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Abstract. We investigated several proposals utilizing the unique electronic properties of car-
bon nanotubes (CNTs) for a broad range of applications to THz optoelectronics, including THz
generation by Cerenkov-type emitters based on carbon nanotubes and by hot electrons in quasi-
metallic nanotubes, frequency multiplication in chiral-nanotube-based superlattices controlled
by a transverse electric field, and THz radiation detection and emission by armchair nanotubes
in a strong magnetic field. Dispersion equations of the electron beam instability and the thresh-
old conditions of the stimulated emission have been derived and analyzed, demonstrating re-
alizability of the nanotube-based nanoFEL at realistic parameters of nanotubes and electronic
beams.
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1 INTRODUCTION

Creating a compact reliable source of terahertz (THz) radiation is one of the most challeng-
ing problems in contemporary applied physics [1]. This great interest in the THz frequency
range is fueled by the fact that THz frequencies characterize different important physical pro-
cesses (rotation of small molecules, collective vibration modes of proteins, absorption in polar
liquids, typical superconducting energy gaps, oscillations in gaseous and solid-state plasmas,
etc). Reliable THz devices are required for air pollution monitoring, poison gas sensing, DNA
manipulation, gene diagnostics, and other applications. Despite the fact that THz technology is
at the boundaries of microwave and photonic technology, it is quite underdeveloped compared
with the achievements in microwave or photonics. There are very few commercially available
instruments for the THz frequency region and very often they lack the precision required for per-
forming accurate measurements. There are also no miniaturized and low-cost THz sources. One
of the latest trends is to use single-wall carbon nanotubes (SWNTs) — cylindrical molecules
with nanometer diameter and micrometer length [2—4] — as building blocks of novel THz de-
vices [5-7]. In this paper we summarize and discuss several schemes to utilize the physical
properties of carbon nanotubes (CNTs) for generation and detection of THz radiation.
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2 CARBON NANOTUBES AS CERENKOV-TYPE TERAHERTZ EMITTERS

Recently, the idea using the kinetic energy of CNT-guided electron beam for stimulated emis-
sion of electromagnetic waves in optical and terahertz ranges has been proposed [8—13]. In this
section we present a consistent theory of the effect. There is a wide family of devices utilizing
the interaction of electron beams with electromagnetic waves to produce electromagnetic radia-
tion. Started by the invention of klystrons [14], this family embraces such well-known systems
as traveling wave tubes (TWT) and backward wave oscillators (BWO) [15], free electron lasers
(FEL) [16-19], etc. In such systems, synchronous motion of electrons and electromagnetic
wave modulates the electron beam and coherent radiation is produced by electron bunches. The
radiation frequency is smoothly tunable due to its dependence on the electron beam energy.
Therefore, such types of emitters can operate in a wide spectral range from microwave and in-
frared frequencies to vacuum ultraviolet (e.g., VUV-FEL at DESY). Several projects aimed at
lasing in hard X-ray range have started [20,21].The synchronization of moving electrons and
electromagnetic wave is attained either by slowing down the electromagnetic wave (Cerenkov,
Smith-Purcell [22] and quasi-Cerenkov [23] radiation mechanisms) or by applying an external
magnetic f eld, which is uniform in gyrotrons [24,25] and spatially periodical in undulators [18].
The oscillator-type mechanism [26] can be also realized for electrons with discrete spectrum of
transverse motion (for example, for electron channeling in crystals).

The Cerenkov radiation is governed by the synchronization condition w — ku = 0, where
k is the wavevector and u is the charged particle (electron) velocity. In systems with external
felds the synchronism condition is transformed to w — ku — Q = 0, with Q2 being the electron
oscillation frequency. In the oscillator regime, € is the transition frequency between electron
levels [27]. To achieve coherent generation in the devices described, a high vacuum must be
maintained in the region of the electron beam [28]. Otherwise, collisions of electrons with
atoms move electrons out of the synchronism and, consequently, lasing is not reached. From this
point of view CNTs are unique objects since they exhibit ballistic electrical conduction at room
temperature, with mean free paths of the order of microns and even tens of microns [29-31].
Therefore, electrons can emit coherently from the whole CNT length which is typically 1-10
pm. In addition, single- and multi-wall carbon nanotubes can carry a high current density of
the order of 10° — 10'% A/ecm?, see e.g. Refs. [32-34]. Lastly, metallic CNTs exhibit a strong
slowing down of surface electromagnetic waves (as large as 50-100 times) [35,36]. Thus, a
combination of three CNT key properties:

(1) ballisticity of the electron flow over typical CNT length,

(i) extremely high current-carrying capacity and

(iii) strong slowing down of surface electromagnetic waves,
makes them suitable candidates for the development of nano-sized Chernekov-type emitters —
nano-TWT, nano-BWO and nano-FEL.

2.1 Self—consistent equation of motion for electromagnetic wave and electron
beam

Nanotubes — quasi-one-dimensional carbon macromolecules — are obtained by rolling a graphene
layer into a cylinder. The transformation can be performed in different manners classif ed by
the dual index (n1,n2). The two integers n; and no represent the vector characterizing the
different ways of rolling, with n; = 0 for zigzag CNTs, ny = ng for armchair CNTs, and
0 < ni # neo for chiral CNTs. A nanotube can manifest either metallic or semiconductor
properties, depending on its radius R, and how it is rolled. This correlation arises from the
transverse quantization of charge carrier motion and is due to the quasi-one-dimensional topol-
ogy of CNTs [4,37].

Consider an electron beam moving in an isolated single-wall carbon nanotube oriented along
the z-axis. The electron beam can be injected into the nanotube from the outside by an external
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source or they can be produced by applying voltage to some section of the nanotube. Acceler-
ated by the voltage, electrons are injected into the working region. Independently on the origin
of electrons, their motion in this region is assumed to be ballistic.

As was mentioned above, there is a certain analogy between a CNT guiding electron beam
and macroscopic vacuum electron devices. The main (and obvious) distinction is the small
cross-sectional radius of CNTs compared to their macroscopic analogs. In CNTs the spatial
quantization of the electron motion comes into play and, therefore, classical models for electron
beam become inapplicable. The electron motion in CNTs is governed by quantum-mechanical
equations. In this paper we shall consider the lasing effect when the generated feld is rather
large, i.e. the condition

B> %(%)2 )

is fulfilled [38]. Further, from this place to the section 4, we set 4 = 1. In the case (1) the
electromagnetic wave has a classical character and is described by the classical wave equation:
Amiw

VV - E(r,w) — AE(r,w) = =2 j(r,w). 2

If condition (1) does not hold, the number of photons per quantum level becomes too small to
apply a classical approach and the electromagnetic f eld must be considered within the quantum
electrodynamics. Quantum-electrodynamical considerations are important in the initial stage
of instability development, when a few photons participate in the process. We leave this stage
for further analysis focusing on the stage of highly developed instability. Thus, in our model
the electron motion is governed by the Schrédinger equation while the electromagnetic field is
described by classical Maxwell equations. In the right-hand part of the feld equation (2) the
quantity j(r,w) is the current density averaged over the quantum states of the electron beam.
The current density in the working region is defined by the well-known equation [39]:

. € * ~ Ak
J(I‘, t) = om {1/) (I‘, t)Pw(Ta t) - (p"/} (I‘, t))¢(ra t)}
o) A ®
— r r .
mec b b
Here p = —ihd/(0r) is the momentum operator and A(r,t) is the vector potential of the

electromagnetic field, ¢ (r, t) is electron wave function. In what follows we neglect the Fermi
law for the electron statistics. This is possible because the number of excited electrons per
quantum level is found to be small, even at superior current densities reachable in CNTs [32—
34]. Indeed, the number of levels in the interaction volume V is estimated as ~ Vp?/(27h)3,
where p is a typical value of the quasi-momentum of electrons in the beam. The number of
electrons in this volume is ~ n.V, where n,. is the electron density. Then, the number of
excited electrons per level is given by 7. = (27h)3n./p®. At a current density of 10% to 10'°
A/cm? and an excitation energy of the order of several electronvolts, we find . ~ 1075 —1073.
Therefore, the exchange interaction between electrons in the beam can be neglected.

Let ¢(r,t = 0) = 1, (r) be the eigenfunction of an electron not interacting with the elec-
tromagnetic wave and moving along the CNT. When the interaction is switched on the wave-
function is represented by the expansion

G(r,t) = a(t) exp(—iet)ii(r) )

l

over a complete set of the unperturbed eigenfunctions v (r) with corresponding energy eigen-
values ¢;. For further convenience, we rewrite the coefficients a;(t) as a;(t) = i, + 5al(n> (1),
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where d;,, is the Kronecker symbol. The corrections & af") (t) are due to the electron—electromag-
netic field interaction. Taking into account axial periodicity of the nanotube potential, the wave-
functions ¢;(r) can be written in accordance with Bloch theorem as

Pi(r) = exp {ipiz} Z bir exp {iTz} g (r1). ®)

T

Here p; is the axial projection of the quasi-momentum of /-th state, b;, are constant coefficients,
T = 27q/a are the reciprocal lattice constants, a is the CNT spatial period in the axial direction,
u(ry ) are functions dependent only on transverse coordinates and ¢ are integers. The term
S by exp{iTz} wir(r ) is periodic in the z direction.

-

In the linear approximation, the contribution to the electron current originating from the
electron—electromagnetic field interaction is described by the equation:

Bia(r,t) = 5= > {da"" () expliles — £a)t][w7 (1) (x) — (Vi ())in ()]
€
+ 0af" (1) expl—i(er — ) (1)U (x) — (B (1) ()]}
- njech/)n\zA(l‘af)- (6)

Then, applying the standard perturbation—theory technique [39] we obtain the equation describ-
ing the dynamics of the coefficients da;(t):

; Z 86al(n)(t) e

Twl (r) exp(—iert) = — 2mec

x [A(r,t)p + PA(r,t)] ¥n(r) exp(—icnt), (7

which is obtained by substituting Eq. (4) into the Schrodinger equation and its subsequent lin-
earization with respect to the electromagnetic field strength. The Fourier transform of Eq. (7)

gives
(n) — € A _ ) ~
da; " (w) Smoc { (r,w +e—en)D
+pA (r,w +e — 5n) [n) . 8)

Here we use the standard bra- and ket- notation for the wavefunctions and matrix elements, |I) =
i (r). Only those terms are preserved in Eq. (8) which correspond to the resonant interaction
between electrons and electromagnetic field. The contribution of the last term in (6) is therefore
neglected in Eq. (8). Performing the Fourier transform of Eq. (6) along the axial coordinate and
time, we come to the k, w—space interaction—induced current density correction:

e2

6j71(k711L700) = - j{: lgnl(k% rJ,aoJ)

4m?2c
€'t

X {_ by bnr (Ul (Br +7) 4+ (Bn + 7) ufp] tnr
w+er(pn — k) — en(pn)

—+

b:’LTblT/ [u:lT (f)n + T) + (f)n + T) ’U’:LT} Ulr } (9)

&7+'5n(pn) _'El(pn,+'k)
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For convenience, we have introduced the vector form for the lattice constant 7: 7 = Te,,
where e, is the unit axial vector. The quasi-momentum operator entering the matrix elements
is given by p,, = {PL,pn}, Where the axial components p,, are C-numbers and transverse
components P are operators. These operators act only on the right-adjacent functions. Deriv-
ing Eq. (9), we neglected the longitudinal component k of the electromagnetic wave vector in
the matrix elements since hk/p, < 1. Summation over the lattice constants 7 and 7’ is not
independent: for every 7 in sum, the value of 7/ must be such that the values p,, + 7 — 7’ are in
the frst Brillouin zone. The coeff cients B,,;(k, r | ,w) are given by

Bu(k,r1,w) =Y birbsy (tnr [(Pn + 7) Ak, T, w)

+A(k, vy, w) (Pn + 7)|ur) -

Then by substituting Eq. (9) into Eq. (2) we come to a self—consistent field equation necessary
for the further analysis.

2.2 Dispersion equation for electromagnetic wave coupled with electron beam

The electromagnetic response properties of an isolated single-wall CNT were studied in Ref.
35 on the base of a tight-binding microscopic model of the CNT conductivity and the effective
boundary conditions for an electromagnetic field imposed on the CNT surface. A detailed anal-
ysis of the eigenwave problem has revealed that there are strongly slowed down surface waves
propagating in CNTS leading to the concept of nanotubes as surface-wave nanowaveguides.
Considering the electron beam as a perturbation, we can use the dispersion equation for the sur-
face waves and the propagation constants obtained in Ref. 35 as a zero—order approximation.
Then, the self-consistent field of the electromagnetic wave coupled with an electron beam can
be presented by the expansion

Ak,r,w) =Y am(k,w)Am(ry), (10)

where the vector potentials A, (r ) correspond to the electromagnetic field eigenfunctions
evaluated in Ref. 35 and o, (k,w) are the coefficients to be found. Substitution of Egs. (10),
(9) and (6) into (2) gives a system of equations for the electromagnetic field interacting with the
electrons occupying the n-th state:

> (K = k) am(k,w) A (ry) = _dm e*ne > Bu(k,ry,w)

m e T

X {_ b;"bn‘r [UTT/ (f’ﬂ + T) + (f)” + T) UTT’] Unr
w1 (Pn — k) — en(pn)

+b:L-rbl7'/ [urrr (ﬁn + T) + (13" + T) u:m'] Ui } . (1 1)

w+ 5n(pn) — &l (pn + k)
Here k,,, are the wavenumbers corresponding to the physical system devoid of the electron
beam. As one can see, in deriving Eq. (11) we have proceeded from the single—electron dy-
namics to the dynamics of the electron beam: n. is the electron density. Multiplying left- and
right-hand parts of Eq. (11) by A’ (r,) and utilizing the wavefunctions’ orthogonality, we
come to the dispersion equation as follows:
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2
w
k== ——— LN |BUYP2
8kmme()2 ;| nl ‘
1 N 1
—w+en(pn) —€1(Pn — k)  wHen(pn) —ei(pn + k)

The upper index in Bf:ln) relates the matrix element with the corresponding mode of the elec-

tromagnetic field A,, (r1); wr, = 2y/men./m. is the Langmuir frequency of the electron
beam. The transcendent dispersion equation (12) predicts the existence of a variety of branches
of wavenumber k. Among them, the number of branches to be accounted for is defined by spe-
cific physical parameters of the analyzed system. In the vicinity of the resonance, only terms
corresponding to the resonant interaction, one or several (in the case of degeneracy), can be
kept in the dispersion equation. If the difference between levels exceeds the linewidth, only the
resonant term is of importance.

. (12)

2.3 Classical and quantum limits in synchronism conditions

The two terms in the right-hand side of Eq. (12) dictate two synchronism conditions corre-
sponding to the resonant interaction between the electron beam and electromagnetic wave:

tw+en(pn) —er(pn £ k) =0. (13)

The plus and minus signs in Eq. (13) correspond to the absorption and the emission of a photon
by an electron, respectively. Depending on the relation between electron and photon energies,
different interaction regimes are realized. As we restrict ourselves to the case when the photon
momentum is much less than the electron one, the electron energy €; (p,, £ k) can be presented
by the truncated Taylor series as

85 l (pn)

ei(pn £ k) zsl(pn)i-kT =ei(pn) £ kv, (14)

where v; is the electron group velocity. Then, the denominators in (12) can be represented by

tw +en(pn) — e1(pn £ k)
2

mi(wfkvliin)+%gT;jk2. (15)
The first term in the right-hand side of this equation is analogous to the standard term w — ku 4
in the synchronism condition [26]. The only difference is that the velocity of the free electrons is
replaced by the group velocity of quasi-electrons, v;, and the undulation frequency is replaced
by the transition frequency, ,,; = €,(pn) — €i1(pn), between the CNT energy bands. The
last term in Eq. (15) originates from the quantum recoil of an electron during the emission
(absorption) of a photon and induces a red (blue) shift in the transition frequency. This term is
inversely proportional to the electron effective mass (second derivative of the energy). Letl = s
be an electron level corresponding to the resonant interaction. Then, within the approximation
stated, the dispersion equation takes the following form:

2 92
25%) (k_a = - Qns)

2
= ko — 2 0w , (16)
2 kQ 625 2
(w—Fkvs)" = | = 23 — Qs
2 Op,
where
b — YL B Re(k,)
s s ) m T m)-
" 8mekl, 2" " i
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In the case of intraband transitions €2,,s = 0 and Eq. (16) takes the form of the dispersion
equation for the instability which takes into account recoil [16].

Depending on the ratio between the radiation linewidth and the recoil-induced detuning, two
different generation regimes are realized. In the low—gain limit [18] the spontaneous emission
linewidth can be estimated as Aw/w ~ ¢/(wL), where L is the interaction length. If the
linewidth exceeds the recoil energy, the recoil term in the denominator of Eq. (16) can be
neglected and the classical interaction regime is realized. The dispersion equation in that case
takes the traditional form of the second—order Cerenkov resonance:

92, b
P2 (w—kvy)?

[y — (17)

The spatial increment of the instability £ = Im(k) can be estimated using the method of
weakly coupled modes [40]. According to this method, the interaction between the electromag-
netic wave and the electron beam is essential only in the vicinity of the point (wo, ko = wo/vs)
where the dispersion curves of the noninteracting modes, w — kv, = 0 and k(w) = k, (w), are
crossed. Then k., is represented by the expansion

Ok (w)

km (w) = ko + oo

(w—wp) - (18)

w=wo

Substituting this expansion and k = ko + Ak into Eq. (17) results in a third—order algebraic
equation with respect to Ak. From this equation, the instability spatial increment is estimated
at the frequency w = wy as

1/3

Vs ; (19)

2

0%, kj

plm)
" 0p 3

AR =

where Ak” = Im(Ak). Since by, ~ ne, the increment is found to be the 3-rd root of the
electron density. Such a dependence is typical for the Compton-type radiative instability [18].

In the opposite case, when the linewidth is less then the difference between the emission
and the absorption frequencies, we fall into the regime of strong quantum recoil impact. In
this case, only the term corresponding to the emission survives in the dispersion equation (12),
which therefore is reduced to

1
k — ky, = b™ . (20)

nn

As a result, the instability increment is given by

1/2

(m)
i ; 1)

n

INGE

i.e., turns out to be proportional to the square root of the electron density.

Next we present a detail discussion of the different generation regimes and give some nu-
merical estimates of physical parameters corresponding to these regimes.
2.4 Boundary conditions for a finite—length nanotube

In Secs. 2.2 and 2.3, dispersion equations have been derived providing us with wavenumber
eigenvalues in an infinite-length CNT guiding an electron beam. As a next step, edge condi-
tions must be imposed upon the system to account for the finite length of the interaction zone.

Journal of Nanophotonics, Vol. 4, 041665 (2010) Page 7

Downloaded from SPIE Digital Library on 07 May 2010 to 138.48.203.174. Terms of Use: http://spiedl.org/terms



These conditions are stated as the requirement for the perturbations of the electron and current
densities, generated by the electron beam — electromagnetic wave interaction, to be zero at the
input of the working zone, i.e.

0ne(z=0)=0dj,(2=0)=0. (22)

The condition that the tangential electric f eld component and the axial component of the mag-
netic field be continuous on the CNT surface yields an additional boundary condition. We write
it in the simplif ed form [41] as

E(z=0)=aF(z=1), (23)

where « is the ref ection coefficient of electromagnetic field from the working zone boundaries.

The field distribution in a finite-length system consisting of several parts can be found by
solving electrodynamical problem in each region separately and then joining the solutions by
means of the boundary conditions. In the interaction region, the electromagnetic field is given
by

N
E(z) ~ Zci exp (ik(i)z) , (24)
i=1

where the summation is performed over all electromagnetic modes in the CNT; the wavenum-
bers k() are determined by the corresponding dispersion equations. Note that the reflection
of the electromagnetic waves from the boundaries back into the working zone creates posi-
tive feedback in the system and thus allows the accumulation of electromagnetic energy and
provides an oscillator regime.

2.5 Starting current at a large quantum recoil

In the quantum interaction regime, when the quantum recoil exceeds the linewidth, the insta-
bility is described by the quadratic dispersion equation (20) with solutions &£(*) and £(®). Con-
sequently, the electric feld and the perturbation of the current density in the working zone are

given by
E ~ ¢ exp(ik(UZ) + co exp(z’k@)z) , (25)
8 ~ %exp(ik(l)z) + g—zexp(ik@)z) : (26)
The coefficients L o
Sro=1-— %k(l,z) +o ng (122 @7

introduce deviations of the wavenumbers k£(*) and k(2 from the synchronism, and the coeffi-
cients ¢; are determined from the boundary conditions as was discussed in Sect. 2.4. Using the
boundary conditions (22) and (23), we arrive at the linear system for ¢; as follows:

c1+c=alc exp(ik(l)L) + co exp(ik(Z)L)} ,

C1 (&) -0 (28)
& by
The nontrivial solution of this system is determined by the equation
511 — aexp(ik™WL)] — 62 [1 — avexp(ik@L)] = 0. (29)
Journal of Nanophotonics, Vol. 4, 041665 (2010) Page 8
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The current density satisfying Eq. (29) is the threshold current density of the generation. To
evaluate this quantity, the characteristic equation (29) must be solved together with Eq. (20).
Substituting the roots

b(’rn)
02 =k o — 30
b - Un(kch - k‘;n) ( )
of' the dispersion equation (20), with k., extracted from the synchronism condition w — kcp vy, +
(k3,/2)0%,,/0p% = 0, into Eq. (29) and solving the resulting equation with respect to the
current density, we obtain

m
bgm) 9 sm2 T

L =1—|a|+ LK, (31)
(%
where 2 o2
k e L
! m n
;= - n + —= — 2
T <w ky,vn + 2 2 > % (32)

is the dimensionless off-synchronism parameter.

Physically, Eq. (31) establishes the energy balance in the working zone. Its left-hand side
determines the radiation production, which is proportional to the electron density n. and to the
squared interaction length. The factor sin? z / 22 determines the so called gain curve — the
gain dependence on the off-synchronism parameter z. In the case considered the gain curve is
symmetrical with respect to x = 0 and is maximal at zero deviation x. Further we compare
this result with the classical case of small recoil and demonstrate a significant difference in the
behavior of gain curves. The term 1 — || in the right-hand side of Eq. (31) corresponds to the
radiation leakage through the boundaries of the interaction zone while the last term specifies the
radiation absorption by the nanotube.

The energy balance equation (31) allows the evaluation of the threshold current density. If
the current density in CNT exceeds the threshold value, the generation process occurs. The
characteristic time of the instability development is inversely proportional to the absolute in-
stability increment w” = Im(w), which is derived by solving the generation equation (29) with
respect to w(k). In the low-gain regime [18], which implies the conditions |Ak”|L < 1 and
1 — a < 1, the increment is given by:

Ok 17t (V) sin®z 1-— |a]
v= = L - — k. 33
Wi |: 8(.0 :| ( Un, LE2 L m ( )

In the linear stage of the radiative instability development, the electromagnetic field grows with
time as exp(w]/,t).

2.6 Starting current in the classical regime of interaction

In the case when quantum recoil can be neglected, the dispersion equation (17) has three roots

2 2
k(l) o k,m _ bnn 8 En k
% (w —vak!))?
2,3) _ (m) Pen K7
k33 = ko j:—\/b T2 (34

and, consequently, the electromagnetic field in the interaction region is given by Eq. (24) with
N = 3. Correspondingly, perturbations of the electron and the current densities in the beam are
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written as

3 3

. Ci . Ci

6.]71 ~ Z ? s 5]71 — UpOne ~ : ;z ) (35)
i=1 i=1

where deviations v; are given by Eq. (27) with the last term omitted, i.e., v; = 1 — kv, /w.
Then, by analogy with the previous section, we obtain the linear system

c1+c+ce3=a [01 cxp(ik(l)L)
+co exp (ik<2)L) + c3 exp(ik(3)L)] ,
C1 Co C3 (36)

—+=+==0,
141 1%} V3

C1 C2 C3
mt st z=0,
vi vy U3

and corresponding generation equation
vi(vg —v3) [1 — aexp(z’k‘(l)L)}
—v3(vy —v3) [1 — aexp(ik(Z)L)}
+v2 (v — ) [1 - aexp(ik(3)L)} =0. 37
We solve this equation in the low gain limit, which is determined by the condition &/ L < 1.
Then, solutions of Eq. (37) (the threshold current and the temporal instability increment)

are given by

b 02, 3 TCOST — sinx

Jnn Gy, : —1- Lk 38
1)721 (C)p% .1?3 |O£| + m ( )
p Ok 17" b 0%, 5 wcosz —sinx

Wl === .

m Ow v2 Op? x3
1—
-] (39)

with the parameter = defined by Eq. (32). As follows from the balance equations (31) and (38),
in the quantum interaction regime the radiation production per unit length is characterized by
the linear dependence on L, while this dependence becomes quadratic in the classical regime.
The gain curves display distinctive behavior in these two cases. In contrast to the quantum
interaction regime, the classical limit yields a gain curve, which is asymmetric [18] due to the
interference of absorption and emission processes separated by a frequency gap narrower than
the linewidth. As a result, the sign of the absolute instability increment depends on the sign of
the synchronism detuning. At positive detuning the system is closer to the absorption frequency
while negative detuning moves the system to the emission frequency. The simplest way to
realize a nanoFEL in a carbon nanotube is to inject a high energy external electron beam. Since
the velocity of free electrons is v(cm/s) = 5.7 x 107,/ (eV), in order to accelerate electrons
up to the velocities required for the synchronism regime (with 50-100 times wave slowing down
predicted in Ref. 35, it is necessary to apply a voltage of ¢ ~ 7 eV. If the CNT diameter is
such that its product with the electron transversal momentum is p; D ~ 10 — 100, the electron
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motion can be treated as classical. In that case, the term in the right-hand side of the dispersion
equation (17) can be modified in the following way

B(m) 0%e,, k2 , (ve)’ k2

~

w .
oop? (w— vnk)2 L 2k!, c? (w— vk)2

(40)

where v is the classical electron velocity and e is polarization vector for the electromagnetic
mode considered. This simplification, after substitution of Eq. (40) into Egs. (38) and (39),
allows us to estimate the threshold current required to start the generation process and the in-
stability increment, respectively. The dependences of these quantities on the CNT length are
depicted in Figs. 1 and 2. Calculations have been done for 1 pm radiation wavelength and
for the reflection coefficient from the working zone boundaries & = 0.99. Generation in the
terahertz range would require higher current density. The gain for CNTs is extremely large

1004

504

Threshold current, j x 10° (A/cm?)

CNT length (zm)

Fig. 1. The dependence of threshold current density on nanotube length.

100

a: j=10x 10°A/em’
b:j=T7x 10°A/em’
e j= 5% 10°Alem?

50

CNT lenght (zm)

Instability increment, " x 10 ** (1/s)

-504

Fig. 2. Instability increment vs nanotube length at different electron current densities.

compared to macroscopic electronic devices. For the chosen parameters, the generation devel-
opment starts when the CNT length is about 6 m or larger, which is technologically attainable
length. Therefore, our calculations demonstrate that the development of CNT-based nanoFEL
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is already possible for the current stage of nanotechnology. The characteristic time of the insta-
bility evolution is inversely proportional to the instability increment and for a 10 ym nanotube
is a fraction of nanosecond.

3 RETARDATION OF ELECTROMAGNETIC WAVES IN MULTI-WALL
CARBON NANOTUBES

The typical group velocity of m-electrons in SWNT is considerably smaller (¢/v > 100) than the
phase velocity of the retarded electromagnetic wave; these velocities must coincide to provide
effective Cerenkov generation. Therefore, methods and systems providing additional slowing
of the electromagnetic wave is needed. In this section we consider the wave retardation in multi-
wall CNTs (MWNTs) and graphene. We show that the interaction between nanotube walls leads
to considerable modif cation of the electromagnetic wave dispersion and reduction of the phase
velocity.
The D’ Alembert equation for the electric potential has the form:

2
<028(9t2 — A) @ (r,t) = 4mp(r,t) , (41)
where ® (r, t) is the scalar potential and p (r, t) is the electric charge density. For the strongly
slowed-down wave, the inequality w?/c? < k2 holds true. Therefore the time derivatives are
much less than the spatial ones: Ca;% < A®. In this case, the D’ Alembert equation is reduced
to the Poisson equation

A (r,t) = —47mp (r,t), (42)

which is used in the further analysis. Equation (42) is supplemented by the equation describing
the electric charge density:

)= pi(riLe)d(r— -—eZ<o|¢+ vt (6] 0),0(r— Ry) . (43)

Here, v; (v ,t) is the electron wave function on i-th nanotube wall in the secondary quantiza-
tion representation. This function is expressed in terms of the electron annihilation operators,
pi (r1,t) is two-dimensional charge density of i-th CNT wall, r is two-dimensional vector on
CNT walls (r = (r,r L)), r is the radial component of r, R; is the wall radius.

() = Do (ru) byl (1) (44)

where w,(jg) is the electron Bloch wave function in the CNT, b&) is the annihilation operator
for the corresponding state of i-th wall, k, s are electron quasi-momentum and index of energy
band, |0), is the ground state of the electron subsystem of i-th wall.

The dynamics of the charge density is completely described by the dynamics of the creation
and annihilation operators, which is governed by the Hamiltonian as follows:

H= ZE(Z)b(”Hb( Dte Zf ®(r,t)],_p, ¥; (ri,t) (L, t)dry. (45)
iks

The following equations describing the dynamics of the operators can be produced by using

Eq. (45):

b () = < B0 () —ie 3 (ks| @ (r,0)],_p, [kasi), By,
kis
P ()+ (4) g (9)+ = 4+ (46)
b)) =iE0)T (t) +ie kz (ksi| @ (v,t)],_g, [ks); b7 -
1517
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The solution of Eq. (46) without electromagnetic wave accounting has the apparent, trivial
form: b7 () = b\ exp {—iE,ﬁ)t}. Let us make substitution b\’ (£) = b\ (¢) exp {—zE,(fg) t}.
Then, Eq. (46) can be reduced to

b (¢ ‘ o _
kT() = —ie > (5] @ (r,8)], g, [hus1); Doy exp {i (B — BY, )¢}
k1s1 (47)
(49)+
dbg, " (1) D+ g [ () _ )
p =1e Z (k1s1] @ (r, t)‘r=R_, \ks)y. by exp —i By —Epr )t
kis1

_Considering electromagnetic field in Eq. (47) as a perturbation and expanding operators
b\ = b 4 5b{") we easy to produce, in linear approximation, the following expressions for

the temporal Fourier component of annihilation and creation operators:

6bl(cis) (W) = 5 Zb(io) (ks| @ (r,w + Eli? _ E}E?Sl) ‘T:R- |k1s1),,

k1s1
kis '
( e ) ( ) @
% i0 % i
o)t (@) = == Db (ks @ (rw — B+ E)| k),
k1s1 0

Substituting Eq. (48) in the expression (43) for electric charge density yields, in linear approxi-
mation,

(kis1| @ (r,w)|,._p, [k252);
ot B0 _ g

ko sa kis1

PV (i, w)=e ;Qw,i’;?:; )y (r1)

®{

As aresult, the Poisson equation (42) can be written in the closed form relative to the electric
potential as:

kosso kaso kisy k1s1

% <0 ’b(i0)+b(z‘0) _ b(i0)+b(i0)

(k1s1| @ (r, w)|,,:Ri |k232>i

(2) (1)
w+ Ekzsz - Eklsl (49)

A@@Jpzamﬁzgyﬁg@gwgﬂug

kosa “kasa kis1 “kisi

% <0 ‘b(i0)+b(i0) _ b(i0)+b(i0)

0%5&—R0

In Eq. (49), R; is the radius of the i*" wall of MWNT. By neglecting the diffraction and per-
forming the Fourier transform of equation (49) by the longitudinal coordinate z and by the angle
v, we reduce Eq. (49) to the following form:

1d [ d®(r,k,w,m) 5 m?
~dr (7“ o ) <k + 2 O (r, k,w,m)
21,0

p

(4)
kasaoToma kisiTimi

2

= 4w’ 3% ¢ @ (r,k,w,m)d (r— R;) (50)

- (@) (4)
i 1,2 W+ Ekzsz - Ek131
(i0)+,_(40) (i0)+,_(i0)
X <0 ‘bkzsg kaSZ - bk:lsl bk‘181 0>1 .
In Eq. (50), {a,(isz} are the coefficients in the expansion of corresponding electron Bloch
functions. The wave numbers and azimuthal numbers of the initial and final states satisfy the
equations
ko =k —To—k
2 1+7T1—T2 ) (51)
S9 = 81 +m1 —mg —m.
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If an additional electron beam propagates in the nanotube then instead of ground state |0),,
the state |0, k), should be used in Eq. (50) and the matrix element <0 )b(iOHb(iO) — p{0Fpli0)

k:QSQ k‘QSQ k151 k1$1

),

kosy “koss kis1 “kisy

should be replaced by <0, ky ‘b(iOHb(i’o) — pi 00

O,kb>.. Here kj; are the quantum

numbers describing the electron beam.

3.1 Boundary conditions and the dispersion equation for an electromagnetic
wave in a MWNT

At r # R; the solution of Eq. (50) for the electric potential ® (r, k,w, m) has the following

form
i (k) r< Ry
AL, (k’f‘) + B; K,, (]C’f‘) Ri<r< Ri+1 (52)
By K, (k’?“) r > Ry.

Here R; is the radius of the i*" MWNT wall, R, is radius of the inner wall and Ry is the
radius of the outer wall. I, (kr) and K, (kr) are the modified Bessel function. Such form
of solution satisfies finiteness of electromagnetic field in the whole coordinate space. A; and
B; are the coefficients, which should be defined by using boundary conditions on the MWNT
walls. These conditions can be written as:

®(R; +0,k,w,m)=®(R; —0,k,w,m),

d® (R; +0,k,w,m) B d® (R; — 0,k,w,m) dre?
dr dr a % (53)

2 . 2
(@ O (R, kyw,m)
v b0+, (i0) 7b(20)+b(20) 0>.-
3

k’l S1T1M1 0
X
(4) (%) < ‘ koso “kasa kisy “kisi
w + Ek282 - Eklsl

The first condition in Eq. (53) corresponds to continuity of the electric potential. The second
boundary condition reflects discontinuity of the potential derivative due to surface charge on the
walls. This condition is derived by the integration of (50) in the vicinity of the wall. Substituting

Eq. (52) in Eq. (53) gives the following system for the coefficients A; and B;:

(4)

kz §2T2M2

Ait1lm (qRi) + Big1 K (qR:) = Ailm (qRs) + BiKm (qR;)
Ay dl, (q¢R;) . Bi+lde (qR:) Y dl, (qR;) B, dediqRi) _

2 Usarams 2 W7y 2 (i0)4 (0) _  (i0)+ (i0) >4
B O (0ol b, — bl bl 0),

X (Al (qR;) + BiKom (qR;)) .

3.2 Dispersion equations for waves in MWNT's

The dependence of the coefficients in the (i 4 1)*" wall on the coefficients in the 7' wall can
be derived from Eq. (54) and it has the form:

Aipr = Ai — filin (ER;) K, (ER;) Ai — filC (KR;) Ko (ER;) By,

Bist = Bi+ filyy (kR) L (kRi) Ai — Ko (aR:) I (qRs) Bs. (55)
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Here

2 ) 2

kisiTima

(4)

a‘k232‘r2mg
fi = —4me? . ,
! 1272: w+ E(Z) o E(l)

k’2$2 klsl

<0 ‘b(i0)+b(i0) _ b(i0)+b(i0)

kosy “kass kis1 “kisy

0).

The linear system (55) must be supplemented by the conditions A; = 0, By41 = 0, where
N is the number of nanotube walls. These conditions are required to guarantee finiteness of the
electromagnetic field across the whole of space. The linear system (55) has non-zero solutions if
its determinant is equal to zero. Equating the determinant to zero gives the dispersion equation
for electromagnetic waves in nanotubes. For example, in the case of double-wall nanotube

[1 + flIm (le) Km (le)] [1 + f2Im (kR2) Km (kRQ)]

_flfQKm (kRZ) K’m (kR2) Im (le) I’m (le) =0. (56)

In the limiting case when the electron system is the classical motionless plasma, the dispersion
equation (56) has the following form

1—

w3y (m?+k? R} ) L (kR1) K (kR1) 1— w35 (m*+k*R3) I (kR2) K (kR2)

w?Ry w2Ro (57)
_ w%zwil(ngrkgRg)(mQ#»kQR?)
UJ4R1R2

K, (kR2) Ky, (kR2) Iy, (kR1) Iy, (kR1) = 0.

3.3 Tight-binding method for deriving the wave dispersion equation

The electron wave function in a MWNT was considered as being concentrated in the nanotube
layers. But electrons can tunnel from one layer to another. Let us derive the dispersion equation
taking account such tunneling for multi-layer graphene. Now the electron wave function is
considered as three dimensional and isn’t localized on layers. Then Eq. (49) is replaced by

<k181‘ P (I‘,(JJ) |k’282>
w+ Ek252 - Ek151

A (I‘, t) = _47-“32 Z 12; 7/);232 (I‘) 7/%51 (I‘)

><<O‘b(0)+b(0) AR 0>.

koso Vkosso k1s1 “kisy
The electron wave function in a monolayer or in a few layers of graphene in the tight-binding
approximation can be written as

Pre =Y _ea i () + Y ep by (r). (59)

(58)

Here 1/),‘3’ (r), 1p£ i (r) are two tight-binding Bloch functions per layer. There are two types (A
and B) of carbon atoms in each graphene plane ¢, hence,

v () = g5 ;% (r —ra,)exp{ikry,},

VP () = Jo D on (v = o )exp {iken, ). ©0
Here r 4, and rp, are the positions of the A and B carbon atoms in layer i, ¢4 and ¢p denote
the atomic wave functions of A and B carbon atoms, /N is the number of unit cells.

There are two wave functions corresponding to each wave number k in single-layer graphene
[37] (bonding and anti-bonding solutions for 7 electrons and two graphene bands which cor-
respond to these solutions). For bilayer graphene the same method leads to four solutions.
Electrons with two wave functions are concentrated near one graphene layer, and with two
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other wave functions are concentrated near the different layer. The Fourier transform over the
transverse coordinate of Eq. (58) with this set of wave functions gives

( k2) o = 747762Zfdrj_ exp {—ikry 5 o Uk s, X
Using relations for the matrix elements with tight-binding functions <1/);311 (r) ‘ D (r,w) ’1/),‘3; (r)> =

[ dz® (2, k,w) Fa (2,k), where Fy (2,k) = [dr, exp{—ikr,}|pa (r)| is the form-factor

and using similar relations for the <1/),:‘11 (r)’ D (r,w) lw,ij (r)>, we can transform (61) to the

(61)
(k151|®(r,w)|kasa) < ‘b(o)+b(o) 7b(0 +b(o)

wWtErys) —Eky sy kas2 “kasa kys1 “kisy

form
—kQ)@—Z.fA ) [ pa, (2)dz® (2, k,w) + )
> fB ) [ B, (2) dz® (2, k,w) =3, AifAz( )+ Bifp.(2).
Here A; = [ pa, (2)dz® (2, k,w) and B; = [ pp, (2) dz® (2,k,w), pa, = |6, (v)[°, p5, =

|¢5, (r)]* are the electron densities. The solution of Eq. (62) which is confined to the graphene
plane has the form

® (2,k) = exp {ikz} [[  dzexp{—ikz} Y, M

63
exp{—zkz}L dzcxp{zkz}M (63)

Substituting Eq. (63)in A; = [ pa, (2) dz® (2,k,w) and B; = [ pp, (z) dz® (z,k,w) gives
a homogeneous system of linear equatlons. Equating the determinant of thls linear system to
zero leads to the dispersion expressing the frequency through the wave vector.

3.4 Estimation of wave retardation in double-wall nanotubes and bilayer
graphene

The dispersion equation (57) has the simple analytical solution:

2
wr = e \/ {“50)2;“92} + P2, (64)
2 _ w3, (m2+k2 R} ) Iy (kR;) Ko (kR;)
Here w; L yoh ,
w2 w?, (m? + k2R2) (m? + k*R?
F? = k2T ( 2) ( 1)Km (kRy) Ky, (kR) Iy, (kRy) Iy, (kRy),

Ri R,

w?, = 4me®n.;/m is surface Langmuir frequency squared and n.; is the surface electron den-

sity. It can be seen that in the case when k(Ry — R1) > 1 (i.e. the wavelength is less than
distance between walls), the walls oscillate independently. In the opposite case, oscillations
are coupled strongly and one of the oscillation frequencies is anomalously small. In the non-
classical case of the Fermi-Dirac distribution for electrons, solutions can be obtained by using
numerical methods.

The behavior of frequencies is demonstrated in Fig. 3. One branch corresponds to the mode
with larger frequency which is proportional to the sum of frequencies of the single walls. An-
other branch with considerably smaller frequency corresponds to the mode with the frequency
which is proportional to the difference of frequencies of single walls. The wave phase veloc-
ity is defined as v,;, = w/k. Therefore, the phase velocity corresponding to the mode with
the smaller frequency is considerably small. Figure 4 demonstrates the possibility of slowing
the wave down by more than a factor of 250 in bilayer graphene. The condition of Cerenkov
synchronism can be fulfilled for 7-electron at such retardation.
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Fig. 3. Dependence of frequencies on wave vector k for double-wall nanotube.
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Fig. 4. Dependence of phase velocity v, on wave vector k for bilayer graphene.

4 QUASI-METALLIC CARBON NANOTUBES AS TERAHERTZ EMITTERS

The next scheme of THz generation [42,43] is based on the electric-field induced heating of
the electron gas in a SWNT resulting in the population inversion of optically active states with
energy difference within the THz spectrum. It is well known that the elastic backscattering
processes in metallic SWNTSs are strongly suppressed [44], and in a high enough electric field
charge carriers can be accelerated up to the energy allowing emission of optical/zone-boundary
phonons. At this energy, corresponding to a frequency of about 40 THz, the major scattering
mechanism switches on abruptly resulting in current saturation [45-49]. As will be shown
hereafter, for certain types of carbon nanotubes the heating of electrons to the energies below
the phonon-emission threshold results in the spontaneous THz emission with the peak frequency
controlled by an applied voltage.

The electron energy spectrum £ (k) of a metallic SWNT in the vicinity of the Fermi energy
linearly depends on the electron wave vector k and has the form (k) = thvp|k — ko|, where
vp ~ 9.8 x 10° m/s is the Fermi velocity of graphene, which corresponds to the commonly
used tight-binding matrix element vy = 3.033 eV [3,4]. Herein the zero of energy is defined as
the Fermi energy position in the absence of an external feld. When the voltage, V/, is applied
between the SWNT ends, the electron distribution is shifted in the way shown by the heavy
lines in Fig. 5(a) corresponding to the filled electron states. This shift results in inversion of
population and, correspondingly, in optical transitions between filled states in the conduction
band and empty states in the valence band. The spectrum of optical transitions is determined
by the distribution function for hot carriers, which in turn depends on the applied voltage and
scattering processes in the SWNT. It is well known that the major scattering mechanism in
SWNTs is due to electron-phonon interaction [45—47,49]. Since the scattering processes erode
the inversion of electron population, an optimal condition for observing the discussed optical
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[, (arb. units)

Fig. 5. (a) The scheme of THz photon generation by hot carriers in quasi-metallic SWNTs.
(b) The spectral density of spontaneous emission as a function of frequency for two values of
applied voltage: solid line for V' = 0.1 V; dashed line for V' = 0.15 V. The inset shows the
directional radiation pattern of the THz emission with respect to the nanotube axis.

transitions is when the length of the SWNT L < [,., where the electron mean-free path for
acoustic phonon scattering is [, ~ 2 pm [47]. Below, only such short SWNTs with ideal
Ohmic contacts [46] are considered in the ballistic transport regime, when the energy acquired
by the electron along the length of the tube, Ae = eV, does not exceed the value of Q) =
0.16 eV at which the fast emission of high-energy phonons begins [47]. In this so-called low-
bias regime [45-47], in which the current in the nanotube is given by the Biittiker-Landauer-type
formula, I ~ (4e2/h)V, the distribution function of hot electrons is

_ 1, 0<k—k0<AE/2hUF
fe(k) B { 07 k— ko > A&?/th}p (65)
The distribution function for hot holes, f;,(k), has the same form as f. (k).

Let us select a SWNT with the crystal structure most suitable for observation of the dis-
cussed effect. First, the required nanotube should have metallic conductivity and, second, the
optical transitions between the lowest conduction subband and the top valence subband should
be allowed. SWNTs with true metallic energy band structure, for which the energy gap is ab-
sent for any SWNT radius, are armchair (n,n) SWNTs only [4,50-53]. However, for armchair
SWNTs the optical transitions between the first conduction and valence subbands are forbid-
den [54,55]. So for the observation of THz generation it is possible to use so-called quasi-
metallic (n, m) SWNTs with n — m = 3p, where p is a non-zero integer. These nanotubes,
which are gapless within the frame of a simple zone-folding model of the 7-electron graphene
spectrum [3], are in fact narrow-gap semiconductors due to curvature effects. Their bandgap is
givenby £, = hvpbcos 30/(8R2,) [50,53], where b = 1.42 A is the nearest-neighbor distance
between two carbon atoms and 6 = arctan[v/3m/(2n + m)] is the chiral angle [3]. It can
be seen from the expression for ¢, that the gap is decreasing rapidly with increasing nanotube
radius. For large values of R, this gap can be neglected even in the case of moderate applied
voltages due to Zener tunneling of electrons across the gap. It is easy to show in a fashion
similar to Zener’s original work [56] that the tunneling probability in quasi-metallic SWNTs
is given by exp(—ae} /eEhvr), where a is a numerical factor close to unity*. For example,

*“For the energy spectrum near the band edge given by ¢ = + [53/4 + 2ok (k — ko)Q] 1/2, it can be
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for a zigzag (30,0) SWNT the gap is ¢, &~ 6 meV and the Zener breakdown takes place in
the electric field £ ~ 10~ V/um. Since almost the whole voltage drop in the ballistic regime
occurs within the few-nanometer regions near the contacts [57] a typical bias voltage of 0.1 V
corresponds to an electric field, which is more than sufficient to achieve a complete breakdown.
In what follows all calculations are performed for a zigzag (3p, 0) SWNT of large enough radius
R, and for applied voltages exceeding the Zener breakdown, so that the finite-gap effects can
be neglected. The obtained results can be easily generalized for any quasi-metallic large-radius
SWNT.

Optical transitions in SWNTs have been the subject of extensive research [54,55,58-62].
Let us treat these transitions using the results of the nearest-neighbor orthogonal 7-electron tight
binding model [3]. Despite its apparent simplicity and well known limitations, this model has
been extremely successful in describing low-energy optical spectra and the electronic properties
of SWNTs [63]. The main goal is to calculate the spectral density of spontaneous emission, /,,,
which is the probability of optical transitions per unit time for the photon frequencies in the
interval (v, v + dv) divided by dv. In the dipole approximation [38] this spectral density is
given by

- 87T6 VZfe fh k‘f <\Ilf ‘@Z|\I/i>|25(5i75ffhl/), (66)

3c3

Equation (66) contains the matrix element of the electron velocity operator. In the frame of the
tight binding model, this matrix element for optical transitions between the lowest conduction
and the highest valence subbands of the (3p, 0) zigzag SWNT can be written as [55, 58]

. bwi
(Uylo W) = —2

6kf,7€w (67)

where hw; 5 = €; — e is the energy difference between the initial (¢) and the final (f) states.
These transitions are associated with the light polarized along the nanotube axis z, in agree-
ment with the general selection rules for SWNTs [54]. Substituting Eq. (67) in Eq. (66) and
performing necessary summation, we get

2€2b2V3

I, = Lfe(ﬂ'l//vp)fh(ﬂ'lj/’l}p)ﬂ-

_ 68
6c3hup (68)

Equation (68) has broader applicability limits than the considered case of L < [,. and eV <
K2, in which the distribution functions for electrons and holes are given by Eq. (65). In the
general case there is a strong dependence of I, on the distribution functions, which have to
be calculated taking into account all the relevant scattering mechanisms [45-47,49]. In the
discussed ballistic regime the spectral density has a universal dependence on the applied voltage
and photon frequency for all quasi-metallic SWNTs. In Fig. 5(b) the spectral density is shown
for two values of the voltage. It is clearly seen that the maximum of the spectral density of
emission has strong voltage dependence and lies in the THz frequency range for experimentally
attainable voltages. The directional radiation pattern, shown in the inset of Fig. 5(b), reflects the
fact that emission of light polarized normally to the nanotube axis is forbidden by the selection
rules for the optical transitions between the lowest conduction subband and the top valence
subband.

For some device applications it might be desirable to emit photons propagating along the
nanotube axis, which is possible in optical transitions between the SWNT subbands character-
ized by angular momenta differing by one [4, 54]. To achieve the emission of these photons by
the electron heating, it is necessary to have an intersection of such subbands within the energy
range accessible to electrons accelerated by attainable voltages. From the analysis of different

shown that o« = 7 /4.
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types of SWNTs, it follows that the intersection is possible, e.g., for the lowest conduction sub-
bands in several semiconducting zigzag nanotubes and in all armchair nanotubes. However, for
an effective THz emission from these nanotubes it is necessary to move the Fermi level very
close to the subband intersection point [42]. Therefore, obtaining the THz emission propagat-
ing along the nanotube axis is a more difficult technological problem than generating emission
shown in Fig. 5(b).

5 CHIRAL CARBON NANOTUBES AS FREQUENCY MULTIPLIERS

Another proposal for using SWNTs for THz applications [64,65] is based on chiral nanotubes,
which represent natural superlattices. For example, a (10, 9) single-wall nanotube has a radius
which differs from the radius of the most commonly studied (10, 10) nanotube by less than
five percent, whereas the translational period 7" along the axis of the (10,9) SWNT is almost
thirty times larger than the period of the (10, 10) nanotube. Correspondingly, the first Brillouin
zone of the (10, 9) nanotube is thirty times smaller than the first zone for the (10, 10) tube.
However such a Brillouin zone reduction cannot influence electronic transport unless there is
a gap opening between the energy subbands resulting from the folding of graphene spectrum.
It can be shown that an electric field normal to the nanotube axis opens noticeable gaps at the
edge of the reduced Brillouin zone, thus turning a long-period nanotube of certain chirality into
a ‘real’ superlattice. This gap opening is a general property of chiral nanostructures exposed
to a transverse electric field [66-68]. The field-induced gaps are most pronounced in (n, 1)
SWNTs [65,69]. Figure 6(a) shows the opening of an electric-field induced gap near the edge

e(k) (meV)

Slight NDC

10 20

(a) (b)

Fig. 6. (a) Energy spectrum of the (6,1) SWNT in a transverse electric field, £, = 4 V/nm.
(b) The electron drift velocity in the lowest conduction subband of a (6,1) SWNT as a function
of the longitudinal electric field, in the presence of acoustic-phonon scattering.

of the Brillouin zone of a (6, 1) SWNT. This gap opening results in the appearance of a negative
effective-mass region in the nanotube energy spectrum. The typical electron energy in this part
of the spectrum of 15 meV is well below the optical phonon energy 7.2 ~ 160 meV, so that it can
be easily accessed in moderate heating electric fields. The negative effective mass results in the
negative differential conductivity (NDC), as can be seen from Fig. 6(b). The NDC characteristic
presented in Fig. 6(b) is calculated assuming the energy-independent scattering time 7 = 1ps.
However, when the carrier energy reaches the optical or edge-phonon energy, the scattering time
7 increases abruptly. This results in more pronounced NDC, which can be used for generating
electromagnetic radiation in the THz range.

The effect of the negative effective mass in chiral nanotubes [65], not only results in the
NDC but also leads to an efficient frequency multiplication in the THz range. The results of
calculations of the electron velocity in the presence of the time dependent longitudinal electric
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Fig. 7. Time dependence of the electron velocity in the lowest conduction subband of a
(6,1) SWNT under the infuence of a pump harmonic longitudinal electric field, £ (t) =
Ey sin (wot), and its correspondent spectral distribution A (w): (a) in the ballistic transport
regime; (b) in the presence of scattering with the relaxation time 7 = 10~ 12s.

field are presented in Fig. 7. One of the advantages of a frequency multiplier based on chiral
SWNTs, in comparison with the conventional superlattices [70], is that the dispersion relation
in such a system can be controlled by the transverse electric field £ .

6 ARMCHAIR NANOTUBES IN A MAGNETIC FIELD AS TUNABLE THZ
DETECTORS AND EMITTERS

The problem of detecting THz radiation is known to be at least as challenging as creating reli-
able THz sources. The proposal of a novel detector [64,65] is based on several features of truly
gapless (armchair) SWNTSs. It should be noted that the electron energy spectrum of SWNTSs
depends crucially on the magnetic field [71-74]. The main property to be utilised is opening of
a band gap in these SWNTSs in a magnetic field along the nanotube axis [3,4]. For a (10, 10)
SWNT this gap corresponds to approximately 1.6 THz in the field of 10 T. For attainable mag-
netic fields, the gap grows linearly with increasing both magnetic field and the nanotube radius.
It can be shown [65] that the same magnetic field also allows dipole optical transitions between
the top valence subband and the lowest conduction subband, which are strictly forbidden in
armchair SWNTs without the field [54].

In Fig. 8 it is shown how the energy spectrum and matrix elements of the dipole optical
transitions polarized along the nanotube axis are modified in the presence of a longitudinal
magnetic field. In the frame of the nearest-neighbor tight binding model, one can show that
for a (n,n) armchair nanotube the squared matrix element of the velocity operator between
the states at the edge of the gap opened by the magnetic field is given by a simple analytic
expression:

s lowa =3 [1- peost (Ln)] ok, (69)
where f = eBR?/(2h). For experimentally attainable magnetic fields, when the magnetic flux
through the SWNT is much smaller than the flux quantum, the absolute value of the velocity
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Fig. 8. (a) Band structure of a (10, 10) nanotube, with and without an external magnetic field
along the nanotube axis. (b) Detailed view of the gap, which is opened between the top valence
subband and the lowest conduction subband in an external field B = 10 T. (c¢) The change in the
dipole optical transitions matrix elements, for light polarized along the SWNT axis, due to the
introduction of the external magnetic field. The only appreciable change is in the appearance
of a high narrow peak associated with the transition (10, — 10..), which is not allowed in the
absence of the magnetic field. Herein the energy subbands are numbered in the same way as in
Ref. 3. (d) Dependence of the squared dipole matrix element for the transition (10, — 10.) on
the 1D wave vector k, with and without an external magnetic field.

operator is close to vy. Equation (69) is relevant to the transitions between the highest valence
subband and the lowest conduction subband only for f < 1/2, since for the higher values of f
the order of the nanotube subbands is changed. Notably, the same equation allows one to obtain
the maximum value of the velocity operator in any armchair SWNT for the transitions polarized
along its axis: this value cannot exceed 2vr /v/3 (see panel (c) in Fig. 8).

The electron (hole) energy spectrum near the bottom (top) of the band gap produced by the
magnetic field is parabolic as a function of a carrier momentum along the nanotube axis. This
dispersion results in a Van Hove singularity in the reduced density of states, which in turn leads
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to a very sharp absorption maximum near the band edge and, correspondingly, to a very high
sensitivity of the photocurrent to the photon frequency, see Fig. 9.
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Fig. 9. (a) Calculated photon absorption spectra for a (10, 10) SWNT, for three different mag-
netic field values. The absorption intensity is proportional to the product of [(U},| 0, |¥§,) |
and the joint density of states. (b) Dependence of the position of the peak in the absorption
intensity, associated with the Van Hove singularity, on the magnetic field strength.

Notably, the same effect can be used for the generation of a very narrow emission line
having the peak frequency tunable by the applied magnetic field. Population inversion can be
achieved, for example, by optical pumping with light polarized normally to the nanotube axis,
as shown in Fig. 10.
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Fig. 10. A scheme for creating population inversion between the lowest conduction subband
and the top valence subband of an armchair SWNT in a magnetic field. The left plot shows the
calculated matrix elements of the relevant dipole optical transitions polarized normally to the
axis of a (10,10) SWNT. The right plot shows several energy subbands closest to the Fermi
level and illustrates the creation of photoexcited carriers and their non-radiative thermalization.

7 CONCLUSION

In this paper we have demonstrated several schemes for emitting and detecting terahertz radia-
tion by CNTs.

One of the ideas exploits an analogy between CNTs and macroscopic traveling wave tube.
Strong slowing down of surface electromagnetic waves in SWNTs and the ballisticity of the
electron motion over typical CNTs length allows them to be used as nanoscale Cerenkov-type
emitters in the terahertz frequency range. The use of SWNT bundles instead of an isolated
SWNT is suggested as a means to decrease the threshold current density.
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We also have demonstrated that a quasi-metallic SWNT can emit THz radiation when a po-
tential difference is applied to its ends. The typically required voltages and nanotube parameters
are similar to those available in the state-of-the-art transport experiments. The maximum of the
spectral density of emission is shown to have strong voltage dependence, which is universal for
all quasi-metallic SWNTSs in the ballistic regime. Therefore, the discussed effect can be used
for creating a THz source with frequency controlled by the applied voltage. Appropriately ar-
ranged arrays of nanotubes should be considered as promising candidates for active elements of
amplif ers and generators of coherent THz radiation.

We have also shown that an electric field, which is applied normally to the axis of long-
period chiral nanotubes, significantly modifies their band structure near the edge of the Brillouin
zone. This results in a negative effective-mass region at an energy scale below the high-energy
phonon-emission threshold. This effect can be used for efficient frequency multiplication in
the THz range. Finally, we have discussed the feasibility of using a magnetic field, which
opens energy gaps and allows optical transitions in armchair nanotubes, for creating tunable
THz detectors and emitters.
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