 a.u., then the ‘overlap’ of two such orbitals will be non-negligible for
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separations of centers less than about 15 a.u. Thus for Si and diamond, there would be between
100 and 500 atoms in a sphere of this size. This means for most of the clusters considered,
all these integrals need to be evaluated. For this reason it is essential to approximate the
Hartree energy in some way. One way is to carry out a numerical integration over a finely
meshed grid (Pederson et al., 1991; Chen et al., 1995). However, unless the mesh is chosen
very carefully the resulting matrix elements of the Hartree and exchange-correlation potentials
will not transform correctly under the point group operations of the cluster. This will mean
that the eigenfunctions of the Hamiltonian, and the normal-coordinates of vibrational modes,
will not have the correct symmetries, nor the eigenvalues the correct degeneracy. There is then
a great advantage in being able to compute these integrals using an analytic formula which
preserves any point group symmetry.

Usually this is done by introducing an approximate but analytic expression for the Hartree
and exchange-correlation energies from which the corresponding potentials can be easily found.
In addition, it is essential to be able to differentiate them with respect to the positions of the
nuclei so that the forces acting on each atom can also be found analytically. These approximate
expressions are written in terms of an approximate density for each spin ñs which is expanded
in a set of basis functions (Dunlap et al., 1979; Jones and Sayyash, 1986):

ñs(r) =
∑
k

dk,sgk(r), ñ(r) =
∑
s

ñs(r).

We now consider these approximate expressions for the Hartree and exchange-correlation en-
ergies.

1. THE HARTREE ENERGY

The exact Hartree energy is, from Eq. (30),

EH =
1

2

∫ n(r1)n(r2)

|r1 − r2|
dr1dr2,

and is replaced by an approximate value, ẼH , involving an approximate charge density ñ

ẼH =
∫ n(r1)ñ(r2)

|r1 − r2|
dr1dr2 −

1

2

∫ ñ(r1)ñ(r2)

|r1 − r2|
dr1dr2.

The replacement is exact when ñ = n. Now, we expand the density in terms of a basis set gk(r)
so that

ñ(r) =
∑
k

ckgk(r),

and ck is chosen to minimize the error in estimating the Hartree energy:

EH − ẼH =
1

2

∫ {n(r1)− ñ(r1)}{n(r2)− ñ(r2)}
|r1 − r2|

dr1dr2.

Differentiating this with respect to ck to determine the minimum gives:∑
l

Gklcl =
∑
ij

tijkbij . (19)

Here,

tijk =
∫
φi(r1 −Ri)φj(r1 −Rj)gk(r2)

1

|r1 − r2|
dr1dr2,
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Gkl =
∫
gk(r1)gl(r2)

1

|r1 − r2|
dr1dr2.

We notice that ẼH is always bounded above by EH and the quality of the fit can be assessed
by the increase in ẼH when the number of basis functions is increased.

We now consider the choice of gk. The simplest consists of Gaussian functions e−bk(r−Rk)2

defined by a site Rk and an exponent bk. The sites need not correspond to the location of atoms
but can include, for example, bond centers. All the integrals can be computed analytically which
leads to considerable time saving. However, for clusters of less than about 100 atoms, it is the
evaluation of the tijk which is often the most time consuming procedure. The number of basis
functions gk is usually proportional to the number of basis functions φi, i.e. N , and hence
there are O(N3) integrals of the type tijk. These cannot be stored in main memory and must
either be evaluated once and stored on disk or, for very fast processors, be repeatedly evaluated
during each of the self-consistent cycles. There is then an advantage in choosing a set of gk
which leads to a simple analytical form for tijk which can be evaluated very quickly.

This can be done when gk is divided into two sets. The first set has gk defined by:

gk = {1− 2bk
3

(r−Rk)
2}e−bk(r−Rk)2

. (20)

These functions give a potential of Gaussian form:∫ gk(r1)

|r− r1|
dr1 =

3bk
2π

e−bk(r−Rk)2

,

and thus integrals in tijk involve a product of three Gaussian functions and can be evaluated
very quickly. Also, many of these are now zero, as all three Gaussians must overlap to give
a non-zero value. However, in order to get the short–ranged Gaussian potential and to avoid
the long-ranged coulomb potential, the integral of gk must vanish. It is readily verified that
this indeed happens for the functions in Eq. (20). It is therefore necessary to select additional
functions gk which are purely Gaussian and whose integrals do contribute to the total number
of electrons. It is, however, sometimes possible to choose the coefficients of these as fixed
quantities related to the anticipated total charge on the atom or ion. Thus their contribution
to the Hamiltonian does not change during the self-consistent cycle and they behave in the
same way as the external potential of the nuclei. This leads to a considerable speed up in the
code.

2. THE EXCHANGE-CORRELATION ENERGY

In the same way the exact expression for this energy,

Exc =
∫
εxc(n↑, n↓)ndr,

is replaced by an approximate one Ẽxc involving an approximate density, ñs.

Ẽxc =
∫
εxc(ñ↑, ñ↓)ñdr. (21)

Clearly the error we make is negligible if ñs is close to ns. The first step then is to fit ns to a
set of functions. It is possible to choose the same gk(r) as was used in the construction of ẼH .
However, the least squares procedure used there minimizes the electrostatic energy of the error
in the charge density, i.e. n − ñ, and it does not mean that at each value of r, n(r) and ñ(r)
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are almost equal. Moreover, the choice of gk was selected to reflect the difficulty of working
out the integrals tijk. Hence, in dealing with Ẽxc it is better to use a sum of simple Gaussian
functions hk so that:

ñs(r) =
∑
k

dk,shk(r), (22)

where dk,s is found from minimizing ∫
{ns(r)− ñs(r)}2dr.

Differentiating this with respect to the coefficients dk,s leads to the equations:∑
l

Hkldl,s =
∑
ij

uijkbij,s, (23)

where,

Hkl =
∫
hk(r)hl(r)dr, (24)

uijk =
∫
φi(r−Ri)φj(r−Rj)hk(r)dr. (25)

We note that the integrals are the same for each spin-index s and that uijk are simply propor-
tional to tijk if gk is chosen as in Eq. (20) above. This saves a considerable amount of computer
time.

We consider first the non-polarized or spin-averaged case where we can dispense with the
spin label and write:

Ẽxc =
∑
k

dk

∫
hk(r)εxc(ñ)dr.

If hk is chosen to be a positive definite localized function such as a Gaussian, then each integral
is proportional to the average value of the exchange-correlation density under hk,

〈εxc(ñ)〉k.

We next note from Fig. 1 that εxc(n) varies slowly with n and hence we expect

〈εxc(ñ)〉k ≈ εxc(〈ñ〉k),

〈ñ〉k =

∑
l dl

∫
hkhldr

Ik
, (26)

where Ik is simply the integral of hk. This approximation is tantamount to replacing the
exact exchange-correlation density at r by its homogeneous electron gas value for the average
density 〈ñ〉k. We can improve on this approximation as follows. Now, as discussed in II.4, the
exchange-correlation density behaves with high accuracy as a power series in n,

εxc(n) = Ans

with s = 0.30917. Let us now consider the function f(s) where

f(s) = ln
(〈ñs〉k
〈ñ〉sk

)
.
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Clearly for s = 0 or 1, f(s) is 0, while for s = 2, f(s) must be a positive quantity. Since we are
interested in values of s around 0.3, we can approximate f(s) by

f(s) = s(s− 1)f(2)/2.

The right hand side of this equation is found from the second moment of ñ, ie,

〈ñ2〉k =

∑
lm dldm

∫
hkhlhmdr

Ik
. (27)

These integrals can all be evaluated analytically. We have finally:

Ẽxc =
∑
k

dkεk, (28)

where,

εk = Ikεxc(〈ñ〉k)efk ,

fk =
1

2
s(s− 1)ln

(〈ñ2〉k
〈ñ〉k2

)
.

This theory has been extended to the spin-polarized case (Lister and Jones, 1988). The
spin-polarized exchange-correlation energy is written as in Eq. (13),

Exc(n↑, n↓) =
∑
i,s

Ai

∫
npi+1
s nqi1−sdr,

and we replace ns on right hand side by ñs obtaining:

Ẽxc =
∑
ks

dk,sεk,s, (29)

where,

εk,s =
∑
i

AiIk〈ñpis ñqi1−s〉k.

Now, we define the quantity f by:

〈ñpsñq1−s〉k = 〈ñs〉pk〈ñ1−s〉qkef(p,q)

f(p, q) = ln
( 〈ñpsñq1−s〉k
〈ñs〉pk〈ñ1−s〉qk

)
.

We now approximate f by the formula:

f(p, q) =
1

2
p(p− 1)f(2, 0) +

1

2
q(q − 1)f(0, 2) + pqf(1, 1),

which interpolates f between the known integer values. In this way the spin-polarized exchange-
correlation energy is evaluated.

22



3. MATRIX FORMULATION

In terms of the approximate Hartree and exchange-correlation energies, the total energy can
now be written:

E =
∑
ij

{Tij + V ps
ij }bij + ẼH + Ẽxc + Ei−i, (30)

where,

bij =
∑
λ

cλi c
λ
j

ẼH =
1

2

∑
kl

ckclGkl

Ẽxc =
∑
ks

dk,sεk,s,

and Ei−i is given by (8). The fitting coefficients ck and dk,s are defined in terms of bij,s by Eqs.
(19) and (23).

E is minimized subject to an orthonormal set of wavefunctions, i.e.∑
cλi c

µ
j Sij = δλµ,

where the overlap matrix S, is defined by:

Sij =
∫
φi(r−Ri)φj(r−Rj)dr. (31)

This can be done by introducing Lagrange undetermined multipliers, Eλ, so that we minimize
without constraint, ∑

ijλ

cλi {Tij + V ps
ij − EλSij}cλj + ẼH + Ẽxc + Ei−i, (32)

with respect to cλi . Now, this introduces the matrix elements of the Hartree and exchange-
correlation potentials through:

∂ẼH
∂cλi

=
∑
j

V H
ij c

λ
j , V H

ij =
∑
kl

Gklcl
∂ck
∂bij

∂Ẽxc
∂cλi

=
∑
j

V xc
ij,sλ

cλj , V xc
ij,s =

∑
k

{εk,s +
∑
l

dl,s
∂εl,s
∂dk,s

}∂dk,s
∂bij,s

From Eqs. (19) and (23), we find:

∑
l

Gkl
∂cl
∂bij

= tijk

∑
l

Hkl
∂dl,s
∂bij,s

= uijk.

Differentiating Eq. (32) with respect to cλi we get the Kohn-Sham equations:∑
j

{Tij + V ps
ij + V H

ij + V xc
ij,sλ
− EλSij}cλj = 0. (33)
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We note that the total number of electrons M and the spin S are given by:

M =
∑
ijs

Sijbij,s, (34)

S =
∑
ij

Sij(bij,↑ − bij,↓).

We can now write Eq. (33) more compactly in matrix form. Eq. (33) is written in terms of
two generalized eigenvalue problems, one for each spin, as:∑

j

(Hij −ESij)cj = 0,

or in matrix notation as:

(H −ES)c = 0.

For the cluster sizes and values of the exponents of the basis sets typically used, the matrices
H and S are not sufficiently sparse to warrant special numerical techniques and consequently
the overlap matrix S is written in terms of an upper triangular matrix using a Choleski decom-
position:

S = U tU.

U and its inverse can be evaluated in O(N3) operations. We then define a vector d by Uc = d,
and the generalized eigenvalue problem is converted into the usual one:

{(U−1)tHU−1 −E}d = 0

The eigenvalues of this can be found by a standard Householder scheme which first reduces
the matrix to tridiagonal form from which the eigenvalues can be found. As the number of
occupied states is much smaller than the dimension of the Hamiltonian, the eigenvectors are
best found by inverse iteration.

All these matrix operations can be carried out on a parallel computer (Briddon, 1996) using
the PBLAS and SCALAPACK libraries which provide routines to carry out all the required
operations, provided the matrices are correctly distributed between nodes. In fact the matrices
are divided up into square blocks, and these are allocated to different nodes in a specified
manner. In this way efficient parallel code is easily written. The time dominant step for large
clusters is the computation of the eigenvalues and eigenvectors which scales as N3 for the dense
matrices found in practice.

V. Self-consistency and atomic forces

1. SELF-CONSISTENCY

Self-consistency is the situation obtained after a successful solution of the Kohn–Sham equations
when the charge density that would be produced by the Kohn–Sham orbitals gives rise to the
same potential as was used in the equation that determined them. In short, it is the process
by which charge is distributed around the cluster minimizing its energy for a fixed structure.
The self-consistency cycle is initiated by choosing sets of charge density coefficients ck and dk,s
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taken from either neutral atoms, or a previous run. The Kohn-Sham equations given in Eq.
(33) are then solved and the density matrix bij,s found. Eqs. (19) and (23) are then used to
determine the output charge density coefficients, cok, d

o
k,s. The next step consists of selecting a

new input charge density c′k, defined in terms of cok and ck. This is done by using a weighted
combination as in:

c′k = ck + w(cok − ck).
The same weighting is used to define the new spin density coefficients d′k,s. If the process of
generating the output charge density is denoted by the (non-linear) operation

cok = Lk(c),

where we have written c to stand for the vector ck, then

co′k = Lk(c
′) = Lk(c+ w(co − c)).

Now, provided w is small enough, we can linearize this equation to get

co′k = Lk(c) + w
∑
l

Dkl(c
o
l − cl)

= cok + w
∑
l

Dkl(c
o
l − cl).

The condition for self-consistency is that the input and output charge densities are equal, i.e.

co′k = c′k,

or
ck + w(cok − ck) = cok + w

∑
l

Dkl(c
o
l − cl).

Hence

(w−1 − 1)(ck − cok) =
∑
l

Dkl(c
o
l − cl). (35)

The right hand side can be determined by choosing a small value of w, say w1, and the output
charge density co1k then found. This gives

co1k = cok + w1

∑
l

Dkl(c
o
l − cl).

Hence, ∑
l

Dkl(c
o
l − cl) = (co1k − cok)/w1.

Inserting this into Eq. (35) gives us an equation for w which is solved by a least squares
procedure. We denote the difference between the sides of this equation as:

ek = (1− w)(ck − cok)/w − (co1k − cok)/w1,

and choose w by minimizing the electrostatic energy of the ‘charge density’ ek defined by∑
k ekgk(r). Thus the energy defined by:

1

2

∑
kl

ekGklel,
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is made as small as possible. It is possible to generalize this procedure so that the predicted
charge density is built up from several previous iterates clk, i.e.

c′k =
∑
l

{clk + wl(c
o
lk − clk)}.

In practice, the self-consistency cycle converges exponentially quickly, taking between four
to ten iterations with the difference in the input and output Hartree energies typically becoming
less than 10−5 a.u. Convergence is particularly rapid when there is a gap between the highest
filled and lowest empty level but problems can arise when this gap is very small or vanishes.
These are often related to an attempted crossing of an occupied and unoccupied energy level
whereupon the charge density changes discontinuously. This can be avoided by ‘smearing
out’ the occupation of levels by using Fermi statistics. Thus we suppose that the level Eλ
is occupied by fλ electrons. This means that the energy to be be minimized now includes an
entropy term as well as a term constraining the total number of electrons to M :

F = E + kBT
∑
λ

{fλlnfλ + (1− fλ)ln(1− fλ)} − µ{
∑
λ

fλ −M}. (36)

Here the sum is now over all orbitals λ. Minimizing the free energy F with respect to fλ and
µ gives

fλ =
1

e(Eλ−µ)/kBT + 1
,

and ∑
λ

fλ = M.

Eq. (18) must also be generalized to

bij,s =
∑
λ

δ(s, sλ)fλc
λ
i c
λ
j .

In practice, kBT is taken to be about 0.04 eV. Often, where we have two energy levels
separated by 0.1eV that ‘cross’ in the approach to self-consistency, this will remove the discon-
tinuous change, but when self-consistency is achieved, provided the final splitting is more than
0.04 eV one state is found to be fully occupied and the other empty. In this sense, we are using
variable filling purely as a computational tool and are not attempting to simulate materials at
finite temperatures.

It is worth pointing out here that incorrect use of Fermi statistics can lead to incorrect
structures. This occurs when a Jahn-Teller effect operates, as for example for a substitutional
Ni− impurity in Si (Jones et al., 1995b). Here, the gap contains t↑↓2 levels with the upper
one containing two electrons. The system distorts leading to a lowering of symmetry and a
splitting of the t2 levels into a1, b1 and b2. The occupied levels will be displaced downwards and
the unoccupied level upwards, leading to a lowering in the energy, provided the strain energy
arising from the distortion is less than the lowering in the occupied level. Fermi statistics,
however, result in an equal occupation of the levels and the driving force for the distortion
vanishes. This can be overcome by, for example, occupying the b1 and b2 levels throughout the
self-consistency cycle, even though the unoccupied a1 level might lie below one or both of the
occupied levels during part of the cycle. Such an approach is found to successfully model the
defect.

There are other troublesome cases where even the use of Fermi statistics is unable to give a
self-consistent solution. Often this means that the starting structure is physically unreasonable
but the problem disappears once partial structural relaxation has occurred.
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2. EVALUATION OF FORCES

Once the self-consistent charge density has been found, then the force acting on each atom can
be evaluated. It is essential to determine the forces accurately in order to relax the cluster and
calculate its vibrational modes. The force on an atom a, in direction l, is given by:

fla = − ∂F

∂Rla
= − ∂E

∂Rla
.

This can be evaluated by considering the change to each term in the energy in Eq. (32) when
Rla is displaced by ∆Rla. Thus

∆E =
∑
ij

bij∆{Tij + V ps
ij }+

∑
ij

{Tij + V ps
ij }∆bij + ∆ẼH + ∆Ẽxc + ∆Ei−i

∆ẼH =
∑
kl

ckGkl∆cl +
1

2

∑
kl

ckcl∆Gkl

∆Ẽxc =
∑
k,s

εk,s∆dk,s +
∑
k,s

dk,s∆εk,s.

∆ck can be evaluated from Eq. (19):∑
l

Gkl∆cl =
∑
ij

{tijk∆bij + bij∆tijk} −
∑
l

cl∆Gkl.

In the same way ∆dk,s can be evaluated from Eq. (23):∑
l

Hkl∆dl,s =
∑
ij

{uijk∆bij,s + bij,s∆uijk} −
∑
l

dl,s∆Hkl.

Now, if we gather together the terms in ∆bij and ∆bij,s we get,∑
ij

{Tij + V ps
ij + V H

ij }∆bij +
∑
ijs

V xc
ij,s∆bij,s.

From the Kohn-Sham Eq. (33) this equals
∑
ijλEλSij∆c

λ
i c
λ
j , which can be written as:∑

λ

Eλ∆{
∑
ij

cλi c
λ
jSij} −

∑
ijλ

Eλc
λ
i c
λ
j∆Sij .

The first term on the right hand side vanishes as Eqs. (18) and (34) show that the expression in
braces is the total number of electrons M which is constant. Thus the force does not contain any
derivatives in the wavefunction coefficients – as required by the Hellmann-Feynman theorem
(Slater, 1960).

The term ∆εk,s contains ∆〈ñs〉k and ∆〈ñ2
s〉k. These can be found from Eqs. (26) and (27):

∆〈ñs〉k =
1

Ik

∑
l

{Hkl∆dl,s + dl,s∆Hkl}

∆〈ñ2
s〉k =

1

Ik

∑
lm

{2uklmdl,s∆dm,s + dl,sdm,s∆uklm}.

Terms involving the matrix elements Tij and Sij depend on Rla only through the basis
functions φi(r−Ra), but the pseudopotential term has an additional dependence arising from
V ps
a (r−Ra). This can be evaluated by integrating by parts:∫

φi(r−Ri)∆V
ps
a (r−Ra)φj(r−Rj)dr = −

∫
{φj(r−Rj)∆φi(r−Ri) +

φi(r−Ri)∆φj(r−Rj)}V ps
a (r−Ra)dr.

Despite the complexity of the equations, the time taken to evaluate the forces is small in
comparison with that taken to determine the self-consistent energy.
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VI. Structural Optimization

1. UNCONSTRAINED RELAXATION

Usually the positions of atoms in the starting cluster do not correspond to the equilibrium
ones. The first step then is to determine the energy and forces acting on them but once this
has been achieved, it is necessary to consider efficient algorithms that allow the equilibrium
sites to be found. The optimization strategy that is often used is a conjugate gradient one
(Press et al., 1987). This requires only the forces to be known at any stage. The atoms are
moved to a new set of positions whose energy is lower than that of the previous set. Suppose
in some configuration the forces acting on atom a are f ′la in direction l. Then the atoms are
moved along a conjugate direction d′la so that the new atomic position is

R′la = Rla + wd′la.

Here w is chosen so that the free energy F in Eq. (36), is least. This is usually accomplished
by quadratic or cubic interpolation. The directions d′la are related to the forces fla through

d′la = f ′la − xdla,

where dla is the previous search direction where the force was fla.
The value of x is just:

x =

∑
la f
′
la(f

′
la − fla)∑

la f
2
la

,

and is set to zero initially.
The efficiency of the optimization strategy depends on the number of constraints. For an

atom strongly bonded to at least three others in a non-planar configuration, relaxation is very
fast as the atom is over-constrained. Thus we find about 10 iterations are required to relax the
inner atoms of a tetrahedrally bonded cluster reducing the forces on each atom to less than
0.001 a.u. On the other hand, if the atoms have low coordination, then the structure is more
floppy and the number of relaxations required is much greater. This can happen if the surface H
atoms are allowed to move. In such cases, the movement of the H atoms sets up an elastic wave
in the bulk whose reflections repeatedly affect the surface. This can be overcome by attaching
springs to the H atoms simulating the outer crystal. The choice of spring constants is, however,
somewhat arbitrary.

Other problems occur with clusters of water molecules where weak hydrogen bonds co-exist
with strong covalent intramolecular O-H bonds. In this case, the choice of a single quantity w
may not be the best strategy and it would be desirable to include information on the derivatives
of the forces.

The most serious problem with the optimization strategy is that it finds a local minimum
in the energy. There may be – and often are – other lower minima separated by barriers from
the one found. The only way to reach these with the static relaxation method described here
is to start the calculation from different structures but even then there can be no guarantee
that the global minimum has been found. The global minimum, of course, may not really be of
any physical interest. For example, the global minimum for a vacancy or dislocation in silicon
corresponds to the defects lying on the surface of the cluster.

2. CONSTRAINED RELAXATION

For some purposes it is important to relax the cluster with constraints, as for example, in
determining the saddle point for defect migration or reorientation. At the saddle point, there
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is at least one direction along which the energy falls when the atoms are displaced along it,
while along other directions the energy rises. A commonly used procedure for finding the
saddle point would be to average the atomic coordinates corresponding to the beginning and
end points of the migration path and then to calculate the Hessian or energy second derivatives
at this point. If the structure is close to the saddle point, the Hessian matrix has at least one
negative eigenvalue. The eigenvector corresponding to this eigenvalue gives a direction, dla,
in which the energy decreases. The cluster is then relaxed so that the displaced coordinates,
∆Rla, lie orthogonal to this direction, i.e.,∑

la

dla∆Rla = 0.

The saddle point is then located by moving along the direction dla so that the energy increases
to a maximum. However, this procedure is not a practical one because of the time taken to
evaluate the Hessian. Clearly, some constraints must be imposed on the coordinates otherwise
the conjugate gradient algorithm would push the coordinates away from the saddle point. To
deal with this problem, it is important to select a few variables for which the energy varies
rapidly. These include the bond lengths nearest to the defect core. For example, in oxygen
migration they would include the Si-O and Si-Si lengths nearest the defect. The relevant
variables are held fixed while the remainder are allowed to vary, minimizing the energy. If
variables that are not relevant are selected, for example the position of an atom outside the
defect core or some angle, then the structure could slide from one configuration into the other,
rapidly passing the barrier, which often manifests itself as a cusp. Again, it is important to be
able to calculate the forces on all the atoms allowing for the constraint. The procedure that
we have found successful is as follows.

Suppose that an atom a is hopping from one site to another during which one bond a − b
is broken and the bond a − c is created. Then the constraint used involves the relative bond
lengths, |Ra −Rb| and |Ra −Rc|, and the cluster is relaxed maintaining this constraint. For
technical reasons, the actual constraint used is:

x = (Ra −Rb)
2 − (Ra −Rc)

2 = constant. (37)

This provides a linear equation for one of the Cartesian components, say l, of the ‘central’ atom
a which can be solved for any value of x.

Rla =
2
∑
k 6=l(Rkb −Rkc)Rka +

∑
k(R

2
kb −R2

kc)− x
2(Rlb −Rlc)

. (38)

Now, if the atoms are moved in any way, the change to the energy is

∆E = −
∑
m,d

fmd∆Rmd. (39)

Now,
(Rc −Rb).∆Ra = (Ra −Rb).∆Rb − (Ra −Rc).∆Rc,

and hence the term in ∆Rla in Eq. (39) can be written in terms of ∆Rka, k 6= l, ∆Rb and ∆Rc

and hence be eliminated from the expression for ∆E. This modifies the forces on the atoms
a, for k 6= l as well as the atoms b and c, but these changes can now be easily found. The
value of l is selected to give the greatest value of the denominator in Eq. (38). The analysis
can be generalized to deal with several constraints simultaneously and the method has proved
successful in dealing with a number of problems where bonds are switched between different
configurations.
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VII. Determination of vibrational modes

1. ENERGY SECOND DERIVATIVES AND MUSGRAVE POPLE POTEN-
TIALS

The vibrational modes of clusters can be found from the dynamical matrix Ela,mb as described in
II 1. This is related to the second derivative of the energy with respect to displacements of the
atom a at Ra, along the Cartesian direction l and atom b at Rb along direction m. The cluster is
first relaxed so that the forces on all the atoms, or those around the defect, are essentially zero.
Then the atom a is displaced by ε ( ≈ 0.025 a.u.) along the l axis. The electrons will attempt to
‘follow’ this displacement so that that the self-consistent charge density will be different from
that in the equilibrium configuration. This new self-consistent charge density must then be
found. When this has been done, the forces on all the atoms of the cluster are evaluated and
these will no longer be zero because of the change in charge density and structure. Suppose
the force f+

mb(l, a) acts on the atom b in direction m. This adiabatic force includes the effect of
the screening charge density seeking to oppose the change caused by moving the atom a. The
whole process is now repeated by moving the atom a by -ε along the same direction l producing
forces f−mb(l, a). The energy second derivative is then, up to second order in ε,

Dla,mb = (f+
mb(l, a)− f−mb(l, a))/2ε.

It is important to realize that these are not infinitesimal derivatives. They include contributions
from all even powers of ε and the frequencies that they give rise to contain anharmonic contri-
butions. For this reason, the latter are sometimes called quasi-harmonic frequencies (Jones et
al., 1994b).

Only some of the entries of the dynamical matrix of a large cluster can be found in this way.
This is because it is a very time consuming procedure to evaluate the second derivatives and
those for atoms near the surface are irrelevant for the frequencies of vibration for bulk solids.
The next step is to fit the calculated derivatives to those arising from a valence force potential.
The potential can then be used to generate the dynamical matrix for any type of cluster or
unit cell composed of the same elements and bonding configuration.

One could choose many types of potential but one that is particularly useful is due to
Musgrave and Pople (1962). This includes all possible bond length and bond angle distortions
up to second order. The potential for atom a is:

Va = 1/4
∑
b

k(a)
r (∆rab)

2 + r2
0/2

∑
b>c

k
(a)
θ (∆θbac)

2 + r0

∑
c>b

k
(a)
rθ (∆rab + ∆rac)∆θbac

+
∑
c>b

k(a)
rr ∆rab∆rac + r2

0

∑
d>c>b

k
(a)
θθ ∆θbac∆θcad.

Here ∆rab and ∆θbac are the changes in the length of the a − b bond and angle between the
a− b and a− c bonds, respectively. The sums are over the nearest neighbor atoms of atom a.
The Musgrave-Pople potential is superior to a Keating potential, for example, since it includes
correlations between bond stretch and bend.

This potential can be used to derive phonon dispersion curves for the bulk solid. This has
been done in a number of cases such as diamond (Jones, 1988), Si (Jones, 1987), Ge (Berg
Rasmussen et al., 1994), GaAs (Jones and Öberg, 1991a), AlAs (Jones and Öberg, 1994a), InP
(Ewels et al., 1996a) and quartz (Purton et al., 1992). The potential usually gives the highest
frequencies accurate to a few wave-numbers, although it cannot account for the splitting of the
longitudinal and transverse optic modes due to a long range Coulomb field. The worst errors
occur at low frequencies where the assumption that forces beyond second shell atoms are zero
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is inadequate. Moreover, the elastic constants derived from the potential are in poor agreement
with experiment. Nevertheless, their main use is in describing the local modes of defects and
the disagreement arising at low frequencies is not important.

Let us now consider how the local and resonant modes of a defect are calculated. The second
derivatives of the cluster containing the defect are found in the same way as described above.
These derivatives are usually evaluated between the defect atoms and their nearest neighbors.
Other entries in the dynamical matrix are then found from the Musgrave-Pople potential. The
normal modes and their frequencies are then found by direct diagonalization of the dynamical
matrix with the masses of the terminating H atoms set to infinity.

This procedure works well for frequencies well away from the one phonon spectrum. Usually
infra-red absorption spectroscopy is only able to detect local modes and for such problems this
method is satisfactory. However, there are cases where it is the resonant modes that are of
interest as, for example, nitrogen related defects in diamond. We shall discuss their evaluation
below. Usually, the number of modes calculated for a defect exceeds the number observed.
The remaining ones are not detected for a number of reasons. They might fall into a part of
the spectrum where there is strong absorption arising from an overtone or combination band
from the bulk or substrate; their life-times might be very short due to anharmonic interactions
and this implies a very broad spectrum as, for example, the highest modes of the interstitial
carbon dimer, Ci-Cs, in Si (Jones et al., 1995a; Leary et al., 1996) or finally the defect may
possess a very small transition dipole moment. It is this last issue that can be addressed with
the method.

2. THE EFFECTIVE CHARGES

Leigh and Szigeti (1967) give the integrated intensity of absorption due to a defect as

2π2ρ

ncM ′
η2.

Here η is the effective charge, c is the velocity of light, n the refractive index of the material,
M ′ and ρ are the mass and concentration of the impurity respectively. η2 is given by the sum
over any degenerate modes of

M ′
(
∂Mx

∂Qi

)2

, (40)

where Mx is the dipole moment in the direction of the polarization of the electromagnetic
field. Qi is the normal coordinate of the mode i. That is, the displacement of each atom is
Qiu

i
la/
√
Ma. The induced dipole can be evaluated from the changes in the dipole moment of

the cluster,

M =
∑
a

ZaRa −
∫

rn(r)dr,

when the atoms are subjected to this displacement.
There are several points to note here. The effective charge depends on the mode and its

displacement pattern. It can be very different for different modes of the same defect. This
is illustrated by the H wag mode of the passivated C acceptor in GaAs (Jones and Öberg,
1991a). Although the effective charge for the stretch mode is almost unity (Kozuch et al.,
1990), that of the wag mode is almost zero as it was originally undetected by infra-red absorption
measurements but had been observed by Raman scattering (Wagner et al., 1995).

The effective charge in general depends on the polarization of the electrical field and the
orientation of the defect. If thermal equilibrium prevails leading to defects assuming all possible
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orientations which have degenerate energies, then η2 must be averaged over these orientations.
The important case of a defect with C3v symmetry in cubic crystals has been considered by
Clerjaud and Côte (1992) who showed that the average effective charges are given by:

η2
A1

=
M ′

3

∑
l

( ∂Ml

∂QA1

)2
,

for the A1 non-degenerate mode and

η2
E =

2M ′

3

∑
l

( ∂Ml

∂QE

)2
,

for the two-fold degenerate E-mode. These effective charges are independent of the direction
of the polarization of light. The assumption of equal numbers of point defects in different
orientations related by symmetry is not always valid, even in the absence of stress, as for
example the case of single passivated substitutional C dimer in GaAs. Here, the defects form
during growth on the surface and are frozen in during cooling. The CAs-Ga-CAs unit is oriented
along only one of the two possible 〈110〉 orientations for a (001) growth plane (Cheng et al.,
1994; Davidson et al., 1994).

The effective charge is independent of the mass M ′ in only simple cases such as a H stretch
and wag mode. For in these cases, essentially only the H atom is undergoing a displacement
and the derivative of Mx(Rla +Qiu

i
la/
√
Ma) scales as 1/

√
M ′. In this case η is the same for H

as for D and the integrated intensity is then a factor two smaller for D than for H. Of course,
this argument neglects anharmonic effects which are more important for H.

3. RESONANT MODES

A Green function method has been developed to analyze these modes. The Green function
for the bulk crystal can be evaluated directly from the dynamical matrix constructed from the
Musgrave-Pople potential. If the atoms in the unit cell are located at Rτa then the Green
function for a vector k in the Brillouin zone is given by:

G0
lτa,mτb

(k) =
∑
i

uilτa(k)uimτb(k)

ω2 − ω2
i (k)

.

We can find the crystal Green function in real space between atoms a and b related to basis
atoms by

Ra = Rτa + RL, Rb = Rτb + RM

G0
la,mb =

1

Ω

∑
k

eik.(RL−RM )G0
lτa,mτb

(k).

The Green function in the presence of a defect, whose contribution to the dynamical matrix
differs by Vla,mb, is:

Gla,mb = G0
la,mb +

∑
nc,pd

G0
la,ncVnc,pdGpd,mb.

This equation can be readily solved for a point defect since the elements of Vla,mb are taken
to be zero for either a or b outside the second shell of neighbors surrounding the defect. The
density of phonon states projected onto an atom a is then found from the trace of the imaginary
part of this Green function i.e.,

−2ω

π
=.
∑
l

Gla,la.
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In this way the contribution of the resonance to the local density of states is found. However,
the infra-red absorption is controlled by the induced dipole moment, and it is better to evaluate
this assuming reasonable values of the charge distributed over atoms of the defect. If the charge
qa is located on atom a, then the induced dipole is

Ml = −2ω

π
=.
∑
a

qaGla,la.

This procedure has been used to discuss the absorption of resonant modes due to complex
N defects in diamond (Jones et al., 1992b). In this case, 27000 points in the Brillouin zone
were used to construct G0.

VIII. Practical considerations

1. CHOICE OF BASIS SETS

There are two different basis sets used in the method. The first is a basis used to describe the
wavefunctions. This is invariably a set of Gaussian functions defined by an exponent ai and
sited on an atom or at the center of a bond or some other location,Ri. As described in IV.1, this
Gaussian is multiplied by a polynomial in x−Rxi, y −Ryi, z −Rzi. For spherically symmetric
s-functions, the polynomial is trivially unity. For p-orbitals, the three possible polynomials are
x−Rxi, y−Ryi or z−Rzi. For d orbitals, all 6 polynomials of degree 2 are used, which generates
a linear combination of five d- and one s-orbitals. The code also includes f -orbitals generated
by polynomials of degree 3. The complete basis is then a linear superposition of these orbitals
for different exponents ai and centers Ri.

The use of bond centered orbitals seems unique to the AIMPRO code. They serve a useful
function of representing the pseudo-wavefunction in the region where it is often large. They
make it unnecessary to use atom centered d-orbitals for Si, Ge and GaAs. They are particularly
important in dealing with some impurities like oxygen in silicon where the strong strain effects
on atoms distant from the impurity make it necessary to use a basis which gives as accurate as
possible elastic constants for the host. For other materials, as for example diamond, relaxation
effects are often very small and bond centered orbitals have very little effect. Although the
location of the bond centers is often kept fixed at a specified point (e.g. the mid–point) of
a bond, it is possible to allow them to relax or float with the atoms of the cluster until the
minimum energy is found. This has not been commonly used since they often move close to
atoms leading to instabilities.

The optimum exponents ai, i = 1, 2...m, for a particular atom can be found by minimizing
the energy of the pseudoatom as a function of ai. This procedure also generates the coefficients
of the wavefunction: cλi , i = 1, 2, ...,m for each valence state λ. For example, it generates
a set of coefficients for an s-orbital and a set for the three p-orbitals. When an application
is made to a large cluster, the same fixed linear combination of the Gaussian orbitals with
different exponents can then be used. This gives a basis of 4 orbitals for each Si atom for
example and 10 for a transition element like Ni. Such a basis is called a minimum one. In
many applications, the minimum atomic basis is used for atoms far away from the core. For
other atoms, the coefficients which multiply the Gaussian orbitals are treated as variational
parameters as described in IV.

A second basis is used to expand the charge density. This again is a set of Gaussian functions,
or modified Gaussian functions as described in IV, defined by an exponent bk and center Rfk.
Again, the centers Rfk can be chosen to lie at nuclei, bond-centers or other locations. The
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optimum basis consists of exponents and sites which maximize the estimated Hartree energy
ẼH as described in IV.1.

It is always desirable to locate the Gaussian orbitals at a symmetrical site or the set of
sites generated by symmetry, since otherwise the energy levels, vibrational modes etc., will not
possess the required degeneracy. It is expedient to define the basis in terms of N −M X which
means that a basis of N Gaussian s, p or d orbitals are placed at the location of each atom
of type X to describe the wavefunctions, while a basis of M Gaussian s-functions are used to
describe the charge density. In addition the sites treated in terms of a minimal basis set need
to be defined as well as any orbitals and fitting functions placed at bond centers. A minimal
basis is often placed on the surface H atoms.

One basis set which has been of occasional use is an icosahedral set of ‘bond centers’ sited
close to an atom. This has an advantage that the d and f degeneracy of an atom is not
compromised but in general the point group symmetry of a defect will be lost.

The basis size has a significant effect on calculated properties: with structures being least
sensitive and energies and wavefunctions being most sensitive. It is not possible to converge
total energies with the same degree of rigor as is occasionally obtained in plane-wave treatments.
This is because simply increasing the number of exponents used to describe the basis eventually
results in a numerical instability for the Choleski decomposition of the overlap matrix. However,
in practice it is energy differences that are important as, for example, between a H atom at a
bond centered and tetrahedral interstitial site. In this case the dependence of the total energy
difference can be easily checked.

2. THE CONSTRUCTION OF A SUITABLE CLUSTER

In dealing with defects within semiconductors, H terminated clusters have invariably been used.
These saturate the dangling bonds at the surface of the cluster leading to widely separated filled
and empty surface states for ‘bulk’ clusters, i.e. clusters comprised with the same stoichiometry
and atomic arrangement as the bulk semiconductor. If the surface H bond lengths are close to
their equilibrium values, the band gaps are much greater than those of the bulk solids, with
the exception of diamond. Values for representative clusters are given in Table 2. These were
calculated for tetrahedral clusters with an 8-8 basis on the inner 5 atoms and a minimal basis
on all the others. Two bond centered Gaussian basis functions with different exponents were
sited on all the bond centers between host atoms.

These gaps are much larger than those found using density functional theory in supercells
which are in turn smaller than experimental gaps. The cluster band gaps vary only slightly
with the basis size but become smaller if longer H bonds are allowed. It is not advisable to
use long H bonds as this imposes a strain on inner bonds around defects and this can certainly
modify their structure, seriously perturbing the local vibrational modes. The band gap also
decreases slowly with cluster size.

Despite the large band gaps, some information on the position of energy levels can be
obtained. There are two common ways of ‘correcting’ the band gap to make allowance for the
difference with experiment. The first is to simply scale defect levels by the band gap. Clearly
this is simply pushing both valence and conduction band states closer together. The second
is to use a ‘scissors’ operator. This is added to the Hamiltonian and displaces the unoccupied
states of the ‘perfect’ cluster upwards by V . The scissor operator is

∆(r, r′) = V
∑
λ′
ψλ′(r)ψλ′(r

′),

where the sum is over unoccupied levels. It can also be expressed in terms of the occupied
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Table 2: Lowest Kohn-Sham level, E1, highest occupied level Ev, calculated band gap Eg and
experimental gap for various clusters in eV.

Cluster Size E1 Ev Eg Exptal. gap
Diamond 71 C35H36 -23.42 -6.09 5.01 5.5

131 C71H60 -23.69 -5.36 5.92
297 C181H116 -24.17 -4.70 5.37

Silicon 71 Si35H36 -16.31 -6.48 3.82 1.17
131 Si71H60 -16.77 -6.41 3.13
297 Si181H116 -16.91 -5.96 2.51

Germanium 71 Ge35H36 -16.70 -6.12 3.53 0.75
131 Ge71H60 -16.92 -5.93 2.70
297 Ge181H116 -17.25 -5.58 2.14

Gallium Arsenide 71 (Ga19As16H36)3− -10.91 0.31 2.95 1.42
131 (Ga31As40H60)9+ -34.92 -22.59 2.27
297 (Ga89As92H116)3+ -22.76 -10.10 1.92
71 (As19Ga16H36)3+ -24.92 -13.13 2.83
131 (As31Ga40H60)9− -1.47 10.16 2.64
297 (As89Ga92H116)3− -14.24 -1.752 2.09

states and, for the spin-averaged case,

∆(r, r′) = V
∑
ij

(δi,j − bij)φi(r−Ri)φj(r
′ −Rj).

V is chosen to give the correct band gap. This is then applied to a cluster containing a defect.
Few calculations have been carried out using this method.

Energy differences between different defect states can be found using the Slater transition
method (Slater, 1960). Here, the difference in total energies of the configurations where an
electron is promoted from the λ to the µ orbital is found from the eigenvalues of the configuration
corresponding to half of the promoted electron being placed in each orbital. Then the total
energy difference is accurately given by Eµ −Eλ. This differs from the zero-phonon line of the
optical transition by the relaxation energy of the defect. This method has been used to treat
optical transitions for vacancy impurity complexes in diamond (Goss et al., 1996a).

The size of the cluster used varies with the application and for point defects at least one,
and usually two shells of host atoms surround the defect. In the compound semiconductors
such as GaAs, one can choose between stoichiometric clusters which contain as many Ga as As
atoms and are chemically neutral, or others possessing a greater number of As than Ga atoms
for example. In both cases, for clusters representing bulk material it is important to occupy
them with M electrons where M is twice the number of covalent bonds. This results in all the
bonding states being filled and the anti-bonding ones being empty. Again there is a large gap
between the two. Such a procedure results in bond lengths close to experimental values. If
the cluster is not stoichiometric then this procedure necessarily leads to charged clusters. This
arises as the number of protons is determined by the numbers of As, Ga and terminating H
atoms but it is the topology that determines the number of electrons and clearly for four-fold
coordinated atoms, the number of electrons is exactly the same as if the cluster was made from
Si atoms and terminated by H. The charged clusters do not appear to cause serious problems.
It is especially desirable to use charged non-stoichiometric clusters when the defect has a high
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symmetry and consequently has degenerate energy levels or vibrational modes, e.g. a C atom
substituting for As in AlAs. A disadvantage with charged clusters is that the energy levels are
shifted up for negative and down for positively charged clusters and the position of a defect level
with respect to a band edge becomes more difficult to assess. For this reason a stoichiometric
cluster is to be preferred. However, this is not free from difficulty as then the cluster has more
As atoms in its upper half than Al ones, for example, and leads to a dipole moment. This has
an effect on the bond lengths parallel and perpendicular to this direction. For example, an
86 atom stoichiometric cluster, Al22As22H42, has C3v symmetry and is centered on the middle
of an Al-As bond. It has a dipole moment along the C3 axis leading to Al-As bond length of
2.476 Å compared with 2.428 Å for the other six bonds (Jones and Öberg, 1994a). These are
all within 2% of the experimental value of 2.43 Å.

3. MULLIKEN POPULATIONS

In many cases it is important to understand the nature of gap states and the hybridization state
they refer to. For example, in the Ci defect in Si, the gap states are localized on p-orbitals on
the C and Si atom sharing a lattice site (Leary et al., 1996). The simplest way of determining
the character of a state is to plot its wavefunction. However, the use of pseudopotentials implies
that the amplitude is invariably small near a nucleus. It is not then easy to deduce which atoms
gap states arise from. One way which gives some information is to evaluate the Mulliken bond
populations mλ

i . These are defined from the integral of the square of the wavefunction. Eqs.
(17) and (31) show: ∑

s

∫
ψ2
λ(r, s)dr =

∑
ij

cλi c
λ
jSij =

∑
i

mλ
i

where
mλ
i = cλi

∑
j

Sijc
λ
j .

If the state is localized on an atom a, then cλi and hence mλ
i will be large for basis functions

i localized there. One problem is that mλ
i can be large and negative because the phases of

Gaussian orbitals with different exponents, but centered on atom a, are rarely the same.

4. RADIATIVE LIFETIMES

For complicated defects, as for example Ni in diamond, there are many gap levels whereas only
one or two optical transitions related to the defect have been observed. There is then a problem
in assigning the transition. The calculated radiative lifetimes of the various transitions can be
very different and the most intense transition will be associated with the smallest lifetime. It
is then necessary to calculate this quantity.

The rate of electrical dipole transitions between two states λ and µ can be found using the
expression (Svelto, 1976):

1

τλµ
=

4nω3

3c3h̄

e2

4πεo
|rλµ|2, (41)

where
rλµ =

∑
s

∫
ψλ(r, s)rψµ(r, s)dr,

is the dipole matrix element, n the refractive index, e the electron charge, c the speed of light
and ω the transition frequency. Estimates of the radiative lifetime are sensitive to the transition
energy and spatial extent of the wavefunction. We shall describe an application to the Si-V
center in diamond in the next section.
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IX. Applications

1. GENERAL

Many applications of the formalism have been made to molecules as well as point, line and
surface defects in large clusters simulating bulk material. Investigations into molecular entities
such as fullerenes (Estreicher et al., 1992; Eggen et al., 1996), water dimers and octamers
(Heggie et al., 1996b) and surface problems associated with the growth of CVD diamond
(Latham et al., 1994) will not be reviewed here. We shall instead emphasize some of the
applications to point and line defects in bulk solids that have brought about a deeper insight
into the properties of the defect.

2. POINT DEFECTS IN BULK SOLIDS

a) Diamond

Nitrogen is one of the most important impurities in diamond occurring in concentrations as
large as 1020 cm−3 (Evans et al., 1981). It readily complexes with itself and with other im-
purities and intrinsic defects and the resulting complexes are often important optical centers.
The high solubility of N is attributed to the low misfit energy of inserting an N atom with N-C
bond lengths of 1.47 Å into the diamond lattice where the C-C bonds are 1.54 Å. The neu-
tral substitutional defect exhibits trigonal symmetry as convincingly demonstrated by electron
paramagnetic resonance, EPR, (Smith et al., 1959; Cook et al., 1966). In type Ib or synthetic
diamonds, Ns is present as an isolated defect, but in annealed synthetic diamonds, the nitrogen
aggregates to give complexes with more than one N atom. These complexes are also found in
the great majority of natural (type Ia) diamonds. It is a long standing problem to elucidate
the final fate of N aggregation in diamond when it is annealed for long periods. The ab initio
calculations have helped to clarify the properties of many of these nitrogen complexes.

The substitutional defect was investigated by Briddon et al., (1991) and led to an explana-
tion of the ‘anomalous’ vibrational mode associated with the defect. This local mode at 1344
cm−1 was observed (Collins et al., 1982) in an infra-red absorption study on type Ib diamonds
and its intensity correlated with the EPR signal due to Ns suggesting that it is associated with
the vibrations of Ns. Surprisingly, however, the mode does not shift with 15N doping. The
cluster calculation revealed that for the neutral substitutional defect, not only N was displaced
from a lattice site along [111] by 0.2 Å, but also the neighboring C atom was displaced along
[1̄1̄1̄] by the same amount thus leading to back C-C bonds about 5% shorter than the normal
C-C bonds. This was independently found by plane wave pseudopotential calculations (Kaji-
hara et al., 1991). There are two gap-levels of a1 symmetry: a bonding state between N and
the unique C atom and an anti-bonding state containing one electron. The presence of two
a1 levels is consistent with stress studies on the 4.059 eV optical center associated with Ns

(Koppitz et al., 1986; Vaz et al., 1987). The absence of degenerate levels for the metastable Td
defect suggests that the mechanism for the off-site distortion is a chemical rebonding one rather
than a Jahn-Teller distortion (Bachelet et al., 1981). The vibrational modes of the defect were
found from the Green function method discussed in VII 3. This gave three bands centered
at 1320, 1122 and 1032 cm−1 in good agreement with observed ones at 1344, 1130 and 1080
cm−1 (Collins et al., 1982). The highest mode was localized on the unique C atom and its
C neighbors and does not shift with a change in the N isotope. This explains the anomalous
mode. The N related modes fell below the Raman frequency at 1332 cm−1. It is not surprising
with hindsight to understand the character of the C related mode arising from the sp2 bonding
of the unique C atom. Recently, the reorientation energy of the defect has also been calculated

37



(Breuer and Briddon, 1996) and found to be 0.7 eV — the same as that observed experimentally
by Ammerlaan and Burgemeister (1981).

The Ns defect is not stable during prolonged annealing at high temperatures and aggregates
firstly into A centers, which are Ns dimers (Davies, 1976) and secondly into B centers which
are believed to be vacancies surrounded by four N atoms (Loubser and Van Wyk, 1981). The
calculated (Jones et al., 1992b) vibrational modes of the defects are in reasonable agreement
with observation giving further support to the assignments. Furthermore, they give a clue as
to why N atoms should aggregate. The highest filled level in the A center is around mid-gap
which is considerably lower than that of the Ns donor. Thus the driving force for aggregation
is the lowering of the one-electron energy. It is an insight such as this which makes the theory
so useful. The B defect also has deep mid-gap states which should make it optically active and
this has prompted investigations into vacancies and vacancy-impurity defects which are also
known to be very important optical centers in diamond.

Vacancies and interstitials were investigated by Breuer and Briddon (1995) who confirmed
the importance of many-body effects and the need to determine the energies of different mul-
tiplets. The theory found that V− was a spin 3/2 defect, in agreement with experiment, and
the calculated optical transition energy agreed well with the observed value. However, the Von
Barth procedure, discussed in section 5, yields too few equations to find the multiplets for the
neutral vacancy and hence the theory is unable to describe this important case. In many cases,
vacancies will complex with impurities and a recent study of N-V and Si-V centers (Goss et al.,
1996a) concluded that they possess very different structures. Whereas the N-V defect has C3v

symmetry, Si-V possesses D3d symmetry where the Si atom sits mid-way between two adjacent
vacancies. This finding explains the surprising optical properties of the defect. The dangling
bonds on each of the two sets of three C atoms nearest Si form a1- and e-states. The two sets
of e-states combine to form bonding and anti-bonding e-levels around mid-gap, the highest of
which is occupied by two electrons. Now, in synthetic or type Ib diamonds, the higher e-level
traps an additional electron from N donors leading to a 2E ground state. An internal optical
transition can then take place with an electron promoted from the lower e-level. This 2E →
2E transition leads to four close-by luminescence lines if the e-levels are split by a Jahn-Teller
effect, or possibly a spin-orbit interaction. The presence of three isotopes of Si causes a slight
shift in the zero-point energy and leads to the appearance of a remarkable twelve line spectrum
(Clark et al., 1995). The computed radiative lifetime of 3 ns is in very good agreement with
the experimental values around 1-4 ns (Sternschulte et al., 1994). This example shows the
method is able to explain very simply a complicated optical spectrum which would otherwise
be difficult to understand.

b) Silicon

A great deal of effort has been devoted to understanding the properties of the light impuri-
ties: H, B, C, O and N in silicon, and especially their vibrational frequencies as local mode
spectroscopy has been such a valuable experimental tool. Calculations have been made for
the various substitutional defects: VHn (Bech Nielsen et al., 1995), Bs, Cs (Jones and Öberg,
1992d), VOn (Ewels et al., 1995), Ns (Jones et al., 1994c) with substantial agreement obtained
with experimental results for the local vibrational modes in each case. In addition, interstitial
defects such as H (Jones, 1991b), Ci (Jones et al., 1995a; Leary et al., 1996), Oi (Jones et al.,
1992c), and Ni (Jones et al., 1994c), and complexes of these have also been investigated.

One example is the Ci-Oi defect which turned out to have very surprising structure. The
C interstitial on its own takes the form of a [100] oriented split-interstitial as shown in Fig. 3
(Watkins, 1964; Zheng et al., 1994). Two of the C-Si bonds along [011] are 1.8 Å long and pull
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Figure 3: The Ci defect.

in the Si neighbors lying there. This leaves the Si-Si bonds along this direction extended and
hence are favorable sites for attack by oxygen (Trombetta and Watkins, 1987). The calculation
(Jones and Öberg, 1992a) shows that O does not lie at a bond center site within these dilated
bonds but rather moves towards the Si radical shown in Fig. 3. The reason for this is the
electronegativity of C exceeds Si rendering the Si radical positively charged. This in turn
attracts the O atom so that its becomes over-coordinated leading to rather long Si-O bonds.
The three Si-O bonds are by no means equal in strength. A consequence is that the O-related
vibrational mode lies well below that of interstitial and even substitutional oxygen. The same
process occurs for interstitial N. But now the state arising from the dangling bond on the Si3
atom is occupied. This has led to a remarkable finding (Ewels et al., 1996b): the O atom, being
negatively charged, squeezes itself into dilated Si-Si bonds adjacent to N and pushes up the
donor level due to Si3. For Ni-O2, the level is displaced almost to the conduction band. This
defect might explain the occurrence of shallow thermal donors which arise when Czochralski
Si, containing N, is annealed to 650◦C (Suezawa et al., 1986).

This ‘wonderbra’ mechanism of deep to shallow level conversion is not unique to N. A
shallow donor level also arises when a C-H unit replaces N. Of course, this begs the question as
to whether an interstitial C-H defect with this structure is stable at these temperatures. But
this unit is known to be a constituent of the T-center, which is stable to 600◦C (Minaev and
Mudryi, 1981). This photoluminescent center has an emission band at 0.9351 eV and a rich
spectrum of local mode satellites. The isotope shifts of these local modes with 13C and D have
recently been calculated and agree very well with the observed ones (Safonov et al., 1996). The
defect has a gap level, occupied by a single electron and it would be interesting to know if this
level is displaced upwards becoming a shallow donor if O atoms cluster around this defect.

The N interstitial referred to above is not the dominant N defect in Si. This consists of a
close-by pair of [100] split-interstitials. The evidence comes partly from channeling experiments
showing that each N atom is displaced about 1 Å from lattice sites; partly from infra-red
spectroscopy showing that the N atoms are equivalent and the high frequencies are due to an
interstitial complex; and partly from the theoretical modeling (Jones et al., 1994c). The model
refutes earlier suggestions that nitrogen forms molecules within silicon. A complex of the N
pair with oxygen yielding an electrically inactive NNO defect has also been investigated both
experimentally and theoretically (Jones et al., 1994d; Berg Rasmussen et al., 1995).
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c) Compound semiconductors

The cluster calculations were the first to describe and detail the structure and modes of H
passivated Si donors and Be acceptors in GaAs (Briddon and Jones, 1990). Subsequent studies
of trigonal C-H complexes in GaAs have been particularly fruitful. The local modes of the defect
(Jones and Öberg, 1991a) exhibit several unusual properties. The E−-mode, which involves
a movement of H perpendicular to the C3 axis, and out of phase with C, was placed around
715 cm−1. The C related A1 and E+ modes, which involve motion of H in phase with C in
respective directions parallel and perpendicular to the C-H bond, were calculated to lie at 413
and 380 cm−1 respectively. Infra-red spectroscopy on GaAs containing high concentrations of C
and H grown by molecular beam epitaxy and chemical vapor deposition methods located modes
at 453 (X) and 563 cm−1 (Y) (Woodhouse et al., 1991). Both were subsequently shown to be
due to the C-H defect as they exhibited shifts with C and H isotopes. A Raman scattering
experiment (Wagner et al., 1991) assigned the 453 cm−1 mode to C-A1. Y is now believed
to be the E+ mode (Davidson et al., 1993). The E− mode was not observed in these early
experiments. However, in deuterated samples, the E− mode was detected at 637 cm−1. This
must imply that the unobserved E− mode in the H samples lies above 637 cm−1 and a simple
force constant model (Davidson et al., 1993) predicted it to lie at 745.2 cm−1. The failure of
the early infra-red experiments to locate the H-E− mode was explained by the ab initio cluster
theory as the consequence of a small transition dipole moment. Very recently this mode has
been detected at 739 cm−1 by Raman scattering experiments (Wagner et al., 1995). Similar
calculations have been carried out for C in AlAs (Jones and Öberg, 1994a). The effect of
anharmonicity on the stretch mode has also been investigated (Jones, et al., 1994b) .

It is possible to grow heavily C doped GaAs by chemical beam epitaxy using CBr4 as a
doping source so that the films are free of hydrogen. C is a very electronegative element and
naturally favors an As site. The calculations (Jones and Öberg, 1994a) show a large build up
of charge around C and there is no evidence that C can occupy Ga or Al sites and behave as
a donor. However, when C-rich samples are annealed at 850◦C, there is a loss of C from As
sites together with a reduction in the hole density. It was first suggested by Jones and Öberg
(1994e), and independently by Cheong and Chang (1994), that rather than CGa defects being
formed, a [100] oriented C-C dimer located at an As site, and which acts as a single donor,
could be created. Thus for every pair of C atoms lost from As sites, there would be a loss of
three holes. The computed stretch frequency of the C-C dimer in GaAs is 1799 cm−1 and is
Raman but not infra-red active. Recently, two dimers have been detected by Raman scattering
(Wagner et al., 1996) with modes at 1742 and 1858 cm−1 in the annealed material. The hole
density is about 10% of its pre-annealed value, 2.5 ×1020 cm−3, but the concentration of CAs

dropped to 30% of its pre-annealed value, also about 2.5 ×1020 cm−3. Hence some donors or
hole traps must have been introduced by the annealing. If only (C-C)As dimers were introduced
by the annealing, then we would require their concentration to be 5×1019 cm−3 to account for
the carrier density, but that would result in about 8×1019 cm−3 of carbon unaccounted for.
Presumably this forms the second type of dimer which possibly lies at an interstitial Td site
and acts as a single acceptor.

Other types of dimers are present in epitaxially deposited material containing H. A pair
of substitutional C atoms at neighboring As sites traps H or H2 with modes slightly shifted
from those of CAs-H. An unexpected finding is that the dimers are preferentially oriented along
one of the two [011] directions perpendicular to the (100) growth surface probably because of
kinetic reasons (Cheng et al., 1993; Davidson et al., 1994). Recent calculations (Goss et al.,
1996b) confirm that H lies at a site accounting for the observed polarization in the C2-H defect
but in the case of C2-H2 the theory predicts one mode polarized along [011] and another – the
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Figure 4: The reconstructed 90◦ dislocation and double kink in silicon. Vertical axis is [011̄],
horizontal axis is [2̄11].

higher mode – along [01̄1]. This has not yet been observed.
The C-H defect is unusual in possessing a resonant electron trap which has profound conse-

quences for the dissociation of the defect. The calculated activation energy for dissociation is
about 1 eV lower in the presence of minority carriers which can be trapped in the resonant level
(Breuer et al., 1996). This calculation anticipated experimental results (Fushimi and Wada,
1996) confirming this reduction in the activation energy.

3. LINE DEFECTS

In addition to the work carried out on point defects there has been a considerable attempt to
understand the structure and kinetics of dislocations in group IV and III-V semiconductors. In
these materials dislocations are dissociated into partials separated by a stacking fault. Com-
monly occurring partials are 90◦ and 30◦ ones. The cluster theory was the first ab initio one to
reveal that 90◦ degree partial dislocations in Si (Heggie et al., 1991) and GaAs (Öberg et al.,
1995) are reconstructed as shown in Fig. 4. The reconstruction leads to electrical inactivity of
the line and is to be contrasted with earlier models of deep states arising from a line of dangling
bonds. Intriguingly, impurities like P and N have a pronounced effect on the reconstruction in
Si and actually break it (Heggie et al.,, 1993; Sitch et al.,, 1994). This effect might explain the
very strong locking effect of these impurities – especially N – which has important technological
implications.

An important question concerns the mobility of dislocations as this controls their rate of
growth and ultimately their density in the crystal. This is especially important as dislocations
bind point defects like vacancies and interstitials as well as impurities, all of which possess
deep gap levels which can greatly affect the electronic and optical properties of the material.
Now, it is believed that dislocations propagate by creating double kinks as shown in Fig. 4
which then expand under the influence of stress leading to motion of the dislocation. The
energetics of this process can be followed by embedding the dislocation in a cluster. The kink
formation energy was found (Öberg et al., 1995) to be a very small value in these materials:
about 0.1 eV, whereas the activation energy necessary to break the reconstructed bonds was
considerable. The total activation energy for dislocation motion was found to be 1.9 eV in
Si and 1.4 and 0.8 eV for β- and α-partials respectively in GaAs. These energies are in fair
agreement with observations: 2.1 eV in Si, (Imai and Sumino, 1983) and 1.24 -1.57 eV for β-,
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and 0.89-1.3 eV for α-partials in GaAs (Matsui and Yokoyama, 1986; Yonenaga and Sumino,
1989). Moreover, these activation energies are sensitive to the Fermi-level. This arises because
during the transition to the saddle point structure, a level moves from close to the band edge to
become deep in the gap. Clearly, then the activation energy will depend on whether this level
is occupied or not. In this way the pronounced reduction in the activation energy for β partials
in p-type material, and α partials in n-type material, can be explained. A similar effect occurs
for SiC and has led to predictions of the effect of doping on dislocations in that material (Sitch
et al., 1995).

X. Summary

The cluster theory that we have described has led to significant advances in understanding
defects in bulk solids, atomic processes in molecules and interaction effects of hydrogen on
diamond surfaces. The method is a straightforward application of local density functional
theory, with a localized basis, to large clusters. It is remarkably stable with bonding patterns
quite insensitive to cluster size and has been remarkable for the accuracy of the predicted local
and resonant vibrational modes. It is perhaps this aspect that has caught the greatest attention
of experimental groups, several of whom have sought help in the understanding of defects of
interest to themselves. In many cases, this collaboration has been very successful and the
theory has built upon experimental findings to elucidate the detailed geometry of a defect or a
key ingredient in an atomic process.

The future advances in computing power — especially the development of cheaper parallel
processor machines — will enable clusters as large as 1000 atoms to be routinely relaxed and
investigated. This will pave the way for an exploration of the structure of larger clusters and
extended defects, such as interstitial aggregates. However, this will take the theory into areas
where few experiments can probe the microstructure and the results described in outline here
must provide the underlying confidence in any predictions that emerge.
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Sci. Forum 196-201, 933.
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Jones, R., Leary, P., Öberg, S., and Torres, V. J. T. (1995a). Mat. Sci. Forum 196-201, 785.
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