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Abstract

Theoretical investigations into deep-level defects in crystalline silicon are presented in

this thesis. The calculations are carried out using the aimpro code, an ab initio pseudopo-

tential local spin density method applied to large hydrogen terminated clusters containing

up to 346 atoms.

By definition, deep-level defects are those with localised states, i.e., states with decaying

wavefunctions in real space. As a result, these defects can, and often do, give rise to a

number of levels lying within the silicon bandgap. Due to the fact that the presence of

these levels within the Si forbidden band can dramatically change the optical and electrical

properties of Si integrated devices, the understanding of their microscopic properties is of

paramount importance.

Two distinct types of deep-level defects are investigated: (i) radiation-induced defects

and (ii) transition-metal (TM) related defects. Most of these defects are unstable against

Jahn-Teller distortions. Since their electrical properties are highly sensitive to their atomic

arrangement, it is therefore necessary to correctly describe their ground state configura-

tions.

The back-bone of this thesis is a novel theoretical approach to the calculation of the

electrical level of deep-level defects. This method has allowed the successful characterisa-

tion a number of common defects in radiation damaged Si material, like VO (A-centre),

VOH, CiP, CiOi, CiCs–H (T -centre), etc.

The method is then applied to the study of the structural and electrical properties of

the lattice di-vacancy. As a result, we confirm the predictions of Watkins and Corbett for

the structural properties of paramagnetic V±2 defects. Accordingly, these defects undergo

a strong Jahn-Teller distortion by pairing of four of the six atoms constituting the defect.

This is followed by a study on the structural, vibrational and electrical properties of

vacancy–hydrogen-related defects produced by low-temperature proton implantation.

Finally, the method is applied to the analysis of the structural and electrical properties

of substitutional transition-metal centres—gold, silver, platinum and palladium. The main

goal of these calculations is the study of the influence on the electrical properties of these

defects of bringing atomic hydrogen close to the defect’s core. Concerning the structure

of the TM–H defects, we find no evidence for a direct interaction between the hydrogen

impurity and the TM ion. In accordance with the vacancy model of Watkins, the TM

ions do seem to interact weakly with the surroundings, in an attempt to reproduce their

environment as isolated species. Despite an enlargement of the vacancy cage, the hydrogen

atoms sit at ‘anti-bonding’ lattice positions, being back-bonded to the Si vacancy atoms.

No electrically inactive TM–Hn, with n = 1 . . . 4, were found and an alternative model for

the neutralisation of the electrical properties of these centres is proposed.
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3.3.1 Bachelet, Hamann and Schlüter pseudopotentials . . . . . . . . . . . 53

4 The Real Space Cluster Method 56

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3 The Hartree energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 The exchange-correlation energy . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Spin polarisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.5 Full matrix formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.6 Approach to self-consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.1 Fermi statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7 Evaluation of atomic forces . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.8 Structure optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Determination of vibrational modes . . . . . . . . . . . . . . . . . . . . . . . 70

4.9.1 Equations of motion in the harmonic approximation . . . . . . . . . 70

4.9.2 Evaluation of energy double derivatives . . . . . . . . . . . . . . . . 71

4.10 Practical considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vi



4.10.1 Choosing a basis set . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.10.2 Basis size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10.3 Termination effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Deep Level Characterisation 76

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 Shallow versus deep levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.3 The effects of lattice relaxation . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.4 Carrier emission and recombination . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Detection and characterisation of deep levels . . . . . . . . . . . . . . . . . 81

5.5.1 Deep level transient spectroscopy . . . . . . . . . . . . . . . . . . . . 84

5.5.2 Laplace deep level transient spectroscopy . . . . . . . . . . . . . . . 88

5.5.3 Electron paramagnetic resonance . . . . . . . . . . . . . . . . . . . . 89

5.5.4 Local vibrational mode spectroscopy: infra-red absorption . . . . . . 95

5.6 Photoluminescence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.7 Modelling deep levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7.1 Electrical level calculations with supercells . . . . . . . . . . . . . . 101

5.7.2 Novel approach to the calculation of deep levels . . . . . . . . . . . . 102

6 Radiation Defects 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Electrical properties characterisation . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 The V–O pair: the A-centre . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.2 Interaction of hydrogen with the A-centre . . . . . . . . . . . . . . . 110

6.2.3 The di-vacancy (V2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.4 The V2O complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.5 The VP pair: the E-centre . . . . . . . . . . . . . . . . . . . . . . . 112

6.2.6 The isolated Ci impurity . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.7 The CiP complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.2.8 The CiOi pair: the K-centre . . . . . . . . . . . . . . . . . . . . . . 114

6.2.9 Interaction of hydrogen with the K-centre . . . . . . . . . . . . . . . 114

6.2.10 The CsCi pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2.11 The CsCi–H defect: the T -centre . . . . . . . . . . . . . . . . . . . . 116

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 The Lattice Divacancy 118

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Experimental background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.1 Structural properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.2 Electrical and optical properties . . . . . . . . . . . . . . . . . . . . 120

7.3 Previous theoretical work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vii



7.4.1 Cluster and basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.4.2 The undistorted di-vacancy . . . . . . . . . . . . . . . . . . . . . . . 125

7.4.3 The V+
2 and V−2 paramagnetic states . . . . . . . . . . . . . . . . . . 127

7.4.4 Optical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.4.5 Electrical levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8 Vacancy–Hydrogen Defects 136

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

8.2.1 Electrical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3 Previous theoretical studies . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.4.1 Cluster and basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.4.2 VH and V2H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

8.4.3 VH2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

8.4.4 VH3 versus V2H6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8.4.5 VH4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

8.4.6 Electrical properties of multi-hydrogen–vacancy defects . . . . . . . 154

8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9 Platinum and Palladium Defects 157

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.2 Experimental work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.2.1 Microscopic models for the electronic structure . . . . . . . . . . . . 159

9.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.3.1 Cluster and basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9.3.2 Microscopic structure as isolated species . . . . . . . . . . . . . . . . 169

9.3.3 Transition-metal–hydrogen defects . . . . . . . . . . . . . . . . . . . 170

9.3.4 Vibrational properties . . . . . . . . . . . . . . . . . . . . . . . . . . 174

9.3.5 Electrical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

9.3.6 Electrical passivation of Pt and Pd centres . . . . . . . . . . . . . . 180

9.4 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

10 Gold and Silver Defects 182

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10.2 Experimental background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

10.2.1 Structural properties as isolated centres . . . . . . . . . . . . . . . . 183

10.2.2 Interaction with atomic hydrogen . . . . . . . . . . . . . . . . . . . . 184

10.2.3 FTIR measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

10.2.4 Electrical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

10.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

viii



10.3.1 Cluster and basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

10.3.2 Isolated gold and silver centres: structural properties . . . . . . . . . 186

10.3.3 Structural and vibrational properties . . . . . . . . . . . . . . . . . . 187

10.3.4 Electrical levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

10.3.5 On the passivation of ioslated transition metal centres . . . . . . . . 191

10.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

11 Conclusions and Future Work 194

Bibliography 196

ix



List of Publications

Listed in reverse chronological order:

1. Microscopic structure and electrical levels of platinum and platinum–hydrogen defects

in silicon: A first principles study , A. Resende. R. Jones, S. Öberg and P. R. Briddon,

To be submitted to Phys. Rev. B

2. An ab initio study of the structural and electrical properties of divacancy-tin com-

plexes in silicon, A. Resende. M. Kaukonen, R. Jones, S. Öberg and P. R. Briddon,
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1

The Quantum Many Body Problem

1.1 Introduction

The properties of a material are dependent on its composition and its structure: this is the

general law of nature. A crystal consists of a periodic array of atoms. An atom is made

of a nucleus of charge Z, surrounded by a number of neutralising electrons.

Core electrons occupy the filled inner shells of the atom and their main effect is to screen

the nuclear charges from the valence electrons. It is, therefore, tempting to eliminate them

in a practical application by replacing them with an effective potential acting on valence

electrons. This is the main idea behind the concept of pseudopotentials, which will be

introduced and discussed in a forthcoming chapter of this thesis.

The chemically important valence-electrons, as well as all those in lighter elements,

move at speeds much less than the velocity of light, and can be considered to be non-

relativistic particles. All the important characteristics of the material are due to inter-

actions between valence electrons and nuclei, and with themselves: the basic interaction

between electrons and nuclei of charge Z is electrostatic or Coulombic. Other interactions

arising from the quantum-mechanical character of the electron, are also important. This

is the case of exchange and correlation effects, which act like a glue without which atoms

would bond weakly if at all, to form the solid.

In order to tackle the many-body problem, two initial approximations have to be made.

First, since the electrons of the inner shells do not take part in physical processes in the

solid, only electrons from outer shells will be considered. The second approximation is due

to Born and Oppenheimer. It allows the decoupling of the electronic and nuclear motions,

treating the nuclei as classical particles. This is the subject of the next section of this

thesis.

1.2 The Schrödinger equation

The stationary state of a quantum-mechanical system is described by the non-relativistic

time-independent Schrödinger equation,

ĤΨ = E Ψ , (1.2.1)

1
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where Ĥ is the crystal Hamiltonian operator, Ψ its wavefunction,

Ψ ≡ Ψ(r→1, σ1; r→2, σ2; . . . , r→N , σN ;R
→

1,R
→

2, . . . ,R
→

N ) ≡ Ψ(r→i,R
→

α) , (1.2.2)

and E its eigenvalue or crystal energy. Note that the total wavefunction Ψ is a function of

the whole set of electron spatial and spin co-ordinates, {r→i, σi}, and nuclear co-ordinates

R
→

of all the particles existing in the system.

For a system of N electrons moving in a field of N ions of charge Zα at sites R
→

α, the

full Hamiltonian has the following form:1

Ĥ(r→,R
→

) =− 1
2

∑
i

∇2
i −

∑
α

1
2Mα

∇2
α +

1
2

∑
i

∑
j

j 6=i

1
|r→i − →rj|

+
1
2

∑
α

∑
β

β 6=α

Zα Zβ

|R
→

α −R
→

β|
−

∑
i

∑
α

Zα∣∣r→i −R
→

α

∣∣ . (1.2.3)

The terms with electron i = j and nuclear indices α = β are excluded to prevent self-

interactions. In an obvious notation, (1.2.3) can be re-stated as

Ĥ ≡ T̂e + T̂i + V̂e−e + V̂i−i + V̂e−i . (1.2.4)

The presence of the kinetic term associated with the nuclear motion, T̂i, turns the study

of the hypothetical many-body system into a very complex problem.

The Schrödinger equation contains 3(Z + 1)N variables, where N is the number of

atoms in the crystal. Since 1 cm3 of a crystalline material contains about 5× 1022 atoms,

for Z = 14 (silicon), the number of variables involved reaches more than 2× 1024 variables

per cm3!

Obviously, this equation cannot be solved in a general form. This is not only because

of difficulties of a practical nature, for modern quantum mechanics lacks the means of

solving many-particle problems.

1.3 The Born-Oppenheimer approximation

The adiabatic approximation, or the Born-Oppenheimer approximation (1925), takes ac-

count of the difference in motion of light (electrons) and heavy (nuclei) particles. Important

for fast moving electrons is the instantaneous position of the nuclei. Obviously, the nuclei,

on account of their large masses, do not follow the motion of every electron but move only

in the averaged field of all the electrons. At the same time the ion moving relatively slowly

is accompanied by the electrons.

If we neglect the kinetic energy of the nuclei, the Hamiltonian is simply

Ĥe = T̂e + V̂e−e + V̂i−e + V̂i−i , (1.3.1)

1All quantities are expressed in atomic units (unless otherwise specified). In terms of these units, ~,

e, m and 4πε0 are taken to be unity. The unit of length, 1 a.u. = 0.529 Å and the unity of energy

1 a.u. = 27.211 eV.
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with the associated eigenfunction ψ satisfying

Ĥe ψ(r→,R
→

) = Ee(R
→

)ψ(r→,R
→

) , (1.3.2)

dropping the subscripts i and α, as well as the electron spin si, for sake of simplicity. In

this equation, Ĥe is the total Hamiltonian in the limit M →∞, or electronic Hamiltonian.

Note that the nuclear co-ordinates enter in (1.3.2) as parameters: Ee(R
→

) is the energy of

the electron in a field of stationary ions. Analytically

Ee(R
→

) =
∫

ψ∗(r→,R
→

) Ĥe(r
→)ψ(r→,R

→
) d3r . (1.3.3)

As long as we consider the nuclei as static particles, we can consider the term V̂i−i as a

simple additive constant in the Hamiltonian. This will have no effect on the wavefunction

ψ but will add directly to the eigenvalue Ee. We may now write the total Hamiltonian as

Ĥ = Ĥe −
N∑
α

1
2Mα

∇2
α . (1.3.4)

What Born and Oppenheimer (1925) did was to show that, because the ratio (m/Mα)

is so small, we can treat Ĥn as a perturbation. The relevant expansion is κ = (m/M)1/4,

where M is the average nuclear mass (κ ≈ 0.1). Born and Oppenheimer carried out an

expansion of the eigenfunctions and eigenvalues in powers of κ. We shall proceed to show

the validity of this approximation.

In the zero-order Born-Oppenheimer approximation (which is all that one normally

uses) to the wavefunction, one writes an approximate total eigenfunction of Ĥ as a simple

product

Ψ(r→,R
→

) = φ(R
→

)ψ(r→,R
→

) . (1.3.5)

Here φ depends only on the nuclear co-ordinates R
→

. Replacing the total wavefunction

Ψ(r→,R
→

) into (1.2.1), and re-calling (1.3.5) results in

ψ(r→,R
→

)
∑
α

1
2Mα

∇2
α φ(R

→
) + Ee(R

→
)φ(R
→

)ψ(r→,R
→

)

+
1
2

∑
α,β
β 6=α

Zα Zβ

|~Rα −R
→

β|
φ(R
→

)ψ(r→,R
→

)−E φ(R
→

)ψ(r→,R
→

)

=
∑
α

1
2Mα

(
φ(R
→

)∇2
α ψ(r→,R

→
) + 2

→
∇α ·

→
∇αψ(r→,R

→
)
)

. (1.3.6)

Multiplying all terms by ψ∗ and integrating over all electronic co-ordinates, we have2[∑
α

1
2Mα

∇2
α + Ee(R

→
) +

1
2

∑
α,β 6=α

Zα Zβ

|~Rα −R
→

β|
−E

 φ(R
→

)

=
∑
α

1
2Mα

(
φ(R
→

)
∫

ψ∗(r→,R
→

)∇2
α ψ(r→,R

→
) d3r

+ 2
→
∇α φ(R

→
) ·

∫
ψ∗(r→,R

→
)
→
∇α ψ(r→,R

→
) d3r

)
. (1.3.7)

2Since {ψ} is a complete orthonormal set.
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At this stage, we might define, explicitly, the nuclear Hamiltonian, Ĥn:

Ĥn φ ≡
[
T̂i + V̂i−i + Ee(R

→
)
]
φ = En φ . (1.3.8)

Pre-multiplying the above equation by φ∗ and integrating over ionic co-ordinates, we

obtain the expression for the energy of the crystal,∫
φ∗(R
→

) Ĥn φ(R
→

) d3R = E + δE , (1.3.9)

with

δE ≡
∑
α

1
2Mα

(∫
ψ∗(r→,R

→
)∇2

α ψ(r→,R
→

) d3r

+ 2
∫

φ∗(R
→

)
→
∇αφ(R

→
) d3R ·

∫
ψ∗(r→,R

→
)
→
∇α ψ(r→,R

→
) d3r

)
. (1.3.10)

In order to asses the quantity δE (1.3.10), it is necessary to make certain assumptions

concerning the nature of the dependence of ψ on the co-ordinates r→ and R
→

.

If the electron-electron interaction is neglected in Ĥe (i.e, V̂e−e = 0), it turns into

a Hamiltonian of a system of non-interacting particles. The wavefunctions ψ will be

simple products of one-electron wavefunctions, each of which only depends on the difference

(R
→

α − r→i). Under these conditions,

→
∇k

α ψ(R
→
− r→) = (−1)k

→
∇k

i ψ(r→,R
→

) with k = 1 and 2 . (1.3.11)

The first term in (1.3.10) may be re-written in the form,

∑
α

1
2Mα

∫
ψ∗(r→,R

→
)∇2

α ψ(r→,R
→

) d3r =
∑
i,α

1
2Mα

∫
ψ∗(r→,R

→
)∇2

i ψ(r→,R
→

) d3r

= −
∑
i,α

m

2Mα

∫
ψ∗(r→,R

→
)
(
−∇

2
i

2m

)
ψ(r→,R

→
) d3r = −

∑
i,α

m

Mα
〈T̂e〉 , (1.3.12)

where 〈T̂e〉 is the mean kinetic energy per electron. Hence,∑
α

1
2Mα

∫
ψ∗(r→,R

→
)∇2

α ψ(r→,R
→

) d3r = −N
m

Mα
〈T̂e〉 (1.3.13)

where N is the number of electrons in the system. This term may be neglected. In

comparison with E, the error introduced thereby into the expression for the crystal energy

is quite small—of the order of the ratio of the electron mass to the ionic mass, which, for

example, for 28Si is ∼ 10−5.

The second term in (1.3.10) can be analysed in the same way:

1
Mα

(∫
φ∗(R
→

)
→
∇α φ(R

→
) d3R ·

∫
ψ∗(r→,R

→
)
→
∇α ψ(r→,R

→
) d3r

)
= − 1

Mα
(〈p→i〉 · 〈p→e〉) (1.3.14)

In classical statistics, for a state at thermodynamical equilibrium, we have

〈pe〉2 =
8
3π
〈p2

e〉 and
〈

p→2
e

2m

〉
=

〈
p→2

i

2m

〉
. (1.3.15)
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It follows that

〈pe〉 u
√

m

Mα
〈pi〉 . (1.3.16)

To analyse the corrections in (1.3.9), above we have considered the most disadvanta-

geous situation to illustrate the validity of the adiabatic approximation. This is when the

electron wavefunction is written as a combination of atomic wavefunctions (the so-called

strongly-bound electron approximation). If the electron wavefunction is independent of

the ionic co-ordinates (the free electron approximation), both corrections in (1.3.10) will

be zero.

We arrive at the conclusion that by neglecting both corrections in (1.3.10), we introduce

an error that in the value of E that is not greater than the square root of the m/M ratio.

It is now clear that the adiabatic approximation gives a sufficiently accurate energy value

if the assumption is made that the total wavefunction may be written in the form

Ψ(r→i,R
→

α) = φ(R
→

α)ψ(r→i) , (1.3.17)

φ and ψ being determined from the equations,

Ĥe ψ = Ee ψ and Ĥn φ = En φ ≡ E φ . (1.3.18)

Thus, in the Born-Oppenheimer approximation, the electron wavefunction is determined

by the instantaneous position of the ions (the term V̂e−i in Ĥe), the ionic wavefunction,

on the other hand, being determined by the average electron field (term Ee in Ĥn).

It important to note that the Born-Oppenheimer approximation breaks down for Jahn-

Teller systems. This is the case when an interaction between electron and nuclear orbitals

occurs. Such a state is usually known as a vibronic state, resulting from the electron-lattice

coupling.

1.3.1 Degenerate systems

For a ground-state degenerate system, the total wavefunction can be expanded, for a fixed

R
→

, as follows (Gross et al., 1991):

Ψn(r→,R
→

) =
∑
m

φnm ψm(r→,R
→

) . (1.3.19)

Inserting this representation of Ψ into the full Schrödinger equation and pre-multiplying

all terms by ψ∗k and integrating over the electron co-ordinates, we have[
T̂i + T̂i−i + Ek(~R)

]
φnk(R

→
) +

∑
m

φnm(R
→

)<ψk | T̂i |ψm> = En φnk(R
→

) , (1.3.20)

using Dirac’s ‘ket-bra’ notation. The matrix elements <ψk | T̂i |ψm> are functions of R
→

,

since we are integrating over electron co-ordinates. As a result, we have an infinite system

of coupled equations.
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The Born-Oppenheimer approximation consists of neglecting all the off-diagonal matrix

elements <ψk | T̂i |ψm>. In this approximation, (1.3.20) may be written as,[
T̂i + T̂i−i + Ek(~R) + <ψk | T̂i |ψk>

]
φnk(R

→
) = En φnk(R

→
) , (1.3.21)

where the electron eigenvalues Ek and the matrix elements <ψk| T̂i |ψk> act as an effective

potential for the ionic motion.

1.4 The one-electron potential

As a result of the adiabatic approximation the electron wavefunction should satisfy the

equation {
T̂e + V̂e−e + V̂e−i

}
ψ(r→,R

→
) = Ee(R

→
)ψ(r→,R

→
) . (1.4.1)

This equation, too, needs to be simplified. It should be first transformed into an equation

for one particle, or a system of one-particle equations. It follows from (1.4.1) that this

equation for an electronic system turns into a system of equations if it is assumed that the

electrons do not interact (V̂e−e = 0). Therefore the problem arises how to take account of

the electron-electron interaction so that ultimately we would be able to deal with a system

of non-interacting particles instead of interacting electrons. This is achieved through the

introduction of the so-called self-consistent electron field (Hartree, 1928).

In order to solve the Schrödinger equation for the atom, Slater, following Hartree’s

intuitive approach for the atom, introduced an approximate electronic wavefunction to the

many-body wavefunction (Slater, 1928)

ψ(r→1, σ1; r→2, σ2; . . . ; r→N , σN ) =
N∏
i

ψi(r
→

i, σi) . (1.4.2)

Here the ψi are one-electron wavefunctions and σi the electronic spin.

Such a simple product function is the simplest conceivable function expressing the idea

that the system state is characterised by a configuration specified by the one-electron ψi

wavefunctions. Clearly, such a function is only approximate because it completely omits

the correlation between the other electrons in the system, i.e., the probability distribution

of an electron at r→1 is independent of wherever r→2, . . . , r→N might be at the time. In

fact, the Coulomb repulsion will tend to keep the electrons away from each other in the

true wavefunction. Since no allowance is made for that here, the energy of the Hartree

wavefunction (1.4.2) must exceed the correct (and minimum) energy. However, in the

space of all functions that can be written as simple products, there should be a ‘best’ one

characterised by a set of functions ψ2, . . . , ψN which give together the lowest energy. These

functions are the so-called Hartree functions, which have been calculated numerically for

many atoms.

In the spirit of Hartree, the electron-electron potential V̂e−e is replaced by an effective

one-electron potential, Vi, seen by each electron and given as the average of the potential
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produced by the other electrons (i 6= j) and the nucleus. Based on an intuitive argument—

the action of all electrons on a particular electron cloud can be approximated by the

electrostatic action of their averaged charge density—Hartree defined the one-electron

potential, assumed spherical, as

Vi(r
→

i) =

〈
N∑

j 6=i

1
|r→i − r→j|

〉
=

∫
n(r→j)
|r→i − r→j|

d3rj . (1.4.3)

Hartree introduced the concept of atomic electron density, n(r→j), defined as,

n(r→j) =
occ∑
j 6=i

|ψj(r
→

j)|2 . (1.4.4)

Equation (1.4.3) represents the average electrostatic interaction between the ith-electron

and the ‘ensemble’ of all the electrons in the system. According to Hartree, the quantity

ψ∗j ψj represents the contribution of the j-th orbital to the charge density of the atom, so

that the total charge density arising from all the electrons in the system is given by (1.4.4).

The one-particle Hartree Hamiltonian, ĥH, can now be written as

ĥH ≡ −
1
2
∇2

i +
∑
α

Zα∣∣r→i −R
→

α

∣∣ + Vi(r
→) . (1.4.5)

The total Hamiltonian is now a superposition of the one-electron Hamiltonians, ĥH.

This implies that the total energy for the electronic system, Ee, can be defined as the sum

of one-electron energies of separate electrons. Analytically,

Ee =
N∑
i

εi , (1.4.6)

with εi satisfying,

ĥH ψi(r
→

i, σi) = εi ψi(r
→

i, σi) . (1.4.7)

In the following section, we discuss the Hartree approximation in more detail.

1.5 The wavefunction variational principle

So far, we have applied simple concepts from classical electrostatics to analyse the many-

body problem, following a simple physical reasoning. A well known principle of quantum

mechanics provides us with a more accurate tool for the determination of the average value

of an observable, like the the ground-state energy E0.

The Schrödinger equation (1.2.1) is equivalent to a wavefunction variational principle:

Minimise <Ψ | Ĥ |Ψ> subjected to the constraint <Ψ |Ψ> = 1, i.e.,

δ

{
<Ψ | Ĥ |Ψ>

<Ψ |Ψ>

}
= 0 (1.5.1)
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The ground-state energy and wavefunction are found by minimising the expression in

curly brackets, i.e., the total-energy functional, E[Ψ]. Analytically,

E0 = inf
Ψ

E[Ψ] . (1.5.2)

This self-consistent procedure is quite simple but very effective. Starting from a trial

wave function, written in terms of one-electron wavefunctions, i.e., the trial parameters,

the energy is minimised. The minimisation of the total energy with respect to these one-

electron wavefunctions leads to a set of one-electron-like equations allowing the determina-

tion of these wavefunctions. Such a procedure is without doubt valid for the ground-state

and sometimes for excited states.3

The unrestricted solution of δE[Ψ] = 0 is equivalent by the method of Lagrange mul-

tipliers to the solution of

δ
{

<Ψ | Ĥ |Ψ>− E<Ψ |Ψ>
}

= 0 , (1.5.3)

or

<δΨ | (Ĥ −E) |Ψ> = 0 . (1.5.4)

Since δΨ is an arbitrary variation, we recover the Schrödinger equation. Every eigenstate

of Ĥ is an extremum of E[Ψ] and vice-versa.

The above principle implies the Hellmann-Feynman and virial theorems.

1.5.1 The Hellmann-Feynman theorem

Let λ be a parameter in the Hamiltonian Ĥ and Ψλ a corresponding normalised eigenstate.

Then

dEλ

dλ
= 2<Ψλ′ | Ĥ |

∂Ψλ

∂ λ′
> + <Ψλ |

∂ Ĥ
∂λ
|Ψλ> , (1.5.5)

where Eλ is defined as <Ψλ | Ĥ |Ψλ>. The first term in (1.5.5) vanishes by the variational

principle and we find the differential Hellmann-Feynman theorem

d Eλ

dλ
= <Ψλ |

∂ Ĥ
∂λ
|Ψλ> . (1.5.6)

Integrating from λ1 to λ2 gives

Eλ1 −Eλ2 =

λ2∫
λ1

<Ψλ | (∂ Ĥ/∂λ) |Ψλ>

<Ψλ |Ψλ>
dλ , (1.5.7)

which is the integrated Hellmann-Feynman formula.

Applying the Hellmann-Feynman theorem, the force acting on nucleus α is
3This is the case where orthogonality with the ground-state is ensured, in most cases, by symmetry.
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− ∂ E

∂R
→

α

= −<Ψ | ∂ Ĥ
∂R
→

α

|Ψ>

=
∫

n(r→)
Zα (r→−R

→
α)∣∣r→i −R

→
α

∣∣3 d3r +
∑
β 6=α

Zα Zβ (R
→

α −R
→

β)∣∣R→α −R
→

β

∣∣3 . (1.5.8)

This is the famous electrostatic theorem of Feynman (1939).

This result, which can be derived by applying pure classical electrostatics, can be used

to find the equilibrium geometries of a solid by varying all the R
→

α until the energy minimum

is reached, i.e., −∂E/∂R
→

α = 0.

It is important to note that although the Helmann-Feynman theorem (1.5.6) holds for

any eigenstate of Ĥ, the electrostatic formula (1.5.8) is only true for the ground state.

1.5.2 The virial theorem

The virial theorem relates the kinetic energy and potential energy components of the total

energy under certain circumstances.

Let ψ(r→1, . . . , r→N ) by any extremum of <Ψ | Ĥ |Ψ> over normalised wavefunctions,

i.e., any eigenstate or optimised trial wavefunction. For any scale parameter γ>0, define

the uniformly-scaled wavefunction

ψγ(r→1, . . . , r→N ) = γ3N/2 ψγ(γ r→1, . . . , γ r→N ) , (1.5.9)

and

<ψγ |ψγ> = <ψ |ψ> = 1 . (1.5.10)

The density corresponding to the scaled wavefunction is the scaled density

nγ(r→) = γ3 n(r→) , (1.5.11)

which clearly conserves the electron number∫
nγ(r→) d3r =

∫
n(r→) d3r = N . (1.5.12)

The condition γ > 1 leads to densities nγ that are higher (on average) and more

‘contracted’ than n, while for γ < 1 produces densities that are lower and more ‘expanded’.

The main effect of the scaling is a contraction, or expansion, of the electron cloud without

changing the normalisation for γ > 1 and γ < 1 respectively.

Now consider what happens to <Ĥ> = <T̂ + V̂ > under scaling. By definition,

d
dγ

<ψγ | (T̂ + V̂ ) |ψγ>
∣∣∣
γ=1

= 0 (1.5.13)

The kinetic energy component T̂ is homogeneous of degree −2 in electron coordinates r→,

so

<ψγ | T̂ |ψγ> = γ2 <ψ | T̂ |ψ> , (1.5.14)
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and (1.5.13) becomes

2<ψ | T̂ |ψ> +
d
dγ

<ψγ | V̂ |ψγ>
∣∣∣
γ=1

= 0 , (1.5.15)

or

2<T̂>−<
N∑

i=1

r→i ·
∂ V̂

∂ r→i
> = 0 . (1.5.16)

Since the potential is homogeneous of degree 1, (1.5.15) can now be written as

2<ψ | T̂ |ψ>− <ψ | V̂ |ψ> = 0 . (1.5.17)

1.6 The Hartree self-consistent field method

Due to the importance of the Hartree method, it is convenient to deduce and analyse

the Hartree equations in some detail. Slater (1930) was the first to apply the wavefunc-

tion variational principle to minimise the total energy, going beyond Hartree’s intuitive

formulation.

If we multiply (1.4.1) by ψ∗i , using (1.4.2), and integrate over electron co-ordinates, we

have for the i-th electron, neglecting spin for sake of simplicity,

Ee =
N∑
i

{(∫
ψ∗i (r
→

i)
[
− 1

2
∇2

i +
∑
α

Zα∣∣r→i −R
→

α

∣∣
]

ψi(r
→

i) d3ri

)

×
(∫

ψ∗1(r
→

1)ψ1(r
→

1) d3r1

)
· · ·

(∫
ψ∗N (r→N )ψN (r→N ) d3rN

)
+

1
2

∑
j

j 6=i

(∫∫ |ψi(r
→

i)|2 |ψj(r
→

j)|2
|r→i − r→j |

d3ri d
3rj

)

×
(∫

ψ∗1(r
→

1)ψ1(r
→

1) d3r1

)
· · ·

(∫
ψ∗N (r→N )ψN (r→N ) d3rN

)}
. (1.6.1)

Here, the terms involving only the co-ordinates of the i-th atom were separated from those

involving both, i- and j-th atom co-ordinates; the two first terms in (1.6.1) only involve

the co-ordinates of the i-th atom.

By means of the condition of orthogonality,
∫

ψ∗i ψi d
3r = 1, (1.6.1) and (1.4.4), may

be simplified to,

Ee =
∑

i

{ ∫
ψ∗i (r
→

i)
[
− 1

2
∇2

i +
∑
α

Zα∣∣r→i −R
→

α

∣∣
]

ψi(r
→

i) d3ri

+
1
2

∫∫
n(r→i)n(r→j)
|r→i − r→j|

d3ri d3rj

}
, (1.6.2)

or

Ee =
∑

i

{∫
ψ∗i (r
→

i)
(
−1

2
∇2

i

)
ψi(r
→

i) d3ri +
∫
|ψi(r

→
i)|2

∑
α

Zα∣∣r→i −R
→

α

∣∣ d3ri + UH

}
,

(1.6.3)
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with

UH ≡
1
2

∫∫
n(r→i)n(r→j)
|r→i − r→j|

d3ri d
3rj (1.6.4)

defining the Hartree energy, UH.

The simplest way to minimise the total energy following the variational principle is to

build a new functional Φ,

Φ = Ee −
∑

i

∑
j

εij

∫
ψ∗i ψj d3r = Ee −

∑
i

εi

∫
|ψi|2 d3r . (1.6.5)

Here, we have used the fact that the parameters εij are Hermitian. Then, the variational

problem can be posed as,

δΦ
δψ∗i

=
δ

δψ∗i
Ee −

δ

δψ∗i

( ∑
i

εi

∫
|ψi(r

→
i)|2 d3r

)
= 0 . (1.6.6)

The solution of the previous equation yields the famous set of equations called Hartree’s

equations. These can be written as,{
− 1

2
∇2

i +
∑
α

Zα∣∣r→i −R
→

α

∣∣ +
∑
j 6=i

∫ |ψj(r
→

j)|2
|r→i − r→j|

d3rj

}
ψi(r
→

i) = εi ψi(r
→

i) , (1.6.7)

with i running from 1 to N .

This famous set of integro-differential equations are called Hartree’s equations. One

immediate difficulty is caused by the fact that the self-consistent field V̂i—probably one of

the most important concepts in solid-state computational physics—can only be evaluated

if the ψj are known, and vice-versa. The one-electron potential V̂i, now renamed V̂ H for

historical reasons, can now be expressed as

V̂i(r
→

i) ≡ V̂ H(r→i) =
∑
j 6=i

∫
ψ∗j (r
→

j)ψj(r
→

j)
|r→i − r→j |

d3rj =
∫

n(r→j)
|r→i − r→j|

d3rj . (1.6.8)

The above expressions show clearly why the solutions of (1.6.7) have to proceed by

successive approximations. This self-consistent process is as follows:

1. Take some ψ
(0)
i (r→j)—the trial function—as a zero approximation, and evaluate the

one-electron potential V̂ H
(0)(r
→

i);

2. Substitute V̂ H
(0)(r
→

i) into (1.6.7) to obtain the first approximation for the one-electron

wave-function, ψ
(1)
i (r→j). Use this to re-calculate the potential, V̂ H

(1)(r
→

i);

3. Repeat the process until the (n+1)th approximation coincides with the nth approx-

imation within the limits of a predetermined error.

Finding the solutions of Hartree’s equation is nothing else than a mere problem of elec-

trostatics. One difficulty is the fact that each effective one-electron Schrödinger equation

contains the unknown wavefunctions in the charge density term.
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1.7 Hartree-Fock theory

The shortcoming of the Hartree scheme is that it takes no account of the Pauli exclusion

principle. The introduction of this principle, i.e., the inclusion of exchange effects, turns

it into the Hartree-Fock scheme (Fock, 1930).

The Pauli principle requires the electron wavefunction to be antisymmetric under the

interchange of any two fermions. At the same time
∏

ψi(~ri, σi) (1.4.2) does not satisfy this

requirement. The total wavefunction is written in the form of an antisymmetrised product

of one-electron wavefunctions,

ψe(r
→, σ) =

1√
N !

Â(N) [ψ1(r
→

1, σ1)ψ2(r
→

2, σ2) · · · ψN (r→N , σN )] (1.7.1)

The antisymmetrising operator Â(N) is usually defined as (Fulde, 1995),

Â(N) =
∑

ν

ξν τν , (1.7.2)

where the sum is over all permutations τν of the electrons and ξν is the parity of τν .

Consequently, ξν is 1 if the permutation τν involves an even number of electrons and −1

for an odd number of electrons.

Thereafter, we will only consider closed-shell systems, which are characterised by dou-

bly occupied orbitals ψi only, i.e., when ψλ(r→i, α) is occupied so is ψλ(r→i, β). Thus, there

is a complete symmetry with respect to spin-up and spin-down electrons.

The right combination of N one-electron wavefunctions takes the form of a Slater

determinant,

ψ(r→, σ) =
1√
N !

∣∣∣∣∣∣∣∣
ψ1(r
→

1, σ1) · · · ψN (r→1, σ1)
...

. . .
...

ψ1(r
→

N , σN ) · · · ψN (r→N , σN )

∣∣∣∣∣∣∣∣ ≡
1√
N !

det |ψλ(r→i, σi)| (1.7.3)

with,

ψλ(r→i, σi) = φλ(r→i)χσ (1.7.4)

The subscript λ represents the quantum state. The dimensionless quantity χσ is a spin-

function, with components α =
(1
0

)
for spin-up and β =

(0
1

)
for spin-down electrons.

The spin-independent orbitals φλ satisfy∫
φ∗λ(r→)φµ(r→) d3r = δλµ . (1.7.5)

The single-particle wavefunctions (or spin orbitals, after Slater (1974)), are formally

obtained from the equation,

ĥHF ψλ(r→i, σi) = εi ψλ(r→i, σi) (1.7.6)

However, so long as we do not know the exact form of the operator ĥHF, we cannot, of

course, calculate single particle orbitals from the equation above.
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Applying the Ritz variational principle,4 it is possible to overcome this difficulty by

optimising the ansatz of single-particle orbitals. The variational problem can be posed as

follows,

δ

δψ∗λ

[
<ψλ | Ĥ |ψλ>−

N∑
λ>µ

ελµ

∫
ψ∗λ(r→, σ)ψµ(r→, σ) d3r

]
= 0 (1.7.7)

The Lagrange matrix elements ελµ arise from the constraint that the spin orbitals must

be normalised.

The normalisation integral <ψλ |ψλ> is equal to unity and the energy expectation

value is found to be given by

E =
∑

λ

<λ | (T̂e + V̂e−i) |λ > +
1
2

∑
λ

∑
µ

(
<λµ | V̂e−e |λµ>−<λµ | V̂e−e |µλ>

)
(1.7.8)

The second and third terms are sometimes called direct and exchange integrals (Gross

et al., 1991). It is now advantageous to introduce a notation customary in quantum

chemistry, where these integrals are referred to as Jλµ and Kλµ, respectively.5

The summation 1
2

∑
λ,µ<λµ | V̂e−e |µλ> ≡

∑
λ,µ Kλµ defines the exchange energy

Ex =
1
2

∑
λ

∑
µ

δσλσµ δστσρ

∫∫
φ∗λ(r→)φ∗τ (r→′)

1
|r→− r→′| φµ(r→)φρ(r

→′) d3r d3r′ (1.7.9)

The Kronecker delta pre-factors, δσλσµ ensure that the matrix elements for which φλ and

φµ have different spins are zero.

What is the physical meaning of the exchange energy Ex? If one is to take the Pauli

principle into account, two electrons with parallel spins cannot be found at the same point

in space. As a consequence, the average distance, separating the two electrons, will be

greater and the electrostatic repulsion energy lower by a quantity corresponding to the

exchange energy. The exchange integral, Kλµ, has no classical counterpart and should be

regarded as a quantum mechanical correction to the Coulomb integral Jλµ.

It is now possible to solve the variational problem posed by (1.7.7). The result of the

minimisation may be expressed as,

F̂λ ψλ(r→, σ) =
N∑

µ6=λ

ελµ ψµ(r→, σ) (1.7.10)

F̂λ is the Fock operator assuming the following form,

F̂λ ≡ T̂e + V̂e−i + ĝ . (1.7.11)

The Hartree-exchange operator ĝ(r→, r→′) is defined as

ĝ = V̂ H(r→) + V̂ x
λ (r→, r→′) . (1.7.12)

4The trial wavefunction is defined as a linear combination of one-particle wavefunctions, and the standard

variational principle (1.5.1) is applied.
5An important equality applies here: Kλλ = Jλλ, with Kλµ, Jλµ > 0.
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V̂ H and V̂ x
λ are the Hartree- and exchange-potential operators, defined as functional deriva-

tives of the Hartree and exchange energies, respectively:

V̂ H(r→)ψλ(r→, σ) =
δUH

δφ∗λ
=

∫
n(r→′)
|r→− r→′| ψλ(r→, σ) d3r′ (1.7.13)

and,

V̂ x
λ (r→, r→′)ψλ(r→, σ) =

δEx

δφ∗λ
= −

∑
µ6=λ

δσσλ

∫
φµ(r→′)φ∗λ(r→′)
|r→− r→′| ψµ(r→, σ) d3r′ (1.7.14)

with,

n(r→′) =
N/2∑
µ

|φµ(r→′)|2 . (1.7.15)

Again, the factor δσσλ implies that only those spin orbitals ψµ which have spin σ contribute.

In (1.7.15), the summation is performed over occupied states only, i.e., N/2 for the the

present case of a closed-shell system.

It important to note that the exchange potential is a non-local operator. In order to

show this unambiguously, let us write the HF equations (1.7.10) explicitly as,(
T̂e + V̂e−i +

∫
n(r→′)− nx

λ(r→, r→′)
|r→− r→′| d3r′

)
φλ(r→) = ελ φλ(r→) (1.7.16)

The non-local exchange density term, nx
λ(r→, r→′), is

nx
λ(r→, r→′) =

∑
µ6=λ

φ∗λ(r→)φµ(r→)

|φλ(r→)|2
φ∗µ(r→′)φλ(r→′) (1.7.17)

The non-local character of the exchange density complicates considerably finding a self-

consistent solution of the HF equations. From a computational viewpoint, this is confirmed

by the fact that the evaluation of the exchange energy term involves a four-centre integral.

Integration of nx
λ over r′, upon using orthogonality of φλ and φµ, with λ 6= µ, shows

that this exchange charge density contains exactly one electron,∫
nx

λ(r→, r→′) d3r′ = −1 (1.7.18)

Further, at r→= r→′,

nx
λ(r→, r→) =

∑
µ6=λ

|φµ(r→)|2 (1.7.19)

That is, it exactly subtracts out the charge density of all electrons with spin parallel to

that at a λ-th state and located at r→ = r→′. At a crude approximation, it will have the

effect of removing all the parallel spin-charge from a sphere centred at r→ and of radius R

such that ∫
nx

λ(r→, r
→) d3r w 4π

3

∑
µ6=λ

|φµ(r→)|2 R3 = 1 (1.7.20)
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In other words, each electron moves in the field of the nuclei, the electrons of opposite spin,

and those of parallel spin outside an exchange-hole, or ‘Fermi-Coulomb hole’ (of radius R),

which follows it around wherever it goes.

Multiplying (1.7.10) by ψ∗λ(r→), and integrating, one obtains the formula for orbital

energies,

ελ ≡ ελµ = <ψλ | F̂ |ψλ> = <λ|
(
T̂e + V̂e−i

)
|λ> +

1
2

N∑
µ

(Jλµ −Kλµ) (1.7.21)

Summing over λ and comparing with (1.7.8), we get, including ion-ion repulsive interaction

EHF =
∑

λ

ελ −Ee−e + Ei−i (1.7.22)

Note that EHF is not equal to the sum of the orbital energies. Ṽe−e is now the total

electron-electron potential (including exchange):

Ee−e =
1
2

∑
λ>µ

(Jλµ −Kλµ) = UH −Ex . (1.7.23)

1.7.1 Koopmans’ theorem

The non-linear Hartree-Fock equations have the form of one-particle Schrödinger equa-

tions, with an effective non-local potential. The correspondent one-electron eigenvalues ελ

were formally introduced as Lagrange parameters, which do not have per se any physical

meaning. These were simply introduced to account for the normalisation conditions of the

wavefunction with respect to which the stationary point of the energy is found.

Koopmans’ theorem (1933) attaches a physical meaning to those eigenvalues, stating

that they are the ionisation potentials of the system for which the HF equations have been

set up. Analytically,

−Iλ = EHF(N − 1λ)−EHF(N) = ελ . (1.7.24)

Iλ is the ionisation potential of an electron at a level λ and 1λ simply means that the

electron is extracted from the one-electron level λ.

The above expression, in which the ionisation potential is identified as a finite difference,

implies a severe approximation. It is assumed that the removal of the electron in state λ

from the system does not influence the wavefunctions of the remaining electrons.

Effectively, we calculate the energy of the perturbed systems, with (N − 1) particles,

using the unperturbed wavefunctions of the initial system containing N particles. In other

words, the EHF(N − 1λ) and EHF(N) are calculated from the same set of spin orbitals,

obviously ignoring the consequent relaxation process to compensate the lack of screening

due to removal of an electron.

1.8 The local exchange potential: The Xα method

It has been pointed out in this thesis that one of the major difficulties on applying the HF

scheme arises from the non-local character of the exchange potential. Slater (1972) has



The Quantum Many Body Problem 16

suggested replacing this non-local potential by a local one, a step carried out by means of

the Xα method.

This method assumes that the exchange potential at a certain point in space r→0 of

a given system, characterised by a density distribution n(r→) is that of a homogeneous

electron gas with density n ≡ n(r→0).

This is a reasonable approximation as long as n(r→), as a function of r→, varies sufficiently

slowly, i.e., as long as ∣∣∣∣→∇n(r→)
n(r→)

∣∣∣∣� kF(n(r→)) . (1.8.1)

The local Fermi momentum is given by kF = 3
√

(3π)2 n.

For the case of a homogeneous electron gas, the solutions of the HF equations assume

the form of plane waves,

ψλ(r→, σ) =
1√
Ω

ei k
→
· r→ σ . (1.8.2)

Here Ω is the volume of the system and λ refers to the wavevector k
→

and spin state σ. The

energy levels are:

Ek =
1
2
k2 + V x

k
→ ≡ E

k
→

,σ
, (1.8.3)

where the exchange potential V x

k
→ is given by,

V x

k
→(r→) = −

occ∑
|k
→′|<kF

∫
ei (k
→
−k
→′)·(r→′− r→)

Ω |r→− r→′| d3r′ . (1.8.4)

This is in fact independent of r→, depending only on the magnitude k of k
→

alone. The sum

is over all occupied states with spin σ. Analytically,

V x

k
→ = −

occ∑
|k
→′|<kF

4π

Ω
∣∣k→− k

→′
∣∣ = − 1

8π3

∫
|k
→′|<kF

4π∣∣k→− k
→′

∣∣ d3k . (1.8.5)

The solution of the above integral is, replacing kF by its explicit form

V x

k
→ = −4F (η)

(
3n(r→)

8π

)1
3

, (1.8.6)

where η defined as k/kF, equals

F (η) =
1
2

+
1− η2

4 η
ln

(
1 + η

1− η

)
. (1.8.7)

The function F (η), known as the Linhard function, tends to 1 when η → 0, and to 1
2 as

η → 1. Its derivative has a weak singularity as η tends to 1. This fact has catastrophic

implications for the applicability of this theory to simple metals.
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We obtain Slater’s form of a local exchange potential by averaging F (η) over all occu-

pied states, i.e., the Fermi sphere. This results in

Fav ≡
3

4π k3
F

∫
|k
→
|<kF

F (η) d3k = 3 (1.8.8)

Replacing kF by kF(n(r→)), we derive from (1.8.6) the averaged quantity,

V x
av(n(r→)) = − 3

2π
kF(n(r→)) = − 3

2π
[3π2 n(r→)]

1
3 . (1.8.9)

This is the required local approximation for the exchange potential.

Adopting a more phenomenological point of view, we multiply Fav by an adjustable

parameter α which is fitted to observable quantities. The Xα potential which replaces the

non-local exchange potential can then be expressed as

VXα(n(r→)) = −3α

(
3

8π

)1
3

n(r→)
1
3 . (1.8.10)

1.9 Shortcomings of the one-electron approximation

The one-electron approximation implies that an electron interacts with other electrons in

the system according to their average locations. In reality, however, the electronic motion

occurs according to the other electrons’ actual positions. The Coulomb repulsion becomes

sufficiently reduced only if a correlated motion of the electronic system takes place.

What is missing is the correlation-hole energy that the electron carries along to pre-

vent other electrons from coming too close, which would provoke a considerable potential

energy loss. The difference between the exact N -electron wavefunction and its HF counter-

part is therefore related to the correlation aspect of the electron motion. The correlation

contribution, EHF
c , is then defined as,

EHF
c = E −EHF . (1.9.1)

1.10 The classical density functional models

1.10.1 Introduction

In previous sections of this thesis, we have described some approximations that allow us

to to solve the full Schrödinger equation by decoupling the electronic and nuclear motions

and reducing the many-body problem to a single-particle one. Despite this, analytical

solutions are only possible for a few very simple systems, and numerically exact solutions

can only be found for a small number of atoms or molecules. Large systems, like a solid,

are still out of reach.

The appealing picture resulting from the Hartree-Fock scheme is so familiar that it is

sometimes overlooked that the approximation behind it is not a particularly good one. The

lowest-lying configuration is generally only one of very many which are almost degenerate
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in energy, which suggests that a better one would result from taking a linear combination

of those configurations. Such an approach, where effects beyond the HF approximation

(correlation effects) are included by improving the many-particle wavefunction, is known

as configuration interaction (CI).

The CI correction leads, in principle, to the exact wavefunction from which most prop-

erties of interest can be calculated. Unfortunately, due to the fact that the number of

configurations explodes with the number of electrons considered, only systems with a very

small number of electrons can be studied with high accuracy. Furthermore, the complexity

of the resulting solutions means that a simple interpretation of the results is often difficult.

Thomas (1927) and Fermi (1928) proposed a new scheme based on the density of

electrons in the system, n(r→). This original idea is remarkable in the sense that it allows

us to replace the complicated N -electron wavefunction and the associated Schrödinger

equation with the simpler electron density.

This model assumes that the electronic properties of a real system are similar to those

of a gas of fermions, i.e., a classical ensemble of non-correlated particles. Although this

approach has had a limited success in reproducing the properties of real systems, it is a

prototype for later density functional theories in its focus on the density, i.e., the integrated

quantity,

n(r→′) = N

∫
d3r2 · · ·

∫
d3rN Ψ∗(r→1, . . . , r→N )×Ψ(r→1, . . . , r→N ) , (1.10.1)

which is easier to describe than the precise details of the total wavefunction Ψ. This

model also provides a well-defined model whose mathematical properties have received

much attention (Lieb, 1981).

1.10.2 The model of Thomas and Fermi

We are interested in finding the electronic properties of a system described by the following

Hamiltonian:

Ĥ ≡ −1
2

∑
i

∇2
i +

1
2

∑
j 6=i

1
|r→i − r→j |

+ v(r→i) , (1.10.2)

with

v(r→i) = −
∑
α

Zα∣∣r→i −R
→

α

∣∣ , (1.10.3)

an external potential defining the interaction between the electrons and the nuclear frame.

In the approximation of Thomas and Fermi (TF), the total electron-electron interaction

energy, including non-classical terms, arises solely from the Coulombic interactions between

particles within a classical charge distribution. The quantity

UH[n] =
1
2

∫∫
n(r→)n(r→′)
|r→− r→′| d3r d3r′ , (1.10.4)

a Hartree electrostatic self-repulsion of the electron density, replaces the total electron-

electron interaction (the second term in right side of (1.10.2)), which includes non-classical
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terms. Re-calling the kinetic term in (1.10.2), the kinetic energy is given by

T [n] =
∫

t[n(r→)] d3r , (1.10.5)

where t[n] is the kinetic energy density for a system of non-interacting electrons with

density n. It is assumed that n(r→) varies so slowly in space that an electron at a point r→

sees an essentially homogeneous medium with density n(r→).6

The kinetic energy density is derived from the corresponding functional for the homo-

geneous electron gas. We have,

t[n] =
2

(2π)3

∫
|k
→
|<kF

1
2

k2 d3k , (1.10.6)

where kF is the Fermi momentum and

n =
1

(3π)2
k3
F =

3
4π r3

s

, (1.10.7)

where rs is the Wigner-Seitz radius defined as the radius of a sphere whose volume is the

effective volume of an electron. This gives

T0[n] = CF

∫
n(r→)

5
3 d3r , (1.10.8)

where CF is 3
10(3π2)

2
3 = 2.871. This equation shows that in this theory the kinetic energy

is determined explicitly by the density n(r→).

Equation (1.10.8) is the famous TF kinetic energy functional which Thomas and Fermi

dared to apply to electrons in atoms and molecules. Here, we first encounter one of the

most important ideas in modern DFT: the local density approximation (LDA). In this

approximation, electronic properties are determined as functionals of the electron density

by applying, locally, relations appropriate for a homogeneous electronic system.

The total electronic energy, ETF[n; v], can now be written as

ETF[n; v] =
∫

v(r→)n(r→) d3r + UH[n(r→)] + CF

∫
n(r→)

5
3 d3r . (1.10.9)

It is important to note that ETF is a functional of v, the potential energy of the nuclear

framework—the external potential—as well as of the electronic density n. Note that the

expression of ETF does not contain any exchange or correlation terms.

Imposing the constraint that the total number of electrons remains constant, the

ground-state density n(r→) is determined by minimising (1.10.9). Analytically, the Euler-

Lagrange equation is

δ

{
ETF[n; v]− µ

∫
n(r→) d3r

}
= 0 , (1.10.10)

where µ is a Lagrange parameter playing the role of a chemical potential. This is evident

from the form of the variational equation,

δ(ETF − µN) = 0 ⇒ µ =
δETF

δN
, (1.10.11)

6It is important to note that a molecular electron cloud, the foundation of a crystal, is not obviously a

uniform gas.



The Quantum Many Body Problem 20

assuming the constancy of µ.

If we bring (1.10.9) in, the solution of the variational problem can by expressed as,

µ =
5
3

CF n(r→)
2
3 + v(r→) +

∫
n(r→′)
|r→− r→′| d

3r′ , (1.10.12)

which is the basic relation between electron density n(r→) and potential energy v(r→) of the

Thomas-Fermi theory.

Replacing the value of CF in the above equation, and denoting vi as the electrostatic,

or internal, potential produced by the electronic density,

vi(r
→) ≡

∫
n(r→′)
|r→− r→′| d

3r′ , (1.10.13)

the electron density can be written as

n(r→) =
1

3π2

{
2 [µ− v(r→)− vi(r

→)]
} 3

2 , (1.10.14)

for µ > v(r→) + vi(r
→). One way of determining the form of vi(r

→) is to relate this quantity

to the electron density n(r→) (1.10.14), through the Poisson’s equation

∇2 vi(r
→) = −4π n(r→) . (1.10.15)

From (1.10.14) and (1.10.15) we can eliminate n(r→) and arrive at the Thomas-Fermi equa-

tion

∇2 vi(r
→) = −2

7
2

3π
[µ− v(r→)− vi(r

→)]
3
2 . (1.10.16)

The form of the above equation reveals the attractiveness of the Thomas-Fermi model.

It allows the determination of n(r→) directly from v(r→), by-passing the wavefunctions. This

is the main achievement of this theory. Of course, the choice of v(r→) remains problematic.

Although the Thomas-Fermi method suffers from a crude treatment of the kinetic

energy and the neglect of exchange, it contains all the important ingredients of a density

functional theory.

The Thomas-Fermi scheme has been widely used in the past. March (1983) provides

a good background review of this method. This method has been found to give a rough

estimative of the charge density and the electrostatic potential. Additionally, the charge

density is infinite at the nucleus, and it does not decay exponentially far from the nucleus,

but as r−6 (Gross & Dreizler, 1979).

Another weakness of the TF is the lack of shell structure, which means that the observed

periodic variation when changing the atomic number cannot be reproduced. In fact, the

atoms shrink with increasing atomic number Z (Z−1/3) (Jones & Gunnarsson, 1989).

1.10.3 Exchange effects: Dirac’s correction

The addition of a correction to the TF model due to exchange effects is due to Dirac (1930).

Within this model—the Thomas-Fermi-Dirac model—the energy functional is written as,

ETFD[n; v] = ETF[n(r→), v(r→)] + Ex[n(r→)] . (1.10.17)
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The additional term is defined as,

Ex[n] = −Cx n(r→)
4
3 with Cx =

3
4

(
3
π

)1
3

= 0.7386 . (1.10.18)

The Thomas-Fermi-Dirac energy functional, labelled TFD accordingly, can then be

written, explicitly, as

ETFD[n; v] = T0[n(r→)] +
∫

v(r→)n(r→) d3r + UH[n(r→)]− Cx

∫
n(r→)

4
3 d3r . (1.10.19)

The expression for the exchange term can be derived from the Hartree-Fock theory in

the density matrix formalism, using first order reduced matrices (Gross & Dreizler, 1979).

1.10.4 A conventional gradient correction: The Weizsäcker correction

Attempting a better description of the properties of an inhomogeneous electron gas, von

Weizsäcker introduced a correction to the TF kinetic energy (von Weizsäcker, 1935):

TW[n] =
~2

8m

∫ →
∇n(r→) ·

→
∇n(r→)

n(r→)
d3r . (1.10.20)

In (1.10.20), in order to display the dependence on ~, atomic units are not used.

The total kinetic energy thus becomes

TTFλW[n] = TTF[n(r→)] + λTW[n(r→)] , (1.10.21)

where the parameter λ was taken to be unity in the original work of von Weizsäcker, but

was later shown to lie in the interval 1
9 6 λ 6 1 (Meyer et al., 1976).

To second order, we can write the Thomas-Fermi-Dirac-Weizsäcker (TFDW) model for

the total energy functional as

ETFDW[n] = CF

∫
n(r→)

5
3 d3r +

∫
v(r→)n(r→) d3r

+ UH[n(r→)]− Cx

∫
n(r→)

4
3 d3r +

1
8

λ

∫ |→∇n(r→)|
2

n(r→)
d3r . (1.10.22)

The corresponding Euler-Lagrange equation is as follows:

µ =
5
3

CF

∫
n(r→)

2
3 d3r + v(r→)− 4

3
Cx

∫
n(r→)

1
3 d3r + λ

1
8

 |→∇n(r→)|
2

n2(r→)
− 2
∇2 n(r→)

n(r→)

 .

(1.10.23)

The TFDW model provides considerable improvement over the TF or TFD models.

The electron density is finite at the nucleus instead of diverging as it does in the TF or

TFD models:

n(small r→) ∝ r−
3
2 →∞ when r→ 0 . (1.10.24)

Far from the nucleus, the electron density is given by (Gross & Dreizler, 1979)

n ∝
(

1
r2

)
exp

{
−

(
−8µ

λ

)
r

}
, (1.10.25)

in contrast with the improper power decay of r−6.
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Modern Density Functional Theory

2.1 Introduction

Density functional theory (DFT) has had a major impact on structure-electronic calcula-

tions. The density functional approach expresses ground-state properties—such as total

energies, equilibrium positions or magnetic moments—in terms of the electronic density

n(r→) and provides an effective scheme for calculating the referred properties. The method

avoids the problem of calculating the ground-state many-body wavefunction, as it reduces

the number of degrees of freedom to a minimum.

As described previously (§1.10.2), Thomas and Fermi had attempted to formulate such

an approach much earlier; however their model suffered from inaccuracies in the description

of the kinetic energy and a complete neglect of exchange-correlation effects. Despite this

fact, the TF method served as a starting point for the development of a more advanced

one by Hohenberg, Kohn and Sham (Hohenberg & Kohn, 1964; Kohn & Sham, 1965).

The DFT formalism is easily translated into computer language. It can handle infi-

nite periodic systems (no N -dependence),1 and non-periodic systems of very many atoms,

currently on the order of ∼ 103. These properties, together with many extensions and

improvements, have made DFT a popular method in several branches of physics and chem-

istry. It is now possible to study distinct fields of physics like time-dependent phenomena,

superconductivity or excited states, etc, using DFT.

The aim of the present chapter is to provide a brief account for the original idea

behind the modern DFT and present the latest extensions and improvements to it. Special

attention will be paid to generalisations of DFT that are relevant to the work presented

in this thesis.
1In contrast to the HF method.

22
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2.2 Basic formalism

For an electronic system described by the Hamiltonian (1.10.2)

Ĥ ≡ −1
2
∇2

i +
1
2

N∑
j 6=i

1
|r→i − r→j |

+ v(r→i) , (2.2.1)

where v(r→) is some external potential, both the ground-state energy and the ground state

wavefunction are determined by the minimisation of the energy functional (1.5.1). From

the form of the total Hamiltonian operator it is obvious that two quantities completely fix

the referred Hamiltonian. These are the number, N , of electrons in the system and the

external potential v. In other words, N and v determine all the properties for the ground

state. This is not surprising since v defines the whole nuclear frame, which together with

the number of electrons determines the electronic properties of the system under study.

Hohenberg and Kohn (1964) proposed the use of the electron density n as a basic

variable, instead of N and v.

2.2.1 The Hohenberg and Kohn theorems

Theorem 1. The density as a basic variable:

The external potential v is uniquely determined within a physically irrelevant additive con-

stant by the electron density n:

n(r→)→ v(r→) . (2.2.2)

This statement has far-reaching consequences. Since n(r→) determines v, and trivially

N , it determines the Hamiltonian Ĥ; hence, implicitly, also all the properties derivable

from Ĥ.

Despite its importance, the proof of the first theorem of Hohenberg and Kohn is dis-

armingly simple. It follows by reductio ad absurdum, having as premise the fact that two

different external potentials, v and v′, lead to the same charge density n.

Proof. Let v be the external potential of the system with N particles, defined as
∫

n(r→) d3r,

an associated ground state density n(r→), Hamiltonian Ĥ and ground-state wavefunction

and energy, Ψ and E, respectively. Schematically,

v : Ĥ, N, n, Ψ, E . (2.2.3)

A second system,with N particles, is characterised as:

v′ : Ĥ′, N, n′, Ψ′, E′ , (2.2.4)

where v′ 6= v + C, and hence Ψ′ 6= Ψ.

By the Rayleigh-Ritz variational principle,

E = < Ψ| Ĥ |Ψ >< <Ψ′| Ĥ′ |Ψ′ >=< Ψ′| Ĥ′ |Ψ′ > + < Ψ′| (Ĥ − Ĥ′) |Ψ′ >

= < Ψ′| Ĥ′ |Ψ′ > +
∫

[v(r→)− v′(r→)]n′(r→) d3r , (2.2.5)
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or

E < E′ +
∫

[v(r→)− v′(r→)]n(r→) d3r . (2.2.6)

The above inequality follows from the fact that Ψ′ 6= Ψ. Similarly,

E′ < E +
∫

[v′(r→)− v(r→)]n′(r→) d3r . (2.2.7)

Adding up (2.2.6) and (2.2.7), one obtains

(E + E′) < (E + E′) +
∫

[v′(r→)− v(r→)] [n′(r→)− n(r→)] d3r (2.2.8)

The possibility n′ ≡ n has to be excluded since it would lead to (E + E′) < (E + E′).

Thus any potential v′ except v + C, leads to n′ 6≡ n.

Quod Erat Demonstradum.

The total ground-state energy of the system can be written as

E = <Ψ| V̂ext |Ψ> + <Ψ| (T̂ + V̂ee) |Ψ> , (2.2.9)

where the terms on the right hand side are the expectation values of the external poten-

tial, kinetic energy and interaction energy (including classical and non-classical terms),

operators. Clearly,

<Ψ| V̂ext |Ψ> = < Ψ|
N∑

i=1

v(r→i) |Ψ >

=
∫

v(r→)n(r→) d3r (2.2.10)

are

FHK[n] ≡ <Ψ| (T̂ + V̂ee) |Ψ> . (2.2.11)

functionals of n. FHK is universal in the sense that does not depend on v. It depends on

n, via Ψ, defined for any physical n corresponding to some v.2 Explicitly,

FHK[n] = T [n(r→)] + Vee[n(r→)]

= T [n(r→)] + (U [n(r→)] + non-classical term) , (2.2.12)

where Vee[n] represents all the electron-electron effects, including UH, the classical repulsion

of (1.10.4), and a non-classical term. T [n] is the kinetic energy contribution.

Using (2.2.10) and (4.6.6), we can explicitly write the total energy functional as

E ≡ Ev[n(r→)] =
∫

v(r→)n(r→) d3r + FHK[n(r→)] . (2.2.13)

The second Hohenberg-Kohn (HK) theorem provides the density variational principle:
2Such densities are called v-representables.



Modern Density Functional Theory 25

Theorem 2. The density variational principle:

For a trial density n′(r→), such that n′(r→) > 0 and
∫

n′(r→) d3r = N ,

Ev[n′(r
→)] > E0 (2.2.14)

where Ev[n′(r
→)] is the energy functional defined by (2.2.13).

Using the Rayleigh-Ritz (RR) variational principle for the ground-state energy leads

rather simply to the conclusion that, for a given v, the expression (2.2.13) is a minimum

for the correct ground-state n(r→) (Hohenberg & Kohn, 1964):

Proof. Let Ψ′ be a trial state. Note that the previous theorem ensures that n′(r→) deter-

mines its own v′. Then, by the conventional RR principle,

E[Ψ′] ≡ <Ψ′| (T̂ + V̂ext + V̂ee) |Ψ′> > E0 , (2.2.15)

or

Ev[n′(r
→)] =

∫
v(r→)n′(r→) d3r + FHK[n′(r→)] > E0 . (2.2.16)

The equality sign holds only if Ψ′ = Ψ.3

Quod Erat Demonstradum.

This is the HK energy variational principle. In other words, the variational principle

for the ground-state energy (§1.5) can now be re-written: the charge replaces the total

wavefunction as the direct variational variable.

Note that, so far, FHK[n] was defined only abstractly through (4.6.6), but not construc-

tively. The HK theorems offer no practical guide to built this particular functional.4 The

knowledge of the explicit form of FHK[n] could allows us to apply this formalism to any

system, independently of the number, N , of electrons in the system. This is easily seen if

one applies the stationary principle explicitly:

δ

{
Ev[n(r→)]− µ

∫
n(r→) d3r

}
= 0 , (2.2.17)

which is equivalent to the Euler equation

µ =
δ

δn
Ev[n(r→)] = v[n(r→)] +

δFHK[n(r→)]
δn(~r)

. (2.2.18)

In conclusion, Hohenberg and Kohn have showed that all the terms in the expression

for the total energy may be evaluated as a sum of functionals of the charge density:

E[n] = T [n] + Ee−i[n] + UH + Exc[n] + Ei−i. (2.2.19)

Clearly Ee−i[n] and UH[n], the Hartree term, are manifestly functionals of the charge

density:
3This proof can be extended to degenerate ground states, leading again to expression (2.2.15).
4The crudest ansatz for FHK[n] gives the familiar Thomas-Fermi approximation.
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Ee−i[n] = −
∫

n(r→)
∑
α

Zα∣∣∣r→−R
→

α

∣∣∣ d3r, (2.2.20)

UH[n] =
1
2

∫∫
n(r→)n(r→′)
|r→− r→′| d3r d3r′, (2.2.21)

an the ion-ion term is

Ei−i =
1
2

∑
α6=β

Zα Zβ∣∣∣R→α −R
→

β

∣∣∣ . (2.2.22)

The kinetic and the non-classical exchange-correlation term are more difficult to express

as a function of n(r→). This issue will be discuss in forthcoming sections of this thesis.

2.2.2 The v-representability of an electron density

A function n(r→) is a pure-state v-representable if it is the density of a (degenerate or not)

ground state of the total Hamiltonian associated with some suitable chosen local external

potential v.5

Having defined a v-representable (VR) charge density, one question arises immediately:

Given a well-defined and non-negative, charge density, normalised to N , can one find always

an external potential, so that n(r→) is a ground-state density of the total Hamiltonian?

Obviously, a given charge density, n(r→), may or may not be v-representable.

This is important since the inequality (2.2.16),

Ev[n(r→)] =
∫

v(r→)n(r→) d3r + FHK[n(r→)] > E0 , (2.2.23)

ceases to apply in a practical application for a non-VR density.

The original hope of Hohenberg and Kohn (1964) that all well behaved functions are

VRs, turned out to be too optimistic. Levy (1982) and Lieb (1983) have shown that there

are densities, which are à priori reasonable candidates, are not indeed VR. Furthermore,

Englisch and Englisch (1983) showed that even for a single-particle system there are den-

sities that do not come from a ground-state wavefunction of any v. In this context, we

can restate the first HK theorem as the fact that there is a one-to-one mapping between

the ground-state wavefunctions and the VR densities. It is through this unique mapping

that a VR density determines the properties of its ground state. In their original paper,

HK (1964) proved v-representability for the case of a density that is nearly uniform.

Kohn (1983) has proved, for the case of a lattice (grid) where the kinetic energy oper-

ator is represented by some finite difference, that n(r→) will be a VR, provided it is close

enough to a known VR density. Unfortunately, there is no such theorem for the case of a

continuum.
5The number of particles, N , and their mutual interaction being specified.
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2.2.3 The constrained search process

Of particular importance is the functional FHK[n] of (4.6.6) defined as

FHK[n] ≡ <Ψ | (T̂ + V̂ee) |Ψ> .

where Ψ is the ground-state wavefunction associated with n(r→), which has to be VR,

i.e., comes from an anti-symmetric N -electron wavefunction, in order to determine all the

relevant properties of the system.

We have already established the one-to-one correspondence between the ground-state

density, n0, and the ground-state wavefunction Ψ0. It is obvious that Ψ0 provides n0

(by quadrature). But there is an infinite number of antisymmetric wavefunctions (not

necessarily from ground states) that give the same charge density. Given one of these

functions that integrates to n0, say Ψ′, how do we distinguish them from the ground-state

Ψ0? Although having proved that such a charge density exists, Hohenberg and Kohn (1964)

have not provided the tools to construct it.

The answer to this question was provided by Levy (1982) and further investigated by

Lieb (1983) and Levy and Perdew (1985). This formalism is usually classified under the

heading of a constrained search.

Re-applying the variational principle for the functions Ψ′, we can write

<Ψ′ | (T̂ + V̂ee) |Ψ′> > <Ψ0 | (T̂ + V̂ee) |Ψ0> (2.2.24)

since the potential energy due to the external potential vext(r
→) is a simple function of N .

We conclude that among all the wavefunctions giving the same charge density n0, the

ground state Ψ0 minimises the expectation value of <T̂ + Û>.

Analytically, given any n′ of one of many ground-state wavefunctions Ψ′ (Dreizler &

Gross, 1990),

FLL[n′] ≡ inf
Ψ

(n′[Ψ′]=n′(r→))

<Ψ′ | (T̂ + V̂ee) |Ψ′> (2.2.25)

= <Ψn′ | (T̂ + V̂ee) |Ψn′> ,

where Ψn′ is the wavefunction that gives n′ and minimizes FLL[n′]. This is a constrained

search definition for FLL[n′]. The search of the infinimum proceeds over all the trial

antisymmetric wavefunctions Ψ′, subject to the constraint that n′[Ψ′] = n′(r→), i.e, whose

density equals the prescribed charge density, n′. The variation is constrained because the

space of trial functions comprises only those that give the density n′, in opposition to the

search (1.5.1). The requirement of v-representability is then no longer necessary.

An immediate consequence of the Rayleigh-Ritz principle is

FLL[n′(r→)] = FHK[n′(r→)] (2.2.26)

for all pure-state VR functions n′.
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This formalism is easily incorporated into the HF scheme by rewriting the RR varia-

tional principle as

E0 = inf
Ψ′

<Ψ′ | Ĥ |Ψ′> . (2.2.27)

The above minimisation proceeds in two stages (Dreizler & Gross, 1990):

E0 = inf
n′

[
inf
Ψ

(n′[Ψ′]=n′(r→))

<Ψ′ | (T̂ + V̂ee + V̂ext) |Ψ′>
]

= inf
n′

[
inf
Ψ′

<Ψ′ | (T̂ + V̂ee) |Ψ′> +
∫

v(r→)n′(r→) d3r
]

= inf
n′

[
FLL[n′(r→)] +

∫
v(r→)n′(r→) d3r

]
. (2.2.28)

In the second line, the inner minimisation is constrained to all wavefunctions that give n′,

while the outer minimisation releases this constrained by searching all n′.

Note that the FHK[n′] functional only applies to ground-state densities, while the defi-

nition (2.2.28) belongs to a broader class, covering the case of degenerate states.

2.3 The Kohn-Sham scheme

2.3.1 Introduction

As already stated in previous sections, the Hohenberg-Kohn provides no practical guide

for the explicit construction of the functional FHK[n].

An important question still remains to be answered. Can the properties of the homo-

geneous electron gas be used in theoretical studies of inhomogeneous systems, like solids?

So far, none of the available functions led to satisfactory results. This was mainly due to

a deficient description of the kinetic contribution T [n].

This picture changed dramatically with the scheme introduced by Kohn and Sham (1965).

The main achievement of the later was the introduction of an orbital single-particle pic-

ture that can be established rigorously. It leads quite naturally to a more appropriate

representation of the kinetic energy contribution.

The Kohn-Sham (KS) scheme has its roots in the Hartree and Xα methods, which

are, like the KS, self-consistent methods featuring an effective single-particle Schrödinger

equation with a local, particle dependent, one-particle potential. A crucial difference from

the Hartree and Slater’s Xα and the KS method is that the later includes correlation effects

exactly.

In following sections, we will present the derivation of the KS equations based on a

variational principle. This will involve an energy functional depending on single-particle or-

bital and their (fractional) occupancy numbers. This will allow us to discuss the possibility

of calculating excitation, or transition, energies with the aid of the so-called transition-

state argument. This concept was introduced by Slater (1974) to calculate approximate

excitation energies within the Hartree-Fock-Slater method.
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2.3.2 The Kohn-Sham equations

Using a non-interacting reference system of N particles, Kohn and Sham (1965) introduced

the following Hamiltonian Ĥs,

Ĥs = T̂ + V̂s =
N∑
i

(
−1

2
∇2

i

)
+

∑
i

vs(r
→

i) . (2.3.1)

Obviously, this Hamiltonian does not contain any electron-electron interaction terms. Ac-

cording to the first HK theorem, there exists a unique energy functional,

Es[n] = Ts[n(r→)] +
∫

vs(r
→)n(r→) d3r (2.3.2)

for which the variational principle δEs[n] = 0 yields the exact ground-state density ns(r
→)

corresponding to Ĥs. Ts[n] denotes the universal kinetic energy functional of a system of

non-interacting particles.

The main assertion in the KS scheme is: for any system of interacting particles, there

exists a local single-particle potential vs(r
→) such that the exact ground-state density n(r→)

of the interacting system satisfies

n(r→) ≡ ns(r
→) . (2.3.3)

Here n(r→) is the charge density of the real (inhomogeneous) electron gas.

The determinantal ground-state wavefunction for this system of non-interacting parti-

cles is

Ψs ≡
1√
N !

det [ψ1 ψ2 · · · ψN ] . (2.3.4)

The single-particle wavefunctions ψi, assumed non-degenerate, define ns through

ns(r
→) =

N∑
i

|ψi(r
→)|2 , (2.3.5)

with the sum over all occupied states, ie, N , are obtained from the one-particle Schrödinger

equation

ĥs ψi(r
→, s) ≡

{
−1

2
∇2

i + vs(r
→)

}
ψi = εi ψi, i = 1, 2, . . . ,N . (2.3.6)

Once the existence of a potential vs, generating n(r→), via (2.3.5) and (2.3.6), is assumed,

the uniqueness of vs follows from the first HK theorem.

The kinetic energy term Ts[n] is, according to Kohn and Sham (1965)

Ts[n] = <Ψs |
N∑
i

(
− 1

2
∇2

i

)
|Ψs>

=
N∑
i

<ψi |
(
− 1

2
∇2

)
|ψi> , (2.3.7)



Modern Density Functional Theory 30

It is now convenient to separate the several component of F [n] as,

F [n] = Ts[n(r→)] + UH[n(r→)] + Exc[n(r→)] (2.3.8)

where

Exc[n] = FHK − UH[n(r→)]− Ts[n(r→)]

= T [n(r→)]− Ts[n(r→)] + Vee[n(r→)]− UH[n(r→)] . (2.3.9)

The quantity Exc[n] is the exchange-correlation energy; it contains the difference between

T and Ts, presumably fairly small as well as the non-classical part of Vee[n].

Although we can perform a search over all anti-symmetric N -electron wavefunctions

directly on Ts,

Ts[n] = inf
n

< Ψs | T̂s |Ψs >=< Φn | T̂ |Φn > , (2.3.10)

the minimising wavefunction Φn for a given density will be a non-interacting wavefunction

for some external potential vs such as

δ Ts

δn(r→)
+ vs(r

→) = µ , (2.3.11)

as in (2.2.18). Lieb (1983) has conjectured that the Thomas-Fermi kinetic energy func-

tional T0[n] (1.10.8) is the lower limit of Ts[n], i.e.,

T0[n] 6 Ts[n] . (2.3.12)

The potential vs assumes the form of an effective potential,

vs(r
→) = v(r→) +

δ UH[n(r→)]
δn(r→)

+
δExc[n(r→)]

δn(r→)

= v(r→) + V H([n]; r→) + Vxc([n]; r→) , (2.3.13)

with the exchange-correlation potential as

Vxc([n]; r→) ≡ δExc(r
→)

δn(r→)
=

δ

δn

(
FHK[n(r→)]− UH[n(r→)]− Ts[n(r→)]

)
(2.3.14)

and

V H([n]; r→) ≡ δ UH[n]
δn(r→)

=
∫

n(r→′)
|r→− r→′| d

3r′ . (2.3.15)

According to Kohn and Sham recipe (1965), we do not try to solve (2.3.11) directly,

since it is just a re-arrangement of (2.2.18) and the explicit form of Ts[n] is still unknown.

Instead, their alternative treatment is as follows: For a given vs, one obtains the n that

satisfies (2.3.11) simply by solving the following N one-electron equations

ĥs ψi([n]; r→) ≡
{
−1

2
∇2

i + vs(r
→)

}
ψi(r
→) = εi ψi(r

→) with ε1 6 ε2 6 · · · 6 εN , (2.3.16)
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and

vs(r
→) = v(r→) + V H([n]; r→) + Vxc([n]; r→) , (2.3.17)

defining the density n like in (2.3.5), i.e.,

n(r→) =
N∑
i

|ψi([n]; r→)|2 . (2.3.18)

Obviously, this set of equations, known as the Kohn-Sham equations, can only be solved

self-consistently. This is was already expressed in (2.3.18) by representing the orbital ψi

as a functional of n, ψi ≡ ψi[n].

Once a self-consistent solution of the KS equation has been obtained, the single particle

energies

εi =
∫

ψ∗i (r
→)

(
− 1

2
∇2

i

)
ψi(r
→) d3r +

∫
vs(r
→) |ψi(r

→)|2 d3r , (2.3.19)

can be used to re-write the kinetic energy functional as

T [n] =
N∑

i=1

εi −
∫

vs(r
→)n(r→) d3r (2.3.20)

The total energy can now be expressed as a function of the KS eigenvalues as follows,

E =
N∑
i

εi − UH[n(r→)] + Exc[n(r→)]−
∫

Vxc([n]; r→)n(r→) d3r , (2.3.21)

where

N∑
i

εi =
N∑
i

< ψi| −
1
2
∇2 + vs(r

→) |ψi >

= Ts[n(r→)] +
∫

vs(r
→)n(r→) d3r (2.3.22)

2.3.3 The chemical potential

Let us assume that a charge density nN (r→) is a solution of (2.3.11), that is

δEs[n]
δn(r→)

= µ , (2.3.23)

for a system with N particles and ground-state energy EN , i.e., EN = Es[nN (r→)].

For each solution nN(r→), (2.3.23) is satisfied for a certain value µ with µ = µ(N). It

is then obvious that the Lagrange multipliers, incorporating the subsidiary condition of a

specific number of particles in a HK variational problem described by (2.2.17), i.e.,

δ

δn

(
Es[n]− µ

∫
n(~r) d3r

)
= 0 , (2.3.24)

correspond to the exact chemical potential of the system, i.e.,

µ(N) =
∂EN

∂N

∣∣∣∣
v(r→)

, (2.3.25)
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i.e., the chemical is the slope of the E versus N curve at constant v(r→). Now, consider

the difference in ground state energies,

EN+η −EN = Es[nN+η(r
→)]−Es[nN (r→)] . (2.3.26)

From the definition of functional derivative, assuming a infinitesimal change, η, in the total

number of particles, N , of a particular system, the above expression is equivalent to

δEs =
∫

δEs[n(r→)]
δn(r→)

∣∣∣∣∣
nN

[
nN+η(r

→)− nN(r→)
]
d3r

=
∫

µ(N)
[
nN+η(r

→)− nN (r→)
]
d3r = µ(N) η , (2.3.27)

using (2.3.25). In other words, the Lagrange parameter µ is exactly the system’s chemical

potential when η → 0. Additionally, (2.3.25) is formally similar to the chemical poten-

tial of an open system (Parr et al., 1978), which provides another argument towards the

identification of the parameter µ as a chemical potential.

2.3.4 Exchange and correlation

The exchange-correlation energy, Exc[n] can be decomposed into the exchange and corre-

lation components as

Exc[n] = Ex[n] + Ec[n] . (2.3.28)

The exchange term is (Levy, 1996)

Ex[n] = <Φn | V̂e−e |Φn>− UH[n] . (2.3.29)

Using (2.3.28) and (2.3.8), the correlation energy can be written as

Ec[n] = F [n]− {Ts[n] + UH[n] + Ex}

= <Ψn | (T̂ + V̂e−e) |Ψn>−<Φn | (T̂ + V̂e−e) |Φn> , (2.3.30)

where Ψn and Φn are the wavefunctions yielding n (2.2.26 and 2.3.10) and minimising the

expectation values of (T̂ + V̂e−e) and T̂ respectively. The above expression shows that

Ec[n] 6 0 . (2.3.31)

Noting that

<Φn | V̂e−e |Φn> = Ts[n] + UH[n] + Ex[n] , (2.3.32)

the exchange and correlation contributions are, in the one-electron limit, i.e. non-interacting

system (V̂e−e = 0), as follows (Perdew & Zunger, 1981):

Ex[n] = −UH[n] and Ec[n] = 0 for N = 1 . (2.3.33)
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This expression shows that the exchange-correlation energy of a one-electron (N = 1)

system simply cancels the spurious self-interaction UH[n]. In a similar way for the KS

potential:

δEx[n]
δn(r→)

= −V H([n]; r→) and
δEc[n]
δn(r→)

= 0 for N = 1 . (2.3.34)

Thus

lim
r→∞

δExc[n]
δn(r→)

= −1
r

, (2.3.35)

for N = 1.

2.3.5 Interpretation of the Kohn-Sham equations

Comparing the KS equations with the single Euler-Lagrange equation (2.2.18), we can

see a major advantage: through the introduction of N orbitals, the KS equations deal

with Ts[n], the dominant part of the true kinetic energy T [n], indirectly but exactly. The

price for this gain in accuracy is that there are now N one-electron to solve as opposed to

just one equation for the total density derived from a direct approximation to Ts[n] of a

Thomas-Fermi type. It is very important to note that at this stage, the other unknown

part Exc remains intact, entering in the KS in the same way.

The KS equations have the same form as the Hartree equations (1.6.7), except that

they contain a more general effective potential. Despite this, the computational effort

needed to solve the KS equations is not much more than that to solve the equations of

Hartree but less than those of Hartree and Fock.

The Hartree-Fock equations contain a non-local potential operator in the one-electron

Hamiltonian and hence are not a particular case of the KS equations. Nevertheless, all

three theories—Hartree, Hartree-Fock and Kohn-Sham—provide one-electron equations

for describing many-electron systems.

The KS scheme, exact in principle, is distinguished form the HF theory in its capability

to account for correlation-exchange effects of electrons. In HF theory, approximate by

definition, electron correlation effects are lacking (§1.9) and their incorporation is by no

means easy, involving wavefunction techniques like configuration interaction. The KS

equations are open for improvements to the approximation to Exc and would give exact

n, and total energy, E if Exc was known precisely.

2.4 Local density approximation

Despite the fact that the KS equations (2.3.16)–(2.3.18) incorporate the kinetic energy

Ts[n], they still leave the correlation-exchange term undetermined. It is therefore necessary

to find a way of circumventing this difficulty.

In this section, we will described the simplest approximation to Ts[n], offered by Kohn

and Sham (1965). This is the local-density approximation (LDA) for the exchange and

correlation energy.
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Before presenting the approximation, it is convenient to recall that the uniform-electron

gas was used to obtain the Thomas-Fermi functional TTF (1.10.8) and the Dirac functional

for the exchange energy (1.10.18). Now, since the kinetic energy is rigorously treated in

the KS scheme, we can use the uniform-electron gas to treat solely the unknown part of

the exchange-correlation functional. We write

ELDA
xc [n] =

∫
εxc(n(r→))n(r→) d3r , (2.4.1)

where εxc indicates the exchange and correlation energy per particle of a non-polarised

uniform electron gas of density n.

The local density model for the exchange-correlation energy is obtained from the ho-

mogeneous electron gas via the prescription

εLDA
xc (n(r→)) −→ εhom

xc (n0)
∣∣∣∣
n0→n(r→)

, (2.4.2)

where n0 is the constant density of the homogeneous gas and n(r→) is the local density of

the actual inhomogeneous gas. The one-particle exchange-correlation energy is known to

great accuracy (∼ 0.1%) from studies of the uniform electron gas (Pines, 1963).

The corresponding potential then becomes

V LDA
xc (n) ≡ δELDA

xc [n]
δn(r→)

= εxc(n(r→)) + n(r→)
δεxc(n)
δn(r→)

, (2.4.3)

and the self-consistent KS orbital equations read{
− 1

2
∇2 + v(r→) + UH([n]; r→) + V LDA

xc (n; r→)
}

ψi(r
→) = εi ψi(r

→) . (2.4.4)

The function εxc(n) can be divided into exchange and correlation contributions, i.e.,

εxc(n) = εx(n(r→)) + εc(n(r→)) . (2.4.5)

As described previously, the exchange part is already known thanks to Dirac (§1.10.3).
Analytically, for the spin-average case

εx(n) = −Cx n(r→)
1
3 ,

with Cx given by (1.10.18).

Imposing a condition of neutrality, the total ground-state energy of a uniform electron

gas, including the positive background, may be written as

E[n] = Ts[n(r→)] + Exc[n(r→)]

= Ts[n(r→)] + Ex[n(r→)] + Ec[n(r→)]

=
∫

εt(n(r→))n(r→) d3r +
∫

εx(n(r→))n(r→) d3r +
∫

εc(n(r→))n(r→) d3r . (2.4.6)
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The total energy for the spin-compensated case can now be written as a function of

the Wigner-Seitz radius rs (1.10.7), as

E[n] =
∫

ε(n(r→))n(r→) d3r , (2.4.7)

with

ε(n) =
1.1049

r2
s

− 0.4582
rs

+ εc(rs) . (2.4.8)

where the first and second terms on the right side are numerical values for εt(n) and εx(n),

respectively. Note that large rs means low density and small rs high density: rs at the

nucleus of a hydrogen-like atom of nuclear charge Z is 0.91/Z; at the first Bohr radius is

1.77/Z.

Exact analytic expressions for εc(rs) are known only in extreme limits. We will present

and discuss the available expressions for the correlation energy per particle in the next

section, where we consider the LSD approximation, i.e, the generalisation of LDA approx-

imation to fully polarised systems.

2.4.1 Discussion of the local density approximation

As pointed out in connection with the Xα method (§1.8), the LDA is expected to hold when

the density varies sufficiently slowly in space, i.e., |
→
∇n(r→)| � kF(n(r→))n(r→). However, it

has been found that this approximation provides surprisingly good results even for systems

beyond this limit. This condition is not always met as exemplified by the case of metallic

Cu (Gunnarsson et al., 1979).

In order to understand this success, a variation of the coupling constant integration

technique has been used. In particular, the analysis of the exchange-correlation or Fermi-

Coulomb hole has proven to be rather fruitful (Harris & Jones, 1974; Langreth & Perdew,

1975; Gunnarsson & Lundqvist, 1976; Langreth & Perdew, 1977; Harris, 1984).

Let us define Ψλ
n as the normalised and antisymmetric wavefunction which provides

the density n(r→) and minimises the expectation value of T̂ + λ V̂e−e. λ is a non-negative

coupling constant.

When λ = 1, Ψλ
n is Ψn, is the ground state wavefunction of an interacting particle

system of density n(r→). When λ = 0, Ψλ
n is Φn, the non-interacting or Kohn-Sham

wavefunction for density n(r→). Consequently, varying λ between the two limits, for a fixed

density n(r→) is equivalent to varying the external potential vλ(r→): at λ = 1, vλ(r→) is the

true external potential, while at λ = 0, it assumes the form of a Kohn-Sham effective

potential vs(r
→). It is customary to assume a smooth, ‘adiabatic’, relationship between

interacting and non-interacting ground states as λ varies from 1 to 0. It is important to

note that only λ = 1 is real or has any physical meaning, while the Kohn-Sham system at

λ = 0, or any other value in between are just a convenient mathematical fiction.

Within the framework introduced by the coupling constant formalism, the exchange-

correlation energy Exc[n] (formally defined previously by equations 2.3.28–2.3.30) can now

be re-written as



Modern Density Functional Theory 36

Exc[n] = <Ψλ
n | T̂ + λ V̂e−e |Ψλ

n>
∣∣∣
λ=1
− <Ψλ

n | T̂ + λ V̂e−e |Ψλ
n>

∣∣∣
λ=0
− UH[n]

=

1∫
0

d
dλ

<Ψλ
n | T̂ + λ V̂e−e |Ψλ

n>dλ− UH[n] . (2.4.9)

Applying the Hellmann-Feynman theorem of section (§1.5.1), Exc can be expressed as

Exc[n] =

1∫
0

<Ψλ
n |V̂e−e |Ψλ

n>dλ− UH[n] . (2.4.10)

Using the concept of reduced density matrices (Parr & Yang, 1989), it is possible to

evaluate the N -electron expectation value of a sum of two-body operator like V̂e−e. Ac-

cording to Gunnarsson and Lundqvist (1976) and Gunnarsson et al. (1979), the exchange-

correlation energy (2.4.10) can be written as

Exc[n] =
1
2

∫∫
n(r→)
|r→− r→′| ñxc(r

→, r→′) d3r d3r′ , (2.4.11)

where

ñxc(r
→, r→′) =

1∫
0

nλ
xc(r
→, r→′) dλ = n(r→′)

1∫
0

[
gλ(r→, r→′; [n])− 1

]
dλ . (2.4.12)

Here, gλ(r→, r→′; [n]) is a pair-distribution function defined by the probability of finding

an electron in a homogeneous gas, of density n(r→) and electron-electron interactions de-

scribed by λV̂e−e, at point r→ provided there is another electron at r→′. The second integral

in (2.4.12) defines an average pair-distribution function.

Obviously, the exchange-correlation can be written in terms of the pair-distribution

function, i.e.,

Exc[n] =
1
2

∫∫
n(r→)

[
g̃(r→, r→′; [n])− 1

]
|r→− r→′| n(r→′) d3r d3r′ . (2.4.13)

The quantity n(r→′)
[
g̃(r→, r→′) − 1

]
describes the depletion region in density due to the

exchange-correlation hole around an electron at r→′, when an average with respect to λ is

taken. The exchange-correlation energy may be viewed as the energy resulting from the

interaction between an electron and its exchange-correlation hole.

The exact relation (2.4.13) is very appealing because it enables one to formulate all

approximation for Exc as ones for g̃(r→, r→′). In particular, for the use of the local-density

approximation the exact density depletion around an electron at r→ is replaced by that of

a homogeneous electron gas of density n(r→), i.e.,

n(r→′)
[
g̃(r→, r→′)− 1

]
−→ n(r→)

[
g̃hom(|r→− r→′|;n(r→′)− 1

]
. (2.4.14)

One important feature of the above expression can be understood right away. The

density depletion due to the exchange-correlation hole around an electron corresponds
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exactly to one particle, independently of the size of the electron-electron coupling strength.

Consequently, the sum rule

n(r→)
[
g̃hom(|r→− r→′|;n(r→′)− 1

]
=

∫
ñLDA

xc (r→, |r→′ − r→|) d3r′ = −1 , (2.4.15)

must hold as a consequence of electron-number conservation.

A variable substitution R
→
≡ r→′ − r→ yields, bringing expression (2.4.14) in,

Exc[n] =
1
2

∫
n(r→) d3r

∞∫
0

R2 1
R

dR

∫
ñLDA

xc (r→,R
→

) dΩ , (2.4.16)

with Ω ≡ r→′ − r→ defining the integration domain.

This expression shows that the exchange-correlation energy only depends on the spher-

ical average of ñLDA
xc (r→,R

→
). An immediate consequence being that the approximation for

Exc can give an ‘exact’ value even when the non-spherical part of ñLDA
xc is quite inaccurate.

Gunnarsson et al. (1979) were able to show, for the neon atom, that even though the LDA

provides a poor description of the shape of the exchange-correlation hole, the resulting

spherical average is quite acceptable.

Let us summarise some of the reasons behind the unexpected success of the local density

approximation:

(i) Since g̃(r→, r→′) tends to unity when |r→′− r→| tends to infinity, the interaction between

the electron and its exchange-correlation hole is dominated by the total charge and

not by its precise distribution;

(ii) The exchange-correlation hole in the local density approximation does not need to

mimic precisely the true exchange-correlation hole to yield a good result for Exc. It

is sufficient that it provides a reasonable approximation for the spherical average of

the exchange-correlation hole;

(iii) The satisfaction of the sum rule (2.4.15) implies that if ñLDA
xc (r→,R

→
) has positive errors

for some values of R
→

, it is bound to have negative errors for other values. Cancellation

of errors has to be expected.

2.5 Spin polarised systems

The extension of the Kohn-Sham scheme to spin-polarised systems was first given by von

Barth and Hedin (1972) and Rajagopal and Callaway (1973) together with a generalisation

of the Hohenberg-Kohn theorems.

The spin-polarised Kohn-Sham self-consistent equation can be expressed as{
− 1

2
∇2 + v(r→) + UH([n]; r→) + V σ

xc([n↑;n↓]; r→)
}

ψσ
i (r→) = εσ

i ψσ
i (r→) , (2.5.1)

with

nσ(r→) =
∑

i

γσ
i |ψσ

i (r→)|2 . (2.5.2)
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Here σ = ↑ or ↓ is the z-component of spin. The occupancy numbers γi satisfy

∞∑
i

γσ
i = Nσ with N↑ + N↓ = N . (2.5.3)

Here N↑ and N↓ are simply the number of electrons with spin ‘up’ and ‘down’ respectively.

The KS effective potential includes the classical Hartree term, V H[n], defined as

V H([n]; r
→) =

∫
n(r→′)
|r→− r→′| d

3r (2.5.4)

with

n(r→) = n↑(r
→) + n↓(r

→) . (2.5.5)

Using this expression for the total spin-polarised charge density, the relative spin-polarisation

is defined as

ζ(r→) =
n↑(r
→)− n↓(r

→)
n(r→)

, (2.5.6)

ranging from 0 for a unpolarised system to ±1 for a fully polarised system.

The other term in the KS effective potential is the exchange-correlation potential which

now reads

V σ
xc([n↑;n↓]; r→) =

δExc[n↑;n↓]
δnσ(r→)

, (2.5.7)

under the symmetry constraint

V ↑xc(ζ) = V ↓xc(−ζ) . (2.5.8)

2.5.1 The local spin density approximation

The local spin density approximation (LSD) for the exchange-correlation energy is

ELSD
xc [n↑;n↓] =

∫
εxc

(
n↑(r
→), n↓(r

→)
) [

n↑(r
→) + n↓(r

→)
]
d3r , (2.5.9)

where εxc(n↑, n↓) is the exchange-correlation energy per particle for an electron gas of

uniform spin densities n↑ and n↓ (Kohn & Sham, 1965; von Barth & Hedin, 1972; Vosko

et al., 1980; Perdew & Zunger, 1981).

2.6 Correlation effects

Finding the correlation energy per particle is a difficult problem, even for spin-compensated

systems (ζ = 0). Exact expressions are only known for two extreme limits. These are for

high- and low densities.

In the case of high-density, εc(rs, ζ) — a function of the Wigner-Seitz radius now defined

for the spin polarised case, as

rs =
[ 3
4π

(
n↑ + n↓

)]1
3

, (2.6.1)
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is given by

εc(rs, ζ) = c0(ζ) ln rs − c1(ζ) + c2(ζ) rs ln rs − c3 rs + · · · rs → 0 . (2.6.2)

This expression is known as the high-density expansion (Vosko et al., 1980; Gell-Mann &

Brueckner, 1957; Perdew & Zunger, 1981).

For the low-density limit (Vosko et al., 1980; Perdew & Zunger, 1981), εc(rs, ζ) becomes

εc(rs, ζ) = −d0(ζ)
rs

+
d1(ζ)

r
3/2
s

+ · · · rs →∞ . (2.6.3)

Combining the results for the two density limits, the one-particle correlation can be

written as (Perdew & Wang, 1992)

εc(rs, ζ) = −2 c0 (1 + α1 rs) ln

[
1 +

1

2 c0

(
β1 r

1/2
s + β2 rs + β3 r

3/2
s + β4 r2

s

)]
, (2.6.4)

where

β1 =
1

2 c0
exp

(
c1

2 c0

)
and β2 = 2 c0 β2

1 . (2.6.5)

The coefficients entering in the above formulae were found by fitting to accurate quan-

tum Monte Carlo correlation energies (Ceperley & Alder, 1980). Ceperley and Alder calcu-

lated the total energy for the uniform electron gas in spin-compensated and ferromagnetic

states for several values of rs. The correlation energy was obtained by subtracting the

corresponding kinetic and exchange energies from the total energy,

Ec[n] = E[n]− Ts[rs]−Ex[rs] . (2.6.6)

For an arbitrary spin polarisation ζ, εc(n↑, n↓) is given by (Vosko et al., 1980)

εc(n↑, n↓) ≡ εc(rs, ζ) = εc(rs, 0) + αc(rs)
f(ζ)
f ′′(0)

(1− ζ4) +
[
εc(rs, 1)− εc(rs, 0)

]
f(ζ) ζ4

= εc(rs, 0) + αc(ζ) ζ2 +O(ζ4) , (2.6.7)

with

f(ζ) =

[
(1 + ζ)4/3 + (1− ζ)4/3 − 2

]
2(21/3 − 1)

. (2.6.8)

note that f(0) = 0, f(1) = 1 and f ′′(0) = 1.709921. αc is the correlation contribution to

the spin stiffness being ≈ εc(rs, 1)− εc(rs, 0).

Spin-scaling relations can be used to convert density functional into spin density func-

tionals (§1.5.2). For this, we write the exchange energy Ex as

Ex[n] = E↑x + E↓x (2.6.9)

which is a negative number. Alternately, this expression can be expressed as

Ex[n↑, n↓] = Ex[n↑, 0] + Ex[0, n↓] (2.6.10)
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Table 2.1: Parameters of the fit to the one-particle correlation energy,

εc(rs, ζ) (2.6.4) and the high-density (2.6.2) and low-density (2.6.3) ex-

pansions for spin-compensated (ζ = 0) and fully polarised (ζ = 1) sys-

tems (Perdew & Wang, 1992).

εc(rs, 0) εc(rs, 1) −αc(rs)

c0 0.031091 0.015545 0.016887

α1 0.21370 0.20548 0.11125

β1 7.5957 14.1189 10.357

β2 3.5876 6.1977 3.6231

β3 1.6382 3.3662 0.88026

β4 0.49294 0.62517 0.49671

c1 0.046644 0.025599 0.035475

c2 0.00664 0.00319 0.00188

c3 0.01043 0.00384 0.00521

d0 0.4335 0.3287 0.2240

d1 1.4408 1.7697 0.3969

The corresponding functional of a unpolarised system becomes

Ex[n] = Ex[n/2, n/2] = 2Ex[n/2, 0] (2.6.11)

therefore, Ex[n/2, 0] = 1
2Ex[n]. Now, Ex[n↑, n↓] can be expressed as (Oliver & Perdew,

1979),

Ex[n↑, n↓] =
1
2

Ex[2n↑] +
1
2

Ex[2n↓] . (2.6.12)

The exchange energy per particle can now be written as

εx[n↑, n↓] = εx(rs, 0)

[
(1 + ζ)4/3 + (1− ζ)4/3

]
2

, (2.6.13)

using the spin-scaling relation (2.6.12). A similar expression can be found for the kinetic

energy functional:

Ts[n↑, n↓] = Ts(rs, 0)

[
(1 + ζ)5/3 + (1− ζ)5/3

]
2

. (2.6.14)

2.7 Beyond the local spin density approximation

The work-horse approximation to the exchange-correlation energy has been the local spin

density (LSD) approximation as defined in (§2.5.1):

ELSD
xc [n↑;n↓] =

∫
εxc

(
n(r→), ζ(r→)

)
n(r→) d3r , (2.7.1)
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where εxc(n; ζ) is the one-particle exchange-correlation energy in a uniform gas with density

n = n↑ + n↓ and spin polarisation ζ ≡ (n↑ − n↓)/n; n(r→) d3r is the average number of

electrons in the volume element d3r.

The investigation of inhomogeneity corrections to the local density approximation was

initiated by Hohenberg and Kohn (1964). The LSD approximation is the first term of an

asymptotic Taylor expansion in gradients of the density (Kohn & Sham, 1965). However,

it has been shown that the second-order gradient-expansion approximation (GEA),

EGEA
xc [n↑;n↓] =

∫
εxc

(
n(r→), ζ(r→)

)
n(r→) d3r

+
∫

Cxc

(
n(r→), ζ(r→)

)
|
→
∇n(r→)|2 n(r→)

3
4 d3r , (2.7.2)

provides no systematic improvement.

More recently, generalised gradient approximations (GGA’s) have become a popular

tool among chemists (Perdew, 1985; Becke, 1988; Lee et al., 1988; Perdew & Wang, 1992;

Perdew et al., 1996):

EGGA
xc [n↑;n↓] =

∫
f
(
n(r→), ζ(r→), |

→
∇n(r→)|

)
d3r . (2.7.3)

The input one-particle exchange correlation energy, ε(n↑, n↓) is in principle unique,

since there is a possible system in which n↑ and n↓ are constant and for which LSD is

exact. At least in this sense, there is no unique input f(n, ζ, |
→
∇n|). Despite this fact, a

judicious choice of the form of f can improve the error of the LSD by a factor of 2 to 10.

Table 2.2 shows the typical errors found from self-consistent calculations within the

LSD and GGA schemes (Perdew & Kurth, 1998).

Table 2.2: Typical errors for atoms, molecules and solids from self-consistent

Kohn-Sham calculations within the LSD and GGA approximations of (2.7.1)

and (2.7.3).

Property LSD GGA

Ex 5 % (not negative enough) 0.5 %

Ec 100 % (too negative) 5%

bond lengths 1 % (too short) 1% (too long)

structure overly favours close packing more correct

Very recently, Perdew et al. (1999) introduced the so-called meta-generalised gradient

approximation (MGGA), which preserves the correct formal properties of LSD. According

to this group, the argument of the function f in (2.7.3) is expand to include additional

semi-local information, like the kinetic energy density τσ, defined as

τσ(r→) =
1
2

∑
λ

|
→
∇ψσ

λ(r→)|2 , (2.7.4)
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with the summation over occupied KS orbitals. Although molecular atomisation energies

are significantly improved over GGA, the calculated lattice constants are little changed.

2.8 Fractional occupancy

The idea of fractional occupancy is not new. Since Slater (1974), many authors have

addressed this issue (Gilbert, 1975; Almbladh & von Barth, 1976; Parr et al., 1978; Janak,

1978; Perdew & Zunger, 1981; Perdew et al., 1982; Parr & Bartolotti, 1983; McHenry

et al., 1987; Kleinman, 1997; Perdew & Levy, 1997)

As deduced previously (§2.3.2), the KS total energy, as a function of the one-electron

eigenvalues, can be written as

E[n] =
∞∑
i=1

γi εi − UH([n]; r→) + Exc[n(r→)]−
∫

Vxc([n]; r→)n(r→) d3r , (2.8.1)

ignoring any spin degrees of freedom for simplicity. The charge density n(r→) is defined as

n(r→) =
∞∑
i=1

γi |ψ(r→)|2 . (2.8.2)

Here we have explicitly introduced occupation numbers γi, such that
γi = 1 : εi < µ

0 6 γi 6 1 : εi = µ

γi = 0 : εi > µ

and
∞∑
i

γi = N . (2.8.3)

If the above restriction is released so that all occupation numbers γi of levels below

or above the Fermi level, are allowed to be arbitrary in the interval 0 6 γi 6 1, the total

energy functional E[ψ1, ψ2 . . . ; γ1, γ2 . . . ] can no longer be considered a density functional.

In particular, no Hohenberg-Kohn variational principle applies to E[ψi; γi], ψi and γi

denoting the sets {ψi, i = 1 . . .∞} and {γi, i = 1 . . .∞}, respectively.

Despite this, its possible to recover the general Kohn-Sham scheme by including the

variation of both the single-particle orbitals and occupation numbers. In other words, the

additional constraint,

∞∑
i=1

γi = N with 0 6 γi 6 1 , (2.8.4)

imposing a fixed number of particles, is used in addition to the condition of orthonormality∫
ψ∗i (r
→)ψj(r

→) d3r = δij . (2.8.5)

Including both conditions and making the substitution,

γi ≡ cos2(θi) , (2.8.6)
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in order to account for the restriction (2.8.4), the variational problem can be posed as

follows:

Ω[ψn; θn] = Ẽ[ψn; γn]−
( ∑

i,j

λij

∫
ψ∗i (r
→)ψj(r

→) d3r + µ
∑

i

γi

)
, (2.8.7)

with respect to the wavefunction ψk(r
→), as well as to θk. From the condition δΩ = 0,

where Ω is an auxiliary functional, the following set of equation may be deduced (Dreizler

& Gross, 1990):

γk ĥs(r
→)ψk(r

→)−
∑

j

λkj ψj(r
→) = 0 , (2.8.8)

sin(2θk)
[
<ψk | ĥs |ψk>− µ

]
= 0 . (2.8.9)

Here, ĥs(r
→) is an effective one-electron Hamiltonian defined as

ĥs(r
→) ≡ −1

2
∇2 + v(r→) + V H([n]; r→) + Vxc([n]; r→) . (2.8.10)

The ψk(r
→) are eigenvectors satisfying the eigenvalue problem

ĥs(r
→)ψk(r

→) = εk ψk(r
→) with λkj = γk εk δkj , (2.8.11)

satisfying (2.8.8), since the operator ĥs is clearly Hermitian.

Using (2.8.9), we can re-write (2.8.3) for the one-particle k-th level as
εk = µ : θk arbitrary ⇔ 0 6 γi 6 1

εk 6= µ : θk = 0 ⇔ γi = 1

εk 6= µ : θk =
π

2
⇔ γi = 0

Identifying µ with the Fermi energy, it can be seen that all the levels degenerate with the

Fermi energy, can have fractional occupation, while the orbitals above µ are not occupied

and those below are occupied.

In conclusion, the variation of Ẽ with respect to the occupancy numbers γi leads back

to the ground-state occupational pattern (2.8.3) within the KS approach.

2.8.1 The Janak theorem

The functional Ẽ allows one to go beyond the limit of a 2-value occupancy (γi = 0 or

1) imposed by Kohn and Sham if the variation with respect to the one-electron orbital is

carried out for an arbitrary but fixed set of occupation numbers γi.

The resulting variational equation (2.8.11) with the Hamiltonian (2.8.10) is formally

identical to the KS counterpart. The set of occupation numbers γi only occurs in (2.8.2).

Assuming that a given set of self-consistent solutions,

{εi(γ
→), ψ

(γ→)
i , i = 1 . . .∞}



Modern Density Functional Theory 44

can be found for any given set of occupancy numbers ~γ = (γ1, γ2, . . . ), the stationary point

given by the KS energy functional is,

E(γ1, γ2, . . . ) ≡ Ẽ[ψ(γ→)
1 , ψ

(γ→)
2 , . . . ; γ1, γ2 . . . γN ] (2.8.12)

as a function of γ→.

Straightforward differentiation of this function with respect to γi yields the equation

∂E(γ1, γ2, . . . )
∂γj

∣∣∣∣
γ→

= εj(γ
→) (2.8.13)

known as Janak’s theorem (Janak, 1978). Explicitly,

∂E(γ1, γ2, . . . )
∂γj

∣∣∣∣
γ→

=
∂E([n], γ→)

∂γj

∣∣∣∣
n(r→)

+
∫

δE[n]
δn(~r)

∂n(r→)
∂γj

d3r . (2.8.14)

Obviously, the second term on the right side of (2.8.14) vanishes as E[n] is stationary to

variations in n(r→), i.e., δE/δn = 0. Re-calling (2.8.1), the first term can readily evaluated

and the result (2.8.13) follows immediately.

The expression deduced by Janak is not original. It is just the LDF analogue to the

relation deduced by Slater (1974) for the Xα method. Both results are in close contrast

with the HF method in which εi is given as a finite difference in energies for two states

for which the occupancy, γi, of the i-th level differs by unity (1.7.24). This simply reflects

the fact that a given level is either empty or filled with one electron. An immediate

advantage of the Xα/LDF result over the HF one is that the former allows for the number

of particles to vary continuously, so that the differentiation in (2.8.13) can be carried out

straightforwardly.

Janak’s theorem brings a whole new meaning to the KS eigenvalues, allowing one to

go beyond Koopman’s theorem (§1.7.1). It allows the calculation of excitation energies

and not simply first ionisation energies. Refinements of Janak’s theorem include those of

Rajapogal (1980) and Perdew and Zunger (1981).

2.8.2 Slater’s ‘transition-state’ argument

Assuming non-degeneracy, for simplicity, the ground state occupancy may be described as,

γ→gs =

γi = 1 : i = 1 . . . N

γi = 0 : i > N
(2.8.15)

The exact ground-state energy of the interacting system can now be recovered,

E(γ→gs) = E0 . (2.8.16)

Now consider the following occupancy:

γ→qp =

γi = 1 : i = 1, . . . , (q − 1), (q + 1), . . . ,N and i(= p) > N

γi = 0 : i > N and i = q with i 6= p
(2.8.17)
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Clearly, this corresponds to a electron-hole excitation from the qth to the pth state. In

other words, an electron is transfered from the q-th level—leaving a hole behind—to the

p-th level above the Fermi level.

The self-consistent scheme described by equations (2.8.8)–(2.8.11) is identical to the

Hartree-Fock-Slater method, if one replaces Exc by Slater’s exchange energy. In this case,

the self-consistent Slater determinant corresponding to the occupation γ→qp can be consid-

ered an approximate excited state of the many-particle system in question so that,

∆Eqp = E(γ→qp)−E(γ→gs) > 0 , (2.8.18)

represents an excitation energy.

It should be is noticed that the determination of the ∆Eqp involves two self-consistent

calculations, one with γ→qp and one with γ→gs. Additionally, for the case of a solid, ∆Eqp is

a finite difference of two large but nearby equal quantities.

Instead of basing the calculations on the ground, Slater (1972; 1974) introduced the

concept of transition state: a state in which the occupation numbers are exactly half-way

between those of the initial and final state. Analytically,

γ→ts =


γi = 1 : i = 1, . . . , (q − 1), (q + 1), . . . ,N

γi =
1
2

: i = q and i = p

γi = 0 : i > q and i 6= p

(2.8.19)

The difference in total energies (2.8.18), describing the excited state of the system due

to the transition of an electron between p- and q-th states, can now be expressed as

∆Eqp ≡ Eq −Ep

= E(γ→ts −∆γ→)−E(γ→ts + ∆γ→) , (2.8.20)

with

∆γ→≡


γq =

1
2

γp = −1
2

γi = 0 : i 6= p, q

(2.8.21)

Expanding both energies in power series (Slater, 1972; Slater, 1974), around γ→ts, ig-

noring any structural change due to partial occupancies,

Eq = E(γ→ts) + (γ→ts −∆γ→)
∂E

∂γq

∣∣∣∣
γ→ts

+ · · · (2.8.22)

Ep = E(γ→ts) + (γ→ts + ∆γ→)
∂E

∂γp

∣∣∣∣
γ→ts

+ · · · (2.8.23)

one obtains by means of Janak’s theorem

∆Eqp w εq(γ
→

ts)− εp(γ
→

ts) +O((∆γ→)3) (2.8.24)
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Slater (1972) showed that the high order term O((∆γ→)3) is very small. In this case the

excitation energy can finally be written as

∆Eqp = εq(γ
→

ts)− εp(γ
→

ts) (2.8.25)

In conclusion, the excitation energy is well represented by the difference of single-

particle eigenvalues, in a self-consistent calculation scheme like DFT theory. This last

expression is the key formula for the work present in this thesis. As we will show in a

forthcoming chapter, this result allows the evaluation of the position of a deep level of a

particular defect within the material bandgap.

2.8.3 Ionisation potential and electron affinity

We now apply the transition state

-40.0

-30.0

-20.0

-10.0

0.0

10.0

E
ne

rg
y 

(e
V

)

HOMO

LUMO

H2O+ H2O+
ts H2O H2O−ts H2O−

Figure 2.1: Optimised spin-polarised one-

electron eigenvalue spectra for H2O, its positive

and negative ions, and the corresponding inter-

mediate transition states. Arrows, boxes and

‘•’s denote occuppied, empty and partially filled

orbitals, respectively.

argument to calculate excitation ener-

gies like ionisation and affinity energies.

The first ionisation energy is the en-

ergy required to remove an electron from

the highest occupied molecular, or de-

fect, level. In other words, it corresponds

to a bound-to-free transition (p → ∞),

defined by the occupancy

γ→∞p =

γi = 1 : i = 1, . . . , (N − 1)

γi = 0 : i > N

(2.8.26)

simply reflecting the fact that the num-

ber of electrons in the system is not N

but N − 1. The cost in energy for the

removal of the electron is then ∆E∞p =

E(γ→∞p)−E(γ→gs) with E(γ→gs) given by

(2.8.15).

The ionisation energy can then be

defined, invoking Janak’s theorem, as

I = ∆E∞p ≡ EN−1 −EN w −
∂E

∂γp

∣∣∣∣
γ→ts

= −εp(γ
→

ts) , (2.8.27)

with

γ→ts =


γi = 1 : i = 1, . . . , (N − 1)

γi =
1
2

: i = p = N

γi = 0 : i > N

(2.8.28)
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In a similar way, it can be shown that the electron affinity can approximated by

−A = ∆Ep∞ ≡ EN+1 −EN w εp(γ
→

ts) , (2.8.29)

with γ→ts now defined as

γ→ts =


γi = 1 : i = 1, . . . ,N

γi =
1
2

: i = p = (N + 1)

γi = 0 : i > (N + 1)

(2.8.30)

Let us consider the case of the water molecule, and apply the transition-state argument

to calculated its ionisation and potential energies. So far, we have not mencioned the effect

of the structural optimisation upon Slater’s calculation scheme. This issue is addressed

in §5.7. For the calculated affinity of H2O with the transition state, relaxation improved

the result by ∼ 0.1 eV. Although, considerable for an isolated molecule, this shift is much

smaller for larger systems.

The results presented below were obtained from self-consistent pseudopotential local

spin density theory calculations using a Gaussian basis (aimpro).6 The following basis

set was used: four and three Gaussian s and p orbitals with different widths centred on

the oxygen and hydrogen atoms for the wave function; four and two s and p Gaussians,

respectively, for oxygen and hydrogen, to fit the charge density. Three additional orbitals

were placed at the centre of the O–H bonds. No charge-density gradient corrections were

considered and both electronic and structural optimisations of the molecule were performed

for all the charge states considered. This included the transition-state calculations of the

molecule ionisation and affinity potentials in which the net charge states were + 1
2 e and

−1
2 e respectively.

The ionisation and affinity energies are now written as:

−I = E(H2O)−E(H2O+) =

1∫
0

εHOMO(γ) dγ w εHOMO(γ = 1
2) (2.8.31)

−A = E(H2O−)−E(H2O) =

1∫
0

εLUMO(γ) dγ w εLUMO(γ = 1
2) , (2.8.32)

respectively. Here γ represents the occupancy of the highest occupied molecular orbital

(HOMO) and lowest occupied molecular orbital (LUMO) of H2O. The occupancy of both

orbitals is 1
2 of an electron. This is depicted in Figure 2.1.

As shown, in the above mentioned figure, the self-consistent spin-up eigenvalue rep-

resented by the symbol ‘•’ in the intermediate transition state of H2O (H2O+
ts for a net

proton charge of + 1
2 e) i.e., −εHOMO, provides the first ionisation energy of that particular

system. In other words, the ionisation potential of H2O is the average of −εHOMO between

H2O+ and H2O, approximately the value of −εHOMO for the transition state H2O+
ts.

6Chapter 4 provides a detailed description of the aimpro method.



Modern Density Functional Theory 48

Table 2.3: Calculated and observed first ionisation energies, or ionisation po-

tentials (I) and electron affinities (A) for the H2O molecule (eV). Experimental

values are taken from Moore (1970).

−I ≡ E(H2O)−E(H2O+) −I (TS) −I (Expt.) Var. (%)

13.36 13.32 12.59 6.1/5.8

−A ≡ E(H2O−)−E(H2O) A (TS) A (Expt.) Var. (%)

−3.53 3.54 3.61 2.2/1.9

The calculated values for the first ionisation potential and electronic affinity for the

water molecule (H2O) are shown in Table 2.3. The results from transition-state calculations

are compared with those from total energy calculations, as well as with experimental values.

2.8.4 The band gap problem

In a semiconductor, the band gap is rigorously defined (Sham, 1966) as the difference

between the lowest conduction-band energy and the highest valence-band energy, which in

turn, are defined as the lowest energies to add and remove, respectively, an electron from

the system. Analytically,

∆ = εc − εv , (2.8.33)

with

εc = EN −EN−1 ≡ −I and εv = EN −EN+1 ≡ A , (2.8.34)

It is now necessary to relate these one-particle excitations with the self-consistent Kohn-

Sham eigenvalues. Sham (1985) has shown that the band gap is

∆ = εKS
N+1(N + 1)− εKS

N (N) (2.8.35)

in terms of the KS eigenvalues of a N -particle system. Note that this expression is different

from the naive definition of the band gap

∆ = εKS
N+1(N)− εKS

N (N) (2.8.36)

which is only accurate for a system of non-interacting particles.

Perdew and Levy (1983), and independently Sham and Schlüter (1983), demonstrated

qualitatively that the difference between (2.8.35) and (2.8.36) is due to exchange-correlation

effects. Specifically, it arises from a discontinuity in the exchange-correlation potential

when the number of particles in the system varies from N to N + 1, i.e.,

∆xc ≡ V (N+1)
xc (r→)− V (N)

xc (r→) , (2.8.37)
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where Vxc(r
→) is the exact DFT exchange-correlation potential for a N -electron system.

The band gap can now by defined as

∆ = ∆KS + ∆xc (2.8.38)

The KS band gap evaluated within the LDA, ∆LDA
KS is found to be to small by typically

40–50 % in comparison with experiment. Since (4.10.3) is an exact representation of the

band gap, the error found for ∆LDA
KS may have two distinct sources: (i) the discontinuity

∆xc is neglected; (ii) the value ∆LDA
KS obtained with the LDA is not equal to the exact KS

gap ∆KS.

A partial solution of this problem was given by Godby et al. (1986). These authors

were able to show that the neglect of the discontinuity is the principal source of error. ∆xc

is responsible for over 80 % of the LDA-gap error.



3

Pseudopotential Theory

3.1 Introduction

It is a well known fact in chemistry that the properties of a molecule depends predom-

inantly on the valence electrons and hardly at all on the core electrons. Core electrons

occupy inner, inert, shells of atoms and their main role is to shield the outer electrons—

valence electrons—from the nuclei. It is therefore tempting to eliminate them from an

electronic structure calculation, replacing them instead by an effective potential acting

only on valence electrons.

Due to the requirement of orthogo-
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Figure 3.1: The real (full) and pseudo-radial

(dashed) 4s wavefunction for the Ni atom.

nality between core and valence states,

the wavefunctions of the valence elec-

trons vary rapidly in the core region,

as these always have a small spatial ex-

tent. Obviously, if the core electrons

are removed, this constraint disappears.

This suggests replacing the true valence

wavefunctions by a pseudo-wavefunction

varying smoothly near the nucleus (see

Figure).

3.2 Basic idea

In order to eliminate the core states and replace the valence-band wavefunction by a

pseudo-wavefunction, we write

|χv> = |φv> +
∑

c

βc |φc> with βc = <φc |χv> (3.2.1)

since <φc |φv> = 0. Here |φc> and |φv> are the real conduction- and valence-band

wavefunctions respectively and |χv> is the pseudo-wavefunction replacing |φv>. In this

way, the rapid variations in the near-core region, contained in |φv>, can be cancelled out.
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It is now convenient to define a projection operator which projects any state onto the

core states (Philips & Kleinman, 1959):

P̂ =
∑
c′

|φc′><φc′ | . (3.2.2)

satisfying (1− P̂ ) |φc> = 0, and more importantly

(1− P̂ ) |χv> = |φv> . (3.2.3)

The energy eigenvalue equation satisfied by a valence-band state is

T̂ |φv> + V̂ (r→) |φv> = ε |φv> , (3.2.4)

is also satisfied by the core states, |φc>, with the same potential V (r→). Bringing in (3.2.2)

and (3.2.3), this equation can be re-written as

(T̂ + V̂ ps) |χv> = ε |χv> , (3.2.5)

with V̂ ps the pseudopotential given by

V̂ ps = V̂ (r→) +
∑
c′

(ε− εc′) |φc′><φc′ | . (3.2.6)

This pseudo-Schrödinger equation known as a pseudopotential equation provides the

same eigenvalues as the original Schrödinger equation (3.2.4) but the core levels are missing.

Despite this achievement, this equation is still not perfect: V̂ ps involves an integral, non-

local, operator, T̂ as well as the eigenvalue we are trying to find.

From (3.2.3), we have

<χv |χv>−<φc′ | P̂ |φc′> = <φv |φv> , (3.2.7)

which reveals another hole in this simple theory: if the pseudo-wavefunction is normalised

then the true wavefunction is not. The difference between the true density and the pseudo

charge density is termed orthogonalisation hole and is a consequence of the non-locality of

V̂ ps.

Performing calculations with nodeless pseudo-wavefunctions instead of the rapidly vary-

ing true wavefunctions would seem advantageous; however, reliable pseudopotentials are

relatively complex. Applying these seems useful only if these can be transferred from one

system to another, i.e., from a single atom to an atom in a molecule or solid, which im-

plies that the core states must be considered frozen. These are not supposed to change in

different chemical environment.

There are two ways of determining pseudopotentials: either by means of model poten-

tials, or through ab initio techniques.

Traditionally, empirical pseudopotentials constructed by using some experimental data

have been adopted (Austin et al., 1962; Shaw Jr. & Harrison, 1967). These empirical

pseudopotentials however have a weak point that the charge density does not coincide

with that of the real atom even outside the core region (r > rc).
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3.3 Ab initio pseudopotentials

The majority of the pseudopotentials currently used in electronic-structure calculations are

generated from all-electron atomic calculations. Within the density function theory, this is

done by assuming a spherical screening approximation and solving the radial Kohn-Sham

equation [
− 1

2
d2

dr2
+

l(l + 1)
2r2

+ V ([n]; r)
]
φnl(r) = εnl φnl(r) , (3.3.1)

where

V ([n]; r) = −Z

r
+ V H([n]; r) + V LDA

xc (n(r)) , (3.3.2)

with n(r) the sum of the electron densities for the occupied wavefunctions φnl(r) = r Rl(r);

l defining the quantum state. This method has been extented to include GGA correc-

tions (Juan et al., 1995; Fuchs et al., 1998).

Most pseudopotentials are constructed such that they satisfy four general condition (Zunger

& Cohen, 1978; Hamann et al., 1979; Kerker, 1980; Bachelet et al., 1982; Vanderbilt, 1985):

1. The generated valence pseudo-wavefunction generated from the pseudopotential should

be nodeless;

2. Norm conservation: The normalised radial pseudo-wavefunction, φps
l (r), is equal

to the normalised all-electron wavefunction, φt
l(r), beyond a chosen cut-off radius

rcl (Kerker, 1980):

Rps
l (r)

∣∣∣
r=rcl

= Rt
l(r)

∣∣∣
r=rcl

with r > rcl , (3.3.3)

or converges rapidly to that value (we have omitted the principal quantum number

n for simplicity);

3. In the core region (r < rcl) The charge density associated the two wavefunctions

should be equal (Hamann et al., 1979)

rcl∫
o

r2 |Rps
l (r)|2 dr =

rcl∫
o

r2 |Rt
l(r)|2 dr ; (3.3.4)

This restriction may pose a serious problem when expanding the total energy using

a plane-wave basis. This is the case of first-row transition metals characterised by lo-

calised d-electrons. Some attempts have been made to generate smooth pseudopoten-

tial using a plane-wave set (Rappe et al., 1990; Troullier & Martins, 1991). Vander-

bilt (1990), and independently Blöchl (1990), dropping the norm-conservation condi-

tion, were able to overcome this difficult. Using lower kinetic energy cut-offs for the

plane-wave expansion, these authors introduced the so-called soft-pseudopotentials.
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4. The all-electron and pseudo valence eigenvalues are identical for a particular atomic

configuration, i.e., εps = εt;

If a given pseudopotential meets the above conditions, it is commonly referred to as a

norm-conserving pseudopotential.

Once the pseudo-wavefunction is obtained, the screened pseudoptential can be recov-

ered by inverting the radial Schrödinger equation (3.3.1):

V ps
l (r) = εl −

l(l + 1)
2r2

+
1

2r Rps
l (r)

d2

dr2
[r Rps

l (r)] . (3.3.5)

The pseudopotential concept requires that the scattering properties of the pseudo and

all-electron atom are the same for the pseudo-wavefunction at the specific matching radius,

i.e., the core radius rcl (Hamann et al., 1979). This radius controls the overall accuracy

and ‘transferability’ of the pseudopotential:

Transferability criterion: The first order energy derivatives of the radial logarithmic

derivative of the pseudo- and atomic-wavefunction coincide with each other at rcl ,

−1
2

{ ∂

∂r

[ ∂

∂ε
ln R(r, ε)

]
ε=εl

}
r=rcl

=
1

r2
cl

R2(rcl, εl)

rcl∫
0

r2 |Rt
l(r, εl)|2 dr (3.3.6)

3.3.1 Bachelet, Hamann and Schlüter pseudopotentials

Bachelet, Hamman and Schlüter (1982), introducing a slight modification to their previous

work (Hamann et al., 1979), provided a complete tabulation of pseudopotentials from

hydrogen to plutonium.

These are the pseudopotentials used in the electronic structure calculations described

in this thesis. Due to this fact, a detailed description of these norm-conserving pseudopo-

tentials, hereby referred to as BHS, is presented next.

The following is the process of constructing the BHS pseudopotential.

Step 1 The first step pseudopotential V1(r) is constructed from an all-electrons atomic po-

tential, from which the Coulomb singularity at r ≈ 0 has been removed, is written

as

V1(r) = Vatom(r)
[
1− fcut(r)

]
+ cl fcut(x) , (3.3.7)

where Vatom(r) is an atomic potential. fcut(x) a smooth cut-off function, defined as

fcut(x) = exp (−xλ) with x ≡ r

rcl

, (3.3.8)

satisfying

lim
r→0

fcut(x) = 1 and lim
r→∞

fcut(x) = 0 . (3.3.9)

rcl a core radius (cut-off radius) and λ = 3.5. The adjustable parameter cl in (3.3.7) is

adjusted so that the lowest solution Rps
1 (r) satisfying the radial Schrödinger equation

(3.3.1) has an energy εps identical to εt.
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The first-stage pseudo-wavefunction χ1(r) satisfies

χ1(r) = γ φ(r) (3.3.10)

is obtained by solving the eigenvalue problem with V1(r). φ(r) is the full core valence

wavefunction for r > rcl , i.e., rcl delimits the core of the pseudo-atom; γ an adjustable

parameter.

Step 2 The second-stage pseudo-wavefunction is defined as

χ2(r) ≡ r Rps
2 (r) = γ

[
χ1(r) + δ rl+1 fcut(x)

]
, (3.3.11)

where δ is and adjustable parameters taken to be the smaller solution of

γ2

∞∫
0

[
χ1(r) + δ rl+1 fcut(x)

]2
dr = 1 , (3.3.12)

which quantifies the condition of norm conservation of the pseudo-wavefunctions.

Step 3 The second-stage pseudoptential is obtained by inverting the Schrödinger equation,

(3.3.5), as follows

V2(r) = V1(r) +
1
2

γ δ rl+1

χ2(r)
fcut(x)

×
{λ2 x2λ − [2λ l + λ(λ + 1)]xλ

r2
+ 2ε − 2V1(r)

}
(3.3.13)

Step 4 The final, unscreened, pseudopotential V ps(r) is obtained by subtracting the Hartree

potential, V H(r), and exchange-correlation potential, V xc(r) due to the valence elec-

trons from V2(r),

V ps(r) = V2(r)−
(∫

nps(r′)
|r − r′| d

3r′ +
δExc[nps]

δnps

)
, (3.3.14)

where

nps(r) =
∑
occ

1
r2
|Rps

2 (r)|2 (3.3.15)

defines the valence pseudo charge density, with the sum over all occupied valence

states.

Step 5 The V ps(r) is divided into two parts. One is a local part Vlocal(r) and the other is a

non-local part, V l
non−local(r) dependent on the angular momentum l:

V ps(r) = Vlocal(r) +
∑

l

| l>Vnon−local(r)<l | . (3.3.16)

To allow the use of these pseudopotentials, BHS fitted their pseudoptentials to a basis

of convenient functions to obtain the required parameters for all the atoms.
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Assuming that the core potential arises from Gaussian-like core charges, the local (l-

independent) and non-local (l-dependent) components of the pseudopotentials were defined

as

Vlocal(r) = −Zv

r

[ 2∑
i=1

ci erf(r
√

αi)
]

with c1 + c2 = 1 , (3.3.17)

with Zv being the valence charge, and

V l
non−local(r) =

3∑
i=1

(Al
i + r2 Al

i+3) e−αir2
, (3.3.18)

respectively. ‘erf’ is the error function and αi is the inverse of the extent of the core charge

density. The parameters ci, αi, and Ai are given in (Bachelet et al., 1982) for the atoms

H to Pu.

As mentioned previously, the first stage in the construction of a pseudopotential is

the solution of the all-electron Kohn-Sham(-Dirac) equations for the atom to obtain its

one-particle energy levels, εl, labelled by the angular momentum, l for light atoms, and

total angular momentum j = l ± 1
2 for heavier elements.

This is done by choosing a configuration leading to a spherically symmetric charge den-

sity. For the carbon atom, for example, a possible configuration is obviously 1s2 2s2 2p2 3d0.

This is the tabulated configuration for the neutral, isolated, carbon atom, which excludes

any d-electron. For the case of a solid, with the wavefunction made up of linear combina-

tions of all atomic states, including d-levels, it is not clear if the influence of these states

can be simply ignored.

If all these states, s, p and d, are taken into account, the resulting pseudopoten-

tial will then possess the same valence states as the all-electron atom. To accommo-

date this, two different configurations are used to solve the KS equation: 1s2 2s2 2p2 and

1s2 2s0.75 2p1 d0.25, for l = 0, 1 and l = 2 respectively. The fraction occupancy of the s-shell

is chosen to avoid ‘bumps’ in the potential. Different configurations are used for different

elements.

These configurations are then used to generate the all-electron spin density of the

atom resulting from the solution of the Kohn-Sham equations. The associated all-electron

potential is simply Vatom(r) in (3.3.7), defining the first-stage pseudopotential V ps
1 .

Choice of a cut-off radius

The cut-off radius is chosen to lie between the outermost node and the outermost extremum

of the all-electron radial wavefunction. Analitically,

rcl =
rmax

ccl

, (3.3.19)

where rmax is the radius of the outermost extremum of the radial wavefunction; ccl is an

adjustable parameter, typically 1.5 < ccl < 2.0. (Bachelet et al., 1982)

If rcl is close to the outermost node, then the generated pseudopotentials are strong

and very l-dependent; if it is closer to the outer most extremum, the pseudopotentials are

smoother and l-independent but include large errors in the pseudo-radial wavefunction.



4

The Real Space Cluster Method

4.1 Introduction

In Chapter 2, we described the foundations of density functional theory. In this chapter,

we present an implementation of this theory, aiming the determination of the structural,

vibrational, optical and electrical properties of defects in covalent semiconductors, in par-

ticular silicon.

Following the prescription of Kohn and Sham, we describe a numerical method to solve

the set of one-electron equations offered by these authors. This includes the determination

of the equilibrium structure of the electronic system, which proceeds via the minimisation

of its total energy with respect to the atomic positions.

The conversion of Kohn-Sham formalism to a matrix representation, together with some

numerical implementations, has allowed its translation into computer language: aimpro –

an acronym for ab initio modelling program. All the matrix operations involved have been

modified to enable the use of the code on massively parallel computers like the CRAY-T3E,

using the PBLAS and SCALAPACK routines.

4.2 Methodology

The total electronic wavefunction is assumed to be a sum of single particle wavefunctions

for each of the occupied valence-band states ψλ. The spin-polarised wavefunction of the

λ-th electronic level is defined as a linear combination of localised orbitals φi(r
→−R

→
i):

ψλ(r→, σ) = χσ

∑
i

cλ
i φi(r

→−R
→

i) with cλ
i ∈ R . (4.2.1)

In this way the Kohn-Sham differential equations are converted to matrix equations

for cλ
i . The localised orbitals are taken to be of the form:

φi(r
→−R

→
i) ∝ (x−Rix)n1 (y −Riy)n2 (z −Riz)n3 e−αi(r→−R

→
i)2 with n ∈ N , (4.2.2)

defining what it is called a set of Cartesian Gaussian orbitals. If all the exponents n

are zero, φi(r
→ − R

→
i) defines a s-orbital of spherical symmetry. Orbitals of p-symmetry

56
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correspond to one of these integers being unity and the others zero, whereas five d-like and

one s-like orbital can be generated if n1 + n2 + n3 = 2.

The basis functions are real and hence so are all matrix elements. We can therefore

drop complex conjugates from the equations. As shown before (§2.6), it is possible to

convert density functionals into spin-density ones. This is straightforward for the case of

the kinetic, Hartree and external potential terms, since these only depend on the total

density and not on the particular spin state like the one-particle exchange and correlation

term. Due to this, all quantities but the exchange-correlation are represented implicitly

for a single spin state σ, i.e., σ = ↑ or ↓.
The total charge density for the electronic system is

nσ(r→) =
∑

λ

γσ
λ |ψλ(r→, σ)|2 , (4.2.3)

which is, in terms of the density matrix bσ
ij , equivalent to

nσ(r→) =
∑
ij

bσ
ij φi(r

→−R
→

i)φj(r
→−R

→
j) , (4.2.4)

bσ
ij =

occ∑
λ

δσσλ γσ
λ cλ

i cλ
j . (4.2.5)

The sum is over occupied orbitals λ with spin σ. The total charge density n(r→) is defined

as:

n(r→) =
∑

σ

nσ(r→) =
∑
ij

bij φi(r
→−R

→
i)φj(r

→−R
→

j) , (4.2.6)

bij =
∑
σ

bσ
ij . (4.2.7)

Using the basis of localised orbitals defined above, the matrix elements of the Hamil-

tonian for the Kohn-Sham equations (2.3.16–2.3.17) can be written, for a spin up charge

density (σ = ↑) , as

(Hij)↑ = Tij + V ext
ij + V H

ij + (V xc
ij )↑ , (4.2.8)

with

Tij = −1
2

∫
φi(r
→−R

→
i)∇2 φj(r

→−R
→

j) d3r (4.2.9)

V ext
ij =

∫
φi(r
→−R

→
i)

vext(r
→)︷ ︸︸ ︷∑

α

V ps
α (r→−R

→
α) φj(r

→−R
→

j) d3r (4.2.10)

V H
ij =

∫∫
φi(r
→−R

→
i)

n(r→′)
|r→− r→′| φj(r

→′ −R
→

j) d3r d3r′ (4.2.11)

(V xc
ij )↑ =

∫
φi(r
→−R

→
i) v↑xc φj(r

→−R
→

j) d3r , (4.2.12)

where

v↑xc = εxc(n↑, n↓) +
∂εxc(n↑, n↓)

∂n↑(r
→)

[
n↑(r
→) + n↓(r

→)
]

(4.2.13)
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The evaluation of Tij and V ext
ij can be carried out straightforwardly. Unfortunately,

the same is not true for the other two terms, (4.2.11) and (4.2.12).

For example, in terms of the localised basis (4.2.1), the Hartree energy may be written

as

V H
ij =

1
2

∑
ijkl

cλ
i cλ

j cλ
k cλ

l

∫∫
φi(r
→−R

→
i)φj(r

→−R
→

j)φ′k(r→′ −R
→

k)φ′l(r
→′ −R

→
l)

|r→− r→′| d3r d3r′ .

(4.2.14)

It is then obvious, that the evaluation of the Hartree energy requires O(N4) integrals,

where N is the number of basis functions, which is prohibitively large for a cluster where

N might be 1000 or more.

In the next two sections, we present the approximations used to evaluate the Hartree

and exchange-correlation integrals within aimpro. This is followed by its full matrix

formulation, the approach to self-consistency and the structural optimisation procedure.

4.3 The Hartree energy

The exact Hartree energy is, from (1.10.4),

UH[n] =
1
2

∫∫
n(r→)n(r→′)
|r→− r→′| d3r d3r′ . (4.3.1)

It is obvious from (4.2.5) that the evaluation of the Hartree energy term, UH, involves

a four-centre integral of the wavefunction bases. Currently, there is no way to solve this

double integral for clusters of useful size. It is therefore necessary to introduce an ap-

proximate, but analytic expression for the Hartree energy from which the corresponding

potentials can be found.1

According to Dunlap et al. (1979) and Jones and Sayyash (1986), this can be achieved

by expanding the charge density for each spin as,

ñσ(r→) =
∑

k

dσ
k gk(r

→) for ñ(r→) =
∑
σ

ñσ(r→) . (4.3.2)

defining an intermediate fit to the charge density (Sambe & Felton, 1975).

The difference between the Hartree energy due to the true, n(r→) and intermediate fit

charge density, ñ(r→), can be expressed as,

∆UH =
1
2

∫∫
[n(r→)− ñ(r→)] [n(r→′)− ñ(r→′)]

|r→− r→′| d3r d3r′ , (4.3.3)

which defines the error in estimating the Hartree term using (4.3.2). As a function of UH

and ∆UH, the true Hartree energy can be written as,

UH[n] = ŨH[n; ñ] + ∆UH (4.3.4)

1A similar approach is persued for the treatment of the exchange-correlation contribution.
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which allows us to define ŨH as

ŨH[n; ñ] =
∫∫

n(r→) ñ(r→′)
|r→− r→′| d3r d3r′ − 1

2

∫∫
ñ(r→) ñ(r→′)
|r→− r→′| d3r d3r′ . (4.3.5)

The replacement is exact when ñ = n, i.e., when ñ(r→)→ n(r→), ∆UH → 0.

Now, we expand the density in terms of a basis set gk(r
→) so that

ñ(r→) =
∑

k

ck gk(r
→) , (4.3.6)

and ck is chosen to minimise ∆UH. Replacing this density, and n(r→) by (4.2.7), in (4.3.5)

results in

ŨH =
∑
ijk

ck bij tijk −
1
2

∑
kl

ck cl Gkl , (4.3.7)

with

tijk =
∫∫

φi(r
→−R

→
i)φj(r

→−R
→

j)
|r→− r→′| gk(r

→′) d3r d3r′ , (4.3.8)

Gkl =
∫∫

gk(r
→) gl(r

→′)
|r→− r→′| d3r d3r′ . (4.3.9)

Differentiating ∆UH with respect to ck to determine its minimum, using (4.3.7), i.e.,

∂(∆UH)
∂ck

=
∂

∂ck

[
1
2

∫∫
n(r→)n(r→′)
|r→− r→′| d3r d3r′ −

∑
ijk

ck bij tijk +
1
2

∑
kl

ck cl Gkl

]
= 0 ,

(4.3.10)

yields, ∑
l

Gkl cl =
∑
ij

tijk bij . (4.3.11)

Combining (4.3.7) and (4.3.11), we obtain the final expression for the approximation

of the Hartree energy,

ŨH =
1
2

∑
kl

ck cl Gkl . (4.3.12)

We now proceed to calculate the matrix elements of the Hartree potential. The po-

tential corresponding to a particular energy derivative U [n] is by definition the functional

derivative

V [n] =
δU [n]
δn(r→)

. (4.3.13)

with the corresponding matrix elements given by

Vij [n] =
∫

φi(r
→)V φj(r

→) d3r . (4.3.14)
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Inserting (4.3.13) into (4.3.14), we get

Vij[n] =
∫

δU [n]
δn(r→)

∂n(r→)
∂bij

d3r . (4.3.15)

Differentiating n(r→), defined as (see 4.2.7)

n(r→) =
∑
ij

bij φi(r
→)φj(r

→) , (4.3.16)

with respect to bij , we have

∂n(r→)
∂bij

= φi(r
→)φj(r

→) ⇒ Vij[n] =
∂U [n]
∂bij

. (4.3.17)

Using (4.3.11) and (4.3.12), the matrix elements of the Hartree potential between the

basis functions can be written as,

V H
ij =

∂ŨH

∂bij

=
∂

∂bij

[ 1
2

∑
kl

ck cl Gkl

]
=

∂

∂bij

[∑
ijk

ck bij tijk

]
=

∑
k

ck tijk . (4.3.18)

The full matrix formulation will be presented in the next section.

Having found a way to evaluate the Hartree term, its now necessary to choose the form

of the intermediate fit to the charge density, ñ(r→), or indirectly gk. The charge density is

taken to be of the form

ñ(r→) = Z
(α

π

)
e−α(r→−R

→
)2 +

∑
k

ck

gk︷ ︸︸ ︷[
1− 2

3
βk (r→−R

→
k)2

]
e−βk(r→−R

→
k)

2
, (4.3.19)

defining a modified Gaussian fitting function.

The set of k-modified Gaussian functions gives rise to a potential which is short-ranged,

i.e., ∫
gk(r
→′)

|r→− r→′| d
3r′ =

3
2π

βk e−βk(r→−R
→
k)

2
, (4.3.20)

producing a charge of zero. Choosing fixed coefficients β, from an initialising total charge

of an atom or ion, their contribution to the Hamiltonian remains unchanged during a

self-consistent cycle. Consequently, the terms (4.3.20) can then be added to the external

potential term—the pseudopotential term—leading to a considerable speed up in the code.

4.4 The exchange-correlation energy

As defined previously (2.5.9), the exchange-correlation energy is given, in the LSD approx-

imation, by

Exc[n↑;n↓] =
∫

εxc(n↑, n↓) [n↑(r
→) + n↓(r

→)] d3r , (4.4.1)
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is replaced by an approximate one Ẽxc involving an approximate density, ñσ. In an ana-

logue way to the treatment of the Hartree term, an intermediate fit to the charge density

is used,

Ẽxc =
∫

εxc(ñ↑, ñ↓) [ñ↑ + ñ↓] d3r . (4.4.2)

The intermediate fit is expanded in terms of a different set of Gaussian functions to

those in (4.3.6),

ñσ(r→) =
∑

k

dσ
k hk(r

→) , (4.4.3)

where dσ
k is found from minimising∫ {

nσ(r→)− ñσ(r→)
}2

d3r , (4.4.4)

defining the electrostatic energy associated with the error due to the intermediate fit to

the charge density. A least-squares minimisation, i.e.,

∂

∂dσ
k

{∫ [
nσ(r→)− ñσ(r→)

]2
d3r

}
= 0 , (4.4.5)

leads to the set of equations: ∑
l

Hkl d
σ
l −

∑
ij

uijk bσ
ij = 0 , (4.4.6)

where,

Hkl =
∫

hk(r
→)hl(r

→) d3r , (4.4.7)

uijk =
∫

φi(r
→−R

→
i)φj(r

→−R
→

j)hk(r→) d3r . (4.4.8)

Note that the integrals are the same for each spin-index σ and that uijk are simply pro-

portional to tijk if hk is chosen as in (4.3.19). Again, this also saves a considerable amount

of computer time.

For the spin-averaged case,

Ẽxc[ñ] =
∑

k

dk

∫
hk(r
→) εxc(ñ) d3r . (4.4.9)

If hk is chosen to be a positive definite localised function such as a Gaussian,2 then

each integral is proportional to the average value of the exchange-correlation density under

hk, ∫
hk(r
→) εxc(ñ) d3r∫
hk(r
→) d3r

≡ 〈εxc(ñ)〉k . (4.4.10)

Since εxc(n) varies slowly with n(r→) (see Fig. 4.1), we can assume that

〈εxc(ñ)〉k ≈ εxc(〈ñ〉k), (4.4.11)

2In other words, we consider hk(r
→) to be a non-normalised probability distribution function.
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〈ñ〉k =
1
Ik

∑
l

dl Hkl for Ik ≡
∫

hk(r
→) d3r . (4.4.12)

This approximation is equivalent to replace the exact exchange-correlation density at r→

by its homogeneous electron gas value for the average density 〈ñ〉k.
Assuming that the single parti-
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Figure 4.1: Variation of polarised (full) and

non-polarised (dashed) exchange-correlation en-

ergy (×− 1.0 a.u.) per unit volume with density.

cle exchange-correlation energy can

be expanded in power series of n(r→),

we write for the spin average case

(Jones, 1988),

n(r→) εxc(n(r→)) = n0(r
→)

[
n(r→)
n0(r
→)

]1+s0

.

(4.4.13)

For Ceperley-Alder exchange-correlation

(Ceperley & Alder, 1980), n0 = 1 a.u.−3

and s0 = 0.30917. For the Dirac-

Slater exchange (2.8.2), s0 is exactly
1
3 .

Let us replace the fitted value s0

by a variable, say p, and consider the

following function fk(p) defined as

fk(p) = ln
[∑

l cl Hkl

〈ñ〉pk Ik

]
= ln

(
〈ñp〉k
〈ñ〉pk

)
, (4.4.14)

with Hkl defined by (4.4.8).

The function fk(p) is determined at three points:

fk(p) =


0 : p = 0 and 1 ;

ln
(
〈ñ2〉k
〈ñ〉2k

)
: p = 2 ,

(4.4.15)

with

〈ñ2〉k =
1
Ik

∑
lm

dl dm

∫
hk(r
→)hl(r

→)hm(r→) d3r . (4.4.16)

Applying the Lagrange formula for polynomial interpolation to fit a quadratic to eval-

uate fk(s0), we have

fk(s0) =
1
2

s0 (s0 − 1) fk(2) . (4.4.17)

The function fk assumes its minumum value of ∼ −0.1 for p = 0.5, i.e., between p = 0

and p = 1 and close to s0. This shows that the quadratic fit is sufficiently accurate.

The final expression for the one-particle exchange-correlation energy is as follows:

Ẽxc =
∑

k

dk εk , (4.4.18)
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Table 4.1: Parametrisation for the approximation to the spin-polarised

exchange-correlation energy. The parameters A′i, p′i and q′i are for larger den-

sity values.

i Ai pi qi A′i p′i q′i

1 −0.9305 0.3333 0.0000 −0.9305 0.3333 0.0000

2 −0.0361 0.0000 0.0000 −0.0375 0.1286 0.0000

3 0.2327 0.4830 1.0000 −0.0796 0.0000 0.1286

4 −0.2324 0.0000 1.0000 · · · · · · · · ·

where,

εk = Ik εxc(〈ñ〉k) exp [fk(s0)] and fk(s0) =
1
2

s0 (s0 − 1) ln
(
〈ñ2〉k
〈ñ〉2k

)
. (4.4.19)

Re-calling (4.4.6), the set of equations (4.4.6) can now be written as∑
l

Hkl dl =
∑
ij

bij

∫
φi(r
→−R

→
i)φj(r

→−R
→

j)hk(r→) d3r . (4.4.20)

The functions hk(r
→) are chosen to be similar to those introduced to quantify the Hartree

contribution (§4.3).
The matrix elements of the exchange-correlation potential for the spin-average case are

given by:

V xc
ij =

∑
kl

(
H−1

)
kl

tijl

[
εk Ik +

∑
m

dm exp [fm(s0)] Fkm

]
(4.4.21)

with

Fkl =

[
∂εxc(〈n〉k)

∂〈n〉k
− εxc(〈ñ〉l)

s0 (s0 − 1)
〈ñ〉l

]
Hkl

+ εxc(〈ñ〉l)
s0 (s0 − 1)
〈ñ〉2l

∑
m

dm

∫
hk(r
→)hl(r

→)hm(r→) d3r . (4.4.22)

4.4.1 Spin polarisation

This theory has been extended to the spin-polarised case (Lister & Jones, 1988; Jones &

Briddon, 1998). The spin-polarised exchange-correlation energy is written as,

Exc[n↑;n↓] =
∑
iσ

Ai

∫
npi+1

σ nqi
1−σ d3r , (4.4.23)

and we replace nσ on right hand side by ñσ obtaining:

Ẽxc =
∑
kσ

dσ
k

εσ
k︷ ︸︸ ︷∑

i

Ai Ik 〈ñpi
σ ñqi

1−σ〉k , (4.4.24)
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with Ai, qi and pi for densities nσ < 1 and A′i, q′i and p′i for higher density values (vide

Table 4.1).

Now, we define the quantity fk by:

〈ñp
σ ñq

1−σ〉k = 〈ñσ〉pk 〈ñ1−σ〉qk exp [fk(p, q)] , (4.4.25)

f(p, q) = ln
( 〈ñp

σ ñq
1−σ〉k

〈ñσ〉pk 〈 ñ1−σ〉qk

)
. (4.4.26)

We now approximate fk by the formula:

fk(p, q) =
1
2

p (p− 1) fk(2, 0) +
1
2

q(q − 1) fk(0, 2) + p q f(1, 1) , (4.4.27)

which interpolates fk between the known integer values. In this way the spin-polarised

exchange-correlation energy is evaluated.

4.5 Full matrix formulation

In terms of the approximate Hartree and exchange-correlation energies, the total energy

can now be written:

E =
∑
ij

{
Tij + V ps

ij

}
bij +

1
2

∑
kl

ck cl Gkl︸ ︷︷ ︸
ŨH

+

Ẽxc︷ ︸︸ ︷∑
kσ

dσ
k εσ

k +Vi−i , (4.5.1)

where the coefficients bij are given by (4.2.5) and Vi−i is the energy of the Coulombic

interaction between the ions defined in (2.2.22) and known as the Madelung energy. The

fitting coefficients ck and dσ
k are defined in terms of bσ

ij by (4.3.11) and (4.4.6).

The total energy, E, is minimised subject to an orthonormal set of wavefunctions {φi},
i.e. ∑

ij

cλ
i cµ

j Sij = δλµ , (4.5.2)

where the overlap matrix S, is defined by:

Sij =
∫

φi(r
→−R

→
i)φj(r

→−R
→

j) d3r . (4.5.3)

Again, this can be achieved by introducing Lagrange undetermined multipliers, ελ, so that

we minimise without constraint,∑
ijλ

{
Tij + V ps

ij − ελ Sij

}
cλ
i cλ

j + ŨH + Ẽxc + Vi−i , (4.5.4)

with respect to cλ
i .

As shown before, the matrix elements of the Hartree potential can be written as:

∂ŨH

∂cλ
i

=
∑

j

(∂ŨH

∂bij

)(∂bij

∂cλ
i

)
=

∑
j

V H
ij cλ

j . (4.5.5)
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A similar formula applies to V xc
ij .

The matrix elements of the Hartree and exchange-correlation potentials can now be

expressed as:

∂ŨH

∂cλ
i

=
∑

j

V H
ij cλ

j , V H
ij =

∑
kl

Gkl cl
∂ck

∂bij
=

∑
k

ck tijk , (4.5.6)

∂Ẽxc

∂cλ
i

=
∑

j

(V xc
ij )σλ cλ

j and (V xc
ij )σ =

∑
k

∂dσ
k

∂bσ
ij

{
εσ
k +

∑
l

dσ
l

∂εσ
l

∂dσ
k

}
. (4.5.7)

From (4.3.11) and (4.4.6), we find:∑
l

Gkl
∂cl

∂bij
= tijk ,

∑
l

Hkl
∂dσ

l

∂bσ
ij

= uijk ,

respectively.

Differentiating (4.5.4) with respect to cλ
i we get the Kohn-Sham equations:∑

j

{
Tij + V ps

ij + V H
ij + (V xc

ij )σλ
}

cλ
j = ελ

∑
j

Sij cλ
j . (4.5.8)

We note that the total number of electrons N and the spin S are given by:

N =
∑
ijσ

Sij bσ
ij , (4.5.9)

S =
∑
ij

Sij (b↑ij − b↓ij) . (4.5.10)

We can now write (4.5.8) more compactly in matrix form. (4.5.8) is written in terms

of two generalised eigenvalue problems, one for each spin, as:∑
j

(Hij − εSij) cj = 0 , (4.5.11)

or in matrix notation as:

(H−E S) c = 0 . (4.5.12)

For the cluster sizes and values of the exponents of the basis sets typically used, the matrices

H and S come out to be quite dense. To make this problem treatable, we decompose S

into an upper triangular matrix times its transpose—Choleski decomposition—as

S = Ut U . (4.5.13)

U and its inverse can be evaluated in O(N3) operations. Substituting (4.5.13) into (4.5.11)

and multiplying the left hand side by (U−1)t, the generalised eigenvalue problem can be

posed as [
(U−1)t HU−1 −E I

]
d = 0 with Uc = d . (4.5.14)

The eigenvalues of this can be found by a standard Householder scheme which first

reduces the matrix to tridiagonal form from which the eigenvalues can be found.
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4.6 Approach to self-consistency

Self-consistency is the process by which charge is redistributed throughout the cluster

until a minimum energy is reached, thereby hopefully producing an accurate simulation

of the ‘real’ system. Strictly speaking, this charge density refinement process stops when

the charge density produced gives rise to the same potential as was used in the equation

that determined them within a pre-determined error. The self-consistency cycle may be

summarised as follows:

1. Initialisation, by choosing sets of charge density coefficients ck and dσ
k taken from

either neutral atoms, or a previous run;

2. The Kohn-Sham equation are then solved:

∑
j

{
Tij + V ps

ij + V H
ij + (V xc

ij )σλ
}

cλ
j = ελ

∑
j

Sij cλ
j . (4.6.1)

to determine the coefficients bσ
ij , defined as

∑
λ δσσλ γσ

λ cλ
i cλ

j .

3. Equations (4.3.11) and (4.4.6), i.e.,

∑
l

Gkl cl =
∑
ij

tijk bij and
∑

l

Hkl d
σ
l =

∑
ij

uijk bσ
ij ,

respectively, are then used to determine the output charge density coefficients, cout
k

and dout
kσ . To achieve this, the components of tijk are evaluated using (4.3.8), and

contracted with bij via (4.3.11) to form a vector qk, defined as

ck =
(
G−1

)
kl

qk and dk =
(
H−1

)
kl

3βk

2π
qk , (4.6.2)

respectively.

4. The next step consists of selecting a new input charge density ck
′, defined in terms

of cout
k and ck.

The last step is carried by using a weighted combination as in:

ck
′ = ck + w (cout

k − ck) . (4.6.3)

The same weighting is used to define the new spin density coefficients dσ
k
′. A similar

method to that of Brent (1973) is applied here. Using a suitable technique, the total

energy is defined as a function of w, with w chosen to be the value which minimises the

total energy.
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Effectively, the above equation is solved for a particular value of w, say w1, giving a

specific output charge density cout
1k . Then the deviation from the self-consistency of ck can

be written as

ek =
(1− w) (ck − cout

k )
w

− cout
1k − cout

k

w1
, (4.6.4)

and choose w by minimising the electrostatic energy of a pseudo-charge density ek defined

as
∑

k ek gk(r
→). w is then determined from the minimisation of the electrostatic energy

1
2

∑
kl

ek Gkl el . (4.6.5)

It is possible to generalise this procedure so that the predicted charge density is built

up from the coeficients from previous iterations.

In practice, the self-consistency cycle converges exponentially quickly, taking between

four to ten iterations with the difference in the input and output Hartree energies typically

becoming less than 10−5 a.u. Convergence is particularly rapid when there is a gap between

the highest filled and lowest empty level but problems can arise when this gap is very

small or vanishes. These are often related to an attempted crossing of an occupied and

unoccupied energy level whereupon the charge density changes discontinuously. This effect

is known as charge sloshing. This is discussed by Jones et al. (1995) for the case of

substitutional Ni− in Si.

This effect can be avoided by “smearing out” the occupation of levels by using Fermi

statistics.

4.6.1 Fermi statistics

The simulation of a ‘finite temperature’ can be used to overcome convergency problems

when optimising the charge density coefficients.

Let us assume that the Kohn-Sham level ελ is occupied by γλ electrons. This means

that the energy to be be minimised now includes an entropy term as well as a term

constraining the total number of electrons to N :

F = E − T
{
− kB

∑
λ

[
γλ ln γλ + (1− γλ) ln (1− γλ)

]
− µ

[∑
λ

γλ −N
]}

. (4.6.6)

using Stirling’s approximation for x! to expand the entropy term, S (the expression in

braces), and summing over all orbitals λ. Minimising the free energy F with respect to γλ

and µ gives

N =
∑

λ

1
e(ελ−µ)/kB T + 1︸ ︷︷ ︸

γλ

. (4.6.7)

This equation, reflecting the conservation of the number of electrons in the λ-th state,

is solved for µ using a numerical recipe described in Press et al. (1982), based on the

Wijngaarden-Dekker-Brent method.
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In practice, kBT is taken to be about 0.04 eV. Often, where we have two energy levels

separated by 0.1 eV that ‘cross’ in the approach to self-consistency, this will remove the

discontinuous change, but when self-consistency is achieved, provided the final splitting is

more than 0.04 eV one state is found to be fully occupied and the other empty. In this

sense, we are using variable filling purely as a computational tool and are not attempting

to simulate materials at finite temperatures.

4.7 Evaluation of atomic forces

Once the self-consistent charge density has been found, then the force acting on each atom

can be evaluated. It is essential to determine the forces accurately in order to relax the

cluster and calculate its vibrational modes. The force acting on atom i is given by:

f
→

i = −
→
∇Riα E . (4.7.1)

Here Riα is the component of displacement vector along one of the Cartesian directions α.

The atomic forces can be analytically evaluated by considering the change to each term

in the energy in (4.5.4) when R
→k−1

iα , from the (k−1)-th minimisation, is displaced by ∆R
→

k
iα,

defined as

R
→

k
iα = R

→
k−1
iα + ∆R

→
k
iα . (4.7.2)

Thus, the change in energy due to the displacement of an atom, i.e., the force acting

on that particular atom, is given by

∆E =
∑
ij

bij ∆(Tij + V ps
ij ) +

∑
ij

{
Tij + V ps

ij

}
∆bij + ∆ŨH + ∆Ẽxc + ∆Ei−i (4.7.3)

∆ŨH =
∑
kl

ck Gkl ∆cl +
1
2

∑
kl

ck cl ∆Gkl (4.7.4)

∆Ẽxc =
∑
kσ

εσ
k ∆dσ

k +
∑
kσ

dσ
k ∆εσ

k . (4.7.5)

∆ck can be evaluated from (4.3.11):∑
l

Gkl∆cl =
∑
ij

{
tijk ∆bij + bij ∆tijk

}
−

∑
l

cl ∆Gkl . (4.7.6)

In the same way ∆dσ
k can be evaluated from (4.4.6):∑

l

Hkl∆dσ
l =

∑
ij

{
uijk ∆bσ

ij + bσ
ij ∆uijk

}
−

∑
l

dσ
l ∆Hkl . (4.7.7)

∆εσ
k is found from (4.4.19) and given by

∆εσ
k = dσ

k

∂εxc(〈nσ〉k)
∂〈nσ〉k

Ik exp [fk(s0)] ∆〈ñσ〉k

+
s0 (s0 − 1)

2
dσ

k εxc(〈nσ〉k) Ik exp [fk(s0)]

(
∆〈ñ2

σ〉k
〈ñ2

σ〉k
− 2∆〈ñσ〉k
〈ñσ〉k

)
, (4.7.8)
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with ∆〈ñσ〉k and ∆〈ñ2
σ〉k, defined from (4.4.12) and (4.4.16) as

∆〈ñσ〉k =
1
Ik

∑
l

{
Hkl ∆dσ

l + dσ
l ∆Hkl

}
, (4.7.9)

∆〈ñ2
σ〉k =

1
Ik

∑
lm

{
2uklm dσ

l ∆dσ
m + dσ

l dσ
m ∆uklm

}
(4.7.10)

respectively.

Now, if we gather together the terms in ∆bij and ∆bσ
ij we get,∑

ij

{
Tij + V ps

ij + V H
ij

}
∆bij +

∑
ijσ

(V xc
ij )σ ∆bσ

ij . (4.7.11)

From the Kohn-Sham equation (4.5.8) this equals ∆(
∑

ijλ ελSijc
λ
i cλ

j ), which can be

written as:

∑
λ

ελ ∆

N︷ ︸︸ ︷(∑
ij

cλ
i cλ

j Sij

)
−

∑
ijλ

ελ cλ
i cλ

j ∆Sij . (4.7.12)

As the first term vanishes, the force does not contain any derivatives in the wavefunction

coefficients – as required by the Hellmann-Feynman theorem, depending only on the charge

density with the atom in its unperturbed site.

Terms involving the matrix elements Tij and Sij depend on Riα only through the basis

functions φi(r
→−R

→
a), but the pseudopotential term has an additional dependence arising

from V ps
a (r→−R

→
a). This can be evaluated by integrating by parts:∫

φi(r
→−R

→
i)∆V ps

a (r→−R
→

a)φj(r
→−R

→
j) d3r (4.7.13)

= −
∫ {

φj(r
→−R

→
j)∆φi(r

→−R
→

i) + φi(r
→−R

→
i)∆φj(r

→−R
→

j)
}

V ps
a (r→−R

→
a) d3r . (4.7.14)

Despite the complexity of the equations, the time taken to evaluate the forces is small in

comparison with that taken to determine the self-consistent energy.

4.8 Structure optimisation

Having described how to calculate the self-consistent charge density, and hence the total

energy and its associated tridimensional potential surface, of a cluster of atoms, the next

step is the minimisation of the surface with respect to the atomic co-ordinates.

A conjugate gradient method is then used in order to generate the next search direction

along which the minimisation is to be carried out. The equation used to generate the next

search direction,
→
Dk

iα, is,

→
Dk

iα = f
→

k
iα +

(
|f
→

k
iα|2 − f

→
k
iα · f
→

k−1
iα

)
|f
→

k−1
iα |2

→
Dk−1

kα , (4.8.1)

where f
→

k
iα is the force vector in the k-th iteration of the minimisation. The vectors f

→
k
iα

and
→
Dk

iα have 3N components, where N is the number of atoms, being the force or search
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direction along each of the Cartesian axes, α, for each atom, i. This equation is derived

and discussed by Press et al. (1982).

The displacement vector ∆R
→

k
iα in the k-th iteration, as a function of the previous

iteration vector can now be defined as

∆R
→

k
iα = R

→
k
iα −R

→k−1
iα = kα

→
Dk

iα . (4.8.2)

The parameter kα, quantifying the displacement along the α direction, is determined from

the minimisation of the free energy of the cluster (4.6.6) by means of a quadratic or cubic

interpolation.

By ensuring that f
→

k
iα and

→
Dk

iα are orthogonal to f
→

k−1
iα and

→
Dk−1

iα respectively, the condi-

tion that a given search direction is conjugated to all previous ones is ensured (Polak, 1971).

4.9 Determination of vibrational modes

4.9.1 Equations of motion in the harmonic approximation

Assuming that the potential energy of the cluster is a function of the instantaneous posi-

tions of all the atoms, it can be expanded as a Taylor series in powers of atomic displace-

ment from the equilibrium configuration R
→

0 as

Φ(R
→

) = Φ(0)(R
→

0) +
∑
iα

Φ(1)
iα uiα +

1
2

∑
ij

∑
αβ

Φ(2)
iα
jβ

uiα ujβ + · · · , (4.9.1)

where uiα represents the atomic displacement of atom i along the Cartesian direction α.

The first term in (4.9.1), the potential energy of the ions in the equilibrium configu-

ration R
→

0 ≡ (R
→

0
1, . . . ,R

→
0
N ), is unimportant for the dynamical problem and can be set to

zero.

The coefficient of the second term is the derivative of the potential at equilibrium, i.e.,

the force on that atom i, satisfies

Φ(1)
iα =

∂E

∂uiα

∣∣∣∣
R
→

0

= 0 , (4.9.2)

since the equilibrium position of an atom must be a minimum of the potential energy

surface along the α direction.

The third term is the harmonic term and has its coefficients defined as

Φ(2)
iα
jβ

=
∂2E

∂uiα ∂ujβ

∣∣∣∣
R
→

0

, (4.9.3)

which represents the negative of the linear force on atom i along the direction α (see §4.7).
The ionic Hamiltonian can now be written as

H =
1
2

∑
iα

mi u̇
2
iα +

1
2

∑
ij

∑
αβ

Φ(2)
iα
jβ

uiα ujβ , (4.9.4)

with mi the mass of the i-th ion. The corresponding equation of motion reads

mi üiα = −
∑
jβ

Φ(2)
iα
jβ

ujβ . (4.9.5)
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4.9.2 Evaluation of energy double derivatives

In order to determine Φ(2), a numerical evaluation of the the double derivatives of the

energy using the forces found analytically, is performed using

∂2E

∂uiα ∂ujβ
w − [fiα(δα)− fjβ(−δα)]

2δα
(4.9.6)

where fjβ(δα) is the magnitude of force on ion j in the direction β when atom i is moved

along the α direction by δα. It has been found that the value of δα = 0.025 a.u. is sufficient

to ensure numerical stability.

Due to the fact that the derivative of the force is defined as a finite difference, it

includes contributions from every even power of δ. Therefore, the calculated frequencies

contain anharmonic terms. For this reason, the latter are sometimes called quasi-harmonic

frequencies (Jones et al., 1994).

To solve the equation of motion (4.9.5), we try a solution of the form

uiα =
1√
mi

u′iα e−iωt . (4.9.7)

By substituting this expression into the equation of motion (4.9.5), results in

ω2 u′iα =
∑
jβ

1
√

mi mj
Φ(2)

iα
jβ

u′jβ . (4.9.8)

Re-arranging, we obtain∑
jβ

[
Dijαβ − δαβ δij ω2

]
u′jβ = 0 with Dijαβ =

1
√

mi mj
Φ(2)

iα
jβ

, (4.9.9)

that is,

det
∣∣Dijαβ − ω2 δαβ δij

∣∣ = 0 . (4.9.10)

This equation allows us to determine the vibrational frequencies of N vibrating atoms

including those of the defect given by ω, as well as the corresponding normal mode dis-

placement uiα.

Only some of the entries of the dynamical matrix with elements Dijαβ, can be found in

this way for a large cluster. In order to circuvent this difficulty—the evaluation of the dou-

ble derivates is very time consuming— these are only calculated for the atoms surrounding

a particular defect. The second derivatives of the remaining atoms are determined using

a valence force potential.

Several types of potentials for a diamond/zincblende structure, depending on the num-

ber of degrees of freedom, can be found in the literature (Torres & Stoneham, 1985). A

particularly useful one is that due to Musgrave and Pople (1962). This includes all possible

bond lengths and bond angle distortions up to second order. The potential for atom i is:
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Vi =
1
4

∑
j

k(i)
r (∆rij)2 +

1
2

r2
0

∑
j>l

k
(a)
θ (∆θjil)2

+
∑
l>j

k(i)
rr ∆rij ∆ril + r2

0

∑
m>l>j

k
(i)
θθ ∆θjil ∆θlim

+ r0

∑
l>j

k
(i)
rθ (∆rij + ∆ril)∆θjil . (4.9.11)

Here ∆rij and ∆θjil are the changes in the length of the i–j bond and angle between the

i–j and i–l bonds, respectively. The sums are over the nearest neighbour atoms of atom i.

4.10 Practical considerations

4.10.1 Choosing a basis set

There are two different basis sets used in the method. The first is a basis used to describe

the wavefunctions and the second for the description the charge density. These are invari-

ably sets of Gaussian functions defined by an exponent αi and sited on an atom or at the

centre of a bond or some other location, Ri.

As described in §4.2, for the wavefunction expansion this Gaussian is multiplied by a

polynomial in x − Rxi, y − Ryi, and z − Rzi (vide 4.2.2). For spherically symmetric s-

functions, the polynomial is trivially unity. For p-orbitals, the three possible polynomials

are x−Rxi, y−Ryi or z−Rzi. For d orbitals, all 6 polynomials of degree 2 are used, which

generates a linear combination of five d- and one s-orbitals. f -orbitals can be included by

considering third-order polynomials. The complete basis is then a linear superposition of

these orbitals for different exponents αi and centres R
→

i.

The optimum exponents αi, i = 1, 2, . . . m, for a particular atom can be found by

minimising the energy of the pseudo-atom as a function of αi. This procedure also generates

the coefficients of the wavefunction: cλ
i , i = 1, 2, . . . m for each valence state λ. For example,

it generates a set of coefficients for an s-orbital and a set for the three p-orbitals. When an

application is made to a large cluster, the same fixed linear combination of the Gaussian

orbitals with different exponents can then be used. This gives a basis of 4 orbitals for each

Si atom for example and 10 for a transition element like Ni. This defines a minimal basis

set. In many applications, the minimum atomic basis is used for atoms far away from the

core. For other atoms, the coefficients which multiply the Gaussian orbitals are treated

as variational parameters as described in section §4.2. In this case, the atoms are said to

have a big basis.

For the treatment of the charge density, the set of modifed Gaussian functions described

previously by (4.3.19) is used to expand the charge density. These functions are defined

by the exponent βk and centre R
→

k. Again, the centres R
→

k can be chosen to lie at nuclei,

bond-centres or other locations. The optimum basis consists of exponents and sites which

maximise the estimated Hartree energy ŨH as described in (§4.3).
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It is always desirable to locate the Gaussian orbitals at a symmetrical site or the set

of sites generated by symmetry, since otherwise the energy levels, vibrational modes etc.,

will not possess the required degeneracy. It is expedient to define the basis in terms of N

and M which means that a basis of N Gaussian s, p or d orbitals are placed at the location

of each atom to describe the wavefunctions, while a basis of M Gaussian s-functions are

used to describe the charge density. In addition the sites treated in terms of a minimal

basis set need to be defined as well as any orbitals and fitting functions placed at bond

centres. A minimal basis is often placed on the surface H atoms.

To summarise, the two of types of atomic basis currently used are as follows:

(i) big basis: The atomic wavefunction is generated as a linear combination of Carte-

sian Gaussian with different widths, i.e., different exponents. The corresponding

coefficients αi are optimised to minimise the pseudo-atom energy;

(ii) minimal basis: In this case, the Gaussian coefficients αi are not variational param-

eters. In other words, a fixed linear combination of orbitals is used. As mentioned

above, the H-terminators are always treated in minimal basis.

Charge density input options

The intermediate fit to the charge density can be chosen to have different forms depending

on the defect system being modelled.

The charge density can be written as (see Eq. 4.3.19)

ñ(r→) =
∑

k

ck gk(r
→) +

∑
p

cp hp(~r) , (4.10.1)

with gk(~r) defined by the following:

gk(~r) =
[
1− 2

3
βk (r→−R

→
)2

]
e−βk(~r−R

→
k)

2
. (4.10.2)

The possible forms of ñ(r→) (chden) that can be used with aimpro are as follows:

• Type 0: Unconstrained charge density

hp(r
→) = Zp

√
βp

π
e−αp(r→−R

→
p)2 ; (4.10.3)

• Type 1: Constrained charge density:

hp(~r) =
2∑

λ=1

cpλ Zp
3

√
βpλ

π
e−αpλ(r→−R

→
p)2 ; (4.10.4)

• Type 2: For using exponents of special functions for the Hartree density. This is the

same as type 3 (below) but uses Gaussians with different widths (different values of

α).

• Type 3: The whole of gk is replaced with

gk = e−αk(~r−R
→
k)

2
. (4.10.5)
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The type-1 fit to the charge density is fastest, being used in almost all the runs per-

formed during the course of our study. The exception are studies of defects involving

oxygen, which possesing lone-pair orbitals require a larger atomic basis, as well as a dif-

ferent, slower, charge density fit — type 3.

4.10.2 Basis size

The basis size has a significant effect on calculated properties: with structures being least

sensitive and energies and wavefunctions being most sensitive. It is not possible to converge

total energies with the same degree of rigour as is occasionally obtained in plane-wave

treatments. This is because simply increasing the number of exponents used to describe

the basis eventually results in a numerical instability for the Choleski decomposition of

the overlap matrix. However, in practice it is energy differences that are important as,

for example, between a H atom at a bond centred and tetrahedral interstitial site. In this

case the dependence of the total energy difference can be easily checked.

4.10.3 Termination effects

In dealing with defects within semiconductors, H terminated clusters have invariably been

used. These saturate the dangling bonds at the surface of the cluster leading to widely

separated filled and empty surface states for ‘bulk’ clusters, i.e., clusters comprised with

the same stoichiometry and atomic arrangement as the bulk semiconductor. If the surface

H bond lengths are close to their equilibrium values, the band gaps are much greater

than those of the bulk solids, with the exception of diamond. Values for representative

Si clusters are given in Table 4.2. These were calculated for tetrahedral clusters with an

N = M = 8 basis on the inner 5 atoms and a minimal basis on all the others. Two

bond centred Gaussian basis functions with different exponents were sited on all the bond

centres between host atoms.

Defect–surface interactions

In order to avoid defect-surface interactions and consequently erroneous results, it is nec-

essary to investigate any variations of the properties of defect with cluster size. This

interaction can occur in two different situations: when strong relaxation/distortion of the

crystal surrounding the defect core occurs, which might involve a large volume increase

(e.g., Jahn-Teller systems like vacancy or transition-metal related defects), or when the

defect wavefunction overlaps with the surface states. Although the former can be inves-

tigated straightforwardly, the latter might pose serious problems. This is related to the

difficulties on pin-pointing states localised in reciprocal space (band-edge like) using a basis

of functions localised in the real space.
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The gap problem II

The LDF-LDA band gaps within a cluster approach like aimpro are much larger than those

found using the same theory with supercells which are in turn smaller than experimental

gaps. The origin of this problem is completely different from that described in §§2.8.4.
The effect of the confining potential due to the terminating surface is to shift the occupied

bonding p-orbitals of the Si atoms dowards in energy, which implies the upwards shift of

the empty anti-bonding s-orbitals, resulting in a net increase of the bandgap.

The cluster band gap of Si varies only slightly with the basis size but becomes smaller

if longer H bonds are allowed. It is not advisable to use long H bonds as this imposes a

strain on inner bonds around defects and this can certainly modify their structure, seriously

perturbing the local vibrational modes. The band gap also decreases slowly with cluster

size.

Table 4.2: Lowest Kohn-Sham level, ε1, highest occupied level εv, calculated

(∆KS) and experimental band gap for various Si clusters (eV). The basis used is

specified in §4.10.3.

Bandgap width

Cluster size Stoichiometry ε1 εv Calc. Expt.

71 Si35H36 −16.31 −6.48 3.82 1.17

Silicon 131 Si71H60 −16.77 −6.41 3.13 1.17

297 Si181H116 −16.91 −5.96 2.51 1.17

Despite the large band gaps, some information on the position of energy levels can be

obtained. There are two common ways of ‘correcting’ the band gap to make allowance for

the difference with experiment. The first is to simply scale defect levels by the band gap.

Clearly this is simply pushing both valence and conduction band states closer together.

The second is to use a scissors operator (Baraff & Schlüter, 1984). This is added to the

Hamiltonian and displaces the unoccupied states of the ‘perfect’ cluster upwards by V .

The scissor operator is

∆(r→, r→′) = V
∑
λ′

ψλ′(r
→)ψλ′(r

→′) , (4.10.6)

where λ′ represents unoccupied levels. It can also be expressed in terms of the occupied

states and, for the spin-averaged case,

∆(r→, r→′) = V
∑
ij

(δi,j − bij)φi(r
→−R

→
i)φj(r

→′ −R
→

j) . (4.10.7)

V is chosen to give the correct band gap. This is then applied to a cluster containing a

defect.



5

Deep Level Characterisation

5.1 Introduction

This chapter is intended to provide some insight into the properties of deep-level defects.

We start with a comparison with shallow-level defects that can be accurately described

by the effective-mass theory. Unfortunately, such a ‘unified’ theory is not available for

deep-level centres. This is followed by a description of the emission and recombination

processes that can occur between deep-levels and the band edges. Commonly used ex-

perimental techniques to characterise the structural, vibrational and electrical properties

of deep-level defects are also described. This chapter ends with a summary of theoretical

methods that have been applied to describe these defects, including a novel approach for

the characterisation of their electrical properties.

Localised states, i.e., states with decaying wavefunctions, can only appear if the trans-

lational symmetry of the perfect crystal is broken. For example, the crystal may contain

a chemical impurity or an atom may be missing from the otherwise perfect array of atoms

forming the crystal. These and many other types of imperfections are always present in

any real semiconductor material.

Different charge states of the same defect are usually associated with different localised

states. It is a well known fact that the presence of these levels in the band gap can,

and often do, dramatically change the electrical and magnetic properties of the semicon-

ductor material. This is simply due to the fact that these levels can exchange carriers

with the conduction and valence bands, and between themselves by emission, capture or

recombination of electrons or holes.

Several features associated with deep levels are very important for the optimisation

design of silicon integrated devices. These are the relative position of the levels within

the gap—activation energy, the capture rate of these levels, their concentrations, the iden-

tification of minority- and majority-carrier traps and their capture cross sections, i.e., a

measure of the ability of the deep level to trap carriers (Stoneham, 1975).

76
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5.2 Shallow versus deep levels

A localised state within the bandgap could not ever exist if the entire charge of an impurity

electron was localised in the atomic volume of the impurity. Obviously, in this case the

binding energy could vary enormously, exceeding by far the magnitude of the band gap

and a few impurity states could fall into the band gap. For example, the magnitude of gap

of Si is ∼ 1 eV, constituting a small fraction of the binding energy of a valence electron

at the free atom. It would appear that the localisation of these bound states states can

only be such that a substantial portion of the charge density lies outside the range of the

short-range, deep atomic potential of the impurity.

If the amount of localised charge located in the region of the short-range potential can

be considered small, the full Schrödinger equation can be reduced to its hydrogenic form.

This leads to the well-known effective-mass theory (Kohn, 1957; Pantelides, 1978).

Effective-mass theory was very successful in describing the electronic structure of shal-

low impurities. This theory made a very simple assumption about the form of the per-

turbation potential introduced by a shallow impurity (screened Coulombic) and a set of

approximations which reduced the resulting Schrödinger equation into a hydrogenic form.

This is usually equated by the following radial Schrödinger equation (in SI units).[ d2

dr2
+

2m∗

~2

(
E +

Zq2

εr

)
− l(l + 1)

r2

]
Rl(r) = 0 (5.2.1)

The solutions of this equation resembles the spectrum of an hydrogen atom immersed in

a uniform dielectric medium (l is the angular momentum quantum number).

The large ionisation energies of deep levels implies a strong potential that localises the

wavefunction of the carrier trapped to the defect. A consequence of localisation in real

space is delocalisation in k-space (reciprocal space).

In the case of deep-level impurities the long-range character of the screened potential is

the source of binding. The contraction of the impurity wavefunction, and consequently, the

breakdown of the hydrogenic model, can only occur as a result of short-range interactions.

The hydrogenic model views the localised states as ‘superimposed’ upon the electronic

structure of the host crystal. An increase in the binding energy with respect to the relevant

band edge can only mean a more localised wavefunction, and vice versa.

5.3 The effects of lattice relaxation

The introduction of a defect may involve a very abrupt change in the potential of the

crystal. The valence wavefunctions of the host atoms may be modified substantially in the

vicinity of a defect. If the impurity potential is weak, such modifications can be treated

as a perturbation. Unfortunately, this is not always the case.

The form of the valence electron relaxation reflects the ability of the impurity po-

tential to interact with valence electrons. The newly created electron distribution may

substantially alter the lattice stability around the defect and the surrounding atoms may
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be displaced. In this case, new equilibrium nuclear co-ordinates then exist which corre-

spond to a lower total energy. The lattice relaxation alters the strength and often the

symmetry of the impurity potential. In other words, the defect atom and its neighbours

are displaced with respect to their perfect crystal positions.

The driving force for a distortion is often due to

Q2
k

Q

Λ1
2

E

k

0

E

∆

∆

E

Figure 5.1: The electronic energy of

a twofold degenerate localised state

and the elastic energy 1
2ΛkQ

2
k as

functions of Q. ∆E is the total en-

ergy variation. ∆E0 is the Jahn-

Teller stabilisation energy.

the Jahn-Teller effect (Jahn & Teller, 1937). This is

the case of transition metal impurities and vacancy

and vacancy-impurity complexes, which constitute

the main topic of this thesis.

Such a distortion occurs when the electronic state

is orbitally degenerate, in which the nuclear config-

uration is unstable. Atomic displacements always

exist which, by lowering the symmetry, split the

the degenerate level. As the centroid remains fixed,

there is a sub-level which is lowered and the sys-

tem is thus stabilised by the spontaneous distortion.

There are usually several equivalent new atomic con-

figurations corresponding to distortions which are

equivalent in symmetry.

We now discuss the origin of a Jahn-Teller dis-

tortion. Let us consider a localised state ψα(r→,R
→

), degenerate by symmetry for R
→

= R
→

0,

the equilibrium configuration, and discuss its possible splitting for R
→
6= R
→

0. For a nuclear

configuration R
→

close to R
→

0, the ionic potential seen by an electron in the degenerate level,

can be expanded as

Φ(R
→

) = Φ(R
→

0) +
∑

k

∂Φ(R
→

0)
∂Qk

Qk +
1
2

∑
k

∑
k′

∂2Φ(R
→

0)
∂Qk ∂Qk′

Qk Qk′ + · · · . (5.3.1)

Here Qs represents a normal displacement, i.e., a suitable linear combination of the Carte-

sian co-ordinates of the atomic displacement vectors from the perfect crystal positions.

The second and third terms represent a perturbation potential Φ′. The splitting of

the degenerate levels can then be given to first order in Φ′ by conventional perturbation

theory, by the diagonalisation of the perturbation matrix, whose elements are given by

Φ′αβ =
∑

k

Qk <ψα |
∂Φ(R

→
0)

∂Qk
|ψβ> +

1
2

∑
k

∑
k′

Qk Qk′ <ψα |
∂2Φ(R

→
0)

∂Qk ∂Qk′
|ψβ> (5.3.2)

with ψα and ψβ belonging to the sub-space of the degenerate level. The Qk represent the

normal modes of the system containing the defect, if we consider that only the motions

of the impurity or defect and its immediate neighbours contribute appreciably to Φ —

‘Quasi-molecular’ model (Bourgoin & Lannoo, 1983).
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The splitting is given by the diagonalisation of the first-order part since Φ′αβ can gen-

erally be written as

Φ′αβ =
(1

2

∑
k

Λk Q2
k

)
Iαβ +

∑
k

Qk <ψα |
∂Φ(R

→
0)

∂Qk
|ψβ> , (5.3.3)

where Λk are the force constants and I is the unit matrix.

According to the Hellmann-Feynman theorem (§1.5.1), the generalised force Fk acting

on the nuclei in the sense to increase Qk is

(Fk)αβ = −<ψα |
∂Φ(R

→
0)

∂Qk
|ψβ> (5.3.4)

Fk is the analog of the classical Fk = −∂Φ/∂Qk. If Fk in (5.3.4) is non-zero for a certain

nuclear configuration, the configuration is unstable and will spontaneously distort until Fk

is zero.

The Jahn-Teller (JT) theorem states that if |ψα〉 is a degenerate state when Qk = 0,

the matrix elements in (5.3.4) exist for some Qk, with k 6= 1 (i.e., for some non-totally

symmetric coordinate) (Sturge, 1967). This can be proved by elementary group theory, as

demonstrated by Jahn and Teller (1937).

In the simplest case, the change in total energy of a twofold degenerate level due to a

JT distortion, to first order, is (Fig. 5.1)

∆E =
1
2

Λk Q2
k − Fk Qk . (5.3.5)

The minimum energy configuration is established at Q0
k = Fk/Λk which corresponds to a

net reduction of the total energy by ∆E0 = F 2
k /2Λk.

5.4 Carrier emission and recombination

Deep defect states are usually referred to as carrier traps, recombination centres or gener-

ation centres depending on the relative probabilities for the capture and emission of either

electrons or holes.

In a neutral semiconductor an electron trap can be defined as a defect for which the

electron capture rate, cn, is much larger than the hole capture rate cp, i.e., cn � cp.

A recombination centre is characterised by large cn and cp. On the other hand, when

the electron emission rate for electrons and holes, en and ep respectively, are large defines

a generation centre. The several types of centres are illustrated in Figure 5.2. The energy

difference Ec − ET represents the binding energy for electrons and ET − Ev the binding

energy for holes.

The electron and hole capture rates are given by (Hall, 1952; Shockley & Read Jr.,

1952)

cn = σn 〈vn〉n and cp = σp 〈vp〉 p , (5.4.1)
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with σn and σp being the cross sections for, respectively, capture of electrons and holes.

Here n and p are the electron and hole concentrations in the conduction or valence band;

〈vn〉 is a thermal mean electron velocity

〈vn〉 w
√
〈v2

n〉 =

√
3kB T

m∗n
, (5.4.2)

where m∗n is the electron effective mass, kB is Boltzmann’s constant and T is the temper-

ature in Kelvin. An analogous expression holds for 〈vp〉.
Defects are also referred to as ma-

en

ET

nc

ET

Ec

Ev

ET

ncen

ep pc
ep

pc

(a) (b) (c) (d)

Figure 5.2: Thermal emission and capture pro-

cesses from (a) electron and (b) hole traps, (c) gen-

eration and (d) recombination centres.

jority or minority carrier traps. Ob-

viously an electron trap is majority

carrier trap in n-type material and a

minority carrier trap in p-type mate-

rial.

The thermal emission rates are

proportional to a Boltzmann factor

exp (−∆E/kB T ), where ∆E is the

depth of the trap—free energy from

the band edge to which the carrier

is emitted. Therefore, the emission

rate of an electron is

en ∝ exp
(
− ∆Ea

kB T

)
(5.4.3)

with the activation energy ∆Ea = Ec − ET , where Ec and ET are the energies of the

conduction band and the trap, respectively (see Fig. 5.4).

Invoking the principle of detailed balance, the emission rate of electrons to the conduc-

tion band can be written as (Miller et al., 1977)

en =
σn 〈vn〉Nc

g
exp

(
− ∆E

kB T

)
with 〈vn〉Nc ∝ T 2 , (5.4.4)

where Nc is the effective density of states in the conduction band (∝ T
3
2 ) and g is the

degeneracy of the defect level.1 Again, a similar expression holds for the emission of holes

to the valence band.

The electron and hole capture cross sections may be temperature dependent but gen-

erally they are not (Grimmeiss, 1977). For thermally activated cross-sections, σ(T ) seems

to follow the law

σ(T ) = σ∞ exp
(
− Eσ

kB T

)
, (5.4.5)

where Eb is the thermal activation energy of the capture cross section. This is the case of

carrier capture by multi-phonon emission (Lang & Henry, 1975). This allows us to re-write
1Specifically, g is defined as the ratio of the ground-level degeneracies of the two ionisation states of the

defect before and after the loss of the emitted carrier.
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(5.4.4) as

en =
σ∞n 〈vn〉Nc

g
exp

(
− ∆E + Eσ

kB T

)
. (5.4.6)

As mentioned above, ∆E is the Gibbs free energy, i.e.,

∆E ≡ Ec −ET = ∆H − T ∆S , (5.4.7)

where ∆H and ∆S are the changes in enthalpy and entropy due to the emission of carriers

and consequent change in the charge state of the defect. Inserting (5.4.7) into (5.4.4) gives

en =
σn 〈vn〉Nc Xs

g
exp

(
− ∆H

kB T

)
with Xs = exp

(∆S

kB

)
. (5.4.8)

It obvious that the slope of an Arrhenius plot yields the enthalpy of the deep level and not

its free energy.

It important to note that only when σ∞ and σ have been measured, ∆S may deter-

mined. Additionally, ET the trap can only be determined if experimental data of emission

and capture rates are available and that values for ∆H linearly extrapolated at T = 0 K

are obtained for the case of temperature dependent ionisation enthalpies.

It is now convenient to write a more general expression for the thermal emission rate of

electrons to the conduction from a trap characterised by a thermally activated cross-section

as

en =
An σ∞n T 2 Xs

g
exp

(
− ∆H −Eσ

kB T

)
, (5.4.9)

with Xs defined as in (5.4.8). For Si, An = 3.42 × 1021 s−1 K−2 cm−2 (Schmidt, 1998).

5.5 Detection and characterisation of deep levels

Capacitance methods like deep-level transient spectroscopy (DLTS) probe the variation

of space-charge of a Schottky barrier or a p-n junction diode induced by sudden application

of an external perturbation.

The space-charge layer for a one-sided abrupt p+-n junction with uniform doping con-

centration and zero applied bias voltage is illustrated in Figure 5.3 (top).

The width of the space-charge layer, varies with the voltage applied to the diode, and

thus, because free carriers are always swept out of this region by the electric field, it can

be thought as a variable-width insulator.

The capacitance of a reversed-biased one-sided p+-n junction, is given by

C = εs
A

W
, (5.5.1)

where A is the area of the junction, εs is the dielectric constant of the depleted semicon-

ductor. W represents the width of the depleted zone as

W (V ) =
√

2 εs

q ND
(Vb + V ) , (5.5.2)
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where Vb is the built-in voltage of the junction, or diffusion voltage, V is the externally

applied voltage, q is the charge of the electron and ND is the concentration of ionised

dopant impurities in the lightly doped side of the junction.

Inserting (5.5.2) into (5.5.1), we can re-write the expression for the capacitance per

unit area as

C =

√
q εs ND

2 (Vb + V )
(5.5.3)

This equation forms the basis for capacitance-voltage (C-V ) measurements. For uniformly

doped material a plot of 1/C2 vs. V gives the doping density ND from the gradient and

Vb from the intercept of the slope.

Figure 5.3 shows the band diagram for

Ec
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Figure 5.3: Distribution of filled and empty

traps at steady state in a p+-n step junction

under zero bias (top) and reverse bias V >

Vb (From Lang (1979)).

a p+-n junction having a uniformly doped

n region at two different bias conditions (Vb

and V ). Two different regions of the space-

charge region must be considered. The cen-

tral region closest to the junction, where

both the shallow donors and the deep levels

lie above the Fermi, is depleted of all free

carriers. Beyond this is a transition region

(sometimes refereed to as the edge region),

defined by the point where the Fermi level

crosses the deep level, in which the deep

levels are occupied. The width of this re-

gion is

λ =
√

2εs

q2 ND
(EF −ET ) (5.5.4)

Trap levels in the depletion region of

diode can be detected by their effect on the

depletion capacitance (Kimerling, 1974). It

is evident from equations (5.5.1) and (5.5.2)

that a change in the charge density in the

depletion region will result in a corresponding change in the depletion layer width. Con-

sequently, the junction capacitance is a direct measure of the total semiconductor charge.

If the concentration of carriers trapped at deep levels is changed by the thermal or

optical emission of carriers to the appropriate band, this change can be monitored by

measuring the variation in the junction capacitance at constant applied voltage.

The variation of the depletion region width of the diode with applied voltage makes

possible other unique features of space-charge spectroscopy, namely the ability to separate

carrier capture from carrier emission and to allow the capture of only majority carriers or

both majority and minority carriers. The former is shown schematically in Figure 5.4 for

a p+-n junction having a deep level in the upper half of the band gap.
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reverse bias
Quiescent

"Majority
carrier pulse"

Decay of transient

thermal emission
due to

T > 0

T

1

2

Beginning

of transient

Figure 5.4: Isothermal capacitance regime evolution after the application of a re-

verse bias when the p+-n junction is initially reversed biased. The insets show the

occupation, space-charge layer width (unshaded) and free carrier concentrations

during steps 1–4. Band bending omitted for clarity. Adapted from Lang (1979).

Under a steady-state reverse bias voltage (Fig. 5.4–1), traps in depletion region are

empty. Reducing the applied voltage (Fig. 5.4–2), reduces the width of the depletion

region and allows electrons to be trapped at the deep levels. Electron capture into an

initially empty trap is given

NT − nT (t) = [NT − nT (0)] exp (−cn t) (5.5.5)

where NT is total trap density, nT is the number of trapped electrons and cn is the capture

rate. In a sufficiently long period, all the centres captured an electron (nT (∞) = NT ).

If the junction is then reversed-biased, the free carrier concentration in the transition

region is nullified (en � cn ≈ 0). Traps release their captured electrons (Fig. 5.4–3). The

transient response is then

nT (t) = NT exp (−en t) , (5.5.6)

where en is the thermal emission rate and NT is the total trap concentration. Consequently

the concentration of ionised centres, Ni, at time t, is

Ni(t) = ND + [NT − nT (t)] = (ND + NT )−NT exp (−en t) , (5.5.7)

showing that changes in the occupancy of these centres are directly proportional to the

change in capacitance. Assuming that ND � NT , the capacitance of the junction per unit
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Capacitance transients at various temperatures
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(
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Figure 5.5: Implementation of a DLTS rate window by means of a boxcar

integrator with gates set at times t1 and t2 (Lang, 1979).

area can be written as

C(t) w C0

[
1− NT

2ND
exp (−en t)

]
, (5.5.8)

where C0 is the quiescent capacitance under the applied voltage V given by (5.5.3). In

other words, the transient capacitance ∆C(t) = C(t)− C0 decays by the exponential law

∆C w −C0
NT

2ND
exp (−en t) , (5.5.9)

with the electron emission rate given by (5.4.9).

The activation energy for thermal emission is then determined from measurements of

the thermal emission rate at different sample temperatures. The trap concentration can be

determined from the initial amplitude of the transient. Note that the sign of the resulting

capacitance transient is negative for the emission of majority carriers (Fig. 5.4). Obviously,

the capacitance transient is positive for minority carriers, simply due to the fact that their

charge has the opposite sign (Miller et al., 1977).

5.5.1 Deep level transient spectroscopy

If the variation of C with temperature from a transient capacitance experiment is processed

in a way that a selected decay rate produces a maximum output, then a signal whose decay

time changes monotonically with time reaches a peak when the rate passed through the

rate window of box-car averager of the frequency of a lock-in amplifier.
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When observing C-t transients through such a rate window while varying the decay

time constant, τ (τ = 1/en) by varying the sample temperature, a peak appears in the

output versus temperature plot (∆C/C = f(t)). This is called a DLTS spectrum (Lang,

1974; Miller et al., 1977; Lang, 1979).

Box-car DLTS

In the box-car system introduced by Lang (1974), de-

a( )

0 Time 

( )

( )b

c

signal+noise

t1

t2

tf

Figure 5.6: Diagrams of some

rate-window operations, or

weighting functions w(t): (a)

box-car, (b) lock-in amplifier

and (c) two-phase lock-in am-

plifier.

picted in Figure 5.5, the DLTS-signal ∆C is defined as the

difference in capacitance at two sampling times t1 and t2

∆C = C(t1)− C(t2) . (5.5.10)

The emission rate corresponding to the maximum of the

DLTS signal is given by setting the derivative of (5.5.10)

with respect to en equal to zero; thus

(en)max =
1

∆t
ln

(t1
t2

)
, (5.5.11)

with ∆t = t1 − t2. This equation is independent of the

magnitude of the capacitance and a certain emission rate

can be fixed by the choice of the rate window. Changing

the values of t1 and t2 changes the rate window, and the

temperature of the maximum of DLTS peak shifts.

Lang (1974) applied a double-gated box-car averaging

method to detect the DLTS signal (Fig. 5.6). The weight-

ing function was a follows:

w(t) = δ(t − t2)− δ(t− t1) (5.5.12)

which provides a response

f(t) =

t=tf∫
t=0

C(t)

w(t)︷ ︸︸ ︷[
δ(t− t2)− δ(t − t1)

]
dt = C(t2)− C(t1) , (5.5.13)

where tf is the period of the filling pulse.

Lock-in DLTS

With a better signal/noise ratio, lock-in DLTS has replaced the original box-car system

proposed by Lang (Miller et al., 1977). A DLTS peak is observed when the frequency of

the lock-in amplifier bears the proper relationship to the emission time constant. This

frequency defines the period of a square-weighting function, w(t), such as

∆C(ti) =
1
ti

tD+ti∫
tD

∆C(t)w(t) dt , (5.5.14)

where ti represents the lock-in measuring time and tD is a delay time.
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Determination of activation energies and cross sections

In order to extract the activation energy and capture cross-section of a given trap, the rate

of the window and thus the emission rate is varied several times, usually during the same

temperature DLTS scan. The peak temperature and emission rate (en, Tmax) is extracted

for each rate window.

An Arrhenius plot (ln (en/T 2) vs. 1/T ), of the values of en and Tmax taken from several

rate windows, allows the determination of the activation energy and apparent capture-

cross section: the activation energy corresponds to the slope and the cross-section to the

y-axis intercept. Note that, as mencioned above, the intercept provides σn exp (∆S/kB),

providing the the cross-section implicitly, and not explicitly.

Depth profiling

The variation of the depletion region width with applied bias can be used to to measure the

deep level concentration profile, if the shallow concentration level profile is known (Lang,

1979),

δ
(∆C

C0

)
=

εs

q W 2 ND

NT (x)
ND(x)

δV (5.5.15)

where x is the width of the space charge layer during the filling pulse and C, W and ND

are the values corresponding to the steady state bias between the pulses; NT (x) is usually

measured using C-V profiling methods.

Influence of the electric field on emission rates

DLTS detects thermal emission of carri-

xm

F( )

ET

∆ Em

x

pure tunnelling

Poole-Frenkel

-qFx

V

emission

Figure 5.7: Schematic representation of a de-

fect potential in an electric field.

ers from traps in a reverse biased junction,

in which the built-in electric field can reach

108 V cm−1 for heavily doped semiconduc-

tors. In this case, the simple expressions

derived previously for the emission rate no

longer hold. Obviously, the dependence of

the emission rates on the electric field has

to taken into account. In this section, we

describe one of the mechanisms of emission

enhancement in an electric field: the Poole-

Frenkel effect (Frenkel, 1938). For higher

values of the electric field, phonon-assisted tunnelling or simple tunnelling are alternative

processes.

In a region of an electric field ~F , an electron bound to a defect experiences the defect

potential plus the perturbative potential −qFx, where x is the electron coordinate along

the field. The result is a field-dependent barrier lowering such that (Fig. 5.7)

ET (F ) = ET (0)−∆Em(F ) , (5.5.16)
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where ET (F ) and ET (0) are trap energies with and without the field respectively, and the

energy ∆Em enters in the Boltzmann factor of the thermal electron emission rate as

en(F ) ∝ exp
(
− ET −∆Em(F )

kB T

)
, (5.5.17)

The main characteristic of the potential depicted in Figure 5.7 is that there is a finite

probability for the defect electron to be thermally excited to states higher than Em. Con-

sequently, this results in the enhancement of the emission of carriers from the defect. This

is obvious from (5.5.17).

For a Coulombic defect potential (−q2/εsr), the quantity ∆Em, representing the mag-

nitude of the lowering of the defect potential, can be quantified as follows

∆Em(F ) = 2q
√

q F

εs
. (5.5.18)

Therefore, the linearity of ∆Em with the square root of the electric field provides the

charge of the carrier leaving a centre of opposite sign. In other words, the study of ∆E

versus F is a possible way of determining the acceptor or donor character of a defect level

(Kimerling & Benton, 1981).

Minority carrier transient spectroscopy

Minority carrier transient spectroscopy (MCTS)

4
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1

Figure 5.8: p+-n junction dia-

gram showing the dominant photon-

semiconductor interactions during

the fill pulse of a MCTS experiment

(Davidson & Evans, 1996a).

is an optical technique (Brunwin et al., 1979). It

uses flooding illumination to generate excess carri-

ers.

A laser emitting an energy which is just greater

than the bandgap energy illuminates the sample held

under reverse bias. Carriers are generated in the

bulk region of the semiconductor (Fig. 5.8-1: e−h

pair generation) and those minority carriers within a

diffusion length of the depletion region drift rapidly

across the region under the influence of the field,

whereas the majority carriers are excluded by the

space charge.

The minority carriers contribute to the photocurrent but some are captured by minority

carrier traps (Fig. 5.8-2). When the light pulse is terminated the carriers are thermally

emitted at a rate dependent on the properties of the trap and give rise to a capacitance

transient, similar to that of DLTS for majority carrier traps.

Other photon-electron interactions may occur during the light pulse. These can be

photon absorption within the depletion region (Fig. 5.8-3), or the capture of majority

carriers by deep traps (Fig. 5.8-4). Emision from these traps counteracts the capacitance

produced by emission of minority carriers. Also possible is the direct photo-excitation of

a carrier from a deep level to a band as in standard optical DLTS (Fig. 5.8-5)
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Due to the fact that the trapped carriers have the opposite sign to that occuring in a

DLTS experiment on the same sample, the peaks in an MCTS spectrum will be inverted

relative to the majority carrier emission peaks of DLTS (Evans et al., 1995).

Performing both standard dark DLTS and MCTS on the same sample provides a char-

acterisation of the majority and minority traps present (Davidson & Evans, 1996b).

5.5.2 Laplace deep level transient spectroscopy

The peaks of a conventional DLTS spectrum are rather broad and the energy resolution

is moderate, in the range of 10 meV. However, this disadvantage has been effectively

circumvented using the Laplace transform method for the emission rate analysis in DLTS

measurements (Dobaczewski et al., 1994). An improvement by a factor of an order of mag-

nitude in DLTS resolution can be achieved. Consequently, this method provides a better

capability to establish a fine structure in the emission process producing the spectrum.

Laplace DLTS (LDTS) produces a plot of the spectral density as a function of emission

rate rather than capacitance change versus temperature as in a conventional DLTS. The

spectral density function F (s), is given by the inverse Laplace transform of the recorded

transient defined as

f(t) =

∞∫
0

F (s) e−s t ds .

The result is delta-like peak(s) in the spectra more or less broad depending on the expo-

nential form of the transient (Fig. 5.9-b). The area under each peak is proportional to

the charge release by the defect, which can be related to the concentration of the deep

state. This contrasts with conventional DLTS in which the concentration of the deep level

is given by the height of the peak and not by the integrated area under the peak as in

LDTS.

Figure 5.9: Comparison between a standard DLTS (a) and a Laplace spectrum

(b) of Pt-doped Si. The spectra shown originate from the single acceptor level

of substitutional Pt− (Dobaczewski et al., 1994).
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To obtain the level activation energy, or the level enthalpy for temperature independent

cross-sections, the LDLTS experiment is repeated at various temperatures. The slope of

the corresponding Arrhenius plot gives the required energy.

5.5.3 Electron paramagnetic resonance

So far, we have described experimental techniques that can accurately described the elec-

trical properties of a given defect. Unfortunately, neither of the previous techniques can

provide any information about the microscopic structure, or chemical composition of the

defect in question. This difficulty can be avoided by performing electron paramagnetic

resonance (EPR) measurements, one of the most powerful techniques to characterise the

microscopic structure of a paramgnetic centre.

The phenomenon of electron paramagnetic resonance is based on the ability of a un-

paired electron orientated in a magnetic field to absorb electromagnetic radiation.

Principle

Consider a free paramagnetic ion with total angular momentum J
→

= L
→

+ S
→

, with L
→

and

S
→

defining the orbital and electronic spin momenta respectively. The magnetic dipolar

moment due to J
→

is

µ→= −g β J
→

, (5.5.19)

where β ≡ eh/2mc is the Bohr magneton and g is a dimensionless factor given by Landé’s

formula

g = 1 +
J(J + 1) + S(S + 1)− L(L + 1)

2(J + 1)
. (5.5.20)

When this ion is subject to an external magnetic field,
→
B, the so-called Zeeman inter-

actions are described by a Hamiltonian of the form

H = −µ→ ·
→
B = g β J

→
·
→
B . (5.5.21)

For many defects in solids, the orbital momentum is strongly quenched.2 Consequently,

the contribution to J
→

, and µ→ comes primarily from the spin momentum S
→

of the electron

bound to the defect. In this case, (5.5.19) is replaced by

µ→= β S
→
· g↔ , (5.5.22)

with the tensor g↔ defined as g↔= g0 +∆g↔. ∆g↔ represents the departure from the isotropic

spin-free value, g0 = 2.0023, which depends on the orientation of
→
B with the crystallo-

graphic axis. The Hamiltonian (5.5.21) can now be written as

H = β S
→
· g↔ ·

→
B (5.5.23)

2The exceptions are rare-earth element impurities and, in special circumstances, 3d transition-metal

ions.



Deep Level Characterisation 90

which leads to the splitting of spin-degenerate energy levels into (2S+1) sub-levels, equally

separated by

E(mS) = g β mS . (5.5.24)

mS is the azimuthal quantum number, running from −S to +S.

This departure from the free g-value originates from small orbital orbital momentum

induced by the spin into surroundings (via spin-orbit interaction λS
→
· L
→

) at the atomic

cores, including shielding and covalency effects.

Magnetic dipole transitions between to adjacent levels can take place (∆mS = ±1)

when the system absorbs energy quanta at the resonant frequency hν = g β B. Usually,

this microwave frequency, ν0, is tuned with that of the resonant cavity containing the

sample. The resonant condition is searched by sweeping the applied external magnetic

field. The resonant field,

B0 =
hν0

g β
, (5.5.25)

can be detected and recorded by the EPR spectrometer, therefore serves as a direct measure

of g, whose angular dependence is given by

g2 =
3∑

i=1

g2
i n2

i . (5.5.26)

Here gi are the principal values of g↔ and the ni’s the direction cosines of
→
B with respect

to the principal axes of g↔.

If the spin-orbit interaction is considered a perturbation, the components of g↔, gij have

the form (Abragam & Pryce, 1951)

gij = g0 δij − 2λ
∑
n6=0

<Ψ0 |Li |Ψn><Ψn |Lj |Ψ0>

En −E0
(5.5.27)

where indices i, j denote the principal axes and λ is the spin-orbit coupling constant. ψ0

and E0 are the ground-state wavefunction and energy, respectively. The summation is over

all excited states. Using (5.5.27), it is possible to correlate the g-shifts to the electronic

structure of the defect and its excited states.

More details on the physics of magnetic resonance and its application in the study of

paramagnetic systems can be found in many texts and books like Abragam and Bleaney

(1970), Pake and Estle (1973), Weil et al. (1994) or Watkins (1998).

Hyperfine interactions

In the case of a nucleus, or nuclei, having nuclear spin I 6= 0, interactions with nuclear

magnetic moment

µ→n = gN βN I
→

, (5.5.28)

where βN the nuclear magneton, may also be important due to the fact that the nuclear

spins also quantise in the magnetic field.



Deep Level Characterisation 91

The interaction of the weak magnetic field,
→
Bloc induced by the presence of nuclear

magnetic dipoles, with the electronic spin S
→

is called hyperfine interaction.

The Hamiltonian now reads,

H = β S
→
· g↔ ·

→
B + S

→
·
(∑

j

A
↔

j · I
→

j

)
︸ ︷︷ ︸

β g↔ ·
→
Bloc

(5.5.29)

in which the sum is over all nearby nuclei j. The tensor A
↔

j contains information about

the amplitude, distance and angular-dependent parts of the nuclear magnetic dipoles re-

sponsible for
→
Bloc.

The corresponding eigenvalues are given by

E(mS ;mI) ∼=
(
g β B +

∑
j

Aj mj
I

)
mS , (5.5.30)

where mI is the nuclear azimuthal quantum number. The resonant field (5.5.25) can now

be re-written to include hyperfine interactions as

B0 =
1

g β

{
hν0 −

∑
j

Aj mj
I

}
, (5.5.31)

with ∆mI = 0 as an additional selection rule. In analogy to the expression (5.5.26) for g,

we write

A2
j =

∑
α

A2
jα n2

jα (5.5.32)

where Ajα and njα are, respectively, the principal values of A
↔

j and the direction cosines

of its corresponding principal axis with respect to the quantisation direction of S
→

, i.e.,

g↔ ·
→
B. The effect of the hyperfine interactions is to split the resonant into (2Ij + 1) lines

separated by Aj/gβ. The study of angular dependence of these splittings leads directly to

the evaluation of the principal values and axes of A
↔

j trough (5.5.32).

The interaction with further neighbouring atoms provides further information about

the structure of the defect. This results in a set of weak satellite lines around the main

hyperfine line, due to the less abundant isotopes of Si, like the 4.7% abundant 29Si with

I = 1
2 . Again, the analysis of the angular dependence of these satellite lines provided

information about the local symmetry of the defect, from the referential of the nearby

nucleus. Their intensity determines the isotopic abundance of the j-th nucleus involved in

the defect.

The interaction between the magnetic moment of the electron µ→e and with the nuclear

moment µ→n is composed by two terms:

(i) the anisotropic dipolar interaction term defined by

Hd =
µ→e · µ→n

r3
− 3

(µ→e · r→)(r→ · µ→n)
r5

; (5.5.33)
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(ii) and the ‘Fermi contact term’:

Hc = −8π
3

(µ→e · µ→n) δ(r→) (5.5.34)

which is isotropic. This term accounts for the fact that when r→ 0, the point-dipole

approximation used to deduce (5.5.33) is no longer valid.

Substituting µ→e = −g β S
→

and µ→n = +gN βN I
→

, the hyperfine interaction is

H = S
→
·A
↔
· I
→

, (5.5.35)

with the tensor components of A
↔

given by

Aij = g gN β βN

{〈3xi xj

r5
− δij

1
r3

〉
+

8π
3
|Ψ(0)|2 δij

}
(5.5.36)

|Ψ(0)|2 represents the amplitude to the wavefunction at the nucleus, coming directly from

the Dirac delta function δ(r→). The angular brackets indicate a expectation value or matrix

element of the enclosed function for the electronic ground-state.

Information about the electronic distribution and the character of the wavefunction in

the defect is usually obtained by applying the conventional linear combination of atomic

orbitals (LCAO) approximation. In this approximation, the wavefunction is written as

superposition of the atomic s-, p- and d-orbital on a particular site j in the following way:

Ψ =
∑

j

ηj

ψj︷ ︸︸ ︷
(αj ψs + βj ψp + γj ψd) , (5.5.37)

with α2
j + β2

j + γ2
j = 1. η2

j represents the the fraction of the total wavefunction that is

localised in the atomic orbital ψj centred on each atomic site j.

Once we know the electronic wavefunction, (5.5.36) allows the evaluation of the hyper-

fine interaction tensor. It is customary to decompose A
↔

j as

A
↔

j = aj 1
↔

+
↔
Bj . (5.5.38)

so that aj = 1
3 Tr A

↔
j and

↔
Bj is a traceless tensor, i.e., Tr

↔
Bj = 0.

For an atomic s-wavefunction, A
↔

j is isotropic and the interaction with the central

nucleus comes only from the |ψs(0)|2—the remaining terms average to zero over the spher-

ically symmetric s-state—and given, for the j-th nucleus, by

A11 = A22 = A33 ≡ aj =
8π
3

g β
µn

Ij
η2

j α2
j |ψs(0)|2 (5.5.39)

where µn and Ij are the magnetic moment and the spin of the j-th nucleus;

Since only the atomic orbitals centred on the relevant sites are considered, the wave-

function expansion (5.5.37) gives rise to axial hyperfine interactions, i.e.,
↔
B is axial and

its principal values are

↔
Bj =


2bj 0 0

0 −bj 0

0 0 −bj

 with bj =
2
5

g β
µn

Ij
η2

j β2
j 〈r−3〉p (5.5.40)
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The atomic wavefunction parameters |ψs(0)|2 and 〈r−3〉p for most atoms are available from

Hartree-Fock calculations (Morton & Preston, 1978).

The deviation from axiality by
↔
B can be expressed with an extra parameter c. In

that case, the principal values of
↔
B become (2b,−b + c,−b − c). For large values of c in

comparison with b the LCAO approximation is no longer valid.

ENDOR

The Zeeman effect also occurs when the applied external magnetic field interacts with the

nuclear magnetic dipoles µ→n. This interaction is usually described as

−βN I
→
· g↔N ·

→
B (5.5.41)

The effect of this interaction is usually not perceptible in EPR experiments. Although, it

can be resolved in electron-nuclear double-resonance (ENDOR).

The Hamiltonian now includes two extra terms:

−
∑

j

gN βN I
→

j ·
→
B +

∑
j

I
→

j ·
↔
Qj · I

→
j (5.5.42)

The first term represents the direct interaction of the nucleus with
→
B (5.5.41) and the

second the interaction between an electric quadrapole moment with the electronic charge

distribution around the j-th atom for Ij > 1
2 . The analysis of the latter term, provides

useful information about the type of bonding, i.e., percentage of s- and p-character, around

the j-atom. Here gN is considered to be scalar due to the limited spatial extent of the

nuclear wavefunction. This is not always true as the coupling between I
→

and
→
B may occur

indirectly – pseudo-Zeeman effect.

The nuclear Zeeman interaction provides an unambiguous chemical identification of

the j-th atom involved in the centre.

To first order in A/gβB, the effective Hamiltonian can be written as

HNj
∼= −gNj βN I

→
j ·
→
Beff

j + I
→

j ·
↔
Q · I
→

j , (5.5.43)

with
→
Beff

j =
[
1− mS

g gN β B
A
↔

j · g↔
]
·
→
B .

Here
→
Beff

j is a net magnetic field seen by the j-th nucleus.

When Qj � gNjβNBeff
j , (5.5.43) leads, for the ENDOR transitions ∆mI = ±1 and

∆mS = 0, to (Watkins, 1998)

hν(mI → mI − 1) ∼= gNj βN Beff
j ±

3
2

(2mI − 1)Q2
j , (5.5.44)

with Q2
j =

∑
ζ Q2

ζj n2
jζ , where Qζj and njζ are, respectively, the principal values of

↔
Qj,

and their direction cosines with respect to the direction of Beff
j .
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Fine structure terms for high-spin centres

When a defect has two or more paramagnetic electrons coupled together to give a resultant

spin S > 1
2 , may result in further splitting of the lines from direct and indirect interactions

between the different paramagnetic electrons averaged over their spatial distribution. If

these interactions are significant, mS is no longer a good quantum number and states

within the spin multiplet will have different energies in the absence of a magnetic field or

hyperfine interactions.

The fine structure in the EPR spectrum arising from the above effects—known as

zero-field splitting—is included in spin Hamiltonian as

S
→
·
↔
D · S
→

. (5.5.45)

The
↔
D tensor describes the interaction between electronic magnetic dipoles located at

distant neighbours. The classical expression describing a dipole-dipole interaction (5.5.33)

applies here.

The effect of this extra term is to destroy the equal energy spacings produced by the

βS
→
· g↔·
→
B term, producing a 2S equally separated group of transitions for each ms → ms+1

transition.

Final remarks

From a study of the angular dependence of the EPR spectrum is a single crystal, g↔, A
↔

j and
↔
D can be determined; g↔ and

↔
D reflect the overall character and symmetry of the defect.

The spin of the defect is simply determined from the number of spectral fine-structure

lines.

A
↔

j reflects the symmetry and character of the spin-containing electronic wavefunction

at each of the j atom sites in the immediate vicinity of the defect. This analysis is usually

performed using the ‘defect-molecule’ model within the LCAO-MO approximation.

The intensity of the hyperfine satellites determines the isotopic abundance of the j

nucleus involved. The nuclear Zeeman interaction provides an unambiguous chemical

identification of the j atom involved. From its quadrapole interaction, the total charge

density surrounding the j-th atom can be probed.

From the microspic information described about, a detailed model of the defect can be

constructed.

Auxiliary techniques

A number of auxiliary techniques are often used to complement the information obtained

from the EPR/ENDOR experiment (Watkins, 1998). Two of them are particularly impor-

tant:

(a) Optical illumination
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In situ illumination of the sample can also provide a wealth of additional information.

Excited states can be produced, provided their lifetime is long enough to allow their

detection. The defect alignment can also be achieved by polarised light.

At sufficiently low temperatures, with the phonon-assisted transitions heavily re-

duced, electronic equilibrium times can be extremely long. As a result, different

charge states of the same defect can be produced by selective generation with near-

bandgap monochromatic light. From the wavelength dependence of this process,

the electrical level positions of these defects can be estimated. This method is not

ideal as some of the excited states of the defect are necessarly not paramagnetic and

therefore invisible to EPR.

(b) Temperature effects

Annealing studies are another alternative tool to characterise a paramagnetic cen-

tre. For example, changes in the EPR spectrum can be monitored, at cryogenic

temperatures between isochronal, or isothermal higher thermal anneals.

These changes are usually analysed by monitoring the variation of spectral linewidth

with temperature. The effect usually responsible for these changes in the linewidth

is usually a thermally activated hoping of the paramagnetic electron from one Jahn-

Teller direction to another.

5.5.4 Local vibrational mode spectroscopy: infra-red absorption

The incorporation of impurities into the crystal that are lighter than the host atoms,

gives rise to new vibrational modes with frequencies higher than the host’s vibrational

modes. The vibrational spectroscopy of these so-called local modes has become an impor-

tant tool for the study of defects in solids. Despite not being tailored for the sole study

of deep-level defects, this technique has been successfully applied to study the vibrational

properties of H-containing deep-level defects. Since it can probe both paramagnetic and

non-paramagnetic centres, its application becomes of paramount importance when com-

bined with EPR.

Background

Let us consider an infinitely long chain of 2N atoms forming N unit cells of length 2a,

with a basis of two atoms with masses m and M with (m < M). The spring constant is

Λ. The frequencies of the associated normal modes are given by

ω2 = Λ
( 1

m
+

1
M

)
± Λ

[( 1
m

+
1
M

)2
− 4 sin2 (q a)

mM

]1
2

(5.5.46)

where q is the wave vector. Corresponding to the two signs in (5.5.46) there are two

branches of the phonon dispersion curve of the diatomic linear chain (Fig. 5.10).
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The amplitudes of vibration A1 and A2 of alternate atoms along the chain satisfy the

relation
A1

A2
=

2Λ cos (q a)
2Λ−mω2

=
2Λ−M ω2

2Λ cos (q a)
.

The maximum lattice frequency ωmax which occurs at q = 0 is given by

ω2
max = 2Λ

( 1
m

+
1
M

)
. (5.5.47)

At the Brillouin zone boundary where q = ±π/2a, it

0

optical
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π
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ω

2
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ω
gap modes

Figure 5.10: The phonon dis-

persion spectrum of a di-

atomic linear chain plotted in

the first Brillouin zone.

obvious that ω2
1 =

√
2Λ/M and ω2

2 =
√

2Λ/m for the

acoustic and optical branches respectively. If m = M , as

for silicon, the optical and acoustic branches are degener-

ate at the zone boundary but otherwise there is a ‘gap’

between the two bands of frequencies.

The effects due to the presence of impurities with low

masses, m′, like H in silicon, are of great importance. In

this case, a new vibrational mode emerges at a frequency

ωL greater than ωmax. To first order, the local inter-atomic

forces Λ′ may be assumed to be little changed from those

of the host crystal and we can write (Newman, 1973)

ω2
L = 2Λ′

( 1
m′

+
1

χMN

)
, (5.5.48)

where MN is the mass of the nearest neighbours to the impurity and χ is a parameter that

depends on the local angle bending and bond stretching force constants. Since ωL > ωmax,

vibrations cannot propagate throughout the crystal and the impurity mode is said to be

localised.

Infra-red absorption spectroscopy

Not all the impurity vibrational modes are infra-red (IR) active. The transition probability

for an allowed electric-dipole transition between vibrational states is proportional to the

square of the matrix element of the electric dipole moment of the centre, which is a function

of the coordinates of the defect atoms.

Within the harmonic approximation, a mode is IR active if the motion of the defect

atom(s) gives rise to a change in the dipole moment of the centre. In other words, if there

is a non-zero dipole-moment derivative with respect to the vibration’s normal mode coor-

dinates. The vibrational mode will only be excited by incident light that has a component

of its electric vector polarised along the direction of the oscillating dipole moment.

The integrated intensity of absorption, I, due to a defect can be defined, in CGS units,

as (Leigh & Szigeti, 1967)

I ∝
∫

α(w) dw =
2π2 ρ

n cm′
η2 , (5.5.49)
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with the summation over all degenerate modes. Here η is the effective charge, c is the

velocity of light, n the refractive index of the material, m′ and ρ are the mass and concen-

tration of the impurity respectively; α is the absorption coefficient at the angular frequency

w.

The square of the ‘effective charge’ of the vibration, η2, is given by

η2 =
∑

k

m′
( ∂µ

∂Qk

)2
, (5.5.50)

where µ is the dipole moment in the direction of the polarisation of the electromagnetic

field. Qk is the normal coordinate of the k-th mode.

Apart from the defect concentration (ρ) and the effective charge (η), all terms in

(5.5.49) are known. To determine the former, experimental calibrations have to be per-

formed by estimating the concentration using an alternative method like secondary ion

mass spectroscopy.3 Note that this calibration has to be performed for each and every

defect.

Auxiliary techniques

Like for EPR, a number of auxiliary techniques are available which effectively increase the

strength of vibrational spectroscopy. These can be summarised as follows:

(a) Isotopic shifts

The effect of isotopic substitutions on the vibrational frequencies of a defects often

makes possible the identification of the vibrating defect atoms. The isotopic shifts

can also provide detailed information about the arrangement of the atoms in the

defect, like bond angles. Recently, the ability to engineer the isotopic constitution

of the host crystal has been achieved (Haller, 1995).

The following commonly used expression provides a simple way to account for the

effect that both the mass of the light impurity, m, and one of its immediate neigh-

bours, of mass MN , have upon the vibrational frequency (Leigh & Newman, 1982;

Leigh et al., 1994)

ω2 = Λ
( 1

m
+

1
χMN

)
, (5.5.51)

where χ is a parameter.

(b) Stress alignment

When used in conjunction with vibrational spectroscopy, uniaxial stress perturba-

tions provide additional information about the symmetry, reorientation kinetics and

ground-state energy shift of a defect (Stavola, 1998b).
3This technique involves the bombardment of the wafer with primary ions and the detection of secondary

ions sputtered from the sample surface. This is a quite destructive and complex experimental procedure,

usually used to detect the presence of dopants and their depth distribution (Clegg, 1990).
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The stress induced shift, ∆, of the transition energy of a specifically orientated defect

can be written in terms of a symmetric piezospectroscopic tensor, A
↔

with components

Aij , as

∆ =
∑
ij

Aij σij with σij = s ni nj . (5.5.52)

Here σij are the components of the stress tensor in a Cartesian referential, s is the

magnitude of the stress, and ni and nj are the direction cosines of the stress vector

along axes i and j.

With the results of Kaplyanskǐı (1994), who tabulated the stress split components,

their shift rates and their relative intensities for transitions between non-degenerate

levels for the all the seven symmetry types, it is possible to identify the symmetry

of the defect responsible for the observed stress pattern.

5.6 Photoluminescence

Photoluminescence (PL) is one of many tech- Continuum States
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Figure 5.11: Schematic representation

of low temperature photoluminescence.

Adapted from Lightowlers (1976).

niques that has been widely applied to investi-

gate intrinsic electronic transitions and electronic

transitions at impurities and defects. Other re-

lated techniques are also available, like cathodo-

luminescence (CL), carrier injection (electrolumi-

nescence) or absorption. PL means luminescence

excited by photons, as distinct from accelerated

electrons (CL) or carrier injection (electrolumi-

nescence).

During a PL experiment, the sample is il-

luminated with light of a frequency such that

hν > Eg, where Eg is the bandgap energy, which

creates electron-hole pairs. The electrons rapidly

relax, radiatively or more likely non-radiatively, into lower, excited, energy states, eventu-

ally reaching defect states. The electrons ultimately recombine with a hole in the valence

band or at another defect related state, which results in a photon with an energy equal to

the difference in energies between the ground and excited states. If there is a multiplicity

of excited states (Fig. 5.11), only transitions from the lowest excited state can generally

be observed at low temperatures because of rapid thermalisation.

PL and absorption differ in that absorption can reveal most of the excited states,

provided that the optical transition is allowed by symmetry. Under absorption, a contin-

uum of optical frequencies is incident on the sample, and the ‘transmitted’ spectrum is

recorded.4 The difference between the incident and transmitted spectra is the absorption.
4The change in intensity of the transmitted light, It, is proportional to the number of absorbing centres:

It = I0 e−αt, where α is the absorption coefficient.
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Despite being difficult in the case of thin samples or those with low defect concentrations,

absorption measurements can be used to determine the concentration of centres (Dexter,

1962), as in EPR or IR absorption.

Along with the zero-phonon line (ZPL), defined as the transition energy associated

with the luminescence process with no phonon emission, the above optical techniques

reveal transitions that are mediated by one or more phonons, termed phonon side bands.

The difference in energy between the ZPL and one-phonon side-band is equivalent to the

phonon energy ~ω. Hence, this can be employed to determine the local vibration modes

of the defect responsible for the ZPL.

It is interesting to discuss the microscopic
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Figure 5.12: Schematic configuration co-

ordinate (Q) diagram of the luminescence

transitions for a given defect.

interpretation of the measured transitions for

the case of a deep centre. Figure 5.12 depicts

total energies as a function of the atomic posi-

tions described by a configuration co-ordinate

Q. The lowest state E[VnDmC0] represents

the equilibrium ground state of a neutral de-

fect with fully occupied valence (n electrons)

and defect (m electrons) levels and with an

empty conduction band (CB).

Upon excitation with above-bandgap en-

ergy photons, an electron is removed from a

VB state, or the impurity level, and promoted

to the CB. The energy cost is Eabs (Fig. 5.12).

In a second stage, if the electron was excited from the valence band, the hole left behind

in the VB lowers its energy by relaxing into the defect level. At this point, the system is

in its excited configuration, denoted E[VnDm−1C1], corresponding to the electron in the

CB, bound to the positively charged, m− 1 electron defect (impurity bound-exciton).

After the vertical electronic transition into this excited state, the system relaxes via

phonon emission. The Frank-Condon shift in energy associated with this process in the

charged (m− 1 electrons) defect is denoted by Em−1
FC in the above figure.

In the relaxed excited state the system has a finite probability to make a radiative

transition to the ground state, which results in the PL emission with energy EPL.

Since the electronic transition is much faster than the lattice response, the true ground

state is reached only after phonon emission (Em
FC). The EZPL of the ZPL can be thought of

as the electronic transition where the ionic configuration can follow the electronic transition

adiabatically, so EZPL can be approximated as (Mattila & Zunger, 1998)

EZPL = E[VnDm−1C1]−E[VnDmC0] , (5.6.1)

where the total energies correspond to equilibrium configurations, i.e., minima of the two

parabola in Fig. 5.12.

A key to assigning PL features to atomic species are isotopic effects. The zero-point

energy of atom differs for different isotopes and the optical transition energy therefore is
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also different.

Uniaxial stress measurements can determine the symmetry of the centre, as well as

the symmetries of the electronic states involved in the optical transition. The energy

separation between nearby gap-states can be determined by monitoring the changes in the

ZPLs with temperature.

5.7 Modelling deep levels

A well-known example of a deep-level defect is a transition metal impurity. Any theoretical

method capable of describing this type of defect, has to describe accurately the localised

character of these centres, and more importantly, any distortions.

Pioneering studies of TM defects in Si were carried out by Cartling (Cartling, 1975)

and Hemstreet (Watkins, 1983; Hemstreet, 1976; Hemstreet & Dimmock, 1979; Hemstreet,

1980) using a self-consistent Xα-cluster formalism. Although the clusters used were very

small and no structural relaxation was included, the method served to demonstrate that

the impurities introduce gap levels, and that their wavefunctions were mainly localised on

Si atoms in the defect core.

Next, more sophisticated methods were introduced to determine the energy levels of

TM substitutional defects. These included the use of methods based on Green’s functions

within the density-functional formalism (Alves & Leite, 1986; DeLeo et al., 1982; Pêcheur

& Toussaint, 1983; Watkins et al., 1983; Picoli et al., 1984; Lindfelt & Zunger, 1984; Alves

& Leite, 1984; Katayama-Yoshida & Zunger, 1985; Fazzio et al., 1985; Delerue et al., 1989;

Beeler et al., 1990; Dreyhsig et al., 1993).

The primary advantage of Green’s functions is that they treat an isolated defect in

an otherwise infinite perfect crystal with the same accuracy that one chooses to treat

the corresponding perfect crystal. The key to its success is the fact that one first treats

the infinite crystal, taking advantage of the periodicity and Bloch’s theorem. The main

disadvantage is that this method is more difficult to implement than cluster methods.

All these different approaches have provided information on the properties of TM

impurities in Si but with a relatively large error bar. The source of this error varies

from one study to another, either being due to the use of a very small clusters, lack

of spin polarisation, poor description of correlation effects or, the absence of structural

optimisation. The inclusion of the latter is of course essential in the understanding of JT

distortions (Watkins, 1992; Lannoo, 1987; DeLeo et al., 1988; Öğüt et al., 1997).

Of particular interest here are the donor and acceptor levels associated with TM-related

defects. The position of these levels within the bandgap are usually calculated as the energy

difference between a defect state and the band-edge. Consider the process involving the

capture of an electron in the conduction band by a defect level D of a neutral impurity

centre. The corresponding change in the total energy (ET ) of the system leads to the
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(−/0) level given by5

Ec −E(−/0) ≡ ET [Dγ; (CB)1]−ET [Dγ+1; (CB)0] . (5.7.1)

A practical disadvantage in using this expression to evaluate the (−/0) level lies in the

fact that the energy change due to the change in occupancy of two levels is very small

compared with the total energy. However, Slater’s transition-state method (§2.8.2) allows

a much more accurate calculation of this energy difference. This assumes that ET is a

continuous function of the occupation numbers of γ electrons in the defect level D and in

the conduction band (CB) respectively, and therefore each of the above expressions can be

found from a Taylor expansion about the transition state defined by the configuration

[Dγ+1/2; (CB)1/2] . (5.7.2)

The difference in total energies of the two configurations is then related to the difference in

the derivatives of ET with occupancy of the defect level D and the CB. These derivatives,

by Janak’s theorem (§2.8.1) are simply the Kohn-Sham energy levels. Thus,

E(−/0) w εc − εD , (5.7.3)

where εD is the Kohn-Sham eigenvalue corresponding to the defect level, with the electronic

configuration of the transition state. The energy level of the CB is taken to be independent

of configuration.

Similarly, the donor level can be related to the difference in εD and εv in the transition

state configuration corresponding to an occupancy Dγ−1/2. A problem is that none of

the ab initio methods are able to describe simultaneously the localised defect state and

the extended CB and in particular the energy gap. To circumvent this, the band gap

calculated by the method is either scaled or a scissors operator (§4.10.3) is used to bring

it into alignment with the experimental one. This method has been applied to calculate

the levels of a number of substitutional isolated TM centres in Si with considerable success

(Fazzio et al., 1985; Beeler et al., 1990).

5.7.1 Electrical level calculations with supercells

Despite some advantages, due to the fact that most supercell methods use a plane-wave

basis, the supercell approximation has also obvious drawbacks. This relates to the inter-

action between the defect and its periodic replicas. If the defect-defect distance is not

large enough the electronic structure of an isolated defect becomes distorted due to a de-

fect energy band in the bandgap with a finite dispersion and localisation of the deep level

wavefunction may change considerably. The size of the supercell also restricts the ionic

relaxation. The relaxation pattern is truncated midway between a defect and its nearest

periodic image.

Within a supercell method, the total energies are used to extract the position of a given

deep level within the bandgap, by finding the value of the electron chemical potential that
5The notation (i/j) means that the defect has charge i if the level is filled with an electron, j if empty.
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minimises the energy (Pöykkö et al., 1996; Puska et al., 1998; Pesola et al., 1998). This is

done indirectly from the formation energy of a given defect.

The formation energy of the defect in the charge state Q is calculated as (Qian et al.,

1988; Zhang & Northrup, 1991; Mattila & Nieminen, 1996)

EQ
f = Ed(Q)−Q (µ−EQ

v )−
∑

s

ns µs , (5.7.4)

where Ed is the total energy of the defect supercell, EQ
v is the position of the VB top for

the defect supercell with charge Q, and µ is the Fermi energy. The constituents of the last

summation, ns and µ are the number of type s atoms in the cell and the atom chemical

potential, respectively.

The position of the deep level, or ionisation level (Q′/Q), is given by the position of

the Fermi level, when the defect charge state changes from Q′ to Q. To determine µ,

the equality between the formation energy of defect in the two charge states Q′ and Q is

imposed. Analytically,

Ed(Q)−Q (µ−EQ
v ) = Ed(Q′)−Q′ (µ−EQ′

v ) (5.7.5)

To perform this calculation is necessary to align the energy levels in order to get the

position of the VB maximum in the defect supercell. This mismatch arises from finite

size effects, i.e., the variation of the supercell volume with charge state. The line up of

the levels is performed using the average potential correction, as proposed by Garćıa and

Northup (1995). The value of Ev used is the corresponding value for the bulk supercell

corrected by the difference between the difference between the potential in a bulk-like

environment of the defect supercell and the average potential in the ideal bulk supercell,

that is to write (Pöykkö et al., 1996)

Ev = Ebulk
v + (V defect

ave − V bulk
ave ) . (5.7.6)

5.7.2 Novel approach to the calculation of deep levels

Very recently, a new approach to the calculation of electrical levels within a cluster ap-

proach has been introduced (Resende et al., 1999). To circumvent the difficulty of describ-

ing the band gap, i.e. the exact position of valence band maximum and conduction band

minimum, the electron affinity of the defect Ad is calculated. This is simply the differ-

ence in energies between a charged and neutral defect which again can be calculated by a

Taylor expansion about a relaxed transition state configuration Dγ+1/2. If the equilibrium

structures of the neutral, charged and transition states are denoted by R
→

0, R
→−, and R

→
t

respectively, then

Ad = ET

(
Dγ ,R

→
0
)
−ET

(
Dγ+1,R

→−)
w −εD −

∂2ET

(
Dγ+1/2,R

→
t
)

∂γ ∂R
→ ·

(
R
→− −R

→
0
)
. (5.7.7)
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Here εD is the Kohn-Sham eigenvalue associated with the defect level in the transition

state. The second term can be ignored if the difference in the structures of the neutral and

charged states of the defect are usually small. This term accounts for changes in structure

due to partial occupancy.

The affinity is then related to the Kohn-Sham level of the defect in a transition state.

However, the calculation of this quantity is subject to the same difficulties as described

above. For example, the electron affinity of bulk Si is simply the band gap which cannot be

calculated with sufficient precision. However, we can compare the electron affinities for two

defects having localised states within the band gap. It was already shown for the case of the

water molecule, that ionisation potentials and affinity energies can be accurately calculated

using Janak’s theorem with Slater’s transition state concept (Table 2.8.3). Their difference

being total energy differences, are simply their relative acceptor levels. In practice, the

carbon interstitial defect, Ci, which possesses (−/0) and (0/+) levels at Ec − 0.1 and

Ev + 0.28 eV respectively (Song et al., 1990) is used as a standard. For second acceptor

levels, the (=/−) level of PtH2 is used, which is taken to lie at Ec− 0.16 eV (Weinstein &

Stavola, 1999; Sachse et al., 1999b).

MARKER

surface surface DEFECT

Figure 5.13: A schematic of the localised wavefunction of the ionised defect

and that of the marker. Note that the decaying tail of two wavefunctions is

identical in the near-surface region, which is shown delimited by the dotted

lines.

Now, a deep donor level, (0/+), with respect to the top of the VB, is the difference

between the ionisation energy of the defect, Id, and that of bulk Si. Since the latter cannot

be accurately accounted for, for the reasons discussed above, we write the donor level as,

(0/+)d = Id −
Ibulk︷ ︸︸ ︷

(Is − (0/+)s) , (5.7.8)

where Id and Is are the calculated ionisation energies of the defect and the standard, and

(0/+) is the observed donor level position of the standard or ‘marker’ defect. For an



Deep Level Characterisation 104

acceptor level, (−/0), we have an analogous expression,

(−/0)d = Ad −As + (−/0)s , (5.7.9)

with Ad, As and (−/0) being, respectively, the calculated electron affinities of the defect

and the standard, and observed position of the marker.

The error associated with this method depends on how well the asymptotic part of the

wavefunction of the ionised defect, which is related with the depth of the level from the

band edges, compares with that of the standard defect (see Fig. 5.13). This assumes that

the cluster is large enough to avoid any interactions between defect and surface states.

Consequently, the method works best when the defect levels are close to those of the

standard.

The shift in the calculated levels caused by the surface is∫
∆V (r→) |ψλ(r→)|2 d3r , (5.7.10)

where ∆V represents the difference between the potential of an infinite solid and a finite

cluster, being identical for both the defect and the standard if each were simulated using

similar sized clusters and whose localised wavefunctions were asymptotically equal (see

Fig. 5.11).

In general the calculated electrical levels of deep-level impurities are within about

0.2 eV of the experimental results where available. In the next chapter, we present the

results of a comparative study of the electrical properties of a number of well known deep

centres in irradiated and implanted Si.

This method supersedes an earlier one based on the scaling of the band gap although

the two give rather similar results for substitutional Au and Ag complexed with hydrogen

(Resende et al., 1997).



6

Radiation Defects

6.1 Introduction

The physics of radiation damage in semiconductor materials like crystalline silicon is now

a matter of great interest. This is due to the desirability of understanding, and ultimately

controlling, damage produced by high-energy ion irradiation. This is of vital importance

for space-born Si electronics, and high-resistivity Si particle detectors in ‘rad-hard’ envi-

ronments (Watts (1999) and references therein). For both applications, there is a need to

tackle problems in the understanding of defect-defect and defect-impurity interactions at

both the experimental and theoretical front.

Ion implantation is a well established technique in semiconductor technology with many

applications (Williams et al., 1993). This is the case of silicon integration techniques like

the SmartCut
r process (Bruel, 1995; Freund, 1997) or the wafer exfoliation mechanism

(Weldon et al., 1997; Weldon et al., 1998).

Damage to the crystal occurs when an incoming high-energy particle hits the nucleus of

the host Si atoms. Obviously, the damage is highly dependent on the energy of the incoming

ions, depending also on their numbers. For sufficiently low energies the damage to the

crystal is minute, resulting mainly on lattice heating. But above a certain threshold energy,

atoms are knocked-out from their crystal equilibrium sites, producing mainly vacancy-

interstitial (Frenkel) pairs. The recoiling atoms are free to move across the crystal or

interact with newly formed vacancies and interstitial defects, as well as with available

impurities or dopants. The motion of the recoiling atom, as well as the impinging particle

proceeds via successive atomic collisions, which subsequently reduce their kinetic energy,

being absorbed by the lattice. If the energy of the incoming particle is much higher than

the displacement energy for one atom, than a large number of Frenkel pairs and recoiling

atoms are generated during the collision cascade (Fig 6.1). The envelope of a single collision

cascade is usually to as displacement cluster. The size of the displacement cluster, i.e., a

localised agglomerate of point defects, depends on many parameters, like incident particle

mass, energy, mass of the target ions, and temperature of the target material. Energy losses

occur via two processes, i.e., nuclear and electronic collisions. For high-energy particles

in the MeV range, energy loss due the electronic scattering dominates towards the end of

105
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ion trajectory. This results in non-uniform distribution of energy in the samples after ion

implantation, and consequently a non-uniform defect distribution with a peak at the end

of the ion range.
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Figure 6.1: Schematic of the implantation and damage processes using ener-

getic ion beams, after Williams and Poate (1984).

In principle, irradiation of protons or α-particles should result in a similar ‘damage

pattern’ to that from ion implantation. Slightly different patterns are formed after irradi-

ation of MeV-electrons, sub-atomic particles—muons or pions, or even γ-rays. Despite this

fact, most of the point defects created are common to both irradiation and implantation

processes.

The former group of particles, atomic-like particles exhibiting shell structure, give rise

to high-order agglomerates of vacancies and interstitials. The so-called ‘rod’-like defects,

or {311} defects, are a perfect example of an interstitial type of defect (Stolk et al., 1995;

Eaglesham, 1995). {311} defects are intimately linked to the problem of transient enhanced

diffusion or TED. One of the first clear evidence of TED was published by Michel et

al. (1987). Apparently, TED occurs due to anomalous diffusion of boron, or arsenic, in low-

energy Si implanted material due to the pairing with fast Si self-interstitials, released from

large reservoirs of Si interstitials, possibly {311} defects, as a result of thermal annealing

at temperatures above 800 ◦C (Cowern et al., 1994; Eaglesham et al., 1997; Agarwal et al.,

1997; Gossmann et al., 1997; Agarwal et al., 1999).

Large vacancy clusters, i.e., cavities or voids (Myers & Petersen, 1998), and stacking

faults or dislocations, like Frank partials (Frank, 1949), can also be produced.
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The latter group can be responsible for smaller-scale vacancy aggregation, depending on

the irradiation dose. Evidence for this type of defects are low-order clusters of vacancies,

like V2 (Watkins & Corbett, 1965; Sieverts et al., 1978a) and possibly V3, V4 or V5

(Brower, 1971a; Lee & Corbett, 1973; Lee & Corbett, 1974). The formation of small

aggregates of Si self-interstitials, like the di-interstitial (Lee & Corbett, 1976) cannot be

excluded. Due to an almost non-existent optical and electrical activity, due to the lack

of dangling-bonds, and the very high mobility of the Si self-interstitial (even at 4.2 K in

p-type material!), these defects are very difficult to detect.

Very recently, Au ‘labelling’ has been used to map the concentration of vacancy clus-

ters in MeV Si-implanted silicon (Venezia et al., 1998). The attraction of substitutional

transition-metal impurities like gold to voids, created by irradiation, and located in the

inactive regions of the device, can be used to control the effects produced by TM impu-

rities. This ‘proximity gettering’ is being intensively investigated (Mohadjeri et al., 1995;

Schmidt et al., 1998; Kinomura et al., 1998). Interstitial TM impurities, like Fe and Cu,

are also known to precipitate at Frank-type partial dislocations (Shen et al., 1996; Shen

et al., 1997).

Oxygen and carbon are two major impurities always present in the silicon crystal

(Table 6.1). Consequently, it is only natural that both influence radiation induced defects.

While oxygen captures mono-vacancies, thus leading to narrower defect profiles of vacancy

defect in Cz-Si as opposed to epitaxial material (Libertino et al., 1998), carbon is known

to interact with self-interstitials, thus reducing thermally enhanced diffusion (TED) (Stolk

et al., 1995; Rücker et al., 1998)

Table 6.1: Oxygen and carbon content in different silicon materials

(Schmidt, 1998).

Cz-Si Fz-Si epitaxial-Si

Oxygen content 1018 1016 < 1015

Carbon content
[cm−3]

1016 < 1016 < 1015

Oxygen is present in silicon in its interstitial configuration (Oi)—leading to lattice

expansion, while carbon takes up the substitutional position Ci (lattice shrinkage). These

are both electrically inactive. However, a wealth of electrically active defect involving these

two impurities are known to be formed as a result of radiation damage.

In the next section of this chapter, we present the results of a study on the electrical

properties of a number prominent defects in damaged Si material by either implantation

or irradiation. Due to the technological and scientific importance of proton implantation,

the interaction of these radiation defects with atomic hydrogen is also investigated.



Radiation Defects 108

6.2 Electrical properties characterisation

6.2.1 The V–O pair: the A-centre

The vacancy-oxygen pair (or A-centre) is the most prominent defect in either irradiated or

implanted Si material. It is formed in large concentrations, independently of the dopant,

and material type, i.e., independently of the oxygen and carbon contents (Table 6.1). Very

recent DLTS annealing experiments have shown that the thermal stability of this centre

is independent of the mass of the implanting ion, with its concentration increasing with

increasing ion mass after moderate annealing (T 6 200 ◦C) (Pellegrino et al., 1999).

This defect is formed by trapping of a highly mobile mono-vacancy by an interstitial

oxygen atom (Oi). Its microscopic structure has been established by EPR (Watkins &

Corbett, 1961) and its vibrational properties by IR-absorption spectroscopy (Abou-el Fo-

touh & Newman, 1974; Lindström & Svensson, 1986). This consists of an oxygen atom

bridging a pair of Si neighbours of the vacancy (see Fig. 6.2.1a). This structure has been

confirmed by theory (DeLeo et al., 1984; Hjalmarson & Jennison, 1985; Snyder & Corbett,

1986; van Oosten et al., 1994; Ewels et al., 1995; Pesola et al., 1999). The formation of

a V–O pair allows the RT migration of the otherwise immobile Oi—the barrier for mi-

gration was found experimentally to be 1.46 ± 0.29 eV, according to Londos et al. (1996)

or 1.86 eV by Svensson et al. (1985). This defect is only stable when neutral and singly

negatively charged. Consequently, only a single level is expected to appear in the band

gap: a deep single acceptor level or electron-trap at 0.17 eV below the conduction band

minimum (Ec − 0.17 eV) (Watkins & Corbett, 1961; Kimerling, 1977).

(a) Optimised

VO structure:

C2v symmetry

(b) Optimised

VOH1 structure:

C1h symmetry

(c) Optimised

VOH1 structure:

C2v symmetry

Figure 6.2: Lowest-energy structures of the VO and VOH defects in the

transition-state (net proton charge −1
2 e) for the calculation of the defect’s

electronic affinity. The cube axes indicate the 〈100〉 crystal directions. The

VOH defect is shown in its low (b) and high-temperature configurations (c).

Assuming that the oxygen impurity atom is ‘healing’ two of the four dangling bonds

of the vacancy forming an Si–O–Si molecule, the electrical activity of this centre can only

arise from the strained, slightly reconstructed, bond between the remaining pair of Si
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atoms. That this reconstruction occurs, is already known since the EPR study of Watkins

and Corbett (1961). These authors observed a large s character of the one-electron orbital

localised on the dangling-bond atoms, consistent with a sp2 hybridised system, which can

only mean a reduction of the s character of the bonds between these atoms and their

back-bonded neighbours, and consequently a decrease of the corresponding bond angles

with the two Si being pulled from their three immediate neighbours.

Obviously, any serious attempt to simulate the elec-
VO C2v Si–Si (−/0)

2.92 Ec − 0.12
Calc.

3.56 Ec − 0.32

Obs. Ec − 0.18

Table 6.2: Calculated (−/0) level

(eV) versus Si–Si separation (Å)

for the VO pair. The observed

value for the VO(−/0) level is

given for comparison.

trical properties of the A-centre should take the re-

construction into account. The magnitude of this re-

construction is intuitively expected to influence of the

calculated (−/0) level.

The electrical levels are found by embedding the de-

fect in a tetrahedral 131 (Si71H60) H-terminated atom

cluster. The wavefunction basis consists of N Carte-

sian s, p Gaussian orbitals sited on each atom. The

charge density is fitted to M Gaussian functions. In

this study, (N,M) are: O(5,5), Si(4,5) and H(2,3).

Three extra functions, located midway between each

bonded pair of atoms, excluding the H-atom terminators, were added to the basis for the

wavefunction, and the charge density. The intermediate fit for the latter was of type 3

(§§4.10.1). The clusters were relaxed, as described previously, in either the +1/2e, −1/2e,

or −3/2e charge state to obtain the defect’s ionisation and affinities and allow the the

evaluation of the (0/+), (−/0) and (=/−) level positions. To force the reconstruction, a

pre-relaxation was performed in which the five core atoms remained fixed in the recon-

structed configuration, while all the other atoms of the cluster, including terminators were

allowed to move. The full optimisation of the pre-relaxed structure was then performed.

This procedure is used whenever the defect in question possesses reconstructed bonds, like

the E-centre, di-vacancy, VH1, VH2, etc.

If we force a strong reconstruction, the (−/0) level associated the C2v configuration

is calculated to lie at Ec − 0.12 eV. The length of the reconstruction across the two Si

atoms, for a transition-state occupancy of −1
2 e, was 2.92 Å. The magnitude of this re-

construction is considerably larger than the previously reported values of 3.77 for VO0 by

Ewels et al. (1995) or 3.37 Å by Pesola et al. (1999). If the H-surface is kept fixed during

optimisation—like in the calculations of Ewels et al. using aimpro with a similar sized

cluster to that used in the calculations being described here, the reconstruction is lost due

to the outwards movement of the second shell of host atoms. In this case, the (−/0) level

comes out at Ec − 0.32 eV, for a Si–Si length of 3.56 Å (Table 6.2). It is important to

note that the Si–O length, the distance of the oxygen impurity atom to the vacant lattice

site and the ] Si–O–Si vary very little from one structure to another. This means that

degree of reconstruction is the only factor influencing the calculated (−/0) level, i.e., the

position of the electron trap within the bandgap. In other words, the O impurity seems



Radiation Defects 110

to be completely passivating two of the vacancy dangling-bond atoms.

It interesting to mention that Pesola et al. (1999) calculates the (−/0) level of VO

to lie at Ec − 0.76 eV. Furthermore, their calculations also predict a (=/−) level, and

consequently the stability of VO2−, in disagreement with experiment. The plane-wave

method used in the electrical level calculations by these authors was described previously

(§5.7.1).

6.2.2 Interaction of hydrogen with the A-centre

VOH

Very recent EPR experiments on proton- and deuteron-implanted Cz-grown Si (Johannesen

et al., 1999) have confirmed the expectation that the hydrogen atom in VOH0 is strongly

bonded to one of the Si atoms of the mono-vacancy that are not bonded to Si, as previously

suggested by theory (Artacho & Ynduráin, 1989) and in contradiction with the results of

previous experiments (Gutsev et al., 1989). If the experimental assignment is correct,

the resulting structure should be similar to that of VH0, with the Si–O–Si unit of VOH

replacing the reconstructed Si–Si bond of VH0. Consequently, VHO0 is expected to exhibit

monoclinic-I (C1h) symmetry with the dangling bond and the Si–H bond lying in a {110}
mirror plane perpendicular to the plane of the Si–O–Si unit (Fig 6.2.1b). This seems to be

the case. A classical analysis of the interaction between the proton and the paramagnetic

electron, at low temperature, located the proton at ∼ 2.5 Å from the centre of gravity of

the electron spin distribution. This value is consistent with the structure described above.

It is obtained from the spatial dependence of the anisotropic component of the hyperfine

tensor.

The analysis of the angular dependence of EPR signal observed by Johannesen et

al. (1999), revealed a transition from monoclinic-I to orthorhombic-I (C1h → C2v) at

∼ 240 K. This was interpreted as reflecting thermally activated ‘jumps’ of the lower sym-

metry defect between equivalent crystal directions having in common the {100} planes.

The activation energy for this motionally-averaged effect was found to be 0.18 ± 0.01 eV.

The annealing behaviour of this defect was found to be similar to that of the A-centre, as

the EPR activity ceases after heat treatments at 588 K.

It is now known that the VOH defect, containing a single hydrogen impurity, possesses a

(−/0) at Ec−0.31 eV, as a result of comparative EPR/DLTS annealing studies (Johannesen

et al., 1999; Bonde Nielsen et al., 1999). The study of the effect of uniaxial stress on the

DLTS peaks of this centre, at 160 K, revealed orthorhombic-I symmetry, confirming the

observations of Johannesen et al. (1999) at the same EPR measuring temperature.

This seems to be a common defect in proton-implanted material, previously reported by

several authors, but only tentatively assigned (Svensson et al., 1989; Tokuda & Shimada,

1998; Lalita et al., 1997; Peaker et al., 1999), appearing also in e-irradiated Si preceded

by a wet-chemical etching treatment (Feklisova & Yarykin, 1997).

For the orthorhombic-I (C2v) configuration of VOH1, we calculate the (−/0) to be
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Table 6.3: Structural parameters for the optimised structure of neutral VOH1

and VOH2 defects (Å).

Complex Symmetry O–Si H–Si H–H

C1h 1.74 1.49 · · ·
VOH1

C2v 1.74 1.79 · · ·

VOH2 C2v 1.72 1.48 1.73

Ec − 0.22 eV. To investigate the high-temperature behaviour of this centre, another con-

figuration was considered. In this, the hydrogen impurity atom sat midway between two

of the Si neighbours of the vacancy, along the [100] direction, within C2v symmetry (see

Fig. 6.2.1c). The calculations revealed that the (−/0) level of VOH drops within the

bandgap by less then 0.1 eV to lie at Ec−0.29 eV, to compare with the experimental value

of Ec − 0.31 eV (Bonde Nielsen et al., 1999; Peaker et al., 1999).

The energy barrier for the hoping of the hydrogen impurity atom was found to be

0.33 eV, in reasonable agreement with the experimental value of 0.18 eV. This barrier was

calculated adiabatically, i.e., as the difference in total energies of the fully relaxed C1h and

C2v atomic arrangements of VOH.

The distance between the hydrogen impurity atom and the Si dangling-bond atom was

found to be 2.72 Å for neutral (C1h) VOH1, resembling closely that of neutral VH1 of

2.78 Å (Table 8.4.2). Due to the presence of the hydrogen atom, the oxygen impurity goes

slightly off-site (Fig. 6.2.1b) along the [0 1 1] direction by ∼ 0.6 Å.

VOH2

Despite a recent claim by Feklisova and Yarykin (1997) that VOH2 is an electrically active

defect, there is no direct experimental evidence for this fact. Supported by a simple

theoretical analysis based on the relative penetration depth of the DLTS centres, these

authors suggested that Ec − 0.32 eV DLTS (E4) trap is due to VOH2. Despite having

being able to provide strong evidence for the involvement of hydrogen in the centre,1 as

well as to correlate the E4 with the A-centre, the only evidence supporting the suggestion

that E4 involves two and not one hydrogen atom, comes from the rapid decay of the

concentration of the E4 signal with depth, when compared with other signals. The fact

that hydrogen concentration is highest in the near-surface region, suggests that this centre

might involve more hydrogen atoms than all the other centres.

Pearton (1982) observed a decrease of the DLTS signal of VO as a result of exposure of

the diode to atomic and molecular hydrogen. This observation was recently confirmed by

Tokuda and Shimada (1998), providing further arguments against Feklisova and Yarykin

assignment.
1As recently proved by Bonde Nielsen et al. (1999).
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Our calculations provide no support to the hypothesis of the electrical activity of

VOH2, as the corresponding Kohn-Sham spectrum revealed no levels in the bandgap. The

structural parameters for the lowest-energy configuration of neutral VOH2 are given in

Table 6.3. Additionally, no donor levels, (0/+), were found for the A-centre or any of its

complexes with atomic hydrogen.

6.2.3 The di-vacancy (V2)

The lattice di-vacancy is another example, like the A-centre, of a very important defect

in radiation damaged Si material. Due its importance, a whole chapter of this thesis is

dedicated to it (Chapter 7).

6.2.4 The V2O complex

Very little is known about the structural and electrical properties of this defect. To our

knowledge no experimental information on the structure of this defect is available. Despite

this fact, some information is available as a result of theoretical work (Ewels et al., 1995;

Pesola et al., 1999). Concerning its electrical properties, Kimerling et al. (1977) has

suggested that an electron trap at Ec − 0.30 eV is related to this defect, annealing out at

∼ 300 ◦C.

The electrical properties of this defect were simulated using a trigonal 134-atom cluster

centred at a bond. The termination was kept fixed and the atomic basis was the following,

for a intermediate fit to the charge density of type 0: O(4,5), Si(4,5) and H(2,3); all atoms

but the H-terminators in big basis and three extra function were placed midway between

each pair of bonded atoms to the description of the wavefunction as well as the charge

density. The transition-state calculations revealed an acceptor level, (−/0), at Ec−0.47 eV.

6.2.5 The VP pair: the E-centre

The phosphorus-vacancy pair or E-centre is known to

Figure 6.3: Optimised struc-

ture of the isolated carbon in-

terstitial Ci with a partial oc-

cupancy of −1
2 e.

exhibit structural and electrical properties very similar to

VH0 (Watkins & Corbett, 1964; Bech Nielsen et al., 1997;

Bonde Nielsen et al., 1999). As pointed out previously as

a result of EPR measurements (Bech Nielsen et al., 1997),

the VH0 defect can be considered a group-V–vacancy like

defect, with the phosphorus atom replacing one of the

neighbours of the vacancy. This defect is stable up to

∼ 150 ◦C, not being formed in Si material with a phos-

phorus concentration . 1014 cm−3 (Watkins & Corbett,

1964; Kimerling et al., 1975; Schmidt, 1998). Since the

structural and electrical properties of the Jahn-Teller dis-

torted E-centre are the subject of a forthcoming chapter

of this thesis (Chapter 8), the results will not be presented here.
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6.2.6 The isolated Ci impurity

In untreated Si material, carbon exists as a substitutional defect (Cs), being a common

and therefore important impurity in this material, typically occurring in concentrations

of ∼ 1015–1017 cm−3. Any radiation damage provoked upon the crystal, results in the

formation of more complex carbon related defects. The simplest is the isolated carbon

interstitial (Ci). This defect is formed when Cs captures a fast diffusing Si self-interstitial

(Sii or I)—a direct product of irradiation/implantation, produced in the primary damage

event, releasing the strain associated with both defect structures. A very recent DLTS

study on the generation vs. dose rate of Sii has estimated its migration energy to be as

low as 0.065 ± 0.015 eV (Hállen et al., 1999).

Concerning its microscopic structure, the Ci defect can be considered a 〈100〉 Si–

C interstitialcy centred at a single substitutional lattice site and therefore having C2v

symmetry (Fig. 6.3). This defect has the same structure in all three stable charge states,

annealing out at around room temperature. Combined EPR and DLTS measurements

were able to show that Ci is in fact an amphoteric defect giving rise to a (−/0) level at

Ec− 0.1 eV and a (0/+) level at Ev + 0.28 eV (Kimerling et al., 1975; Watkins & Brower,

1976; Song et al., 1990).

As mentioned previously, this defect is used as the standard in electrical level calcula-

tions.

6.2.7 The CiP complex

The carbon-phosphorus pair (CiP) is a bistable defect, having a total of four metastable

configurations. This defect was first observed by DLTS in e-irradiated Si material which

was annealed at 340 K for 30 minutes (Song et al., 1986; Chantre & Kimerling, 1986).

It is formed when a substitutional phosphorus impurity captures a Ci, annealing out at

T > 125 ◦C. The ground state configuration gives rise to donor and acceptor levels at

Ec − 0.38 and Ev + 0.48 eV respectively.

The atomic basis used for carbon and phosphorus were

Figure 6.4: Lowest-energy

configuration of the CiP

defect.

C(4,4) and P(4,5), respectively, with a type-0 charge density

fit. The hydrogen atoms of the surface were kept fixed during

the transition-state relaxations. The calculated levels lay at

Ec − 0.53 and Ev + 0.37 eV for, respectively the (−/0) and

(0/+) levels, for a energy separation between the two levels

of 0.26 eV, in very good agreement with the observed value

of 0.3 eV. When the deep acceptor level lies above the donor

one, this energy separation is considered to be positive, by

definition. The (−/0) level is expected to lie above the donor

level because the second electron, although possible trapped

into a similar orbital as the first, and experiencing therefore

the same attractive interaction to the core of the defect, is repelled by the Coulombic
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interaction with the first electron. This added Coulomb repulsion is defined as U and

given by the acceptor–donor level separation.2

6.2.8 The CiOi pair: the K-centre

Annealing at room temperature of e-irradiated Si allows the diffusion of Ci and subse-

quently trapping by Oi to form a Ci–Oi complex. DLTS studies revealed a single level at

Ev + 0.38 eV (Mooney et al., 1977) and EPR, C1h symmetry (Watkins, 1965). Additional

information on the microscopic structure of this defect was provided by Trombetta and

Watkins (1988), by means of EPR. Despite this fact, the suggested model could not ex-

plain the large shift on the observed vibrational modes of this complex when 18O replaces
16O (Davies et al., 1986). Ab initio calculations with aimpro have revealed a somewhat

unusual configuration for the defect (Jones, 1992). Their lowest-energy structure can be

explained as a 〈100〉 Ci split-interstitial (Fig. 6.3) plus a second-shell bond-centred O atom

as illustrated in Figure 6.4. The interesting point is that these authors found that as a

result of a dative bond between Sii and the Oi impurity, with the latter becoming over-

coordinated, and frustrated (Jones, 1992) due to the presence of the carbon dangling-bond.

To model the K-centre, we have used a similar basis to that used to extract the electrical

levels of VO, VOH and V2O, with a tetrahedral 131-atom cluster. The relaxation of the

transition-state for the calculation of the defect’s ionisation energy, provided such a value

that the (0/+) level of the CiOi pair was found at Ev + 0.18 eV to compare with the

experimental value of Ev + 0.35 eV.

6.2.9 Interaction of hydrogen with the K-centre

To our knowledge no information exists on the electrical properties of CiOi–H defects. The

only exception is the work by Feklisova and Yarykin (1997). According to these authors,

this defect is responsible for an electron trap at Ec − 0.36 eV, with an electron capture

cross-section of 3× 10−15 cm2.

Bearing in mind the structure of the CiOi pair, there are obviously two possible con-

figurations for the CiOi–H complex. Both the interstitial carbon and the silicon atoms,

lying along the [100] direction and possessing dangling-bonds, can readily accomodate an

incoming hydrogen impurity atom and form a C–H or a Si–H bond.

We found that this defect can actually assume two different configurations depending

on the charge state. When singly positively charged, hydrogen attaches itself to the carbon,

while for the singly negatively charge state, the hydrogen atom is bonded to the interstitial

silicon atom. The corresponding transition-state structures are shown in Figure 6.5. The

corresponding levels were calculated to be Ev +0.94 and Ec−0.59 eV, respectively, for the

(0/+) and (−/0) levels, which means that the acceptor level is predicted to lie below the

donor level. This is a remarkable result, since it suggests that the present is a negative-U

centre (U = −0.36 eV).
2U is often referred to as the Hubbard ‘correlation energy’ (Hubbard, 1963).
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(a) Lowest-energy CiOi–H

acceptor structure

(b) Lowest-energy CiOi–H

donor structure

Figure 6.5: Low energy structures of CiOi–H complex in two transition states:

singly negatively (−1
2) and (b) positively charged (+1

2) structures.

The concept of negative-U in solids was first proposed by Anderson (1975). This author

postulated that if the energy (correlation) gain in pairing two electrons, coupled with a

possible large relaxation, overcomes the Coulombic repulsion between these two electrons,

the levels will cross over, resulting in a negative-U system. In this case, a net attraction

between the electrons occurs, resulting in the trapping of electrons by pairs. Known

examples of negative-U centres in silicon are the interstitial boron (Watkins & Troxell,

1980b; Troxell & Watkins, 1980; Harris et al., 1987), the lattice mono-vacancy (Baraff

et al., 1979b; Watkins & Troxell, 1980b; Newton et al., 1983) and isolated hydrogen (Holm

et al., 1991; Johnson et al., 1994; Hitti et al., 1999).

6.2.10 The CsCi pair

The di-carbon defect is bi-stable assuming two different configurations when charged

(A-form) and neutral (B-form), differing only by a simple bond-switching transforma-

tion (Song et al., 1988; Song et al., 1990; Leary et al., 1997). The conversion from one to

another can be achieved by near-bandgap illumination, or by externally applying stress.

EPR and DLTS measurements have shown that the (Ci–Cs)± defects possess C1h symme-

try with (−/0) and (0/+) levels at Ec − 0.17 and Ev + 0.09 eV respectively (Song et al.,

1988; Song et al., 1990). It is interesting to note that these levels were previously reported

as belonging to the A-centre (Jellison, 1982).

In the A-form, the structure of CiCs is similar that of the isolated Ci, with the sym-

metry being lowered due to the presence of a second carbon impurity at a substitutional

lattice site. The relaxed structure of the defect in this form is shown in Figure 6.6a. When

the Fermi level is around midgap, the defect assumes the B-form. In this structure, the two

carbon atoms lie close to neighbouring lattice sites, with a Sii close to the bond-centred

(BC) site, lying between them.

The affinity and ionisation runs within the transition-state were set for the form-A of

the CiCs defect. The calculated levels were as follows: the (−/0) at Ec − 0.07 and the
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(a) Optimised structure

CsCi defect

(b) Optimised struc-

ture of CiCs–H defect

(T -centre)

Figure 6.6: Optimised structures of the CsCi defect (A-form) and the CiCs–H

defect (T -centre) with a transition-state occupancy of −1
2 e.

(0/+) at Ev + 0.04 eV. These are to be compared with the observed levels Ec − 0.17 and

Ev + 0.09 eV, for the (−/0) and (0/+) levels respectively. The structure resulting from

the optimisation of the CiCs is shown in Fig. 6.6a. Only the defect core and host atoms

were allowed to relax.

6.2.11 The CsCi–H defect: the T -centre

The CsCi–H consists of a 〈100〉-oriented C–CH pair, or C–CH split interstitial, occupy-

ing a single lattice site (Safonov et al., 1996; Leary et al., 1998). This centre gives rise

to the 0.9351 eV luminescence system (T -line), created in either Cz- or Fz-Si material

subjected to radiation damage, followed by a 400–600◦C thermal treatment (Irion et al.,

1985; Lightowlers et al., 1994). Uniaxial stress and magnetic field measurements have

shown that this centre has monoclinic-I C1h symmetry (Fig. 6.6b) and possesses a (−/0)

level at Ec − 0.20 eV (Safonov et al., 1996). The neutral ground state is paramagnetic,

with S = 1
2 , being isoelectronic with the CiP defect.

The optimisation of the structure of the 〈100〉-oriented C–CH defect in the transition-

state for the affinity energy resulted in a (−/0) level at Ec−0.30 eV, in good agreement with

the experimental value of Ec − 0.20 eV. The (0/+) level, never observed experimentally,

was calculated to lie 0.38 eV above Ev.
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6.3 Summary

Table 6.4: Summary of calculated and observed level positions of common deep-level de-

fects in irradiated and/or implanted crystalline silicon.

Energy level position (eV) σn/p

Defect Level
Calc. Obs. (cm2)

Comments

VO (−/0) Ec − 0.12 Ec − 0.17 ∼ 10−14 out & 300 ◦C

VOH (−/0) Ec − 0.29\ Ec − 0.31 10−15 out 400 ◦C

V2 (=/−) Ec − 0.21§∗ Ec − 0.23 10−15–10−16 out 200–300 ◦C

V2 (−/0) Ec − 0.37§ Ec − 0.42 ∼ 10−15 ”

V2 (0/+) Ec − 0.41§ Ec − 0.42 ∼ 10−15 ”

V2O (−/0) Ec − 0.47 · · · · · ·

VP (−/0) Ec − 0.48 Ec − 0.44 10−14–10−15 out 150 ◦C

Ci (−/0) Ec − 0.10† Ec − 0.10 · · · out & RT

Ci (0/+) Ev + 0.28† Ev + 0.28 · · · ”

CiOi (0/+) Ev + 0.18 Ev + 0.35 ∼ 10−16 out & 300 ◦C

CiOiH (−/0) Ec − 0.58 · · · · · ·
CiOiH (0/+) Ev + 0.94 · · · · · ·

Negative-U

CiPs (−/0) Ec − 0.53 Ec − 0.38 · · · metastable

CiPs (0/+) Ev + 0.37 Ev + 0.48 · · · out ∼ 125 ◦C

CiCs (−/0) Ec − 0.07‡ Ec − 0.17 · · · bistable

CiCs (0/+) Ev + 0.04‡ Ev + 0.09 · · · out ∼ 200 ◦C

CsCiH (−/0) Ec − 0.30] Ec − 0.20 · · · out & 600 ◦C

CsCiH (0/+) Ev + 0.38] · · · · · ·

†Markers for the calculation of single acceptor and donor levels.
‡A-form (C1h).
§C2h configuration.
∗AuH (=/−) as the marker.
] Cs–(CiH)(100)
\ C2v symmetry configuration (see text).
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The Lattice Divacancy

7.1 Introduction

Being one of the fundamental defects in silicon, the lattice di-vacancy is a well studied

defect. Knowledge of its properties is a basic step towards a better understanding of many

electron phenomena, defect-defect interactions, diffusion and many other properties.

The fact that this defect is stable, and immobile, at room temperature with a unex-

pectedly high activation energy for diffusion has allowed its study by a whole range of

experimental techniques.

Controlled production of di-vacancies is usually achieved by MeV e-irradiation of the

material at cryogenic temperatures (Corbett & Watkins, 1965). The atoms are displaced

by Rutherford scattering of the high energy electron, with the low mass of the electron

assuring simple damage since the recoiling nuclei obtain little excess kinetic energy, dis-

couraging further atomic displacements by it. Furthermore, at this low temperatures, the

displacement products are heavily reduced. Despite this fact, this is not by any means the

only process to produce di-vacancies. These are inevitably, unintentionally, created after

low temperature or RT irradiation and/or implantation of protons, α-particles, neutrons,

heavy ions, γ-rays, pions or muons.

The production rate of V2 seems to be impurity dependent, increasing with increasing

concentrations of carbon, boron and oxygen (Cheng et al., 1966; Lindström et al., 1982).

Di-vacancies are also created during device processing. This defect assumes critical

importance in micro-electronic integration, e.g., VLSI (Very Large Scale Integration) pro-

cessing. Ion implantation, plasma etching or even beam-lithography are major sources for

the formation of di-vacancies and vacancy aggregates.

These higher-order vacancies can act as gettering centres. An example, are micro-voids

which have been observed to getter transition-metal impurities (Wong-Leung et al., 1995;

McHugo et al., 1996; Koveshnikov & Kononchuk, 1998; Myers & Petersen, 1998). This is a

very important feature, since it allows one to control the concentration of electrically active

centres. This is particularly useful for the optimisation of silicon-integrated devices, like

high-resistivity particle detectors in high-radiation (rad-hard) environments (Kurokawa

et al., 1995), or space-born electronics (Dale et al., 1994; Hopkinson et al., 1996). The

118
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nature of the levels responsible for the enhancement of the leakage current, effective doping

changes or the so-called reverse-annealing effect, in heavily irradiated diodes is still not

yet fully understood. (see e.g. Watts (1999) and references therein). It has been recently

proposed that a di-vacancy-oxygen defect may be the origin of such detrimental effects

(Gill et al., 1997).

In this chapter, we present a review of the experimental and theoretical work performed

to date. This is followed by a complete study of the structural, electrical and optical

properties of the lattice di-vacancy in crystalline silicon. It addresses two main problems:

the microscopic structure of the defect and its electrical properties. These two issues are

still matter of great controversy. Even more, when these properties are intimately related.

The lattice di-vacancy (V2) is formed by the removal of two neighbouring silicon atoms

from the crystal. This results in six dangling bonds which induce two doubly degenerate

one-electron levels in the silicon band gap. These are labelled eu and eg according with the

irreducible representations of the point-symmetry group D3d. The singly positively charge

state, the anti-symmetric eu doublet becomes partially occupied with one electron. In this

situation of a partially occupied orbitally degenerate orbital, the JT theorem predicts that

the symmetry of the defect will be lowered via a lattice distortion, with a consequent split-

ting of the eu and eg manifolds and lowering of the total energy of the system. Obviously,

the system is also JT-unstable for V0
2 and V−2 .

7.2 Experimental background

From an experimental point of view, the di-vacancy in silicon has been the subject of study

for more than 30 years. Different experimental techniques like EPR (Watkins & Corbett,

1965; Corbett & Watkins, 1965; Ammerlaan & Watkins, 1972; Sieverts et al., 1978b), EN-

DOR (de Wit et al., 1976; Sieverts et al., 1978a; Sieverts et al., 1990), photoconductivity

(Kalma & Corelli, 1968; Young & Corelli, 1972; Carton-Merlet et al., 1982), FTIR (Fan

& Ramdas, 1959; Cheng et al., 1966; Svensson et al., 1988), positron-annihilation spec-

troscopy (Kauppinen et al., 1997; Kauppinen et al., 1998) and DLTS (Evwaraye & Sun,

1976; Mooney et al., 1977; Kimerling, 1977; Awadelkarim et al., 1986; Svensson & Wil-

lander, 1987; Svensson et al., 1991; Lindström et al., 1982; Hallén et al., 1990; Svensson

et al., 1997) have been applied. Despite this, the understanding of the properties of the

di-vacancy remains incomplete.

7.2.1 Structural properties

In a series of elegant EPR experiments supported by a whole range of auxiliary techniques,

Watkins and Corbett (1965) found the stabilising structure post-JT distortion to have C2h

symmetry and spin S = 1
2 for both V+

2 and V−2 charge states, with a g close to the free-spin

value. Based on their findings, it was postulated that the behaviour of the six electrons

accommodated in the dangling-bond orbitals determines all the relevant properties of V2.

Assuming a six-particle problem within a LCAO picture, Watkins and Corbett proposed
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a one-electron model to predict the electronic properties of the di-vacancy. According to

this picture, an ag singlet resulting from the splitting of the π-like molecular mono-vacancy

eg doublet lies below the level arising from the splitting of the eu(= au + bu) manifold to

achieve a configuration a↑↓g b↑u for V−2 . In their experiments, the analysis of the hyperfine

interactions showed that w 60% of the unpaired-electron wavefunction is located on the

dangling-bond atoms. Additionally, it was shown that the highest occupied state for V+
2

and V−2 structures has amplitude on the 〈111〉 mirror plane of the di-vacancy.

Concerning the microscopic structure, Watkins and Corbett proposed that a JT-driven

strong reconstruction of the bonds between four of the dangling-bond atoms, which move

inwards towards the vacant lattice sites. The remaining two being responsible for the

paramagnetism exhibited by the defect. It was observed as a result of uniaxial stress

measurements that V2 re-orientates preferentially along one of the 〈111〉 JT orientations.

This process occurs with an activation energy of ∼ 0.06 eV, even at 30 K. Based on this

simple observation, the possibility of the involvement of a nearby impurity was rejected.

These stress measurements also provided the sense of the distortion. The fact that two

pairs of Si atoms were ‘pulled together’ was evident from the preferential alignment of the

defect when the compressional stress was applied in a manner to favour the reconstruction.

Due to a strong JT distortion, a large splitting of the eu and eg levels is expected.

Assuming that JT effects are more important than those of the crystal field (accounting

for the eg–eu energy separation), a ‘cross-over’ of singlet levels resulting from the splitting

of the e-manifolds was invoked to explain the spin density localisation monitored by EPR.

The magnitude of the JT distortion has to be large enough to provoke level cross-over,

which cannot be explained by a modest distortion (see Fig. 7.2).

However, although invoking a large distortion, Watkins and Corbett could not predict

the ordering of the one-electron levels since, both, b↑↓u a↑g and a↑↓g b↑u configurations agree

with their experimental findings. Both ag and bu orbitals have amplitude in the di-vacancy

mirror plane, i.e., a non-vanishing Fermi contact interaction resulting from the non-zero

electron density at the nuclei.

7.2.2 Electrical and optical properties

It has been suggested that the di-vacancy can exist in four different charge states, which

give rise to three levels lying deep in the Si band gap. Resulting from DLTS stud-

ies (Evwaraye & Sun, 1976; Kimerling, 1977; Awadelkarim et al., 1986; Peaker et al., 1999)

the following assignments have been made: a double acceptor level, (=/−), at Ec−0.23 eV;

a single acceptor Ec − 0.42 (−/0) and a single donor level (0/+) at Ev + 0.19 eV.

Kalma and Corelli (1968) have suggested a different picture, confirming an early EPR

study (Watkins & Corbett, 1965). The (=/−) level lies deeper at ∼ Ec − 0.4 eV, locating

a single acceptor at Ec − 0.54 eV.

There is some discussion around the reported values for capture cross-section of the

electron traps at Ec− 0.23 and Ec − 0.42 eV. Evwaraye and Sun (1976), have reported an

unexpected large capture cross-section for the (=/−) trap (see Table 7.1), which has casted
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Table 7.1: Observed capture cross-sections (σn/σp) for the levels of V2 (cm2)

from DLTS measurements on irradiated silicon.

(=/−) (−/0) (0/+) References

0.6× 10−16 1.6× 10−16 · · · Evwaraye & Sun (1976)

2.0× 10−16 4.0× 10−15 2.0× 10−16 Kimerling (1977)

· · · · · · 3.0× 10−16 Mooney et al. (1977)

0.6× 10−16 1.6× 10−16 · · · Brotherton & Bradley (1982a)∗

4.0× 10−16 2.2× 10−15 · · · Hallén et al. (1990)†

7.2 × 10−15 · · · 0.1× 10−16 Asghar et al. (1993)‡

∼ 10−14 1.5× 10−15 · · · Fretwurst et al. (1999)\

†MeV H+ and He2+ irradiated material; ‡ 5-MeV He2+ irradiated p-type junctions;
\ Measurements on high-resistivity n-tye Si irradiated with MeV/GeV H+ and

MeV neutrons and pions;∗Thermally activated capture-cross section for (=/−):

σn = 4× 10−16 exp (−0.017/kBT ) (cm2).

some doubts on the assignment of the (=/−) to V2. Kimerling (1977) has suggested that

this large capture cross-section, meaning a considerable delocalisation of the deep level, is

probably due to the fact that the microscopic structure of V−2 is quite different for V2−
2 ,

which might decrease the magnitude of the Coulombic force upon the electron defining the

transition. A theoretical study by Lindfelt and Yong-Liang (1988)—a semi-self consistent

method using a unrelaxed supercell of 686 atoms—has supported the idea of two different

configurations for V2−
2 .

Following the pioneer work of Watkins and Corbett (1965) and posterior ENDOR

studies of Sieverts and co-workers (1976; 1978a), it has been suggested that V2 can be

found in its JT-distorted state (C2h) at low temperatures T < 90 K, and D3d for higher

temperatures. The latter is usually explained as a result of a motionally averaged state

due to a high electronic jump rate between equivalent JT directions, not involving atomic

motion.1 This means the lifting of the Jahn-Teller distortion, resulting in an apparent

increase of the symmetry of the defect’s point group. Svensson et al. (1991) have argued

that the V2−
2 charge state of the di-vacancy is only possible at higher temperatures at

which the motional effects are expected to be strong.

If one looks at the results of generation vs. bombardment energies, annealing kinetics

and depth concentration profiles in DLTS studies, it can be seen that for electron-irradiated

material, there is a perfect 1:1 correlation between the concentrations of the Ec− 0.23 and

Ec − 0.42 eV levels (Svensson et al., 1991). Although, for specimens bombarded with

α-particles or heavier ions, this picture changes drastically (Hallén et al., 1990). The level
1This effect, known as electronic bond-switching (Watkins & Corbett, 1964) is usually monitored by the

analysis of the variation of the spectral line-width with temperature (see §5.5.3).
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Ec − 0.23 eV disappears in heavily bombarded areas of the crystal, with the Ec − 0.42 eV

level assuming its highest concentration at the surface region.

Three IR absorption peaks are tentatively associated with the di-vacancy, at 0.69

(1.8 µm), 0.34 (3.6 µm) and 0.31 eV (3.9 µm), occurring for different charge states of

the defect. The 0.69-eV peak has been described as arising from an internal transition

between defect states in a neutral charge state of V2 (Cheng & Vadja, 1969). Carton-

Merlet et al. (1982), have suggested that the 0.34-eV absorption occurs when V2 is in its

single negatively charged state, V−2 ; Svensson and co-workers (1988) using optical inter-

ference filters, confirmed the latter assignment. Furthermore, this group has tentatively

suggested that the 0.34-eV peak arises from an internal ag–au transition, with the au lying

close to the conduction band minimum. Despite this, one experimental fact remains to

be explained. The 0.34-eV peak has appeared when the pseudo-Fermi level is well above

Ec − 0.23 eV. If this electron trap acts like a double acceptor, the defect must be in the

double positively charge state, which contradicts all previous experimental results.

7.3 Previous theoretical work

From a theoretical point of view, the modelling of the lattice di-vacancy in silicon is a

remarkable and challenging task. The proof of this is the number of studies that can

be found in the literature (Lee & McGill, 1973; Fazzio et al., 1983; Humphreys et al.,

1983; Lindefelt & Yong-Liang, 1988; Lee & Corbett, 1973; Song et al., 1993; Sugino &

Oshiyama, 1990; Saito & Oshiyama, 1994; Smargiassi & Carr, 1996; Seong & Lewis, 1996;

Pesola et al., 1998).

Recently, a different model was suggested for V−2
C2h E C2 σh i

ag 1 1 1 1

bg 1 −1 −1 1

au 1 1 −1 −1

bu 1 −1 1 −1

Table 7.2: Character table for the

C2h point-symmetry group.

as a result of first-principles periodic pseudopotential

LDA simulations (Saito & Oshiyama, 1994). Saito

and Oshiyama argued that there is a gain in energy

due to a different sense of the JT distortion as dis-

cussed by Watkins and Corbett (1965). As clarified

by Watkins (1995), there is nothing new about this

sense of the distortion.

The system resulting from the coupling between

doubly-degenerate ,electronic and vibrational lattice,

modes (e × E) giving rise to the Jahn-Teller effect for V±2 is well studied (Sturge, 1967).

The surface of the ionic potential seen by the unpaired electron in two dimensional E-

mode space, defines the so-called mexican hat. The electronic doubly-degenerate states

transform in a similar way to the two normal modes, Q1 and Q2. These are the modes

responsible for the D3d → C2h symmetry reduction in V2 (Fig. 7.1). Within the harmonic

approximation, the corresponding ionic Hamiltonian, can be written as

H = −A

[
−Q2 Q1

Q1 Q2

]
+

1
2

Λ (Q2
1 + Q2

2) , (7.3.1)



The Lattice Divacancy 123

neglecting nuclear kinetic energy terms. In this case, both distortion ‘directions’ are equally

probable. The orbital degeneracy is replaced by a vibrational degeneracy. It is only when

anharmonic restoring terms are considered, that these two directions become inequivalent.

Unfortunately, it is very difficult to account quantitatively for these higher-order terms.

The inclusion of anharmonic terms destroys the symmetry of the potential, leaving a

threefold symmetry as required by the cubic symmetry of the Hamiltonian. As a result, the

potential surface contains now three wells, separated by saddles, along the three equivalent

distortion directions. The height of these saddles, although small compared with the JT

energy, is considerably greater than kBT at low temperatures. Consequently, the system is

expected to be found frozen into one these valleys, leading to a permanent distortion. The

raising of the temperature, results in the electronic activation over the potential barrier

that separates these valleys, and the system has then a time-averaged symmetry. This

seems to explain well the findings of Watkins and Corbett (1965) and Sieverts (1978a), as

described previously.

Q1 Q2

Figure 7.1: The two normal modes of the Jahn-Teller distortion (Q1 and Q2)

responsible for the lowering of symmetry of V2 from D3d to C2h.

For this alternative distortion, four of the dangling-bond atoms are expected to move

outwards away from the vacant sites (Q1 mode), as opposed to an inward movement

(Q2 mode), as previously proposed. Consequently, the six atoms constituting the di-

vacancy become almost five-fold coordinated. In analogy with well known over-coordinated

structures in chemistry, Saito and Oshiyama introduced the resonant-bond (RB) model.

These authors found the ‘reconstruction-by-pairs’ structure to be metastable. The

energy required to change the sense of the JT distortion was calculated to be 2.4 meV,

with the RB structure resulting in a b↑↓u a↑u configuration for V−2 . As modern local-density

functional theory is limited to an accuracy of 0.1–0.2 eV for an energy difference (Kohn,

1997), it is therefore not possible to argue based on energetics to favour either of the

competing structures.

Since no reconstruction takes place between pairs of Si atoms according to the RB

model, the resulting structure is much closer to that of the undistorted (D3d) defect.

Accordingly, no ‘cross-over’ between the ag and bg levels should be expected for such a

modest distortion. Again, like in the case of the pairing distortion, the cross-over can

only occur if the outward distortion is sufficiently large (Fig. 7.2). This is not obviously
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the case, as it is evident from the reported structural and electronic configurations. The

distances between the nearest-neighbouring Si atoms of the vacant atoms, labelled lab, lbc

and lac, were found to be 3.75, 3.75, 3.61 Å for V+
2 , and 3.60, 3.60 and 3.69 Å respectively

(Table 7.5). Accordingly, for V+
2 we have lab = lbc > lac, and lab = lbc < lac for V−2 , as

required by the pairing and resonant-bond models, respectively.

This is also confirmed by a very small separation between the au and bu singlet states

of ∼ 0.02 eV (Saito & Oshiyama, 1994)–which can be used to quantify the JT distortion,

as pointed out by Watkins (1995).

Further evidence for a strong distortion was provided by ENDOR. De Witt et al. (1976)

and Sieverts et al. (1978a) confirmed a considerable deviation from sp3 for V−2 . The same

ENDOR experiments have also revealed some s character of the wavefunction (only 10%

for V−2 and 13% for V+
2 ). This piece of evidence was used by Saito and Oshiyama to reject

their RB model for V+
2 , which was found to provide a b↑u one-electron configuration.2 For

V−2 , the highest occupied one-electron level can have either ag or au symmetries.

It is interesting to note that Sugino and Oshiyama (1990), performing Green’s-functions

based calculations, reported a configuration b↑↓u a↑g for V−2 arguing that a weak JT distortion

occurs. This cannot be correct due to the reported admixture of gerade and ungerade levels

for V−2 , which can only occur in the case of a large distorion. In the latter, the simple

valence-force model, combined with the results from the Green’s functions calculation for

the perfect crystal, was used to simulate the relaxation of a 32-atom cluster containing the

di-vacancy in a semi-quantitative approach.

The model described above has been recently confirmed as a result of first-principles

pseudopotential LDF/LDA theory based calculations (Seong & Lewis, 1996; Pesola et al.,

1998).

Seong and Lewis (1996) using a 64-atom unit cell to expand the Si lattice, with a

kinetic-energy cut-off of 8 Ry, found the relaxed structure of V0
2 to undergo a RB-like

distortion, with lab = lbc = 3.40 and lac = 3.71 Å.

Very recently, Pesola et al. (1998) have employed a similar method to that used by

Seong and Lewis to study the structural and electrical properties of V2. Using a fixed

cut-off of 15-Ry, the defect was simulated embedded in supercells containing from 64 up

to 216 atoms. Different k-point sets were used for the sampling of the Brillouin zone.

These workers found the resonant-bond configuration of V−2 to be the stablest, while for

the other two charge states, V+
2 and V0

2, the lowest-energy structures exhibited a pairing-

like distortion. The result for V0
2 does not provide any support to the conclusions of

Seong and Lewis (1996). The symmetry of V+
2 and V−2 was found to be triclinic (S2) and

not monoclinic-I (C2h) as found experimentally for the low temperature configuration. To

explain their results, Pesola et al. invoked the lack of quantum zero-point energy motion—

not included in the LSD calculations.
2The conclusion that only ag- and bu states, and not au and bg, are compatible with an s content at the

atoms on the C2h reflection plane follows from inspection of the character table for the group C2h (Table

7.2): only the ag and bu irreducible representations have even parity under reflection.
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Additionally, Pesola et al. (1998), have also calculated the electrical levels associated

with V2, using the method described previous in §5.7.1. Their results will presented and

discussed in a forthcoming section of this chapter.

7.4 Results

7.4.1 Cluster and basis

The calculations described here were performed using a trigonal, bond-centred, cluster

containing 244 atoms (Si148H96). To allow the reconstruction of the Si–Si bonds, the

cluster was pre-relaxed keeping the atoms in defect core fixed in the required configuration

and allowing the relaxation of all the surrounding atoms. The resulting structure was then

fully optimised, including hydrogen terminators. These were all symmetry constrained

optimisations.

Table 7.3: Atomic basis and basis expansion type used for the calculations on

V2. N and M denoted the number of orbitals used to describe the wavefunc-

tion and charge density respectively.

Cluster Atom N M Basis expansion chden

Si 4 5 24 big/122 minimal
Si148H96 H 2 3 all minimal 0

Bond-centres all bonds 2 2 big

In order to ensure the convergency of our approach with cluster size, the defect struc-

tures were also optimised embedded in a larger cluster, containing 346 atoms. The struc-

tures obtained, mainly the reconstruction for the paramagnetic charge states V+
2 and V−2 ,

were similar to those obtained using the 244 atom cluster. The surface of this larger cluster

was kept fixed during relaxation.

The basis used is summarised in Table 7.3. Bond-centres, i.e., additional Gaussian

basis functions, with fixed exponents, were placed midway between each and every bonded

pair of atoms, but excluding surface terminators.

7.4.2 The undistorted di-vacancy

For V2+
2 , there are four electrons to accommodate in the one-electron levels localised mainly

on the dangling-bond atoms of the di-vacancy. Due to crystal field splitting, the six-fold

degenerate level associated with the broken-bonds splits into two doublet and two singlet

levels (Fig. 7.2), with the latter lying lower in energy. The symmetry and degeneracy of

these levels is easily found from group theory by reducing the representation of the full

octahedral group, Oh, into the irreducible representations of the point-symmetry group
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Figure 7.2: The effect of symmetry lowering for the two possible Jahn-Teller dis-

tortions on the one-electron levels of the undistorted di-vacancy. For clarity, circles

indicate the orbitals with finite amplitude on the defect mirror plane. From the left,

a small and large resonant-bonding (RB) outward distortions, the undistorted D3d

structure and a small and large pairing inward distortions, viewed along the [111]

crystal direction. The solid arrows denote the electrons, and their spins for V+
2 . The

dotted arrows denote the additional electrons for V−2 .

D3d. There is some ambiguity in the labelling of the resulting singlet levels, arising from

the fact that the group D3d can be generated by either C3v× i or D3× i. The singlet levels

are labelled ag and bu for the former case, and a1u and a2u for the latter. We will adopt

the au/bg representation throughout this chapter. Obviously, an analysis based on group

theory does not provide the ordering of the one-electron levels, i.e., their relative energies.

For V2+
2 , the number of active electrons is only enough to completely fill the lower

two singlets, leaving the two doublets unoccupied. Consequently, no symmetry-breaking

distortions can occur. The six atoms of V2 are then expected to relax outwards away

from the the vacant sites, in a breathing motion that leaves the symmetry of the ideal

di-vacancy (trigonal D3d) unaltered.
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The distance between the six Si atoms constituting the defect was calculated to be

3.75 Å, for the optimised structure of V2+
2 . This corresponded to a small increase of

the open volume associated with the ideal di-vacancy. The Si were displaced ∼ 0.11 Å

from their positions in the ideal Si lattice, in a symmetric outward breathing motion.

Concerning its electronic structure, only two one-electron levels were found to exist in the

band gap. These are an eg and an eu doublets, anti-bonding combinations of the broken-

bond orbitals, with the symmetric (g) lying above the anti-symmetric (u) manifold.3 The

other two singlet levels arising from the LCAO-molecular orbital picture, being occupied,

are buried in the valence band. This one-electron level structure confirms the recent results

of first-principles plane-wave based calculations of Saito and Oshiyama (1994) and Pesola

et al. (1998), who have also found the two doublets to be the only gap levels in D3d

symmetry.

At this point, we note that the extended Hückel calculation of Lee and McGill (1973)

found the eu level to sink into the valence band for the undistorted di-vacancy. On the

other hand, the cluster calculations of Kirton et al. (1984) the ag level was located within

the band gap. Only Humphreys et al. (1983), using a Green’s functions method with a

model defect potential, and Fazzio et al. (1983) employing a muffin-tin multiple-scattering

method within the Xα-LDF approximation on unsaturated Si clusters of 20 atoms at an

arbitrary value for the distortion co-ordinates, were able to correctly describe the electronic

structure of undistorted di-vacancy.

7.4.3 The V+
2 and V−2 paramagnetic states

For V+
2 , there is now an electron occupying the lower band-gap doublet. The orbitally

degenerate e-level is now partially occupied, which means that a symmetry breaking dis-

tortion is bound to occur.

To simulate the distorted structure of V+
2 , two configurations of of the defect were

considered. For the first structure, the arrangement of the Si atoms of V+
2 in C2h symmetry

prior to optimisation was such that lab = lbc = 3.75 and lac = 2.75 Å, as prescribed

by the pairing model of Watkins and Corbett (1965). The second candidate structure

corresponded to the other sense of the distortion. Accordingly, the atoms were pulled away

from the two vacant sites, with the distances between the Si atoms being lab = lbc = 3.15

and lac = 3.77 Å. As it is evident, the initial structures for both models were strongly

distorted, either due to an inward or outward movement of the defect atoms.

The relaxation of the first structure confirmed its stability, with the Si atoms defining

the reconstructed bonds and the dangling-bond atoms moving slightly inwards, toward each

other by ∼ 0.2 Å. Its lowest energy structure was achieved for the relative Si distances

of lab = lbc = 3.92 and lac = 2.94 Å (Table 7.5). The inspection of the corresponding

spin-polarised Kohn-Sham eigenvalue spectrum revealed a bu level, occupied by a single

electron, as the highest occupied one.
3By symmetric and anti-symmetric, we mean odd and even with respect to the rotations of π

3
followed

by reflection around the defect main rotation axis (C3).
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The second structure was found to be unstable, relaxing back to a weakly-reconstructed

pairing-like structure. The final distances between the Si atoms in the defect core were

lab = lbc = 3.86 and lac = 3.68 Å. It is interesting to note that these distances are quite

similar to those of the optimised trigonal version of V+
2 , for which lab = lbc = lac = 3.77 Å.

The (meta)stable atomic configuration that resulted from the relaxation of the second

candidate structure—a weakly distorted structure of pairing character—was found to be

0.24 eV higher in energy than that exhibiting strong pairing. Nonetheless, it important

to mention that both, strong and weakly, distorted structures give rise to an electronic

configuration b↑u. Consequently, both agree with the spin-density localisation found by

Watkins and Corbett from the analysis of the G6 EPR spectrum (V+
2 ). In conclusion, the

strength of the JT distortion for V+
2 is not an issue, in what concerns the localisation of the

unpaired spin, as both reproduce the experimental findings. Despite this fact, the pairing

structure characterised by a strongly reconstructed bond across two pairs of Si atoms, is

favoured by an argument based on energetics.

We now present the results for the other paramagnetic state, V−2 . In a similar fashion

to V+
2 , the structure of V−2 is also expected to undergo a JT distortion, which results in

the lowering of the defect’s symmetry from D3d to C2h. Despite the obvious similarities

between the structural and electronic properties of the two paramagnetic charge states, it

has been proposed that the sense of this distortion is different for V−2 (Saito & Oshiyama,

1994). Based on the low energy barrier of ∼ 0.06 eV from one distortion to another

reported by Watkins and Corbett, and that a strong reconstruction by paring “results in

two isolated dangling-bonds with some frustration”, Saito and Oshiyama introduced the

resonant-bond model, as already mentioned in the introductory sections of this chapter.

Again, like in the case of V+
2 , the RB model structure was found to unstable against

a weak, paring like, reconstruction, with lab = lbc = 3.59 and lac = 3.48 Å. This structure

provided an electronic configuration b↑↓u a↑u a0
g. In this case, the highest occupied level (au),

does not satisfy the requirements set by EPR, as this level does not posses any appreciable

magnitude on the defect’s mirror plane (Fig. 7.3).

The lowest energy structure for V−2 was found for the strong-pairing case. This struc-

ture was 0.36 eV lower in energy than that with weakly reconstructured bonds (see Ta-

Table 7.4: Total cluster energy difference (eV) for different configurations and

charge states of V2.

Energy differences (eV)

V2−
2 V−2 V0

2 V+
2

strong pairing 0 0 0 0

undistorted +0.50 +0.83 +0.38 +0.24

weak pairing +0.48 +0.48 +0.73 +0.57
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Table 7.5: Calculated geometries and distortion types for several charge states

of V2. The lij indicate the distance in Å between primed and unprimed i and j

atoms neighbouring a vacant site. B, P, R and M indicate the type of distortion:

breathing, pairing, resonant and mixed respectively.

lab lbc lac Type Symm. References

3.38 3.38 2.38 B D3d Pesola et al. (1998)
V2+

2 3.75 3.75 3.75 B D3d This study

3.75 3.75 3.61 P C2h Saito & Oshiyama (1994)

V +
2 3.46 3.41 2.99 P ∼ C2h Pesola et al. (1998)

3.92 3.92 2.94 P C2h This study

3.40 3.40 3.71 R C2h Seong & Lewis (1996)

V 0
2 3.45 3.26 2.89 M(P) ∼ C2h Pesola et al. (1998)

3.78 3.78 2.92 P C2h This study

3.60 3.60 3.69 R C2h Saito & Oshiyama (1994)

V −
2 3.26 3.13 3.38 M(R) ∼ C2h Pesola et al. (1998)

3.71 3.71 2.76 P C2h This study

3.23 3.26 2.84 B ∼ D3d Pesola et al. (1998)

V2−
2 3.66 3.66 3.66 B D3d This study

3.62 3.62 2.68 P C2h This study

ble 7.4. The length of the reconstructed bond across two pairs of Si atoms was calculated

to be 2.76 Å, i.e., 0.76 Å shorter than its counterpart in the weakly distorted structure of

V−2 . Relatively to the ideal crystal positions, the atoms participating in the reconstructions

moved inwards towards the vacant sites by ∼ 0.5 Å.

The main question that needs to be addressed concerns the strength of this strong(er)

reconstruction. Is this strong enough to result in symmetry level-crossing? Let us look at

the resulting one-electron configuration. This was found to be b↑↓u a↑g a0
u, which means that

the answer is affirmative, as it can be seen from Figure 7.4.3. Both bu and ag states have

magnitude on the σh reflection plane, in perfect agreement with experiment.

For the V0
2 and V2−

2 charge states, our calculations have also confirmed the pairing

model as the preferred one, with the distorted structures being more stable than cor-

responding D3d versions, by 0.38 and 0.50 eV respectively (Table 7.4). The structural

parameters for both structures are given in Table 7.5. It is interesting to compare the

lengths of strongly-reconstructed bonds for both configurations of V2−
2 . According to our

results, the reconstruction is strongest for V2−
2 . This can be understood within an one-

electron picture. By further charging the defect, from V+
2 and V−2 , a spin compensated
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(a) bu symmetry: this

wavefunction has, at

least, a nodal surface

on the plane containing

four of the six Si atoms

of V2 and another be-

tween two Si atoms and

their immediate back-

bonded neighbours.

(b) au symmetry—

highest occupied defect

state: a nodal surface

exists which is parallel

to the plane shown and

includes two of the Si

neighbours of vacant

lattice sites.

(c) ag symmetry: the

wavefunction for this

level vanishes in the

same regions as in the

case of the bu state (a);

it has peaks between

two Si neighbours and

the corresponding va-

cant sites.

Figure 7.3: 3D-isosurface plot of the wavefunction corresponding to the two high-

est occupied and the lowest unoccupied spin-up Kohn-Sham levels of the weakly

distorted structure of V−2 (pairing like distortion). Note that no symmetry level

cross-over occurs for such a distortion.

system is achieved with the extra electron heavily reducing the Coulombic interaction be-

tween the electron already occupying the ‘broken-bond’ orbital, and the electrons localised

on the reconstructed bond.

The fact that the C2h structure of V2−
2 was found to be slightly more stable than that

with D3d, it is not surprising. Both D3d and C2h configurations of V2−
2 are in principle

possible. Let us examine how these can be achieved.

Starting from the neutral defect, and adding two electrons to the eu level, we obtain

a totally symmetric charge density with respect to the D3d point-symmetry group, to

achieve a S = 0 configuration. Consequently, the electronic force has the symmetry of the

lattice, which implies that no symmetry-breaking forces act on the neighbouring atoms

that might start a JT event. The other alternative mechanism, it is the capture of an

electron by the defect when its distorted C2h configuration. This also results in a totally

symmetric charge density distribution, but now with respect to the group C2h. It then

natural to assume that the V2−
2 (D3d) state can be accessed if the concentration of electrons

is high enough to allow the capture of two electrons in a time interval much shorter than

the lattice relaxation time. The other state, V2−
2 (C2h), however, can appear whenever the
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(a) bu symmetry. (b) ag symmetry

(highest occupied

level).

(c) au symmetry

Figure 7.4: 3D-isosurface plot of the wavefunction corresponding to the two high-

est occupied and the lowest unocupied spin-up Kohn-Sham levels of distorted

(C2h) V−2 . The ‘banana’-like bonds illustrate the strong reconstruction between

four of the six nearest neighbours of the vacant sites (white), in agreement with

the pairing model proposed by Watkins and Corbett (1965).

defect, in its single minus charge state, captures an electron. Obviously, phonon-assisted

transitions can occur between these two states, in which the V2−
2 (C2h) configuration is

likely to be lower in energy than that with D3d, as suggested by a less restrictive symmetry

in the former case, being less influenced, for example, when in damaged areas of heavily

irradiated material.

7.4.4 Optical properties

As mentioned previously, several IR bands have associated with the di-vacancy. One of

these bands, with a peak at 0.34 eV (3.6 µm) (Fan & Ramdas, 1959; Cheng et al., 1966;

Carton-Merlet et al., 1982) is of particular importance. This band has been related to V−2 .

The photo-ionisation energy threshold of this IR spectrum was found to be very similar to

that of the G7 EPR spectrum, of approximately 0.4 eV (Carton-Merlet et al., 1979). This

assignment was confirmed by Svensson et al. (1988), who performed FTIR measurements

to monitor this particular absorption, with the aid of optical filters. As a result, and

based on the theoretical work of Lindfelt and Yong-Liang (1988), this group suggested

that this peak results from an ag → au transition within the distorted V−2 charge state.

This absorption peak disappeared when the measuring temperature was raised above 90 K.

This intra-defect level transition can be calculated using the Slater’s transition argu-

ment, as described in §2.8.2. Recalling (2.8.25), the corresponding energy can be calculated
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Figure 7.5: Scaled Kohn-Sham eigenvalue spectra for the lowest-energy struc-
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gap. Arrows and boxes indicate filled and empty levels respectively. The sug-

gested ag–au transition in V−2 associated with the 0.34 eV IR peak (Svensson

et al., 1988) is also shown.

as

∆Eag−au(V
−
2 ) = εau(γ

→
ts)− εbu(γ

→
ts) , (7.4.1)

with

γ→ts =


γau = +

1
2

γag = −1
2

(7.4.2)

Here, εau and εau are the KS eigenvalues corresponding to highest occupied spin-up level

and first, otherwise, unoccupied level of V−2 , respectively (see Fig. 7.5). These are extracted

from a single full optimisation run for the defect in the transition state (7.4.2), with a net

proton charge of −1 e. The self-consistent εau and εau eigenvalues were calculated to be

−2.6260 and −2.2606 eV respectively. The transition is then simply given by the difference

between these two eigenvalues, i.e., ∼ 0.36 eV, in excellent agreement with the observed

transition.

7.4.5 Electrical levels

It is now accepted, as a result of photocondutivity (Kalma & Corelli, 1968; Young &

Corelli, 1972), infrared absorption (Cheng et al., 1966; Cheng & Vadja, 1969), and DLTS



The Lattice Divacancy 133

(Evwaraye & Sun, 1976; Mooney et al., 1977; Kimerling, 1977; Svensson & Willander,

1987; Svensson et al., 1991) that V2 can exist in four different charge states, as a defect

in crystalline Si. As a result of electron and hole transitions between the several charge

states of the defect, three levels exist in the bandgap. These have been assigned to the

following transitions:

V−2 + e− → V2−
2 : Ec − 0.23 eV , (7.4.3)

V0
2 + e− → V−2 : Ec − 0.42 eV , (7.4.4)

V0
2 + h+ → V+

2 : Ev + 0.31 eV , (7.4.5)

Calculation details

Using the relaxed structures from the full charge runs for V2−
2 , V−2 and V+

2 in both, D3d

and C2h arrangements, the transition-state configurations were set as shown in Table 7.6.

The underlined values indicate the one-electron levels with partial occupancy, i.e. 1
2 e as

required by Slater’s transition argument. Note that for the D3d structure, due to the

degeneracy of the highest occupied level, the fractional charge was spread out equaly over

the e-manifold levels in order to avoid self-consistency problems. Next, the clusters were

fully relaxed to extract the required self-consistent eigenvalues. The net proton charge of

the corresponding defect clusters was −11
2 , −1

2 and +1
2 , respectively for the evaluation of

the electron affinity of V2−
2 , V−2 and the first ionisation potential of V+

2 .

Table 7.6: One-electron occupancies for the transition-state used to calculate

the ionisation and affinity of the defect in two different configurations. The

underlined values represent the occupancy of the highest occupied defect levels,

in the transition-state, providing the defect’s affinity and ionisation energies.

eu occup. (D3d) bu ag occup. (C2h) Cluster Run
Config.

spin up spin down spin up spin down net charge type

V2−
2 0.25 0.25 0.5 0.5 1.0 0.5 1.0 1.0 −1.5 affinity

V−2 0.75 0.75 0.5 0.5 1.0 0.5 1.0 0.0 −0.5 affinity

V+
2 0.75 0.75 0.0 0.0 0.5 0.0 0.0 0.0 +0.5 ionisation

Calculated electrical level structure

The calculated levels are given in Table 7.7. The single acceptor level of distorted V2 was

calculated to lie at Ec − 0.37 eV, which compares well the DLTS level at Ec − 0.42 eV.

For the D3d configuration, the calculated (−/0) was found to lie deeper at Ec − 0.52 eV.

This difference in the positioning of the (−/0) level in D3d and C2h symmetries is expected,

resulting from the splitting of the eg doublet, which implies a downwards shift of the highest
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occupied level energy and therefore a lowering value of the defect’s affinity. Obviously, the

calculated position of the (0/+) of V2 should also reflect the fact the e-level is largely

split for the C2h configuration. This was confirmed as the donor level was located at

Ev +0.61 and Ev +0.41 eV, for the D3d and C2h configurations of the defect, respectively.

Interestingly, a similar value for the double acceptor level was found for both configurations

of the defect. This result was confirmed with the use of a different marker for the calculation

of the double acceptor. Despite a difference of ∼ 0.2 eV between the calculated value

using the two different markers, PtH2 and AuH, the calculations seem to indicate that the

position of the (=/−) is independent of the degree of distortion of the defect.

Now, it is important to correlate these results with the available information on the

electrical activity of V2. As described previously, it is a fact, that at the DLTS scanning

temperatures (90–200 K in the case of the two acceptor levels of V2), the defect should

exist in a symmetry-averaged state due to fast electronic bond switching. The jump rate

between equivalent JT distortion directions is many orders of magnitude higher that the

rate for electron emission from the traps at Ec−0.23 and Ec−0.42 eV. Svensson and Wil-

lander (1987) and Svensson et al. (1991) used this fact to explain the disappearance of the

(=/−) level in heavily irradiated material. According to these authors, the lattice strain

associated with ‘highly’ damaged regions in the crystal, quenches the electronic hoping mo-

tion and the V2 remains in its C2h configuration. However, under this assumption seems

to be difficult to explain our results and the EPR results of Watkins and Corbett (1965),

who observed the G7 spectrum (V−2 ) even when the Fermi level was above Ec − 0.23 eV,

and the defect therefore should be in its V2−
2 charge state as indicated by DLTS. This

can only be explained by invoking the instability of this charge state at low temperatures

(T < 80 K). An alternative explaination was suggested by Lindfelt and Yong-Liang (1988),

as mentioned previously. Depending on the electron emission process, these workers pos-

tulated that V2−
2 can exist in both D3d and C2h configurations. However, our calculations

do not confirm the expected difference between the position of the (=/−) level for the two

configurations as suggested by Svensson et al. (1988), that might explain the EPR results,

i.e., the observation of the G7 spectrum when the Fermi level is above Ec − 0.23 eV.

It is worthwhile noting that the reduction of the (=/−) activity of V2 with increasing

ion mass after irradiation and/or implantation is also accompanied by an increase of the

concentration of the (−/0) level, together with a slight shift of the corresponding DLTS

peak towards lower temperatures (Svensson et al., 1991; Svensson et al., 1997) This seems

to suggest that another defect structure is being formed, as a result of the damage being

inflected upon the crystal. Obviously, this different approach to this problem requires

further investigation.

7.5 Summary

To conclude, we have successfully modelled the distortion required to explain the exper-

imental observations for V2. Calculations confirm the strong-reconstruction by-pairing
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Table 7.7: Comparison between calculated and observed electrical levels of the

lattice di-vacancy. The single and double acceptor levels and the single donor

level are given with respect to Ev and Ec respectively (eV). The defects, and

their relevant experimental levels, used as markers in the calculations are also

given.

Calculated Observed

Level Pesola† marker D3d C2h DLTS

PtH2 (0.16) 0.38 0.39
(=/−) 0.73

AuH1 (0.19) 0.22 0.21
0.23

(−/0) 0.78 Ci (0.10) 0.52 0.37 0.42

(0/+) 0.04 Ci (0.28) 0.61 0.41 0.25

† Pseudopotential self-consistent plane-wave DFT/LSD method with

216-atom supercells (Pesola et al., 1998).

model of Watkins and Corbett for both positive and negative charge states. The localisa-

tion of the spin density found for V+
2 and V−2 and the calculated optical transition within

V−2 —a measure of the magnitude of the JT distortion—confirm the accuracy of the cal-

culations presented here. The alternative resonant-bond model introduced by Saito and

Oshiyama was found to be unstable for all the charge states investigated.

The calculated level structure does not support previous experimental explanations

for the breakdown of the perfect 1:1 correlation between the concentrations of the DLTS

peaks at Ec − 0.24 and Ec − 0.42 eV, assigned to the (=/−) and (−/0) levels of V2 in

ion-irradiated and implanted material.

In addition, the results of our calculations do not agree with those from recently pub-

lished work. This relates to the sense of the distortion for both paramagnetic states of

V2, as well its electrical level structure. An example of the latter, is the work by Pesola et

al. (1998), who used a plane-wave method with large supercell to describe the electrical

properties of this defect by ab initio methods.

Common to all the previous calculations on the lattice di-vacancy is the fact that all

were performed using plane wave-based codes with periodic boundary conditions. It is now

clear to us that in order to model the occurring strong reconstruction within our cluster

approach, its necessary to allow the H-surface to relax to achieve a proper description of

the defect’s potential energy surface. Unfortunately, the volume of the supercells used

to describe the crystal in all the plane-wave methods cannot be allowed to vary within

the relaxation process. Another problem inherent to this type of calculation is that it

is necessary to achieve a reasonable compromise between the value of the kinetic energy

cut-of, i.e., the number of plane waves, and the size of the supercell.



8

Vacancy–Hydrogen Defects

8.1 Introduction

Hydrogenation is usually thought of as a process to neutralise the optical and electrical

activity of shallow and deep-level defects in silicon (Pankove et al., 1983; Johnson et al.,

1986; Pearton et al., 1992; Estreicher, 1995). It can be also used to ‘decorate’ various

defects, thereby facilitating their detection and characterisation. This is the case for the

lattice mono-vacancy. With an extraordinary low barrier for diffusion, it is very difficult to

detect this defect as an isolated species. It is a highly distorted centre (Jahn-Teller), with

the spin-singlet states V2+, V0 and V− having Td, D2d and C2v symmetry respectively

(Watkins & Troxell, 1980a; Newton et al., 1983). It is a ‘negative-U ’ centre (Baraff et al.,

1979b; Baraff et al., 1979a), due to the metastability of the singly positively charged state,

with the double donor level lying above the single donor level. The single and double

acceptor levels have never been directly observed (Watkins, 1992).

These remarkable properties are only matched by its ability to form complexes with

dopants and impurities, and with itself (Watkins & Corbett, 1965; Lee & Corbett, 1973;

Lee & Corbett, 1974).

It is now a well known fact that the single vacancy can be ‘decorated’ with up to 4

hydrogen atoms (Roberson & Estreicher, 1994; Bech Nielsen et al., 1995; Bech Nielsen

et al., 1996; Stallinga et al., 1998). Apparently, the interaction with hydrogen it is not

sufficient to immobilise the single vacancy. This was first reported by Corbett et al. (1988),

to explain SIMS profiles of H and D in sub-surface regions of Si, and latter confirmed by

Sopori et al. (1992). Sopori et al., monitoring the I-V characteristics of ion-irradiated

photo-voltaic devices, suggested that hydrogen was able to reach and passivate defects in

the active regions of the devices much faster in vacancy-rich material than in high-quality

(vacancy-poor) material.

Proton implantation at cryogenic temperatures has been successfully performed to

create multi-hydrogen–vacancy complexes (Bech Nielsen et al., 1995; Bech Nielsen et al.,

1996). The ability of H to form strong covalent bonds with Si atoms, which are stronger

than Si–Si bonds, is well known from chemistry. It is then only natural that H will attack

‘dangling-bond’ atoms whenever possible in order to stabilise the defect structure and

136
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therefore reduce its total energy.

8.2 Background

The identification of VH0 by means of electron paramagnetic resonance (EPR) measure-

ments was recently reported by Bech Nielsen et al. (1997). Recorded at ∼ 45 K, the EPR

spectrum was assigned to a paramagnetic S = 1
2 centre with monoclinic-I (C1h) symmetry.

The comparison between the spectra recorded from proton- and deuteron-implanted sam-

ples revealed the involvement of hydrogen in the centre. Furthermore, the changes of the

hyperfine satellites with the applied field confirmed the presence of a single 29Si nucleus.

The distance between the unpaired electron and the proton was estimated to be ∼ 2.7 Å

from the anisotropic contribution to the hyperfine tensor A
↔

, within a point-dipole approx-

imation. Bech Nielsen and co-workers also pointed out the striking similarities between

the spin-Hamiltonian parameters of this newly recorded EPR spectrum and that of the E-

centre (Watkins & Corbett, 1964). The analysis of the variation of the spectral linewidth

with temperature revealed broadening and motional narrowing effects, with the centre be-

coming trigonal at higher temperatures (& 60 K) with an activation energy Ea ' 0.06 eV.

As in the case of the E-centre, this was interpreted as an electronic ‘hopping’ between the

three equivalent Jahn-Teller directions in the double degenerate electronic system.

Fourier-transform infra-red (FTIR) absorption spectroscopy is a powerful technique to

detect local vibrational modes (LVMs) arising from defects involving light impurities, like

hydrogen. Several IR bands have been assigned to VH0. Infrared absorption measurements

by Xie et al. (1991) on H2-grown neutron-doped Si by radioactive transmutation, and

independently Meng on neutron-irradiated float-zone (FZ) silicon (Meng, 1991), reported

a IR band at 1839 cm−1 as being due to VH. This assignment is inconsistent with recent

IR studies by Holbech et al. (1993), which identified the line at 1839 cm−1 as a LVM of

the so-called H∗2 defect (Fig. 8.1). Bech Nielsen et al. reported a different value for the

Si–H stretch mode frequency of VH at 2067.5 cm−1, identified as arising from a centre

with C1h symmetry, as a result of uniaxial stress measurements (Bech Nielsen et al., 1996;

Bech Nielsen et al., 1995). The assignment to VH0 was tentative, simply based on previous

theoretical calculations (Deák et al., 1989; Estreicher, 1995). Very recently, Stallinga et

al. have reported a new value for the H-stretch frequency of VH0 as a result of combined

EPR/FTIR annealing measurements on proton-implanted Si samples, which showed that

the EPR signal of VH0 and the mode at 2038 cm−1 both disappear at ∼ 480 K (Stallinga

et al., 1998). The corresponding hydrogen- and deuterium-related vibrational bands were

located, respectively, at 2038.5 and 1494.6 cm−1. The mode previously attributed to VH

at ∼ 2068 cm−1 is now assigned to a neutral complex between hydrogen and the lattice

di-vacancy containing a single H atom (V2H0) (Stallinga et al., 1998).

Two modes at around 2121 and 2144 cm−1 have been identified as two H-stretch fre-

quencies of the same defect—a di-hydrogen–vacancy defect, VH2 (Bech Nielsen et al.,

1996). These two modes have shown an identical annealing behaviour and the same inten-
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sity ratio in samples implanted with different proton doses (Bech Nielsen et al., 1995). A

single new mode appeared at 2134.2 cm−1 in samples containing both H and D (deuterium),

revealing the involvement of two equivalent H atoms in the defect. The corresponding de-

coupled D-stretching mode was found at 1556.8 cm−1

Uniaxial stress measurements combined with theoretical modelling, determined the

symmetry of the defect to be C2v (Bech Nielsen et al., 1995). In addition, Budde (1998)

has shown that the bands at 1987 and 1990 cm−1, previously attributed to VH2 (Xie et al.,

1991; Meng, 1991) originate from a defect with monoclinic-II (C2) symmetry and not

orthorhombic-I (C2v). This author has also identified two bands at 1547 and 1564 cm−1,

as the deuterium counterpart of VH2, by implanting deuterons instead of protons and

analysing their relative annealing behaviour and intensity.

Due to the fact that VH2 is non-magnetic (S = 0)

Figure 8.1: The H∗2 defect: the H

atoms at the near ‘bond-centred’

(BC) and anti-bonding (AB) sites in

the lattice. The line joining the two

H atoms defines the [111] direction

(Holbech et al., 1993).

in its neutral charge state, it has never been ob-

served by electronic resonance techniques. One way

to detect paramagnetic activity from VH2 is to ex-

cite optically the defect, by promoting an electron

to the first excited state within the neutral state

to achieve a spin-triplet state (S = 1). According

to Chen et al. such activity has been detected in

Cz-grown, oxygen-rich, material subsequently irra-

diated with 2-MeV electrons, analysed by ODMR

(Chen et al., 1990). Based on its hyperfine struc-

ture, the ODMR spectrum was described as an ex-

cited state S = 1 of VH2 with orthorhombic-I (C2v)

symmetry. Recently, Stallinga and Bech Nielsen

(1998), noting the similarities between the reported

spectrum and that S = 1 excited state of the A-centre (VO∗) (Brower, 1971b), and un-

resolved hyperfine interactions, have refuted this assignment. In reply to this comment,

Chen et al. (1998) argued that the observed weak hyperfine interaction provides the

strongest support for their assignment, as it allows one to distinguish between two, ex-

pectedly, similar EPR spectra, i.e., that of VO∗ and S = 1 VH2, only distinguishable due

to a different behaviour under thermal annealing.

The identification of the local vibrational modes of VH0
3 has proven to be a difficult task

(Budde, 1998). Two pairs of H-stretch frequencies have been measured and attributed to

a trigonal defect, resulting from splitting and frequency shifts induced by applied uniaxial

stress (Bech Nielsen & Grimmeiss, 1989; Bech Nielsen et al., 1996) These are the pairs

{2155, 2185} and {2166, 2191} cm−1 (Bech Nielsen et al., 1995; Bech Nielsen et al., 1996).

The 2166-cm−1 line corresponds to an E mode and the 2191-cm−1 to an A1 mode, as

predicted for a trigonal centre. Despite the fact that theory was able to shown that the

lowest-energy structure of VH3 is achieved for C3v symmetry (Bech Nielsen et al., 1995;

Deák et al., 1991; Xu, 1992; Roberson & Estreicher, 1994; Park et al., 1995), experiment
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has not being able to differentiate between the defects responsible for the two pairs of

bands. From an experimental point of view, there is obviously more than one possible

structural model which satisfies the requirement of trigonal symmetry. These are the cases

of interstitial SiH3 (C3v), V2H6 (D3d) and obviously VH3 (C3v).

The lines 2166 and 2191-cm−1 disappear upon

c

a

d

b

Figure 8.2: Relaxed structures for

the neutral form of the four distinct

C3v configurations of interstitial SiH3

(Hourahine et al., 1999).

annealing at ∼ 800 K being therefore related

to one of the most stable hydrogen-related com-

plex in proton-implanted Si. Deák et al. (1991)

showed that the structure with a single Si self-

interstitial plus three isolated H atoms is more

stable that the i-SiH3 configuration. This pro-

vides strong evidence against the assignment of

the {2166, 2191}-cm−1 bands to SiH3. Further-

more, infra-red measurements (Cardona, 1983)

on molecular disilane (Si2H6) have show that or-

der of the E and A1 modes is the reverse of that

found for the {2166, 2191}-cm−1 bands. Very

recently, Hourahine et al. (1999) calculated the

LVMs associated with different charge states of

four possible configurations of interstitial silyl (i-SiH3)

by ab initio methods (aimpro). These configurations corresponded to the possible ar-

rangements of the H atoms with the self-interstitial at Td or hexagonal interstitial sites

(Fig. 8.2). The calculated vibrational frequencies differed from the those at {2166, 2191}
by more than 300 cm−1 for all the structures but one. Although with modes closer to

experiment at 2317 (A1) and 2162-cm−1 (E), this structure (Fig. 8.2-d) was found to

∼ 4.2 eV higher than the energy of the stablest configuration.

The recent observation of the paramagnetic S = 1
2 state of neutral VH3 has brought a

whole new perspective to this problem (Herstrøm, 1998). The components of the associated

g-tensor, consistent with a centre with trigonal symmetry, revealed all the characteristics

of a dangling-bond orbital in a vacancy-like defect. Furthermore, the EPR signal exhib-

ited strong hyperfine interactions with three equivalent H atoms, together with a strong

trigonal hyperfine interaction with a single 29Si nucleus. Consequently, this EPR cen-

tre was attributed to VH3. The comparison of the annealing behaviour of the EPR and

FTIR centres, under isochronal annealing, supports the assignment of the absorption lines

{2155, 2185}-cm−1 to VH0
3; the EPR signal disappears at ∼ 490 K, while the bands {2166,

2191}-cm−1 are stable up to 800 K (Table 8.1).

If the absorption bands {2155, 2185}-cm−1 arise from VH3, it reasonable to assume

that the other pair of bands at 2166 and 2191 cm−1 are the H-modes of the hydrogen-

saturated di-vacancy (V2H6). With trigonal D3d symmetry, this defect is expected to give

rise to four H-modes with A1g, Eg, A2u and Eu symmetry. Experimentally, only two modes

can be observed: the IR-active A2u and Eu modes. If V2H6 is considered to be made from
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two weakly-interacting C3v VH3 units, the bands at {2166, 2191}-cm−1 can well be its IR

active H-stretch modes. This argument simply assumes that the coupling between H atoms

is larger for V2H6, despite the existence of a second vacant lattice site nearby, resulting in

a upward shift compared to isolated VH3.

Beside a different behaviour under annealing, the defect structures responsible the two

pairs of IR bands should also reveal distinct electrical properties. While the former is

bound to be electrically active, the latter is electrically inactive. A study of the sensitivity

of the LVMs at 2166 and 2191 cm−1 to bandgap light revealed that this defect has no

levels in the gap as no dependence whatsoever was detected (Bech Nielsen, 1999).

Like for the case of VH3, the identification of the vibrational modes of VH4 is still

matter of some discussion. Early IR absorption studies (Bai et al., 1985) on Si grown in

H2- and D2-atmospheres, found that a line at around 2222 cm−1 was consistent with a

tetrahedral defect containing four H atoms bonded to Si. The IR peak at ∼ 2222 cm−1,

observed at RT, was observed to shift to 2210 cm−1 at 10 K. At this low temperature,

the peak width was reduced and a fine structure appeared, with the main peak splitting

into three separate peaks. The ratios of the intensity of these peaks remained always pro-

portional to the natural abundance of the three isotopes of Si, under isochronal annealing

treatments. A shift of ∼
√

2 [≈ (mH/mD)1/2] was observed, establishing that this is a

H-related mode. This is the expected frequency shift due to the isotopic substitution of H

by D, as noted by Stein (1975).

This line was also observed in proton implanted samples (Mukashev et al., 1985).

The assignment of Td symmetry to the defect responsible for this line was subsequently

confirmed by the uniaxial stress studies of Bech Nielsen et al. (1989). IR studies have

also shown that this line anneals out at ∼ 525 ◦C – a characteristic of a very stable defect

(Bech Nielsen et al., 1995). Although, confirming the symmetry of the defect giving rise to

the 2222-cm−1 band, it was not possible to determine whether VH4, or i-SiH4 as suggested

by Shi et al. (1985), is responsible for this degenerate vibrational 2221.9-cm−1 mode.

However, the assignment of the 2222-cm−1 mode to VH4 has been recently questioned

by Suezawa (1997; 1998a). IR measurements on Si grown in a H-atmosphere have revealed

that the integrated intensity of the absorption of this line increases when carbon, boron

or even gold are present in the crystal. These impurities are assumed to create Si self-

interstitials (I), via the so-called kick-out mechanism. This can happen directly in the case

of C, and indirectly for B and Au, which are known to lock vacancies, therefore increasing

the number of interstititials by reducing the probability of V–I pair annihilation events.

Although being consistent with the idea that the 2222-cm−1 line is due to i-SiH4, this

observation does not provide irrefutable evidence.

The growth in the intensity of the 2222-cm−1 band at ∼ 180 ◦C has also been correlated

(Suezawa, 1998b; Suezawa, 1998c) with a decrease in the intensity of an optical absorption

band at 0.34 eV usually associated with V−2 (Cheng et al., 1966; Svensson et al., 1988).

Again, this observation might suggest an interstititial-like defect as responsible for the

2222-cm−1 band. Nevertheless, it is important to remember that the di-vacancy is itself a
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Table 8.1: Relative thermal stability of the several neutral vacancy-hydrogen

defects. Tann is the temperature at which the defects anneal out (K) and the

vibrational frequencies are given in cm−1.

Defect Tann (K) Techniques

VH ∼ 480 FTIR (2038) EPR

V2H ∼ 530 FTIR (2073) EPR

VH2 ∼ 475 FTIR (2121–2145)

VH3 490–500 FTIR (2155–2185)‡ EPR

V2H6 ∼ 900 FTIR (2166–2191)†‡

VH4 ∼ 850 FTIR (2223)

† The pair of vibrational bands at 2191 and 2166 cm−1 is formed at

∼ 560 K, attaining its maximum amplitude at ∼ 670 K to anneal out

at ∼ 800 K (Budde, 1998). ‡ Tentative experimental assignment.

reservoir of single vacancies, which can then be trapped by hydrogen to form VH4.

Apparently, theory seems to support the assignment of the 2222-cm−1 line to VH4

(Deák et al., 1991; Bech Nielsen et al., 1995). The T2 H-stretch frequency was calculated

by both groups to lie at ∼ 110 cm−1 above the experimental value. The Raman active

(IR inactive) A1 singlet mode of VH4 has been predicted to lie above the T2 at 2222-

cm−1. Further support to this model has been provided recently by ab initio calculations

(Hourahine et al., 1998) on the vibrational modes of silane (SiH4) in and outside the Si

lattice. The H-frequencies of trapped silane were found to lie at ∼ 1800 cm−1. This

provides further evidence to the assignment of the 2222-cm−1 to VH4.

8.2.1 Electrical properties

Very little is known about the electrical activity of vacancy-hydrogen defects in silicon. The

involvement of hydrogen is usually indirectly confirmed from comparative DLTS studies

on implanted samples with protons (H+) and α-particles (He2+).

Two electron traps at Ec−0.32 and Ec−0.45 eV have been assigned to defects involving

hydrogen formed as a result its the interaction with radiation induced defects (Irmscher

et al., 1984; Svensson et al., 1989; Hallén et al., 1990; Lalita et al., 1997; Feklisova &

Yarykin, 1997).

Irmscher et al. (1984) have correlated the trap at Ec−0.32 eV to another level detected

in p-type Si at Ev + 0.28 eV, as a result of DLTS measurements on low-dose H+- and α-

implanted material. These were identified as a single acceptor and single donor level of the

same H-containing defect—a vacancy-hydrogen complex containing two hydrogen atoms,

with their similar concentrations changing simultaneously under isochronal annealing. No
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comments on the possible involvement of oxygen in the centre were made.

Svensson et al. (1989) have also detected these two traps in H+-irradiated (RT) diodes.

These two defects were not formed in α-irradiated material. The corresponding capture

cross-sections were 3 × 10−15 and 2 × 10−17 cm2, respectively, for the Ec − 0.32 and

Ec−0.45 eV DLTS peaks. The production rate of these two peaks decreases at higher doses,

especially that of the Ec − 0.32 eV trap. This might suggest that low-order complexes are

responsible for these two traps, disappearing for higher doses as a result of interaction with

radiation induced defects, or other impurities that become mobile at RT. The Ec−0.32 eV-

trap was tentatively attributed to partially hydrogenated, VO or V2 defects.

A similar DLTS study by Hállen et al. (1990) has confirmed the conclusions of Svens-

son et al.. The fact that the depth profiles for these two traps have showed a smaller

skewness compared to the other main peaks (VO(−/0), V2(=/−) and V2(−/0)), resem-

bling the simulated profile of implanted hydrogen,1 provided further confirmation of the

presence of hydrogen in the Ec − 0.32 and Ec − 0.45 eV defect structures.

These two traps were also produced as a result of an annealing treatment at 250 ◦C

for 30 min in nitrogen ambient of self-implanted Si material at RT (Lalita et al., 1997).

The observed capture cross-section of ∼ 10−15 cm2 for the Ec − 0.32 eV DLTS peak,

suggests that this level is indeed similar to that reported by Svensson et al. (1989). These

authors have also reported that the concentration of this trap growths at the expense of

the (=/−) level of V2 at Ec − 0.23 eV during annealing. This observation was explained

as resulting from the interaction of previously trapped hydrogen, which becomes mobile at

∼ 150 ◦C, with the lattice di-vacancy. Consequently, these authors proposed a V2H defect

as responsible for the Ec − 0.32 eV level.

Even assuming that the above assignments are correct, it is not possible to determine

the number of hydrogen impurity atoms involved. While it is generally accepted for the

case of VOH defects that only the one containing a single H atom is electrically active, for

the case of V2H there is no obvious reason why multi-H di-vacancy complexes are not active

as well. Recently, Feklisova and Yarykin (1997), have proposed that the Ec− 0.32 eV trap

arises from a VOH defect containing not one but two hydrogen atoms. The corresponding

capture cross-section was 1.0 × 10−15 cm2, measured in e-irradiated samples in which

hydrogen was incorporated by wet chemical etching. Recent theoretical (Jones et al.,

1999a) and experimental studies (Johannesen et al., 1999; Bonde Nielsen et al., 1999) do

not seem to confirm the hypothesis of the electrical activity of VOH2.

Bruni et al. (1994) have tentatively assigned two hole traps to VH2 and VH3. The two

DLTS signals, arising from two levels at Ev + 0.67 and Ev + 0.33 eV respectively, were

observed in high-dose (1.6× 1016 cm−2) H+-implanted B-doped silicon. The Ev + 0.33 eV

level appeared after annealing at 100 ◦C, whereas that at Ev +0.67 eV was already present

in as-implanted samples. The concentration of these traps was strongly reduced at 300 ◦C,

increasing for T > 300 ◦C, which was explained with the formation of the electrically inac-
1The depth profile simulations were performed using the Monte Carlo code trim-89 (Developed at IBM,

Yorktown, NY by J. P. Biersack and J. F. Ziegler).
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tive VH4 defects at T < 300 ◦C, and by the release of H from previously H-saturated VH

complexes (T & 400 ◦C), inducing partial vacancy depletion, and consequently restoring

their electrical activity. Further annealing at 800 ◦C resulted in the complete neutralisation

of the electrical activity of two defects originating the hole traps.

The results of the annealing studies of Bruni et al. (1994) were later confirmed by

combined positron annihilation/DLTS measurements on H-implanted Si (Brusa et al.,

1994).

Very recently, Bonde Nielsen et al. (1999), and independently, Peaker et al. (1999) have

performed DLTS and LDLTS measurements on hydrogenated (by H+-implantation for the

former and wet etching, after e-irradiation, for the latter study) Si. According to Bonde

Nielsen et al., the activation enthalpies of the (−/0) of VH and that of V2H are 0.443 and

∼ 0.43 eV, respectively. These two Laplace DLTS peaks were not observed in α-implanted

samples, which provides strong evidence for the involvement of atomic hydrogen in the

electrically active defects. Furthermore, the annealing behaviour of these traps showed

a perfect correlation with EPR annealing data for VH (Bech Nielsen et al., 1997) and

V2H (Stallinga et al., 1998). Both H+ and He2+ implantations were performed at low

temperature (60 K), followed by a reverse-bias anneal (RBA) at 400 K.

It is interesting to note that the reported values for the activation energy of these

two traps is virtually indistinguishable from those of the (−/0) of V2 and the E-centre.

Additionally, the value reported for VH is quite identical to that the level at Ec − 0.45 eV

reported by Svensson et al. (1989), and tentatively attributed to VO or possibly V2.

8.3 Previous theoretical studies

Despite the number of theoretical studies that can be found in the literature on multi-

hydrogen–vacancy complexes in crystalline silicon (Singh et al., 1977; Pickett, 1981; Di-

Vincenzo et al., 1983; Grekhov et al., 1983; DeLeo et al., 1984; Frolov & Mukashev, 1988;

Bai et al., 1988; Gutsev & Myakenkaya, 1989; Roberson & Estreicher, 1994), only a few

authors performed total energy calculations, allowing for lattice relaxation and distortion

effects.

Deák et al. (1989; 1991) applied a semi-empirical HF method of modified intermediate

neglect of differential overlap (MINDO/3) in cyclic clusters made of unit cells containing

31 host atoms. VH was found to have C1h symmetry (very close to trigonal C3v), 1.499 Å,

C2v for VH2, C3v for VH3 and VH4 tetrahedral Td. The corresponding Si–H lengths were

1.499 Å for VH, 1.489 Å for VH2, 1.485 Å for VH3, and finally for the fully H-saturated

vacancy, VH4 this length was 1.490 Å. The associated stretching modes were calculated to

be, after scaling,2 2057, 2080, 2106 and 2109 cm−1.

Park et al. (1995) used a first-principles spin-averaged (non-self-consistent), pseudo-

atomic-orbital molecular dynamics method (T = 0 K). The optimised Si–H lengths were
2The scaling was performed in such a way that theory reproduces a known vibrational frequency such

as that of silane.
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Table 8.2: Comparison between calculated and observed local vibrational

modes of multi-hydrogen–vacancy defects (cm−1).

Symm. Mode Deák a Park b Jones c Expt.

A1 2364 2404 N-IR
VH4 Td T2 2347

2334
2319 2222

A1 2360 2318 2185
VH3 C3v E 2347

2301
2256 2155

A1 2331 2316 2144
VH2 C2v B1 2327

2268
2267 2121

VH C1h A′ 2305 2168 2248 2038

aDeák et al. (1989); b Park et al. (1995); c Jones et al. (1995).

1.508, 1.504, 1.498 and 1.475 Å, for neutral VH, VH2, VH3 and VH4 respectively. VH

was found to have trigonal C3v symmetry. The length of the Si–Si bond in the plane

perpendicular to the Si–H bond was calculated to be 3.880 Å, revealing a very weak

reconstruction. This is very similar to the Si–Si bond length of 3.929 Å, reported in the

same paper for the neutral mono-vacancy. To explain the low symmetry obtained, these

authors argued that, since the calculations did not account for spin-polarisation effects,

the dangling-bond could never be ‘occupied’ by a single electron, resulting in a structure

very close to that VH+, which was already known to be trigonal (Deák et al., 1989; Deák

et al., 1991).

Jones et al. (1995) employed pseudopotential local density functional cluster theory

(aimpro) on a cluster derived from a 71-atom tetrahedral cluster, (Si35H36), representing

bulk Si. All atoms, including H terminators, were allowed to relax.

These calculations confirmed that the symmetry is C1h for VH and C3v for VH+.

Accordingly, the one-electron eigenvalue spectrum for VH revealed the splitting of the

highest occupied e-manifold into two singlet levels, due to reconstruction of the bond

across two of the ‘dangling’ Si atoms. The Si–H length was 1.511 Å with the bond direction

departing 5◦ from the [111] crystal direction. The vibrational frequency of H was calculated

to be 2293 cm−1, increasing 11 cm−1 if anharmonicity is considered.

The lowest energy structure for VH2 was found to have C2v symmetry with the Si–

H lengths equal to 1.505 Å. The H atoms moved 0.1 Å away from the [111] alignment,

which can be explained as resulting from H-H interactions. The bond between the other

two Si neighbours of the vacancy was 2.555 Å, being 1.2 Å shorter than that reported by

Roberson and Estreicher (1994) using HF techniques. The separation between symmetric

and anti-symmetric H-stretch modes was calculated to be 49 cm−1, with the former mode

lying higher at 2316 cm−1. The fact that the calculations neglected any coupling between

stretch and other modes, e.g. bend modes at ∼ 800 cm−1, was invoked to explain such a
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large separation.

The structure of VH3 was analysed in the neutral and singly positively charged states.

The symmetry of VH3 and VH+
3 was found to be the same, i.e. C3v, with the Si–H

length varying very little with charge state, being 1.514 Å for the neutral species. Again,

like in the case of VH2 the separation between the A1 and E modes was overestimated

by a factor of 2.5. The quasi-harmonic frequencies of the singly- and doubly-degenerate

modes were 2283 and 2209 cm−1 respectively. VH3 possesses a fully occupied e level lying

above a singlet level a1 in the gap, in fair agreement with the semi-empirical tight-binding

simulations of Xu (1992).

This study confirmed a tetrahedral symmetry for VH4, with the four equivalent Si–H

bonds calculated to be 1.489 Å long. The volume expansion of the vacancy cage was

found to be 67% from that of the ideal vacancy. All the experimental trends for the H

and D modes of this vacancy-hydrogen complex were well reproduced, with the absolute

frequencies being ∼ 4% too high. Confirming previous theoretical studies (Deák et al.,

1989), the IR inactive A1 mode was calculated to lie above the triply-degenerate mode, at

2222 cm−1. The electrical inactivity of VH4 was confirmed, as no KS levels were found in

the Si band gap by these authors.

Despite all the different theoretical techniques employed up to date to study the struc-

ture of vacancy–hydrogen defects in Si, the results seem to agree on the following points:

(i) The interaction of atomic hydrogen with the lattice mono-vacancy leads to the forma-

tion of strong covalent Si–H bonds, with the hydrogen atoms pointing approximately

towards to the vacant site;

(ii) The Si–H bond lengths get shorter as the number of hydrogen atoms in the vacancy

increases, with the vibrational frequencies increasing correspondingly;

(iii) The IR peak at 2222 cm−1 should be assigned to VH4 rather than i-SiH4;

(iv) With the exception of VH4, all VHn complexes with n < 4 are expected to be

electrically active.

The work presented in this chapter is directly related to point (iv). The present

aimed the study of the electrical properties of vacancy–hydrogen defects in crystalline

silicon. In order to guarantee the quality of the structures, the present included a detailed

investigation of the structural properties of the relevant defects. Furthermore, results on

the vibrational properties of di-vacancy–hydrogen defects, namely V2H and V2H6, are also

described.

8.4 Results

8.4.1 Cluster and basis

The calculations were performed on a tetrahedral cluster containing (296 + n) atoms

(HnSi180H116), with n = 1 . . . 4, centred at the vacant site. Further calculations involv-
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ing the di-vacancy were performed using larger trigonal, bond-centred, clusters containing

(244 + n) and (345 + n) atoms in the configurations HnSi146H96 and HnSi212H144 respec-

tively.

Table 8.3: Atomic basis and basis expansion type used for the calculations on

vacancy-hydrogen defects. N and M denoted the number of orbitals used to

describe the wavefunction and charge density respectively.

Cluster Atom N M Basis expansion chden

Si 5 4 all big
Si180H116 H 3 2 all minimal 0

Bond-centres all bonds 2 2 big

Si 5 4 24 big/122 minimal
Si148H96 H 3 2 all minimal 0

Bond-centres all bonds 2 2 big

In order to allow for the expected reconstruction in VH and VH2, similar pre-relaxations

to those described previously for the study of V2, with the exception that only two shells

of atoms surrounding the first neighbours of the vacany were allowed to move. The length

of the reconstructed bond across two Si bordering the vacancy was set to 3.36 Å, for both

VH and VH2. No pre-relaxation was performed for the study of VH3 and VH4. For the

undistorted C3v structure of VH, this length was set to 4.14 Å.

All these defects structures were then relaxed, keeping the hydrogen atoms in the

surface fixed. The results of the calculations are presented and discussed next.

8.4.2 VH and V2H

In its undistorted configuration, VH consists of a Si–H bond and three Si dangling-bonds

pointing towards the vacant site. Since the latter are symmetrically equivalent and can

thus be symmetrised according to the irreducible representations of the point-symmetry

group C3v, an a1 and e symmetric states are expected to appear within the bandgap region

(Fig. 8.3). The s orbital of hydrogen interacts strongly with one of the Si hybrid orbitals

of the otherwise isolated vacancy, giving bonding and anti-bonding a1 states with large

separation. The formation of the Si–H bond results from the occupation of two electrons

on the a1 bonding state, which interacts weakly with the remaining three dangling-bond

orbitals. The e gap manifold of C3v VH stems from these three Si dangling bonds, therefore

being very close to the t2 triplet gap state of the isolated lattice vacancy.

It is evident that the VH defect in its neutral charge state should undergo a JT dis-

tortion due to fact that the e gap state (four-fold degenerate, including spin) is occupied
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Figure 8.3: Scaled spin-polarised Kohn-Sham eigenvalue spectra of optimised

VHn defects. Those for the C3v and C1h forms of VH0 are also shown for sake

of comparison.

by a single electron (Fig. 8.3). A possible distortion corresponds to movement of Si atoms

inwards to form a pair-bonding state, in a similar way to the reconstruction that occurs

for V2, with the remaining one moving away from the centre of the vacancy cage. This

distortion will lower the defect symmetry from C3v to C1h, causing the splitting of the e

according to e = a′ + a′′, with the unpaired electron occupying the a′ singlet for VH0 (see

Fig. 8.3)

The optimisation of the C3v and C1h configurations of VH0 has revealed the distorted

structure to be marginally lower in energy than the C3v counterpart, in close agreement

with the previous theoretical studies (Deák et al., 1989; Deák et al., 1991; Bech Nielsen

et al., 1995). The corresponding spin-polarised KS eigenvalue spectra for two configuration

of VH0 are shown in Figure 8.3. The optimised structure of (C1h) VH0 can be seen in

Figure 8.5, in two different views. The optimum Si–H length was found to be 1.501 Å,

Table 8.4: Structural parameters of the optimised neutral vacancy–hydrogen

defects containing up to four hydrogen atoms (Å).

Complex Symmetry Si–H Si–Si H–Si † H–H

VH C1h 1.501 3.299 2.784 · · ·
VH2 C2v 1.477 3.249 · · · 1.733

VH3 C3v 1.499 · · · 2.870 1.867

VH4 Td 1.491 · · · · · · 1.834

†Distance between the hydrogen atom(s) and the dangling-bond Si atoms in

the defect core.
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(a) Highest occupied defect level (b) Lowest unoccupied de-

fect level

Figure 8.4: 3D-isosurface plot of the wavefunction corresponding to the highest

occupied (a′ symmetry) and the lowest unoccupied (a′′ symmetry) spin-up

Kohn-Sham levels of C1h VH0.

with the bond direction making an angle of ∼ 5 ◦ with the [111] crystal direction, along

the defect’s mirror plane, which compares well with the observed value of 3◦ (Bech Nielsen

et al., 1997). The distance between the hydrogen atom and the dangling-bond Si atom was

found to 2.784 Å, which confirms the EPR point-dipole estimative of ∼ 2.7 Å (Bech Nielsen

et al., 1997). For the optimised structure of C3v VH0, the distance between the three

equivalent Si atoms was 4.07 Å (Table 8.4).

The barrier for the jump of the H atom between equivalent 〈111〉 directions for C1h

VH0 was calculated adiabatically to be 0.35 eV. This value must be considered an upper

limit for this barrier, as expected from a LDF-based method (Artacho & Falicov, 1991).

Experimentally, the barrier for the jump of the danging bond between equivalent config-

urations was found to be 60 meV (Bech Nielsen et al., 1997). This strongly points to

phonon-assisted, or even pure quantum, tunnelling as the mechanism responsible for such

a low, thermally activated, barrier for hoping.

The quasi-harmonic H-stretch frequency arising from the Si-H unit was calculated to

2126.3 cm−1, shifting to 1528.5 cm−1 when hydrogen was replaced by deuterium. The rel-

ative error associated with this calculation with respect to the corresponding experimental

values is 4.3 and 2.3%. This corresponds to a considerable improvement on the calculated

LVMs compared with previous calculations (Table 8.2). Using a similar methodology to

that used in the calculations described in this thesis (aimpro) but smaller clusters, Jones et

al. (Bech Nielsen et al., 1995), calculated the H- and D-stretch modes to lie at 2247.6 and

1612.6 cm−1, respectively, which implies an error of 10.2 and 7.9%.

The S1 EPR centre

As pointed out by Stallinga et al. (1998), the electronic properties of VH0 and V2H0

should indeed be similar. Based on the similarities between the EPR spectrum of VH0 and

the S1a EPR spectrum, arising from a defect with a S = 1
2 ground state with C1h symmetry



Vacancy–Hydrogen Defects 149

(Lütgemeier & Schnitzke, 1967; Gorelkinskǐı & Nevinnyi, 1991; Kleinhenz et al., 1979;

Stallinga et al., 1998), these authors assigned the latter to a neutral divacancy-hydrogen

defect, containing a single hydrogen atom (V2H0).

To model V2H, we have used the lowest-energy C2h

Figure 8.5: Two views of

the lowest-energy structure of

VH0 (C1h). The cube axes in-

dicate the 〈100〉 crystal direc-

tions.

structure of V2. One hydrogen atom was then attached

to one of the dangling-Si atoms in such a way that the

symmetry of defect became C1h, i.e., with the Si–H bond

direction along the mirror plane of V2. This structure was

then fully optimised. Details of the cluster and basis used

are given in Table 8.3.

The calculated vibrational frequency of hydrogen was

found to increase by ∼ 35 cm−1 when this impurity was

incorporated into the larger, second-order, vacancy defect

to form V2H0. This value is in excellent agreement with

the reported shift of ∼ 30 cm−1. The Si–H length was

1.50 Å. Due to the presence of H, the reconstructed Si–Si

bonds are no longer equivalent, with that closer to the H

atom being 2.86 Å long, and the other one, 2.82 Å. Before

optimisation, the length of these reconstructed bonds was

the same and equal to 2.83 Å. The frequency shifts due

to the isotopic substitution of hydrogen by deuterium are

also found in good agreement with the observed ones (Table 8.5).

It is interesting to note that despite the fact that the calculated and observed frequen-

cies show an increase of the H-stretch frequency when going from VH0 to V2H0, the Si–H

bond is longer in V2H than in VH. Even a small variation of ∼ 0.006 Å of the Si–H length,

should be more than enough to cause a 30 cm−1 shift. The main difference between VH

and V2H, is that the Coulombic interaction between the unpaired electron localised at the

dangling bond of V2H and the reconstructed bond is much weaker than that for VH. One

way to test the influence of the dangling bonds on the calculated LVMs is to passivate

one of the six dangling bonds of undistorted V2 (D3d), with hydrogen. In the optimised

structure of V2H, with ∼ D3d symmetry, the proton lay 2.95 Å away from two nearest two

dangling-bond Si atoms, for a Si–Si distance of 3.95 Å. The calculated H-stretch frequency

was found to shift downwards by ∼ 182 cm−1, for a Si–H length of 1.53 Å. Unfortunately,

the overall effect of the dangling bonds on the vibrational frequency of hydrogen seem to

be masked by that arising from a release of the strain on the Si–H bond due to outward

movement of the broken-bond atoms, which represent the main reason for the frequency

drop from VH to V2H.

8.4.3 VH2

In the VH2 defect, two of the four dangling bonds are saturated by hydrogen impu-

rity atoms. This structure is now invariant under the operations of the point-symmetry



Vacancy–Hydrogen Defects 150

Table 8.5: Comparison between the calculated and observed H-stretch fre-

quencies of VH1 and V2H (cm−1). Experimental values taken from Stallinga et

al. (1998).

Defect Symm. Mode Calc. Isot. shift Obs. Isot. shift

VH A′ 2126.3 2038.5

VD
C1h 1528.5

597.8
1494.6

543.9

V2H A′ 2161.6 2068.1

V2D
C1h 1554.9

606.7
1507.6

560.5

group C2v. Consequently, no JT distortion can occur since this group can only have

one-dimensional irreducible representations.

This point group contains two reflection operations, σv and σv′ , with respect to a

mirror plane containing the two Si–H units and another containing the non-hydrogenated

Si atoms, respectively.

The relaxation of C2v VH2 resulted in a one-electron configuration of a↑↓1 b0
2. As ex-

pected, these orbitals were found to be localised on the ‘dangling-bond’ atoms, which are

pulled together to achieve a distance of 3.37 Å after relaxation. In order to explain this

reconstruction for VH2, one has to consider the formation of this defect as resulting from

Table 8.6: Variation of the calculated (quasi-harmonic) hydrogen and deu-

terium local vibrational modes of VH3 with charge state (cm−1).

Net proton charge

Config. Mode 0 −

A1 2175.4 2190.2
VH3 E 2153.9 2164.1

A′ 2168.3 2181.6

VH2D A′′ 2153.9 2164.1

A′ 1588.4 1562.0

A′ 2161.1 2172.9

VHD2 A′ 1557.2 1567.3

A′′ 1549.9 1556.8

A1 1561.4 1572.7
VD3 E 1549.0 1556.8
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the capture of an hydrogen atom by an already distorted, C1h VH0 centre. Note that the

reconstructed-bond length is 0.07 Å longer that the corresponding bond in VH0. The other

four electrons are accommodated in the valence band a1 and b1 (resonant) states formed

from the hydrogen s orbitals and the H-saturated Si hybrids. The two equivalent H atoms

lay 1.49 Å away from their Si neighbours and 1.80 Å from each other.

The A1 and B1 vibrational modes of VH2 are calculated to lie at 2211.2 and 2204.7 cm−1,

respectively. The calculated A1–E separation between symmetric and anti-symmetric

modes of 6.5 cm−1 is in fair agreement with the observed value of 22.5 cm−1. The

symmetric H-D mixed mode was found at 2207.9 cm−1, being ∼ 620 cm−1 above the

anti-symmetric mode, in excellent agreement with the experimental value of ∼ 500 cm−1.

The S = 1 excited state of VH2

Calculations on the neutral spin-triplet (S = 1) state of VH2 have confirmed the model

proposed by Chen et al. (1990). The lowest energy structure was found to have C2v

symmetry. The possibility of a lower symmetry structure was also investigated. None

of the several distorted structures considered were found to be unstable, with the defect

evolving to an orthorhombic (C2v) arrangement as a result of relaxation.

8.4.4 VH3 versus V2H6

As it can be seen from Figure 8.3, two KS levels appear in the bandgap for neutral C3v

VH3. These are a fully occupied e-manifold with four electrons (including spin), and a

higher singlet level (a1), occupied by a single spin-up electron. Consequently, this con-

figuration leads to a paramagnetic spin-doublet state for the neutral defect. The e-level

originates from the three H-saturated sp3 hybrid orbitals, while the a1 singlet arises from

the remaining dangling-bond. This is obvious from a three-dimensional plot of the wave-

function corresponding to this level—the highest occupied KS orbital for the optimised

structure of VH0
3 (Fig. 8.6).

The symmetry of VH0
3 is confirmed to be C3v, with the three equivalent Si–H bonds

having a length of 1.50 Å. The relative distance between hydrogen atoms was 1.87 Å.

The quasi-harmonic hydrogen-related LVMs are calculated to be 2175.4 (A1) and

2153.9 cm−1 (E). These shift to 1561.0 and 1549.9 cm−1, respectively, when hydrogen

is replaced by deuterium. The mixed H-D stretch frequencies are given in Table 8.8. All

the calculated modes are within 0.1% of the experimental ones.

As mentioned previously, so far the only direct experimental observation that has al-

lowed a distinction between the two pairs of bands in question, {2155,2185} and {2166,2191}-
cm−1, relates to their relative stability. It is known from EPR that VH3 anneals out at

∼ 490 K, while the {2166,2191}-cm−1 modes only appear at T & 560 K annealing out

at ∼ 800 K. Consequently, and assuming that the disappearance of the EPR-signal is

not due to a Fermi-level effect, it is obvious that {2166,2191}-cm−1 modes cannot orig-

inate from VH3. It seems very unlikely that the ceasing of the EPR activity is due to

a VH0
3 −→ VH−3 transition since this would required the Fermi level to be close to the
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Table 8.7: Calculated H-stretch frequencies (cm−1) of neutral VH3 and V2H6 defects.

A cluster of 348 atoms, centred at a bond, was used to extract the LVMs of V2H6.

Defect Sym. Mode Calc. Obs. Defect Sym. Mode Calc. Obs.

A2u 2113 2191

A1 2175 2185 Eu 2098 2166
VH3 C3v E 2154 2155

V2H6 D3d A1g 2089 N-IR

Eg 2084 N-IR

conduction band edge. This is unlikely as the Fermi level is probably being pinned by the

(−/0) of V2 at Ec − 0.42 eV, which is known to be a prominent trap in H+-implanted

material existing in large concentrations (Bonde Nielsen et al., 1999).

Our calculations indicate that VH3 is only

Figure 8.6: 3D-isosurface plot of

the wavefunction corresponding to the

highest occupied spin-up Kohn-Sham

level of VH3 (see Fig. 8.3). Note the lo-

calization on the dangling-bond atom.

stable in the neutral and singly negatively charged

state. We predict a single acceptor at Ec−0.27 eV,

but no donor level. A detailed account of the

results on the electrical properties of vacancy-

hydrogen defects will given later in this chapter.

The calculated H- and D-related modes for these

two charge states are given in Table 8.6. It can

be seen that the calculated frequencies increase

by ∼ 10 cm−1 for all H and D modes, as a result

of the change in the defect’s charge state.

The structure used for the study of V2H6 was

optimised in a 348-atom cluster, keeping the hy-

drogen surface fixed. After relaxation, the length

of the six equivalent Si–H bond in D3d symmetry

was 1.50 Å. This value is identical to that for VH3 up to the third decimal place. The

shortest distance between H atoms in different VH3 units is 3.37 Å, with the distance

between H atoms in the same unit being 1.97 Å. Compared to VH3, the hydrogen atoms

are now further away form each other by ∼ 0.1 Å. The two A2u and Eu IR-active modes

for V2H6 are 2113 and 2098 cm−1.

8.4.5 VH4

For VH4, the a1 and t2 one-electron levels arising from the four silicon hybrids surround-

ing the vacancy are now fully occupied, resulting in the formation of four covalent Si–H

bonds. Consequently, no levels should exist in the bandgap, which results in the electrical

neutralisation of the electrical activity of the lattice monovacancy.

Confirming previous studies (Park et al., 1995; Bech Nielsen et al., 1995), the KS
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Table 8.8: A summary of the calculated and observed hydrogen and deuterium

stretch frequencies for multi-hydrogen–vacany defects in silicon (cm−1).

Mode Calc. Obs.

A1 2251.7 N-IR
VH4 T2 2239.8 2221.9

A1 2248.8 2250.4

VH3D E 2239.8 2223.5

A1 1610.9 1620.3

A1 2245.8 2243.5

B1 2239.8 2225.4
VH2D2 A1 1611.8 1628.3

B2 1610.1 1614.6

A1 2242.8 2236.1

VHD3 A1 1612.2 1636.1

E 1610.1 1615.6

A1 1613.7 N-IR
VD4 T2 1610.1 1616.1

Mode Calc. Obs.

A1 2175.4 2185
VH3 E 2153.9 2155

A′ 2168.3 · · ·
VH2D A′′ 2153.9 · · ·

A′ 1588.4 · · ·

A′ 2161.1 · · ·
VHD2 A′ 1557.2 · · ·

A′′ 1549.9 · · ·

A1 1561.4 · · ·
VD3 E 1549.0 · · ·

Mode Calc. Obs.

VH A′ 2126.3 2038.5

VD A′ 1528.5 1494.6

Mode Calc. Obs.

A1 2211.2 2143.8
VH2 B1 2204.7 2121.3

A′ 2207.9 2134.2
VHD

A′ 1586.9 1554.5

A1 1590.0 1564.0
VD2 B1 1583.9 1547.0

eigenvalue spectrum of the lowest-energy Td VH4 structure exhibited no levels in the band

gap. The length of the four equivalent Si–H bonds was 1.49 Å, for a separation between

the hydrogen atoms in the defect core of 1.83 Å.

The highest calculated vibrational mode, at 2251.7 cm−1, was found to be A1. It

corresponds to an in-phase ‘breathing’ motion of the four hydrogen atoms resulting in

a zero dipole moment, and being therefore non IR-active. The triply-degenerate T2 was

found lower in frequency at 2239.8 cm−1, in excellent aggreement with observed value of

2221.9 cm−1. The same is true for the calculated D-stretch modes of VD4. The calculated

mixed H/D modes are given in Table 8.8.
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On the convergence with basis and cluster size

As it obvious from a comparison between the calculated frequencies presented here and

those reported by Jones et al. (1995), using precisely the same method (aimpro), that

these represent a considerable improvement on the calculational accuracy. Jones et al.

based their calculations on a clusters containing 131 atoms, with a fairly small number of

basis functions. To investigate the convergence of the calculations with cluster and basis

size, VH4 was used, with the observed modes as a reference. The VH4 defect was then

embedded in three different ideal clusters containing 71, 131 and 297 atoms, optimised

using differently sized basis sets.

One immediate result was that the accuracy of the calculations converge slowly with

cluster size. Another important result concerns the choice of basis. For the 71-atom

cluster the calculated frequencies are always found to be higher than the observed ones,

independently of the ‘quality’ of the basis, with the A1 lying at ∼ 2330 cm−1.

For the two other clusters, the calculated LMVs are found within less than 80 cm−1

of the experimental values—above these for a small basis and below for a large basis. For

the largest cluster, containing 297 atoms, the same trend was observed but now with a

smaller error. The results present in this chapter for VHn were performed using a fairly

large basis with the 297-atom cluster.

Further tests were done to investigated the influence of different approaches to the

treatment of the terminating hydrogen surface. These were either kept fixed or allowed

to relax. For the latter case, full relaxations were also performed using a simple spring-

ball model to describe the terminating surface potential with the Si–H length set close

to the ideal value (1.47 Å). Within this approach, several different spring constants were

also used. For the two larger clusters, we found that a different treatment of the surface

produces only a small difference on the calculated values, of ∼ 20 cm−1, between the

relaxations with a fixed surface and the other alternative treatments.

8.4.6 Electrical properties of multi-hydrogen–vacancy defects

Calculations were carried using the same basis and cluster used for the structure optimi-

sations (Table 8.3).

The calculated levels of the several VHn defects seem to be determined by the shift and

lowering of the vacancy t2 level. This effect is monitored by starting with the undistorted

structure of VH0, with C3v symmetry, to then look at the influence of the distortion that

lowers the symmetry to C1h on the calculated ionisation levels, followed by the result of

adding one and two extra hydrogen atoms for VH2 and VH3, respectively. In each case,

we have assumed that a low spin results from the addition of hydrogen.

The single acceptor level of C3v VH, (−/0), was located 0.11 eV below the conduction

band minimum (Ec − 0.11 eV), with the single donor level at 0.74 eV above the valence

band top (Ev + 0.74 eV). For VH, with C1h symmetry, the (−/0) level is at Ec − 0.43

and the (0/+) level at Ev + 0.40 eV. This is understood as resulting from the splitting of
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the e-manifold due to reconstruction across two Si atoms, which means that the highest

occupied level is now a singlet a′ level, considerable lower in energy than the partially filled

one-electron doublet of C3v VH. For the E-centre, we place the (−/0) at Ec − 0.48 eV,

in very good agreement with the observed value of Ec − 0.44 eV (Kimerling et al., 1975).

This provides further confirmation of the similarities between this and the VH centre, i.e.,

VH reveals all the properties of a group-V–vacancy defect.

Although in good agreement with experiment for the (−/0) level, the same is not

true for the (0/+) level. We predict a single donor for both VH and VP centre. To

our knowledge, no such level has ever been reported.3 It is evident that increasing the

reconstruction, meaning further splitting of the e-level, would result in a shallower donor

and acceptor levels.

Table 8.9: Calculated electrical levels of VHn defects. (0/+) is referred to

valence band maximum (Ev) and (−/0) to the conduction band minimum

(Ec) and given in eV’s. The calculated electrical levels of the E-centre are also

shown. This centre is known to posses a single acceptor level at ∼ Ec−0.4 eV

(Watkins & Corbett, 1964).

VH (C3v) VH (C1h) VP (C1h) VH2 (C2v) VH3 (C3v)

(−/0) 0.11 0.54 0.48 0.53 0.27

(0/+) 0.74 0.40 0.39 0.00 0.00

For neutral VH2, there are now two electrons (including spin) occupying the a′ level,

for a S = 0 configuration. As a result, the singlet one-electron level is shifted downwards,

being now much closer to the valence band top. As a direct consequence of this fact,

the donor level is now buried in the valence band. The (−/0) of VH2 was positioned at

Ec − 0.53 eV, therefore being very close to that of VH. The transition-state calculation of

the affinity of VH2 for the calculation of the (−/0) level, involved the filling the b1-singlet

lying above the a′ level, with half of an electron. The latter becomes partially occupied

for neutral VH3, resulting in a shallower (−/0) at Ec− 0.27 eV. For VH4, the singlet level

is completelly filled, which results in the lowering of its position within the bandgap. This

results in a electrically passive defect, as no levels were found in the band gap.

8.5 Summary

Despite an improvement of the calculated local vibrational modes for VHn, n = 1, . . . 4,

our calculations confirm the results of Jones et al.. The vibrational properties of VH are
3Note that the observation of a level in the lower part of the band gap in P-doped Si material is only

possible by performing DLTS on p-n junctions, and not metal-semiconductor Schottky barrier devides.

This difficulty can be circunvented by the MCTS technique (§§5.5.1).
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confirmed to be very similar to those of V2H. Despite an increase of the calculational

accuracy, it is not possible to confirm the experimental assignment of the two pairs of IR

bands at {2155,2185} and {2166,2191}-cm−1 , to VH3 and V2H6 respectively.

The electrical properties of VH are confirmed to be similar to those of VP, with the

(−/0) calculated to lie at ∼ 0.50 eV below the conduction band minimum. According to

our results, VH2 should have an acceptor level lying close to those of VH and VP. For

VH3, the (−/0) level is predicted to be shallower at Ec−0.27 eV. As expected, no activity

was found for VH4.



9

Platinum and Palladium Defects

9.1 Introduction

The presence of transition-metal impurities in Si-integrated devices it is not always detri-

mental. This is the case for platinum. Intentional incorporation of Pt into Si, has been

performed to control the lifetime of charge carriers in fast-switching devices. This is of

critical importance since the lifetime of minority carriers characterises the quality of the

silicon wafer. Although widely used, intentional incorporation of Pt is carried out with

little knowledge of the properties of Pt defects giving rise to the deep levels responsible for

the adjustment of the carriers lifetime.

Early studies suggested that this control proceeds due to carrier capture and emission

from an acceptor level located 0.23 eV below the conduction band minimum (Ec−0.23 eV)

and a donor level located at 0.33 eV above the conduction band top (Ev + 0.33 eV)

(Miller et al., 1976; Chen & Milnes, 1980). Other levels, which are now known to belong

to substitutional platinum, have been proposed as responsible for the lifetime control of

carriers (Evwaraye, 1976; Lisiak & Milnes, 1976; Braun et al., 1977; Brotherton et al.,

1979).

Recently, a new interpretation of electrical properties of Pt has been put forward

(Stöffler & Weber, 1986; Lemke, 1987; Kwon et al., 1987; Gill et al., 1990). The con-

trol is achieved due to the presence of a single dominant recombination level—arising from

the so-called ‘midgap’ centre—observed in n-type material and located at Ec − 0.5 eV.

Despite being often indirectly identified as substitutional Pt, there is no consensus about

the structure or the chemical composition of this Pt-related defect from which the midgap

level originates. For example, defect structures like a platinum-platinum pair (Höhne,

1992; von Bardeleben et al., 1988) or a platinum-oxygen pair (Kwon et al., 1987; Höhne

& Juda, 1995; Juda et al., 1996) have been proposed as the centres responsible for the

midgap level.

This difficulty in the identification of the defect responsible for the levels illustrates

a weakness of DLTS. Despite being a very powerful technique for the detection of deep

levels, it does not provide any information about either the defect’s structure or its chemical

composition.

157
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The interaction of hydrogen with transition-metal impurities is usually thought as a

process to eliminate the electrical activity of the TM centre by removing the deep-lying

levels from the gap as a consequence of hydrogen chemical-rebonding, achieving what is

usually termed passivation (Benton et al., 1980; Pearton et al., 1992).

The electrical passivation of Pt (n-type) and Pd (n- and p-type) was first reported by

Pearton and Haller (1983) subjecting the Si wafers to a remote high-frequency H-plasma

at 300 ◦C. The disadvantages of this technique are low penetration depths, the creation

of native defects since the samples are subject to ultra-violet radiation and considerable

particle bombardment (Lightowlers, 1995) and possible surface damage. Additionally to

this neutralisation effect, hydrogenation can, and often does, create new hydrogen–TM-

related defects, or it can simply shift the existent levels across the bandgap (Johnson et al.,

1987; Sachse et al., 1999a). Obviously, the formation, or not, of TM–H defects is strongly

dependent on the hydrogenation process.

This is evident when hydrogen is deliberately incorporated into platinum-doped Si

(Sachse et al., 1997c; Sachse et al., 1997b), by a wet chemical etching at room temperature

(Tavendale et al., 1988), which results in the formation of a number of hydrogen-platinum

defects, containing several H atoms. A similar picture has been reported for wet-etched

Pd-doped material (Sachse et al., 1997a).

Soaking in H2 gas at high temperatures (& 900 ◦C) followed by rapid quenching to

room temperature is another method of incorporating H. This hydrogenation process has

been tailored for the study of TM-hydrogen defects in Si by spectroscopic techniques like

EPR or FTIR which require an uniform density throughout the Si bulk, typically of ≈
1015 cm−2 (Veloarisoa et al., 1991; Williams et al., 1993).

The outline of the present chapter is as follows. First we summarise the available

experimental information, combining the results of several spectroscopic studies on Pt- and

PtH-related defects and discussing the several available models for the electronic structure

of substitutional Pt− and Pd−. Secondly, we report the results of a theoretical study on the

structural properties of defects involving the TM impurities as well as hydrogen. These

results are compared with experiment, e.g., EPR and FTIR spectroscopy. Finally, we

extend the study to the electrical properties of the defects, i.e., we calculate the position

of the levels associated with the substitutional Pt centre, and investigate the effect on

these of bringing H atoms close the impurity ion. The results are compared with relevant

experimental findings, and the role of a PtH defect as a recombination centre in silicon is

also discussed.

9.2 Experimental work

It is known since the pioneering work of Woodbury and Ludwig (1962) that the plat-

inum impurity sits substitutionally in the Si lattice, being singly negatively charged in its

paramagnetic state with ground-state spin of S = 1
2 . The corresponding EPR spectrum

(T . 12 K) was interpreted as arising from a defect with orthorhombic symmetry (C2v),
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due to a displacement of the TM impurity along the dihedral [100] direction; the g-tensor

components for Pt− were gxx = 1.3867, gyy = 1.4266 and gzz = 2.0789, revealing a large

departure from the free-spin value, g0, of 2.0023. This picture has been confirmed by later

EPR studies (Henning & Egelmeers, 1983; Milligan et al., 1984; Omling et al., 1987).

9.2.1 Microscopic models for the electronic structure

Two main models exist to explain the electronic structure of substitutional transition-

metal (TM) impurities, like Pt or Pd. These are the ionic model and the vacancy model.

The ionic model was introduced by Ludwig and Woodbury (1960) as an attempt to

explain the electronic structure of interstitial and substitutional TM impurities in Si, stud-

ied by EPR (Ludwig & Woodbury, 1962). In the case of a substitutional impurity, this

model postulates the transfer of electrons from the d shell into valence states to achieve a

strong covalent hybridization between the impurity ion and its four Si nearest-neighbours,

resulting in a undistorted, tetrahedral, centre. It assumes the validity of the Hund’s rule,

as in the case of an isolated ion, i.e., zero crystal-field. In the case of a substitutional Pt

impurity (Pt−s ), the tetrahedral crystal-field splits the fivefold orbitally-degenerate d level

of the TM ion, into a triplet (t2) and a doublet (e) with the later lying below the t2 level.

The vacancy model is due to Watkins (1983) based on EPR experiments on the single-

vacancy (Watkins, 1976), A-centre (Watkins & Corbett, 1961) and the Xα cluster cal-

culations of Hemstreet on a number of substitutional TM impurities (Hemstreet, 1976).

According to this model, the properties of substitutional impurities can be understood by

considering a filled d-shell lying deep in the valence band, with the remaining electrons

occupying the gap-lying t2, vacancy-like (Hemstreet, 1976; Cartling, 1975; Alves & Leite,

1986), orbitals originating from the Si first-neighbours (Fig. 9.1). In other words, it is

assumed that all the properties of a substitutional TM impurity are simply due to the Si

sp3 hybrid orbitals, and not from the many-electron character of the TM d-shell, as in the

ionic model.

Interpretation of the experimental data

According to the vacancy model, the electronic configuration of substitutional Pt−, Pt−s
i.e., the number of electrons in the d shell, is 5d10. The Pt− impurity, as well as Pd−s
behave like a closed 5d-shell sitting on a single-charged vacancy, V−. For Pt−, three

electrons occupy the anti-bonding-like triplet lying deep in the gap (t↑↑↑2 ). This partial

occupancy of the t2-manifold provides the basis for a JT distortion.

A different electronic structure is predicted by the ionic model for Pt−: 5d7. More

generally, this model predicts an electronic configuration dq−4, for substitutional defects

in Si, with q being the number of valence electrons of the TM atom. Assuming that

electron-electron effects are more important than the crystal-field or Jahn-Teller effects,

this model predicts a high-spin configuration of S = 3
2 for Pt−, in clear disagreement with

experiment (Woodbury & Ludwig, 1962; Milligan et al., 1984; Anderson et al., 1992b).
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The vacancy model, assuming that lattice interactions (JT effect) are more important

than those between electrons, allows a low-spin configuration.

At this point, it is interesting to mention
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Figure 9.1: One-electron energy levels for

(a) the negative silicon vacancy in full

tetrahedral symmetry, (b) the d10 states

of the transition-element impurity, and

(c) the substitutional impurity in silicon

(without Jahn-Teller distortion).

the case of the Ni−s centre. In diamond, this

centre has a ground-state spin of S = 3
2 (Isoya

et al., 1990; Goss et al., 1995), whereas in sil-

icon, experiment and theory have confirmed

that Ni−s assumes the low spin configuration of

S = 1
2 (Vlasenko et al., 1990; Són et al., 1990;

Watkins et al., 1991; Watkins & Williams,

1995; Jones et al., 1995). It is still not fully

understood how the same centre can have dif-

ferent spin configurations. Despite the same

crystalline structure, exchange-correlations ef-

fects are known to be more important in di-

amond than in silicon. In addition, silicon

is also ‘softer’ than diamond, which makes

it more susceptible to JT-driven distortions.

This relates to the relative importance be-

tween crystal-field, electron-electron and JT

effects. While many-body effects are more im-

portant in diamond, it seems that static Jahn-Teller effects dominate in silicon.

For the microscopic structure, the vacancy model predicts a distorted centre similar to

V−; the electronically degenerate t2 level, being partially occupied, is therefore unstable

against a symmetry-lowering JT distortion to first-order. Like in the case of V− (Watkins,

1976; Watkins, 1992), two static distortions occur (Td → D2d → C2v) to stabilise the struc-

ture of the TM centre. This is easier to understand if one considers the formation of the

substitutional Pt− as a two-step process (Hemstreet, 1976): the first step is the formation

of the vacancy and the second is the accommodation of Pt impurity into the vacancy, which

originates the interaction of the metallic d(t2) states and the t2 vacancy orbitals, with the

later defined as linear-combinations of orbitals localised at the Si dangling-bonds. These

two steps may be combined for the formation of the defect, in what is usually referred to

as a kick-out mechanism (Gösele et al., 1980), i.e., the vacancy is created by the impurity

itself, releasing a Si self-interstitial (Pt ⇒ Pts + Sii). Experiments have confirmed the

kick-out mechanism as the preferred one for the diffusion of Pt in Si for T > 850 ◦C (Kwon

et al., 1987; Mantovani et al., 1986; Schmidt et al., 1998).

In their original paper, Ludwig and Woodbury (1962) considered a closed-shell 5d8

configuration, with a hole (j = 3
2) localised around the impurity Pt ion, to justify the

departure from Td symmetry and its paramagnetism. Lowther (1980) supported this idea,

proposing a different structure for Pt− and arguing that the resonance originates from a

hole localised at p-type bonding-orbital outside the Pt 5d-shell. According to this model,
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the substitutional Pt− centre shows a similar structure to that of the Si-A centre (Watkins

& Corbett, 1961), i.e., the Pt ion is directly bonded to two of its four Si neighbours through

its 6s and 6p atomic orbitals.

It is now obvious that only one of the models described above can account for the

properties of the Pt− centre. Experiment (Milligan et al., 1984; Stöffler & Weber, 1986;

Anderson et al., 1992a; Watkins & Williams, 1995) and theory (Alves & Leite, 1986; Beeler

et al., 1985; Anderson et al., 1991; Jones et al., 1995) have confirmed the ground-state spin

and symmetry, as predicted by the vacancy model. Despite this fact, Ammerlaan and von

Oosten (1989) have suggested that this model cannot account for the observed g values.

These authors introduced the dihedral model, a modified version of ionic model, resulting

in a structure similar to that of Lowther (1980). This results in a 5d9 configuration, S = 1
2

and L = 1, with the unpaired electron in the 5d shell, for Pt−, being this open-shell

structure responsible for the large departure of g⊥ from g0.

Using a perturbation theory approach, which included spin-orbit interactions together

with JT electron-lattice coupling, Anderson et al. (Anderson et al., 1992a) have shown that

the vacancy model can indeed account for the properties of the Pt− centre, like g values,

hyperfine parameters and its behaviour under stress. The later relates to a difficulty of this

model to predict the sense of the JT distortions for both, tetragonal and trigonal modes.

Uniaxial stress measurements (Williams et al., 1994) on the EPR lines have shown that

the t2 gap-levels split into a configuration b↑↓1 b↑2 a0
1, which is the reverse of that of the V−,

i.e, a↑↓1 b↑1 b0
2 (Watkins, 1992). Anderson et al. (1992a) have demonstrated that if non-linear

JT coupling terms are considered, the vacancy model can account qualitatively for the form

of the JT distortion undergone by the Pt−s centre. Additionally, this group were able to

explain the departure of the g⊥ from g0, in light of the vacancy model, as a contribution

to the orbital g factor from the metallic 5d orbital of the impurity atom. This admixture

was found to be ≈ 10%, consistent with a vacancy-like character, in disagreement with

the value reported by Ammerlaan and von Oosten of ≈ 70% (Ammerlaan & van Oosten,

1989).

Recently, Watkins and Williams (1995) have proved that there is definitely a close com-

petition between spin-orbit and JT effects. To illustrate this fact, this group investigated

the case of Au0
s, comparing it with Pt−s , Pd−s and Ni−s (Watkins et al., 1991; Klever-

man et al., 1995) for which they postulated that the increasing importance of spin-orbital

effects—which work against the JT driving force—going from Pt−s to Au0
s, may be respon-

sible for the fact the Au0
s centre is almost tetrahedral. It was then argued that this is the

reason why the Au0
s defect was never observed by EPR. Due to the fact that the Au0

s is

characterised by g⊥ ' 0, showing an even larger departure from the free-spin value for

Pts, the microwave transition (∆ms 6= 1) becomes very small, being difficult to detect by

EPR.
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Interaction with atomic hydrogen

Due to its diamagnetic properties, (PtH1)−, containing a single H atom was never ob-

served directly by EPR. To overcome this difficulty, infra-red absorption spectroscopy has

been used to investigate the structural properties of such complexes. Thermal treatment,

the analysis of deuterium-induced isotopic shifts and behaviour under stress are addi-

tional tools that allow the characterisation of the defects being observed by IR absorption

spectroscopy. The behaviour of the vibrational bands during annealing may correlate the

bands to a particular defect and stress-induced splittings assign the defect’s symmetry.

The Fermi dependence of the bands can be used to determine the charge state(s) of defect

responsible for the vibronic band(s).

Several local vibrational modes have been identified as arising from different charge

states of a trigonal (C3v) PtH1 defect (Uftring et al., 1995). These were the bands at 1880.7

and 1897.2 cm−1, with the lower frequency associated with the unoccupied charge state.

The fact that no shifts were detected due to 29Si, or 30Si, which might have provided some

evidence for a Si–H bond, prevented the identification of the lattice site occupied by the H

atom. (Evans et al., 1997) If one compares the observed LVMs of PtH1 and AuH1 (Evans

et al., 1997; Evans et al., 1999), it is than obvious that their vibrational properties are

indeed similar (70 cm−1 separation between PtH1 and AuH1 modes), suggesting a similar

microscopic structure for both defects. Although, the symmetry assignment is different

for the two complexes. AuH1 has monoclinic (C1h) symmetry (Evans et al., 1999), in −,

0 and + charge states, while the PtH1 is a trigonal or near-trigonal defect (Uftring et al.,

1995). To explain the lowering in symmetry for AuH1, Evans et al. (1999) have suggested

that an off-site displacement occurs along the [100] direction in a similar way to that of

Pt−s .

Combined EPR and LVM spectroscopy measurements (Uftring et al., 1995) have al-

lowed the identification of additional H-related stretch bands at 1888.2 and 1901.6 cm−1, as

antisymmetric and symmetric modes of PtH−2 , stable up to 600 K. Additional H-vibrations

have been detected and assigned to other charge states of the same PtH2 defect. These are

given in Table 9.3.4. The involvement of two equivalent H atoms in the complex was un-

doubtedly proved by the analysis of the angular dependence of the g tensor and the 195Pt

hyperfine tensors in the EPR measurements, which revealed a C2v symmetry. Further-

more, the analysis of the anisotropic part of the hyperfine tensor, located the H atom at a

distance of ∼ 4.2 Å from the central Pt ion. This distance is consistent with a model for

the PtH2 defect, in which the H atoms lie at anti-bonding sites (AB), being back-bonded

to two of the Si neighbours of Pt−, as in the case of (NiH2)− and (AuH2)0 (Jones et al.,

1995; Resende et al., 1999). The EPR measurements of Höhne and colleagues (1994) have

confirmed the above assignment (Uftring et al., 1995). As a point of detail, it is impor-

tant to mention that in their EPR experiments, hydrogenation proceeds by subjecting the

samples to a H2O-vapour atmosphere in the temperature range of 800–1200 ◦C.
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Electrical levels

It is now accepted, as a result of optical (Armelles et al., 1986; Omling et al., 1987; Olajos

et al., 1989) and capacitance measurements (Brotherton et al., 1979; Stöffler & Weber,

1986; Zimmermann & Ryssel, 1991; Lemke, 1995; Sachse et al., 1997b), that Pt can exist

in four different charge states, as a substitutional impurity in Si. As a result of electron

and hole transitions between the several charge states of the defect, three levels exist in

the bandgap. These are given in Table 9.1.

Table 9.1: Activation energy ∆E, majority capture cross sections σ, activation

energy of the capture cross section Eσ, the enthalpy ∆H and the entropy factor Xs

for Pt and Pd energy levels. Values taken from Sachse et al. (1997c).

Level ∆E (eV) σn,p (cm2) Eσ (eV) ∆H (eV) Xs

(−/0) Ec − 0.23 5× 10−15 0 Ec − 0.23 0.5

Pt (0/+) Ev + 0.33 8× 10−16 0 Ev + 0.33 16

(+/+
+) Ev + 0.09 2× 10−17† 0.03 Ev + 0.06 10

(−/0) Ec − 0.22 5× 10−15 0 Ec − 0.22 0.8

Pd (0/+) Ev + 0.33 8× 10−16 0 Ev + 0.33 21

(+/+
+) Ev + 0.14 1× 10−16† 0.03 Ev + 0.11 7

† Temperature dependent.

It is obvious from the above table, that the level structure of Pds is very similar to

that of Pt, which strongly suggests a similar microscopic structure for all charge-states of

substitutional Pd. The (−/0) of Pd occurs at Ec − 0.22, the (0/+) at Ev + 0.31, and the

(+/+
+) level at Ev +0.14 eV (Lemke, 1984; Zimmermann & Ryssel, 1991; Gill et al., 1993;

Sachse et al., 1997a). The activation energies of the donor levels of Pd and Pt were found

to be electric-field dependent. A decrease in the activation energies of the levels, having

as a consequence the enhancement of their emission rates, was observed, as predicted by

Poole and Frenkel (1938).

Wang et al. (1988) as a result of stress measurements on the DLTS bands observed in

Pd-doped Si, have suggested that the above (−/0) and (0/+) levels arise from a tetrahedral

(Td) defect while a level at Ec−0.18 eV level comes from a defect exhibiting C2v symmetry.

No second donor level was reported.

Apart form the levels attributed to isolated Pt, many other levels were reported in

the literature (see Brotherton (1979) and references therein). For example, Evwaraye and

Sun (1976) reported a total of six levels in Pt-doped Si, interpreting two of them as the

single acceptor and donor levels of Pt. Performing DLTS experiments on np-junction

devices with different doping levels for n- and p-type structures (phosphorus- and boron-

doped, respectively), Evwaraye and Sun were able to assign some levels to complexes of
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platinum with shallow dopants, based on the fact some of those levels were only present

in p-type structures, while others were only observed in n-type devices. An example is the

level at Ev +0.41 eV, previously reported by Woodbury and Ludwig (1962) which was not

present in p-type material, suggesting a Pt-P complex as responsible for the level. One

of the levels detected by Evwaraye and Sun, located at Ec − 0.34 eV, was proposed as a

candidate for the dominant centre. This level disappeared from the DLTS thermal scan

when holes were injected into the depletion region of the n-type junction device. Despite

this strong evidence of an efficient recombination centre, its origin remains unknown.

Table 9.2: Activation energy ∆E, majority capture cross sections σ, activation

energy of the capture cross section Eσ and the enthalpy ∆H for a number of

PtH-related electrical levels.

Level ∆E (eV) σn,p (cm2) Eσ (eV) ∆H (eV)

E(90) Ec − 0.18 1× 10−17† 0.02 Ec − 0.16

E(250) Ec − 0.50 2× 10−16 0 Ec − 0.50

H(150) Ev + 0.30 9× 10−16 0 Ev + 0.30

H(210) Ev + 0.40 3× 10−17 0 Ev + 0.40

† Temperature dependent. The values of ∆E and ∆H for the single donor level

are given from extrapolation to zero field. These and the other values are taken

from Sachse et al. (1997b).

Recent DLTS experiments (Stöffler & Weber, 1986; Lemke, 1987; Kwon et al., 1987;

Gill et al., 1990) have detected a midgap level at ∼ Ec−0.50 eV observed near the surface

region of the n-type Schottky diodes. The fact that this level was found in low concen-

trations, was invoked to explain why it was not observed previously. According to the

Shockley-Read-Hall (SRH) model (Shockley & Read Jr., 1952; Hall, 1952), this ‘midgap’

level presents itself as a better recombination centre than that reported by Evwaraye and

Sun (1976). According to SRH, the rate for successive capture of electrons and holes

increases exponentially with energy depth.

Sachse et al. (1997c) presented a different interpretation of dominant recombination

centre in Pt-doped Si. According to this group, the midgap level arises from a defect

involving Pt and hydrogen, introduced by room temperature wet etching, and not from

an isolated platinum impurity, as suggested by Gill et al. (1990). Sachse et al. (1997c)

interpreted the level at Ec − 0.55 eV, observed by Gill and colleagues (Gill et al., 1990),

as the single acceptor level of substitutional gold, due to a residual Au contamination.

The DLTS spectrum of n-type hydrogenated Si samples exhibited two distinct peaks,

(E90) and (E250), at Ec−0.18 and Ec−0.50 eV, respectively (Sachse et al., 1997c; Sachse

et al., 1997b), The corresponding electron-cross sections were 1×10−17 and 2×10−16 cm2.

The smaller capture cross section of the first is consistent with a (=/−) level. Depth
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profiling and thermal annealing on the above DLTS peaks have suggested that E(90) and

E(250) are levels of two different Pt-hydrogen defects stable up to 600 K. This study

has also provided some evidence for the passivation of Pt in their n-type samples. Near

the sample surface, the concentration of the three levels, E(90), Pt(−/0) and E(250),

did not add up to the concentration of the Pt(−/0) in ‘H-free’ (cleaved) samples. This

suggests that a passive defect has been formed, in the H-rich near-surface region, as a

result of the interaction of atomic hydrogen with the Pt ion. Minority-carrier transient

spectroscopy (MCTS) measurements (Sachse et al., 1997c) on p-type samples revealed that

the concentration trap E(250) is higher than that of H(210), suggesting that these do not

belong to the same centre. A similar situation was observed for wet-etched Pd-doped n-

silicon, between 450 and 600 K in the DLTS scan after annealing (Table 9.3). The (−/0)

level of Pds is recovered for temperatures above 600 K.

Table 9.3: Activation energy ∆E, majority capture cross sections σ, activation

energy of the capture cross section Eσ and the enthalpy ∆H for a number of

PdH-related electrical levels.

Level ∆E (eV) σn,p (cm2) Eσ (eV) ∆H (eV)

E(60) Ec − 0.10 1× 10−18† 0.03 Ec − 0.07

E(160) Ec − 0.29 2× 10−16 0 Ec − 0.29

E(200) Ec − 0.43 2× 10−17 0 Ec − 0.43

H(280) Ev + 0.55 5× 10−17 0 Ev + 0.55

H(140) Ev + 0.24 5× 10−16 0 Ev + 0.24

H(55) Ev + 0.08 2× 10−17 0 Ev + 0.08

H(45) Ev + 0.07 1× 10−18 ? Ev + 0.07

† Temperature dependent. The values of ∆E and ∆H for the single donor level

are given from extrapolation to zero field. These and the other values are taken

from Sachse et al. (1997d; 1997a).

The passivation by hydrogen was observed by Pearton and Haller (1983), who were able

to remove the Pt(−/0) level from the upper part of the bandgap. The Pt(0/+) suffered not

change with hydrogenation (low-pressure 300 ◦C H-plasma). Unexpectedly, no H-related

levels were reported by these authors.

In a following paper, Sachse et al. (1997b) reported four DLTS signals in p-type Si,

including the single and donor levels of isolated Pt. The concentration of the levels was

shown to be strongly dependent upon the temperature and duration of the annealing pro-

cedure. The concentration of the (0/+) and (+/+
+) levels were identified in all samples,

clearly confirming that these are levels of the same defect. A peak at T = 210 K, detected

right after etching, was enhanced after a annealing at 400 K, with the simultaneous re-

duction of the concentration of (0/+) and (+/+
+) DLTS peaks. This peak, H(210), was
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identified as arising from a level located at Ev + (0.40 ± 0.03) eV (Table 9.2). Longer

annealing at T = 490 K has revealed another peak, H(150), at Ev + (0.30 ± 0.03) eV

(σp = 9 × 10−16 cm2). Both H(150) and H(210) disappeared after annealing at higher

temperatures (T > 650 K). The observation of a Poole-Frenkel effect for the H(150) level

strongly suggests that this is an acceptor (−/0) level detected in the lower part of the

bandgap (Weber, 1999).

Depth profiling under reverse bias annealing (RBA) suggested that the two levels,

H(150) and H(210), arise from PtH defects involving a different number of hydrogen atoms.

The latter, H(210), is detected immediately after etching suggesting a defect with few

hydrogen atoms.

This can be understood as a direct effect of the RBA on the stability of B-H pairs.

This was confirmed by depth profiling of the net acceptor activity in the p-type samples,

by means of capacitance-voltage (CV) measurements. It was then evident from the CV

profiles, that the RBA results in a drift of atomic hydrogen (H+), being released from

previously stable B–H pairs (stable up to 400 K), towards higher depths and away from

the sample surface. The CV profiling also revealed the character of the H(150) level. The

CV profiling showed an increase of the net concentration of acceptors at depths where that

of H(150) is maximum, revealing the acceptor-like character of the level.

Correlation between DLTS and EPR results

Uftring and co-workers (1995) as a result
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Figure 9.2: Energy-level diagram depict-

ing the levels of Pt and PtH as observed

by DLTS, and PtH2 from EPR. The filled

rectangles indicate that the (−/0) of PtH2

is between Ec−0.045 and Ec−0.1 eV and

that the (−/0) is between Ec − 0.23 and

Ev + 0.33 eV.

of EPR and LVM spectroscopy studies on PtH

defects, were also able to identify elegantly

some of the electrical levels of PtH2. Varying

the pseudo-Fermi level position by either us-

ing samples with different Pt concentrations,

or through band-gap light illumination, and

using the levels of Ci produced by 2.5 MeV-

electron irradiation as markers (Williams et al.,

1993), these workers were able to locate two

levels of PtH2 within a certain energy range.

A second acceptor was found between the (0/+)

level of P and that of the (0/+) of Ci, i.e., in

the range 0.045–0.1 eV below the conduction

band minimum, and a single acceptor was lo-

cated between the single acceptor and donor

levels of substitutional Pt (Fig. 9.2).

The question now is how do the levels ob-

served by Sachse et al. (Sachse et al., 1997c; Sachse et al., 1997b) correlate with the

findings of Uftring and co-workers (1995; 1993) Simply looking at their thermal stability,

either three levels lying in the upper part of the bandgap—E(90), E(250) or H(210) — are
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possible candidates for the two levels of PtH2 detected by Uftring et al. (Uftring et al.,

1995; Williams et al., 1993). However, despite an apparent similarity in thermal stability

between the DLTS peaks and the EPR signals, this assignment cannot be made. E(90)

and E(250) are very likely levels of a different PtH complex and E(90), at Ec − 0.18 eV,

seems to be too deep to be the double acceptor of PtH2 (by ∼ 80 meV), observed by

EPR and LVM spectroscopy. This difference is larger larger than the error in determining

ionisation enthalpies in the DLTS experiments (typically of ∼ 10 meV). This discrepancy

does not seem to be understood (Sachse et al., 1999b).

Determination of the number of H atoms in TM–H complexes from DLTS

The analysis of the annealing behaviour and depth profiling characteristics of a DLTS

spectrum are two powerful techniques that are usually used to tentatively assign two or

more peaks to a particular defect, or alternatively, to refute that same assumption. An

example of the later is the case of the E(90) and E(250) DLTS peaks.

Depth profiling under RBA strongly suggested that these two levels do not arise from

the same defect. Similarly, H(210)—an acceptor level detected in p-type material—is a

different defect from that responsible for E(250). Assuming that all these defects involve

a single Pt ion and H, these must contain a different number if H atoms. Unfortunately,

DLTS cannot provide any information about the number of H atoms in the PtH complexes.

Recently, Feklisova and Yarykin (1997) have proposed that the variation of the defect

concentration with depth can be used to identify the chemical composition of the defect

using DLTS, in particular defects containing several hydrogen atoms. The foundations of

Feklisova and Yarykin’s conjecture are based on the observed superlinear dependence on

the hydrogen concentration of the TM–H defects as a function of the penetration depth.

The concentration profiles of mobile hydrogen and hydrogen can be described by the

following diffusion equation (Feklisova & Yarykin, 1997):

∂[H]
∂t

= D
∂2[H]
∂x2

+ v
∂[H]
∂x
− [H]

τ
, (9.2.1)

where [H] is the concentration of mobile hydrogen, x is the distance to surface, v is the etch

rate, D and τ are the diffusion coefficient and lifetime of mobile hydrogen, respectively.

Assuming a deep enough layer, all these coefficients can be considered constant and the

steady-state solution of the above equation can be written as

[H] = H0 exp (−xL) , (9.2.2)

where (Feklisova & Yarykin, 1997),

L =

√
1

D τ
+

( v

2D

)2
+

v

2D
. (9.2.3)

Assuming that all the H-related complexes formed by subsequent addition of H atoms

are thermally stable, the concentration of the complexes containing n hydrogen atoms,

[An], can be described as

∂[An]
∂t

= v
∂[An]
∂x

+ 4π D (rn−1 [An−1]− rn [An]) [H] (9.2.4)
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Table 9.4: Penetration lengths Ln and the corresponding experimental assign-

ments for PtH and PdH complexes (Sachse, 1997; Sachse et al., 1997d).

Level Ln (µm) L1/Ln n Assignment

E(250) 1.55 ± 0.05 1 1 PtH1

E(90) 0.80 ± 0.02 1.95 ± 0.1 2 PtH2

H(210) 0.78 ± 0.02 2.0± 0.1 2 PtH2

H(150) 0.48 ± 0.05 3.2± 0.4 3 PtH3

E(60) 0.71 ± 0.08 2.3± 0.4 2–3 PdH2,3

E(160) 0.52 ± 0.06 3.2± 0.3 3 PdH3

E(200) 1.62 ± 0.03 1 1 PdH1

H(45)/H(55) 0.57 ± 0.06 2.9± 0.3 3 PdH3

H(140) 0.49 ± 0.06 3.3± 0.5 3–4 PdH3,4

H(280) 0.82 ± 0.03 2.0± 0.1 2 PdH2

where rn is the capture radius of hydrogen to the TM–H complex.

Assuming that [An]� [An+1], we can ignore the second term in parenthesis in (9.2.4),

to write its solution as

[TM–Hn] ∝ exp (−xLn) and Ln =
L

n
, (9.2.5)

with Ln being the characteristic penetration depth of the TM–H defect, defined by (9.2.3).

The slope resulting from the linearisation of the concentration–depth curve provides

Ln for a particular trap. The ratio L1/Ln between a reference penetration depth, L1,

and that of a given defect is then simply the number n of H involved in the defect. The

reference trap is usually taken to be that which shows a larger penetration depth, and

consequently should involve only one H atom. The relative penetration depths for Pt– and

Pd–H defects are given in Table 9.4. The levels E(250) and E(200) are the reference traps

(L1) for Pt and Pd respectively. The proposed assignments for the observed DLTS level

of Pt– and Pt– are given in Table 9.4.

Applying this method to the DLTS traps E(90) and E(250), for which L is equal to

0.80 and 1.55 µm respectively (Sachse, 1997), and using latter as the reference, one obtains

L(90)/L(250) ' 1.95. In other words, E(90) involves two times more H atoms than E(250),

i.e., assuming that the complex responsible for E(250) contains a single H atom, E(90)

should be assigned to a PtH2 complex.



Platinum and Palladium Defects 169

9.3 Results

9.3.1 Cluster and basis

The calculation were performed on a tetrahedral cluster containing 131 atoms (Si71H60),

centred at an atom site. In the defect cluster, the impurity replaced the central Si host

atom. For the optimisation runs, the hydrogen terminators were kept fixed. The atomic

basis used is described below (Table 9.5).

Table 9.5: Atomic basis and basis expansion type used for the calculations

on Pt and Pd–H defects. N and M denoted the number of orbitals used to

describe the wavefunction and charge density respectively. One additional

basis function was placed midway between all bonded pairs for the electrical

level calculations.

Cluster Atom N M Basis expansion chden

Pt/Pd 8 14 both big

Si71H60 Si 5 4 all big

H 3 2 all minimal
0

Bond-centres all bonds 2/3 2/3 big

9.3.2 Microscopic structure as isolated species

To model the Pt centre, two different configurations have been considered: an undistorted

Td structure and the distorted orthorhombic C2v structure. For both, Pt was embedded in

a negatively charged tetrahedral Si70H60 centred around the Pt substitutional site. For the

initial structure of Pt−s (C2v), the TM ion was displaced along the [100] direction by 0.25 Å,

resulting in the lowering of symmetry of the otherwise Td defect. To avoid self-consistency

problems during spin optimisation (numerical instabilities due to charge-sloshing) (Jones

et al., 1995) and allow the JT distortion, the levels were filled according to Fermi statistics

at 0 K, in a low-spin configuration for a ground-state spin S = 1
2 . Similar structures were

considered for the isoelectronic Pd−s centre.

The self-consistent energy of the cluster and the inter-atomic forces acting on the inner

71 atoms for the above two configurations of Pt−s and Pd−s were found as a result of the

ab initio optimisation of the cluster atomic positions.

The spin-polarised Kohn-Sham eigenvalue spectrum corresponding to the optimised

structure of undistorted Pt−s revealed a single one-electron gap level: a partially occupied

t2 manifold. No other levels were found in the Si bandgap. For the C2v configuration, three

closely spaced singlet levels lay in the bandgap as a result of splitting of the t2 manifold, a

consequence of the off-site displacement of the Pt ion and the simultaneous re-arrangement
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of the Si atoms surrounding the ion.

The optimisation of the undistorted Pt−s , resulted in an outwards breathing motion

of the Si nearest-neighbours of the impurity. The four Pt–Si bonds were equivalent with

lengths equal to 2.48 Å, being 4% longer than a relaxed Si–Si bond (2.38 Å) in a pure Si

cluster. For Pd−s , there is a larger outward movement of the first shell. Accordingly, the

Pd–Si lengths were 2.64 Å for an increase of ≈ 11% relatively to a bulk Si–Si bond.

For both Pt− and Pd−, the relaxation of the distorted C2v structure revealed a very

small departure from the central lattice site, with the TM ion sitting 0.05 and 0.02 Å

away from the Td site, respectively. The Si atoms moved away and towards each other by

pairs, as in the case of the dominant tetragonal (D2d) distortion of V−. The Si–Pt lengths

were 2.44 and 2.48 Å (Table 9.6). This slight distortion is consistent with the ease of

reorientation of the TM impurity around the central lattice site, observed experimentally

even at very low temperatures (T = 4.2 K) (Anderson et al., 1992b). The adiabatic barrier

for the off-site displacement, defined as the difference in total energy between Td and C2v

configurations, was calculated to be 0.15 eV for Pt−s and 0.14 eV for Pd−s .

To test the dihedral model of Ammerlaan and van Oosten, (Ammerlaan & van Oosten,

1989) a third configuration for Pt−s was considered. Following the prescription of this

model, the structure was constructed by moving the impurity Pt ion 1.0 Å away from the

central lattice site and along the [100] direction, being now much closer to two of its Si

neighbours. Additionally, the bond between the pair of Si atoms in the (110) plane was

slightly reconstructed. This configuration was found to be unstable, as the Pt ion moved

back considerably to the central Td site as a result of relaxation. The Pt found a stable

position at 0.19 Å away from the Td and along the [100] direction. This structure was

0.12 eV higher in energy than that of orthorhombic Pt−s defect described previously.

9.3.3 Transition-metal–hydrogen defects

The effect of H on the structure of the Pt and Pd centres was investigated using a tetra-

hedral PtSi70H60+n cluster, with n being the number of H atoms added to the centre,

running from 1 to 4.

There are two obvious, high-symmetry, lattice sites which can accommodate atomic

hydrogen: bond-centred (BC), midway between the central TM ion and one of its imme-

diate neighbours; and anti-bonding (AB), back-bonded to first-shell Si atoms. Following a

suggestion by Evans and co-workers (Evans et al., 1997), an additional configuration was

considered. For this, the H atom lay inside the vacancy cage at an AB position to the TM

ion along the trigonal axis. At first sight, it may seem that this configuration can only

be possible for TM–H defects, involving a single H atom. We will show that this intuitive

statement seems to be indeed correct. For all the PtHn defects modelled (n = 1 to 4),

our results, together with available experimental information show that the structures for

which the H atoms lie outside the vacancy cage, at AB sites, are the most probable ones.

The fact that the TM impurities are characterised by large covalent radii, provoking per

se a considerable relaxation of the vacancy cage on trying to reproduce their environment
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(a) PtH−1 : ABout (b) PtH−1 : ABin

Figure 9.3: Optimised structure of C1h PtH−1 complexes with the hydrogen

atom at anti-bonding (AB) sites, outside (a) and inside the vacancy (b). Cube

axes indicate the 〈100〉 directions.

as isolated species, makes the probability of sharing it with more than one H very small.

The presence of multiple H atoms would represent further perturbation to the defect’s

structure arising from the Coulombic repulsive interaction between H atoms and between

these and the electrons in the Si dangling-bonds orbitals.

To study PtH1 and PdH1 defects, we have considered mainly two configurations: AB

with the H atom lying outside the vacancy, which we will refer to as configuration (a),

and a second AB configuration, with the H atom lying inside the vacancy cage. These two

configurations, (a) and (b) respectively, are shown in Figure 9.3. Both were investigated in

trigonal (C3v) and near-trigonal (monoclinic C1h) symmetries. For completeness, a third

configuration was able considered (c), in which the hydrogen impurity atom sat at the

bond-centred (BC) site.

The lower symmetry structure was set by either moving the TM ion off-site or by

reconstructing the bond across Si atoms in the (100) plane. These structures were investi-

gated in three different charge states. The BC configuration (c) was found to be unstable

as a result of optimisation under C1h symmetry. The H atom moved from its initial BC

lattice position to sit at an AB position back-bonded to Pt along the trigonal axis, i.e.,

configuration (b) (see Fig. 9.3).

Energetically, our calculations have confirmed the C1h structure of (PtH1)− in config-

uration (a), with a slight reconstruction of the Si–Si bond in the plane perpendicular to

trigonal axis with the TM occupying the central cluster site as the lowest energy one, when

compared with the trigonal C3v structure or that in which the Pt ion was initially moved

off-site. Quantitatively, the former and the latter were found to be degenerate in energy.

The structure optimisation of (PtH1)− in configuration (a) showed a collective move-

ment of the atoms lying along the [111] direction, with an outwards movement of the Si

atom to which the H atom is bonded and a slight displacement of 0.13 Å by the Pt ion

along the trigonal axis away from the central Td site (Figure 9.3a). The Pt–H distance

was 4.53 Å. The outwards relaxation of the Si–H dimer can be understood as result of sp2
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bonding between the Si atom and its three Si nearest-neighbours. Back-bond angles of

119.4 and 119.8 and 119.4ø supported this argument. Despite being four-fold coordinated,

the Si atom directly bonded to H (Si–H length of 1.58 Å), and its three immediate Si

neighbours formed an almost planar system, further confirming a sp2 hybridization.

For the relaxed structure of (PtH1)− in configuration (b), the impurity atom moved

0.21 Å away from the central site along the [1 1 1] direction. This is a consequence of the

strength of the Pt–H bond. Its length was 1.58 Å. The distance between the Pt ion and

the two Si atoms lying in the (110) plane reflected the distortion of the defect. These were

equal to 2.54 and 2.48 Å. The Pt–Si length of the bonds between the Pt ion and the other

two Si atoms were 2.53 Å. The Pt–H length was 1.58 Å.

Unfortunately, experiment has not been able to make a distinction between the can-

didate configurations (a) and (b) (Uftring et al., 1995). Our calculations have revealed

that the two structures are almost degenerate in energy, with (a) being 12 meV lower than

configuration (b) of PtH−1 . It is, therefore, not possible to invoke energetics and comment

on this energy difference, since it is smaller than the predicted error of an LDF-based

method (Kohn, 1997). Interestingly, the adiabatic re-orientation barrier is very similar for

both configurations. These energy barriers for the hoping of H between equivalent <111>

directions were approximately 38 and 50 meV for configurations (a), for which the H atom

is back-bonded to a Si atom, and (b), with the H atoms directly bonded to the Pt ion,

respectively.

This situation changes for PtH2, for which there is a wealth of experimental information

(Williams et al., 1993; Williams et al., 1994; Uftring et al., 1995; Höhne et al., 1994). For

PtH−2 , we found the C2v AB structure with two equivalent H atoms back-bonded to two

Si nearest-neighbours of the TM ion to be the preferred structure (Fig. 9.5). A similar
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Figure 9.4: Scaled spin-polarised Kohn-Sham eigenvalue spectra of op-

timised singly negatively charged Pt and PtH defects. Only gap levels

are shown.
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Table 9.6: Structural parameters for the Pt−s and neutral PtHn centres. Those for

PtH−1 values are given for the two competing configurations. d is the distance of the

Pt atom of the centre of the cluster, i.e., a measure of the off-site displacement of

the Pt ion from the Td site. Values in Å.

Sym. Pt–Si Pt–H H–Si d

Pt−s Td 2.477 2.477 2.477 2.477 · · · · · · 0.000

Pt−s C2v 2.441 2.441 2.476 2.476 · · · · · · 0.051

PtH−1 (a) C1h 2.483 2.483 2.488 3.008 4.531 1.523 0.134

PtH−1 (b) C1h 2.528 2.528 2.480 2.540 1.578 · · · 0.218

PtH−2 C2v 2.451 2.451 2.929 2.929 4.450 1.521 0.000

PtH−3 C3v 2.419 2.968 2.968 2.968 4.494 1.526 0.016

PtH−4 Td 2.838 2.838 2.838 2.838 4.367 1.529 0.000

situation was found for PdH−2 .

The relaxed structure of the di-hydrogen–Pt complex showed that the ion remains on

site as a consequence of adding an extra H at the AB position, sitting 1.52 Å away from

the Si to which it is bonded and 4.45 Å from the Pt ion. Note that Uftring et al. (1995)

estimated a value of ≈ 4.2 Å for the distance between the Pt ion the H atom, from an

analysis of the anisotropic contribution to the hyperfine tensor. These experimental results,

together with the results described above, provide the final confirmation of the AB sited

model (configuration (a) – Fig. 9.5).

Uftring et al. (1995) claimed that for PtH−2 , the ion should move off-site, due to a

residual JT distortion from the isolated Pt−s centre, further re-enforced by the presence

of two equivalent H atoms. To investigate this suggestion, an extra H was added to

the optimised structure of PtH−1 with monoclinic symmetry, with the Pt ion ∼ 0.13 Å

away from the Td site (vide Table 9.6), which was then relaxed, releasing all symmetry

constraints. The resulting structure was very similar to the relaxed structure of (C2v)

PtH−2 , with the Pt ion returning spontaneously to the central lattice site. This suggests

that the two equivalent H atoms do not enhance the JT distortion responsible for the

off-site displacement of the TM ion, but rather inhibit it.

Obviously, the above structure for PtH−2 is not the only one that might satisfy the

defect’s symmetry as found experimentally. This is the case of an analogue structure

to PtH−1 in configuration (b) (Figure 9.3). The two H atoms are still equivalent in the

(110) plane but now lie inside the vacancy cage. The Pt–H length was 1.71 Å. The H

atoms are now much closer and a strong coupling should be expected. Experimentally,

the frequency separation between symmetric and anti-symmetric modes is only 13.4 cm−1,

strongly suggesting a large separation between the H atoms. This was confirmed by our

calculations. For structure (a), in which the two atoms sit outside the first shell cage and
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Table 9.7: Calculated and observed hydrogen and deuterium stretch frequen-

cies (cm−1) for C2v (PtH2)q complexes in three charge states, q.

Charge state q = 0 q = −1 q = −2

Config. Sym. Calc. Obs. Calc. Obs. Calc. Obs.

A1 2081.4 1891.9 1986.2 1901.9 1959.8 1898.0
PtH2

B1 2077.5 1873.1 1986.1 1888.2 1943.5 1889.0

A2 2079.5 1880.3 1986.2 1894.6 1951.7 1893.9
PtHD

B2 1495.2 1361.0 1429.2 1366.9 1400.9 1367.5

A1 1496.6 1365.2 1429.2 1370.7 1406.9 1363.3
PtD2 B1 1493.8 1352.4 1429.1 1362.5 1395.1 · · ·

are separated by 7.24 Å, the A1–B1 mode separation was 0.1 cm−1, while in the case of

(b) this separation was ∼ 74 cm−1, with the two H atoms separated by 2.80 Å (Table 9.7).

The vibrational properties of these PtH defects are discussed below.

9.3.4 Vibrational properties

For the PtH1 defect, in either configuration (a) or (b), it is reasonable to assume that only

two atoms are involved in the local vibrational mode of the defect, with these being the

H atom and its immediate neighbour. Hence, the effect of both the light hydrogen atom

and its nearest neighbour, which is a Si atom in configuration (a) and the Pt ion for (b),

assuming that the vibrational modes are harmonic and the neglecting the motion of second

and further neighbours of H, can be described by the expression (Leigh & Newman, 1982;

Leigh et al., 1994)

ω2 = Λ
(

1
m

+
1

χMN

)
, (9.3.1)

where m is the mass of hydrogen, MN is the mass of the nearest-neighbour atom and χ a

parameter. Using equation (9.3.1), it is possible to extract the value of MN from the ratio

of the vibrational frequencies for the isotopic substitution of hydrogen by deuterium (D).

Analytically,

MN '
ω2

H − ω2
D

2ω2
D − ω2

H

. (9.3.2)

Here, we have used a typical value for χ, i.e., χ = 2 (Newman, 1973), with mH and

mD equal to 1 and 2, respectively. This expression will allow us to identify the defect

responsible for the vibrational spectra observed by Uftring et al. (1995) by comparing the

experimental and calculated values of MN . Assuming that the calculated quasi-harmonic
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Table 9.8: Calculated and observed hydrogen and deuterium stretch frequencies (cm−1) for

two configurations (see Fig. 9.3) of PtH1 (C1h) in three charge states, q. The corresponding

values of MN and ωH/ωD, are also shown.

q = 0 q = −1 q = −2

(a) (b) Obs. (a) (b) Obs. (a) (b) Obs.

PtH1 2034.1 2098.9 1880.7 2022.2 1961.5 1897.2 1910.3 2174.8 · · ·
PtD1 1464.3 1486.8 1358.5 1453.2 1389.2 1368.8 1373.4 1540.3 · · ·

MN 13.2 139.2 11.0 14.7 156.3 11.7 14.3 154.1 · · ·
ωH/ωD 1.389 1.412 1.384 1.392 1.412 1.386 1.391 1.413 · · ·

vibrational frequencies are indeed harmonic, anharmonicity can be brought into this picture

via the expression (Davidson et al., 1993)

ν = ω − B

m
, (9.3.3)

defining the anharmonic frequency. B is a measure of the anharmonicity and ω the ‘har-

monic’ frequency. Fitting this expression to the calculated and observed H-stretch frequen-

cies of PtH−2 , we found the frequency correction due to anharmonicity to be ∼ 40 cm−1.

Despite this, the inclusion of such a correction does not qualitatively change the results of

this simple method, which are presented next.

It is convenient to first apply equation (9.3.2) to the case of PtH2 before proceeding to

PtH1. As previously discussed (§9.3.3), the two H atoms in the di-hydrogen–Pt complex

sit at anti-bonding lattice positions being back-bonded to two Si neighbours of the Pt ion.

Applying the above expression to calculate the mass of the atom directly bonded to the H

atom, one should obtain the exact mass of Si, i.e., 28 a.m.u. In a similar way, we should

obtain a much larger value for MN , 195 a.m.u., for PtH2 in configuration (b). The values

of MN for both the calculated and observed Si–H stretch frequencies of PtH2 (A1 and B1

modes) are given in Table 9.9.

From the values of MN obtained from the observed stretch modes, it is not obvious

that a Si atom is attached to H, since MN varies between 11 and 15 a.m.u. for the different

charge states of PtH2. Although, if one compares these values with the calculated ones

for both structure (a) and (b), it is evident that whatever is the atom responsible for the

vibrational modes, it must be the same in both structure (a) and in the defect giving rise

to the observed H-related modes. The calculated values of MN for structure (b) of PtH−2 ,

are obtained within ≈ 10% of the mass of Pt.

To overcome the errors due to anharmonicity in the calculation of LVMs, we compare

the ratio of the frequencies for corresponding H and D stretch modes for the several defect

configurations. These ratios are then used to identify the atomic species other than H,

responsible for the vibration. This ratio, ωH/ωD, for the isolated Si–H and Pt–H dimers
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was calculated to be 1.390 and 1.410 respectively. This small difference in the ωH/ωD

ration of isolated dimers, is well reproduced by the defect structures. As it can be seen in

Table 9.9 for PtH2 modes and in Table 9.8 for PtH1, the results point for the (a) structure

as responsible for the observed IR modes.

The comparison between the calculated and observed values of MN and ωH/ωD for the

PtH1 defect in different configurations and charge states, clearly points for configuration (a)

as that responsible for the observed LVMs of PtH1 (Table 9.8).

9.3.5 Electrical properties

It is now a fact that the interaction of atomic H with substitutional TM centres, like Pt

or Pd, results in a dramatic change of their electrical properties. This can be understood

by monitoring the splitting of the gap-lying t2 manifold of the otherwise undistorted TM

centre, assuming a low-spin configuration within a simple one-electron picture, as H atoms

are added to the substitutional centre (Fig.9.4).

As described before, the undistorted Td TM centre gives rise to a single level in the

bandgap: a t2 vacancy-like manifold partially occupied with two electrons for Pt0s or Pd0
s.

For the C2v structure, these two levels are slightly split into a doublet (e) and singlet (a1).

The e level lies above the a1 one, with their separation reflecting the magnitude of the

JT distortion. The electronic configuration is a↑↓1 e0 for the C2v defect and t↑↑2 for the

undistorted Td defect. Despite a small a1–e energy separation, a calculation of the energy

levels should reflect this difference in electronic configurations. It is obvious that the

ionization of the defect is, energetically, more costly in the case of a Td structure than it

is for the orthorhombic defect.

Our calculations confirm this interpretation as both calculated (−/0) and (0/+) levels

of the Td TM defect lay deeper that those of the distorted structure. For Pt, the (−/0) of

the Td defect is 0.43 eV deeper than that of the C2v configuration, while for (0/+), this

separation is 0.12 eV. The calculated levels for the C2v Pds were Ec−0.25 and Ev +0.54 eV

Table 9.9: Calculated and observed hydrogen and deuterium stretch frequencies (cm−1) of

the symmetric and anti-symmetric modes for two configurations (see text) of C2v (PtH2)q

complexes, the corresponding values of MN and ωH/ωD ratios.

q = 0 q = −1 q = −2

(a) (b) Obs. (a) (b) Obs. (a) (b) Obs.

PtH2 2081.4 1969.6 1891.9 1986.2 2134.5 1901.6 1959.8 1985.8 1898.0

PtD2 1496.6 1394.2 1365.2 1429.2 1511.0 1370.7 1406.9 1405.8 1363.3

MN 14.2 234.2 11.6 13.6 223.9 12.3 15.8 215.1 15.2

ωH/ωD 1.391 1.413 1.386 1.390 1.413 1.387 1.393 1.412 1.392
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for the (−/0) and (0/+) respectively. It is interesting to note, that despite not predicting

a (+/+
+) for Pts in C2v symmetry, our calculations predict a (+/+

+) for its undistorted

Td configuration at Ev + 0.09 eV. Here, we used the Pd(+/+
+) level as a marker, which is

known to possess a level at Ev + 0.14 eV (Sachse et al., 1997a).

Adding one H atom to the distorted Pt0s de-

Figure 9.5: Optimised structure of C2v

PtH−2 defect with the hydrogen atom

at anti-bonding (AB) sites. The Si–H

length is 1.52 Å and the distance be-

tween the TM ion and the hydrogen

impurity atom is 4.53 Å.

fect, further splits the e doublet filled for S = 1
2 .

Due to the fact that the overall lowering of the t2

manifold is compensated by the additional split-

ting of the e level due to the extra proton being

added to the defect, the difference from the levels

of PtH1, or PdH1 and those of substitutional Td

defects is quite small. The consequent deepen-

ing of the (−/0) level could make the existence

of a second acceptor level possible. This does

seem to apply to PdH1 and PtH1, as no (=/−)

levels were found. The corresponding donor lev-

els are located at Ev +0.45 and Ev +0.42 eV for

PtH1 and PdH1, respectively. However, so far, no

donor levels have been detected for the PtH and

PdH defects containing a single hydrogen atom.

A second H atom results in an additional electron occupying the e-manifold, which is

now completely split, with one of the resulting singlet levels being fully occupied and the

other empty and consequently higher in energy. Thus there is only a slight downwards

shift in energy of the acceptor levels from PtH1 to PtH2, a spin-compensated S = 0

system. The (0/+) level lies now in the valence band and the (−/0) drops by ∼ 0.1 eV

to lie at Ec − 0.42 eV for PtH2, and 0.04 eV for PdH2 being now at Ec − 0.36 eV. It is

interesting to note that the position of the (=/−) level does not change appreciably going

from tetrahedral Pds, to PdH1 and PdH2 (Table 9.10). All these levels are quite shallow,

with that of Td Pts located 0.11 eV below Ec, very close to the CB for monoclinic PtH1,

in configuration (b), and Ec − 0.05 eV for PdH2.

For PtH0
3, the highest spin-up defect singlet is now occupied. A transition PtH0

3 → PtH−3
would mean the filling of the e level, making impossible the capture of a second electron by

the defect. A second acceptor can only arise from a new state entering in the bandgap. A

similar situation occurs for the single acceptor level, (−/0) of PtH4. For PtH3 and PdH3,

the (−/0) level are calculated to lie 1.35 and 1.15 eV below Ec, revealing a high electron

affinity to fill the last defect level. Note that the error inherent to our method increases

with depth.

The Kohn-Sham eigenvalue spectrum of PtH0
4 revealed an almost level-free bandgap,

with the exception of a singlet level lying close to the conduction-band bottom. The defect-

related levels lay very close to the valence band edge. Obviously, again like in the case of

PtH2 and PtH3, no donor levels were found. The shallow one-electron level found in the



Platinum and Palladium Defects 178

upper part of the bandgap is probably a delocalised 5s and 6s levels of the TM impurities.

According to results, this s-level is responsible for very deep, (=/−) and (−/0) levels, of

PdH3 and PdH4 respectively (see Table 9.10). This means that both PtH4 and PdH4 are

not electrically passive.

Comparison with previous assignments

As a result of the DLTS studies on hydrogenated Pt- and Pd-doped silicon described above,

tentative assignments have been made for the observed deep levels (Sachse et al., 1997b).

Very recently, some of these assignments were refined using Yarykin’s model (Sachse et al.,

1999a). With a few exceptions, our results agree well with the experimental predictions

(see Table 9.10 and Figure 9.3).

The calculations show that not only does PtH1 possess a (−/0) level at Ec−0.56 eV in

good agreement with the 0.50 eV E(250) level, but also a deep donor level at Ev +0.45 eV.

There is no evidence for this level which might be obscured by the Pt (0/+) level at

Ev + 0.30 eV. Unfortunately, experiment does not confirm this explanation as the (0/+)

of Pt showed a similar depth profile to that of the Pd(+/+
+) level. Alternatively, the

Table 9.10: Comparison between calculated and experimental electrical levels of Pt and

Pd–H defects (eV). (0/+) and (+/+
+ ) are referred to Ev and, (−/0) and (=/−), to Ec.

(+/+
+) (0/+) (−/0) (=/−)

Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs.

Pt (C2v) 0 0.22 0.32 0.12

Pt (Td) 0.09
0.09

0.65
0.33

0.44
0.23

0.24
· · ·

PtH1 (b) 0 0.45 0.55 0.03

PtH1 (a) 0
· · ·

0.45
· · ·

0.56
0.50 (E250)

0.24
· · ·

PtH2 0 · · · 0 · · · 0.42 0.76 (H210) 0.15‡ 0.16 (E90)

PtH3 0 · · · 0 · · · 1.35† 0.86 (H150) 0 · · ·
PtH4 0 · · · 0 · · · 0.97 · · · 0.61 · · ·

Pd (C2v) 0.14‡ 0.14 0.54 0.33 0.25 0.22 0.11 · · ·
PdH1 0 · · · 0.42 · · · 0.45 0.43 (E200) 0 · · ·
PdH2 0 · · · 0 · · · 0.36 0.61 (H280) 0.05 0.18 E(60)

PdH3 0 0.07 (H45) 0 0.08 (H55) 1.15† 0.92 (H140) 0 0.29 E(160)\

PdH4 0 · · · 0 · · · 0.71 · · · 0.34 · · ·

†The method has a larger error when the predicted level is further from that of the standard.
‡This is a standard level, as discussed in the text.
\ This assignment is tentative.
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calculated level may be in error by ∼ 0.2 eV and the actual level falls below Ev.

The injection of electrons monitored by MCTS in p-type material (Sachse et al., 1997b)

has showed that E(250) and H(210) do not belong to the same defect, which points for

a PtH2 complex as responsible for the midgap level E(250). Although, it is important to

note that our calculations indicate that PtH1 also possesses a single acceptor level, in close

proximity to E(250). This might suggest that the E(250) DLTS peak is due to electron

emission from two close-by levels originated by two distinct PtH defects involving one and

two hydrogen atoms. A similar situation has been observed by Laplace DLTS (LDLTS) for

the case of the G4 trap in hydrogenated gold-doped silicon (Sveinbjörnsson & Engström,

1995). Laplace DLTS was able to separate three defects with very similar carrier-emission

characteristics (Deixler et al., 1998; Rubaldo et al., 1999).1

It is therefore necessary that a LDLTS analysis be performed on the electron trap

E(250). This is of paramount importance since theory and experiment strongly suggest

that this level may be responsible for the control of the lifetime of charge carriers.

The (=/−) level at Ec − 0.18 eV due to PtH2 is used as a standard by the theoretical

calculations. Experimentally, it seems unclear what is the character of the E(90) trap.

Early DLTS studies have identified this level as a donor observed in n-type samples (Sachse

et al., 1997b), while recently this same level was reported as a double acceptor (Sachse

et al., 1999a). Despite this fact, combined EPR and LVM spectroscopic studies (Williams

et al., 1994; Uftring et al., 1995) do not support the argument that E(90) is the double

acceptor of PtH2, as this level lies deeper than Ec − 0.1 eV — the position of the (−/0)

level of Ci — at 0.18 eV below Ec.

H(210) at Ec − 0.76 eV is now assigned to the (−/0) level. The calculated level at

Ec − 0.42 eV is about 0.3 eV too shallow and this discrepancy originally suggested to

us that H(210) was the (0/+) level of PtH1 (Jones et al., 1999b). There should be an

associated (=/−) level but the lack of any firm experimental evidence for the (=/−)

level of PtH1 from the IR-absorption studies (Stavola, 1998a), appears to rule this out.

Nevertheless, there should be a Poole-Frenkel effect associated with H(210) which has not,

as far as we are aware, been reported. There is no donor level associated with PtH2.

The theoretical results show clearly that PtH3 has a deep acceptor level in the lower half

of the band gap in agreement with the depth and character of H(150). Thus the assignment

of this defect agrees with the conclusions of the DLTS profiling studies (Sachse, 1997).

As previously observed experimentally (Sachse et al., 1997a), our calculations confirm

a similar level structure for the several PdH complexes to those of PtH. In a similar way

to platinum in hydrogenated samples, Pd can also act as a recombination as a result of

its interaction with atomic hydrogen. As described above for Pt, two PdH complexes

involving a different number of H atoms have levels around midgap. These lie at Ec−0.45

and Ec − 0.36 eV, for PdH1 and PdH2 respectively (Table 9.10). No donor was found for

PdH2 in our calculations.
1The results of an extensive study on the electrical properties of gold-hydrogen defects are presented

and discussed in detail in the next chapter of this thesis.
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Figure 9.6: Structure and corresponding electrical levels of platinum and palladium and

their complexes with hydrogen. Experimental and calculated levels are represented by

solid and dashed lines, respectively.

9.3.6 Electrical passivation of Pt and Pd centres

As described previously, it is now clear that the electrical activity of Pt and Pd cannot

be neutralised by the simple interaction with atomic hydrogen. However, our calculations

have shown that molecular di-hydrides of Pt and Pd are passive when inserted into lattice

hydrogen-induced micro-voids. In the present case, these voids were simulated by a deca-

vacancy (V10H16) embedded by 148-atom Si H-terminated cluster.

Transition-metal ions have large atomic radius being readily attracted to voids in the

crystal. This characteristic has been used to improve gettering techniques to remove TM

from active regions of a device (Mohadjeri et al., 1995; Meyers et al., 1996; Kinomura

et al., 1998).

This model for the electrical passivation of Pt and Pd explains well the results of

Pearton and Haller (Pearton et al., 1983). It is known that the hydrogenation process

used by these workers is quite aggressive, resulting in the creation of aggregates of vacan-

cies in the near-surface region of the samples. For the case of incorporation of H via a
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chemical wet-etching, this interpretation is more difficult. To our knowledge, there is no

experimental evidence for the formation of aggregates of vacancies as a result of chem-

ical etching. Despite this fact, the formation of lattice vacancies as a consequence of a

Frank-Turnbull mechanism, cannot be ruled out.

9.4 Final remarks

Our calculations strongly suggest that two distinct PtH complexes, involving one and two

H atoms give rise to two close-by levels around midgap (Fig. 9.6). These two levels, and

not one as previously reported, may be responsible for the control of the lifetime of both

electrons and holes in power devices. For both defects, the H atoms lie at anti-bonding

sites, being back-bonded to Si nearest-neighbours of the Pt ion. Our calculations also show

that the proposed Pt–Pt and Pt–O defects do not give rise to any levels around midgap.

A model for the passivation of Pt and Pd centres is proposed. The similarity between the

electrical properties of PtH and PdH defects is confirmed.



10

Gold and Silver Defects

10.1 Introduction

Gold as an impurity in crystalline silicon is many respects one of the most throughly

studied defect system in any semiconductor. It is one of the most common elements in Si

technology, used for electrical contacts. Additionally, it is also used, together with silver,

as an effective recombination centre. This is the case of special devices, like fast-switching

diodes, into which the TMs are intentionally incorporated for the control of the lifetime of

charge carriers. Despite this fact, little is known about the microscopic properties of the

defects responsible for electrical activity showed by Au- and Ag-doped Si material. The fact

that the literature on the electrical properties of silver in silicon it rather limited relates to

the very high diffusion temperature, which is needed to achieve to incorporated noticeable

concentrations of electrically active silver. Nowadays, gold or silver contamination is not

really a problem, when compared to other common impurities like iron, copper or nickel,

since its concentration rarely exceeds 1012 cm−3 (Graff, 1995).

The interaction of hydrogen with transition metals, and in particular gold, has recently

become of great interest (Pearton & Tavendale, 1982; Veloarisoa et al., 1991; Williams

et al., 1993; Sveinbjörnsson & Engström, 1995; Evans et al., 1997; Evans et al., 1999; We-

instein & Stavola, 1999). The presence of hydrogen has three effects on the electronic levels

of the TM impurity. It can shift these levels, introduce additional ones, or it can remove

them completely from the band gap achieving passivation (Pearton & Tavendale, 1982).

However, in no case are these effects completely understood. For example, capacitance

transient studies have shown that, either electrically active or inactive defects can be gen-

erated when hydrogen interacts with Au. The former with the work of Sveinbjörnsson et

al. (1995) by incorporating H into the samples by RT wet-etching and the latter, with the

work of Pearton and Tavendale (1982) by exposing the samples to a remote H-plasma at

very high temperatures (∼ 1200 ◦C). Little is known about the defect structures respon-

sible for such distinct, and technological and scientifically important, features revealed by

these transition-metal–hydrogen complexes.

182
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10.2 Experimental background

10.2.1 Structural properties as isolated centres

In the framework of the vacancy model (Watkins, 1983; Anderson et al., 1992b), the

gold centre should show similar properties to those of isoelectronic and substitutional Pt−s
or Ag0

s . Again, similarly to Pt−s , its structural properties arise from the vacancy-like t2

partially filled t2 manifold with three electrons (Fig. 10.1). The consequent Jahn-Teller

distortion was found to drive the impurity atom off-site along the [100] direction, giving

rise to an intense C2v EPR signal, which has been fully understood (Anderson et al., 1992a;

Williams et al., 1993). An orthrhombic-I EPR spectrum (g⊥ ≈ g‖ ≈ 2.0) has been report

as due to Ag0
s (Hai et al., 1997). Despite these facts, the study of Au0

s by EPR, one of

the most powerful tool to determine the defect’s structure, has not produced any relevant

results. Several gold-related defects have observed using EPR, but all the conclusions refer

to a complex structure, with gold probably pairing off with another impurity, and not to

the isolated species (Woodbury & Ludwig, 1962; Höhne, 1980; Lang et al., 1980; Höhne,

1982; Kleinhenz et al., 1981; Alteheld et al., 1994).

t
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Figure 10.1: Band-gap states for Au0 (a) Td symmetry, (b) after tetragonal

JT distortion, (c) plus a trigonal t2z JT distortion and (d) plus spin-orbit

interactions, after Watkins and Williams (1995).

Overcoming this difficulty, spectroscopic Zeeman studies have shown that the ground

state of substitutional gold splits according to an effective spin S = 1
2 (C2v), with g‖ ≈ 2.8

and g⊥ ≈ 0 (Watkins et al., 1991; Kleverman et al., 1995). Due to this unexpectedly high

anisotropy (g⊥ ≈ 0), the transition probability for microwave transitions becomes very

low and the EPR spectrum is difficult to be observed. This makes this centre invisible

to EPR. Recently, this vanishing of the diagonal gxx and gyy components of the hyperfine

g tensor was explained as due to the increasing importance of the spin-orbit interaction,

which tend to cancel the off-centre JT displacement of the Aus impurity, when compared



Gold and Silver Defects 184

with that of atomic Pt−.

10.2.2 Interaction with atomic hydrogen

For substitutional gold, Au0
s, and the isoelectronic silver centre, Ag0

s, there are three elec-

trons in the one-electron t2 manifold, which makes this defect Jahn-Teller active. The

ground-state configuration is b↑↓2 b↑1 a0
1 (Resende et al., 1999) resulting from the splitting of

the triply degenerate t2 level, in agreement with the vacancy model.

10.2.3 FTIR measurements

Several hydrogen-vibrational bands have been identified around ∼ 1800 cm−1 in Si con-

taining hydrogen and gold impurities (Evans et al., 1997; Evans et al., 1999; Weinstein &

Stavola, 1999).

Two bands at 1785.6 and 1803.3 cm−1 were identified as H-stretch vibrations of a

AuH2 complex containing two equivalent hydrogen atoms (Evans et al., 1997; Evans et al.,

1999). Showing the characteristic frequency shift of ∼
√

2, two other bands at 1292.1 and

1304.4 cm−1 were observed, and assigned to the anti-symmetric and symmetric-stretching

modes of AuD2. This pair of bands revealed the expected behaviour of a C2v structure,

under externally applied uniaxial stress (Weinstein & Stavola, 1999). Based on the vari-

ation of their relative intensities with the position of the Fermi level, the lines at 1827.1–

1813.3 cm−1 were found to arise from different charge states of gold-hydrogen complex

containing a single hydrogen atom. Uniaxial stress studies of the splittings of the transi-

tion energies and the stress induced alignment of this AuH1 complex were consistent with

a defect with C1h or lower. It was then proposed that Au ion goes off-site along the [100]

direction to explain the departure from the expected C3v symmetry (Evans et al., 1999).

As pointed by the authors, all the detected hydrogen and deuterium modes in hydro-

genated Au-doped Si have been found to be very similar to those assigned to the PtH

corresponding structures, with the latter being slighty higher in frequency by ∼ 70 cm−1

for all the observed modes, as reported by Uftring et al. (1995).

10.2.4 Electrical properties

It is now an accepted fact that isolated gold and silver are amphoteric subsitutional im-

purities giving rise to two deep levels within the Si bandgap. These are a (−/0) level at

Ec − 0.55 and (0/+) at Ev + 0.35 eV for Aus (Collins et al., 1957; Tasch & Sah, 1970;

Brotherton & Bradley, 1982b; Mesli et al., 1987; Petersen & Nielsen, 1990), and (−/0)

level at Ec − 0.55 and (0/+) at Ev + 0.38 eV for Ags (Yau et al., 1984; Lemke, 1984;

Sachse, 1997). A major contribution to the current knowledge of the level stucture of iso-

lated gold came from the radioactive transmutation study of Petersen and Nielsen (1990).

It was demonstrated that in the radioactive decay of 195Au into 195Pt, the Ec + 0.55 and

Ev + 0.35 eV levels convert in 1:1 fashion to an Ec − 0.22 eV acceptor level, which has

been well established to arise from isolated Pts.



Gold and Silver Defects 185

Table 10.1: Activation energy ∆E, majority capture cross sections σ, activation

energy of the capture cross section Eσ, the enthalpy ∆H and the entropy factor Xs

for Au and Ag energy levels. Values taken from Mesli et al. (1987) and Sachse (1997),

for Au and Ag respectively.

Level ∆E (eV) σn,p (cm2) Eσ (eV) ∆H (eV) Xs

(−/0) Ec − 0.55 1× 10−16 0 Ec − 0.23 51
Au

(0/+) Ev + 0.35 2× 10−15 0 Ev + 0.35 26

(−/0) Ec − 0.55 1× 10−16 0 Ec − 0.55 35
Ag

(0/+) Ev + 0.38 4× 10−15 0 Ev + 0.38 49

The accepted values for the activation energy, majority capture cross sections, activa-

tion energy of the capture cross section, enthalpy and the entropy factor for Au and Ag

energy levels are given in Table 10.1.

Table 10.2: Activation energy ∆E, majority capture cross sections σ, activation

energy of the capture cross section Eσ and the enthalpy ∆H for a number of AuH

and AgH electrical levels. Note the similarities between the reported levels of Au-

and Ag-H defects.

Level ∆E (eV) σn,p (cm2) Eσ (eV) ∆H (eV)

G1 Ec − 0.20 8× 10−18† 0.02 Ec − 0.18

G4 Ec − 0.54‡ ? 0 Ec − 0.56
AuH

G2 Ev + 0.21 0.20 × 10−15 0 Ev + 0.21
related

G4′ Ec − 0.58‡ ? 0 Ec − 0.58

G3 Ev + 0.47 50× 10−15 0 Ev + 0.47

E3 Ec − 0.09 0.67 × 10−15† 0.0019 Ec − 0.09

E2 Ec − 0.45 0.24 × 10−15 0 Ec − 0.45
AgH

H2 Ev + 0.28 6.6 × 10−15 0 Ev + 0.28
related

E6 Ec − 0.50 ? 0 Ec − 0.50

H3 Ev + 0.38 2.1 × 10−15 0 Ev + 0.40

† Temperature dependent. The values of ∆E and ∆H for the G1 and H3 levels

are given from extrapolation to zero field. These and the other values are taken

from Sveinbjörnsson and Engström (1995) and Sachse (1997) for the AuH levels,

and Yarykin et al. (1999) for AgH related ones; ‡ Laplace DLTS measurements of

Rubaldo et al. (1999).
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Sveinbjörnsson and co-workers (Sveinbjörnsson et al., 1994; Sveinbjörnsson & En-

gström, 1995), confirming the amphotheric behaviour of the Au centre, have reported

four new deep traps in Au-doped Si into which H was introduced by wet etching. Stable

up to 150 ◦C, these were labelled G1–G4 in the DLTS spectra. G1, G4 and G2 were ten-

tatively assigned to the same AuH complex, involving a single H atom. G1 is an electron

trap located at Ec− 0.19 eV and G2 a hole trap at Ev +0.21 eV. G4 was reported in both

n- and p-type material, exhibiting similar electron capture and emission characteristics to

the single acceptor of Au (Table 10.2). Due to this fact the position of the G4 trap could

not be determined accurately. This picture was confirmed by MCTS studies (Davidson

& Evans, 1996b) combined with DLTS in p-type Si. This optical transient capacitance

technique monitors majority and minority carrier emission and capture processes within

the same type of sample. The character of the G3 level (observed in p-type Si at Ev +0.47

eV) is still matter of discussion (Davidson & Evans, 1996b; Sachse et al., 1999a). Davidson

and Evans (Davidson & Evans, 1996b) have argued that the G3 peak might arise from two

levels, lying closely within the bandgap, exhibiting similar hole capture cross sections but

different values for electron capture cross section.

Very recently, a high resolution DLTS study (Laplace DLTS) was able to successfully

resolve three distinct levels in the region of the Au(−/0)/G4 activity (Deixler et al., 1998;

Rubaldo et al., 1999). Detected as a single peak by DLTS, LDLTS was able to decompose

G4 into three close-by delta-like peaks. These were the (−/0) level of Aus, G4, a (−/0)

level at Ec − 0.54 eV, and a third, G4′, at Ec − 0.58 eV. The acceptor character of G4

was confirmed. Tentatively, it was suggested that G4′ may be related to a AuH complex

involving more H atoms than that responsible for G1, G2 and G4.

The DLTS study of Yarykin et al. (1999) on Ag-doped Si into which hydrogen was in-

troduced via wet-etching, has provided strong evidence for the similarity between AuH and

AgH complexes. This resemblance can be understood in terms of Watkins’ vacancy model.

According to this model, these two impurities, obviously being chemically similar, should

both behave like a black-box being rather insensitive to their crystalline surroundings.

10.3 Results

10.3.1 Cluster and basis

The cluster and basis used for the study of the gold- and silver-related centres were similar

to those used for the investigation of the properties of Pt and Pd defects, described in the

previous chapter. The exception is obviously the basis used for the gold and silver atoms.

Details are given in Table 10.3.

10.3.2 Isolated gold and silver centres: structural properties

Neutral Au and Ag centres have a electronic configuration t↑↑↑2 and are slightly distorted

Td defects with the impurity moving 0.03 Å along [100] for Au and 0.01 Å for Ag. The

resulting C2v symmetry is consistent with EPR experiments on Ag (Són et al., 1992; Hai
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Table 10.3: Atomic basis and basis expansion type used for the calculations

on Au and Ag–H defects. N and M denoted the number of orbitals used

to describe the wavefunction and charge density respectively. One additional

basis function was placed midway between all bonded pairs for the electrical

level calculations.

Cluster Atom N M Basis expansion chden

Au 6 12 big

Ag 7 14 big
Si71H60 Si 5 4 all big 0

H 3 2 all minimal

Bond-centres all bonds 2/3 2/3 big

et al., 1997) and optical absorption studies on Au (Watkins et al., 1991; Kleverman et al.,

1995). The Au–Si and Ag–Si lengths are all between 2.6 and 2.7 Å. We also find a small

adiabatic reorientation barriers of 0.11 eV for Au0
s, and 0.14 eV for Ag0

s. These are upper

limits to the barrier and tunnelling probably plays an important role as reorientation can

occur at cryogenic temperatures (Watkins et al., 1991).

It is interesting to note that Au0 and Ag0 seem to produce a larger enlargement of the

vacancy cage as substitutional impurities, due to outwards breathing movement of the TM

impurity’s Si neighbours, than the Pt− or Pd− (Table 10.4).

10.3.3 Gold and silver multi-hydrogen defects:

Structural and vibrational properties

We now apply this theory to the complexes of substitutional TM impurities with hydrogen.

There are three likely positions for the H atom. These are (a) when H sits at an anti-

bonding, AB, site to a Si neighbour of the TM impurity, (b) AB sited to the TM impurity,

and (c) bond centred, BC, sited between the impurity and Si. Configurations (a) and (b)

were similar to those considered in the case of the platinum mono-hydride (see Fig. 9.3).

For the AuH1 defect, configurations (b) and (c) are less stable than (a) by 0.23 and

0.47 eV respectively. This result is sensitive to basis size and a smaller basis reverses

this ordering (Resende et al., 1997). The H stretch vibrational frequencies for the three

configurations are given in Table 10.5 along with experimental results (Evans et al., 1997;

Evans et al., 1999). Agreement is best for the configuration (a) but the sense of the small

shifts arising with different charge states are not reproduced. The H-reorientation barrier

among the equivalent 〈111〉 directions is 0.41 eV for (a) and 0.23 eV for (b). The observed

barrier is athermal and presumably must proceed by a tunnelling mechanism.

For structures (a) and (c), the shift in frequency on replacing 28Si with 29Si is . 1 cm−1

for each charge state. For configuration (b) where H is bonded to the impurity, the
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Table 10.4: Structural parameters for the Aus and neutral AuHn centres. Those for

AuH1 values are given for the two competing configurations. d is the distance of the

Au atom of the centre of the cluster, i.e., a measure of the off-site displacement of

the Au atom from the Td site. Values in Å.

Sym. Au–Si Au–H H–Si d

Aus Td 2.702 2.702 2.702 2.702 · · · · · · 0.000

Aus C2v 2.687 2.678 2.732 2.732 · · · · · · 0.036

AuH1 (a) C1h 2.718 2.719 2.719 3.250 4.750 1.500 0.183

AuH1 (b) C1h 2.706 2.706 2.629 2.751 1.750 · · · 0.023

AuH2 C2v 2.657 2.657 3.145 3.145 4.647 1.503 0.175

AuH3 C3v 2.628 3.094 3.094 3.094 4.594 1.501 0.146

AuH4 Td 2.997 2.997 2.997 2.997 4.499 1.502 0.000

shift is negligible. Thus, although the energy and vibrational mode calculations favour

configuration (a), the observed low reorientation barrier favours configuration (b).

For AuH2 and AgH2 defects with C2v symmetry, configuration (a) is more stable than

(b) or (c). This structure is the same as that suggested by magnetic resonance on PtH2

defects (Williams et al., 1993). As shown in the previous chapter, our theoretical calcu-

lations provide strong support for the model consistent with the anti-bonding arragement

of the two hydrogen impurity atoms (see Fig. 9.5). AuH2 defects have been detected by

FTIR absorption studies (Evans et al., 1997; Evans et al., 1999), as described previouly in

this chapter. For the configuration (a), Table 10.6 shows that the separation in frequencies
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Figure 10.2: Scaled spin-polarised Kohn-Sham eigenvalue spectra of op-

timised neutral Au and AuH defects. Only gap levels are shown.



Gold and Silver Defects 189

Table 10.5: Calculated and observed hydrogen stretch modes for three con-

figurations (see text) of C1h AuH1 in three different charge states. Values in

cm−1.

Charge state q = 0 q = −1 q = −2

Config. AuH AuD AuH AuD AuH AuD

Expt. 1787.7 1292.9 1813.3 1310.9 1827.1 1319.4

Config. (a) 1947.4 1401.1 1890.5 1359.6 1893.2 1361.4

Config. (b) 2014.5 1427.3 1980.0 1402.8 2118.0 1500.2

Config. (c) 2419.0 1726.2 2500.8 1783.5 2454.3 1748.9

between the symmetric (A1) and anti-symmetric (B1) modes is much closer to experiment

than the separations in configurations (b) and (c).

10.3.4 Electrical levels

The electrical levels are determined assuming that a low spin state results from the addition

of each H atom. The addition of one H atom lowers and splits the t2 level into a filled

a1 level lying below a half-filled e level. The lowering of the t2 manifold is off-set by the

splitting so that the differences in the donor and acceptor levels from those of the TM

impurity are quite small. Table 10.7 gives these levels for configuration (a). The (=/−)

levels of AuH1 and AgH1 lie at Ec − 0.22 and Ec − 0.36 eV respectively. The levels found

for configuration (b) are very similar. For example, the (0/+), (−/0) and (=/−) levels of

AuH1 lie at Ev + 0.37, Ec − 0.76 and Ec − 0.36 eV respectively.

A second H atom, added in configuration (a), results in an additional electron occupying

the e manifold (Fig. 10.2) which is pushed downward and splits with the upper level being

occupied. Thus once again there are only small shifts in the donor and acceptor levels on

Table 10.6: Calculated and observed hydrogen and deuterium stretch frequen-

cies (cm−1) for three configurations (see text) of AuH2 (C2v) complexes.

AuH2 AuHD AuD2

Mode A1 B1 A1 B1

Expt. 1803.3 1785.6 1792.5 1298.6 1304.4 1292.1

Config. (a) 1974.7 1970.5 1972.6 1419.2 1420.6 1417.8

Config. (b) 1988.4 1743.0 1884.6 1303.6 1406.2 1237.5

Config. (c) 2060.6 2013.6 2037.6 1461.9 1475.5 1449.2
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Figure 10.3: A gold mono-hydride molecule in a hydrogen-induced microvoid.

The void was simulated by a H-terminated deca-vacancy (V10H16) embedded

in a 148-atom cluster.

going from say AgH1 to AgH2. The e-manifold is filled for (AuH2)− and (AgH2)−, and a

second acceptor level can only arise from a new state entering the gap. The calculations

give no hint for such states and hence the di-hydrogen defects do not possess (=/−) levels.

Adding a third H fills the e manifold which is now pushed below Ev. Thus AgH3 and

AuH3 do not possess any donor levels. However, it appears that an empty level, due to

the 5s and 6s levels of Ag and Au respectively, creeps into the band gap. We place the

resulting (−/0) levels of AgH3 and AuH3 at 0.13 and 0.26 eV below Ec.

In conclusion, the calculations show that AuHn and AgHn, n = 1, 2 defects, possess

(0/+) and (−/0) levels close to Au and Ag, while only the monohydrides possess (=/−)

levels. The trihydride defects possess shallow acceptor levels.

DLTS studies have led to a number of levels assigned to AuHn and AgHn defects. There

are two uncertainties in identifying these levels. Firstly, the number of H atoms associated

with each level and secondly its character. Annealing and defect profiling studies have

shown that the G1 (at Ec − 0.19 eV), G4 and G2 levels due to Au-hydrogen arise from

the same defect (Sveinbjörnsson et al., 1994). The location of the levels (see Table 10.2)

and their emission cross-sections suggest that they correspond to (=/−), (−/0) and (0/+)

respectively. This has been supported by minority carrier transient spectroscopic measure-

ments (Evans et al., 1997). The deep penetration of these defects is taken to imply that

they possess one hydrogen impurity atom. Similar considerations show that in the Ag case

the E3 (at Ec − 0.09 eV), E2 and H2 levels are due to (=/−), (−/0) and (0/+) levels of

AgH1 (Yarykin et al., 1999). Such assignments agree with our calculations (Table 10.7).

We can exclude AuH2 and AgH2 as being responsible for these levels as these defects do

not possess a (=/−) level.

It is obvious from Table 10.7 that the levels of the Au- and Ag-hydrogen defects G3

and H3 are close to the calculated donor levels of AuH2 and AgH2 respectively. Using

the model for the determination of the number of hydrogen impurity based on the depth

dependence of the concentration of the defects (§9.2.1), Yarykin et al. (1999) argued that

these levels should be assigned to AuH2 and AgH2. There has been some changes of view
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as to their character (Sachse et al., 1999a) but the most recent opinion (Yarykin et al.,

1999) is that they are donor (0/+) levels. This agrees with our calculations. Our results

also imply that the corresponding (−/0) levels are very close to those of AuH1 and AgH1

respectively. Evidence for these (−/0) levels has been more difficult to obtain. However,

an early DLTS (Parakhonskíı et al., 1996) and a recent Laplace-DLTS study (Deixler

et al., 1998) on Au-doped Si, show a level G4′ at Ec − 0.58 eV while the difference in the

concentrations of E2 and E3 in the surface region is taken to imply the existence of the

(−/0) level of AgH2 labeled E6 (Yarykin et al., 1999). The G4′ and E6 levels are close to

the calculated (−/0) levels.

Table 10.7: Comparison between calculated and experimental electrical levels of Au–

and Ag–H defects (eV). (0/+) and (+/+
+) are referred to Ev and, (−/0) and (=/−),

to Ec.

(0/+) (−/0) (=/−)

Calc. Obs. Calc. Obs. Calc. Obs.

Au 0.21 0.35 0.66 0.56

AuH1 0.36 0.21 (G2)† 0.62 0.54 (G4)†‡ 0.29 0.19 (G1)†

AuH2 0.28 0.47 (G3)† 0.62 0.58 (G4′)‡ 0

AuH3 0.00 · · · 0.26 0.28

AuH4 · · · · · · 1.40] · · ·

Ag 0.46 0.37 0.60 0.55

AgH1 0.36 0.28 (H2)\ 0.45 0.45 (E2)\ 0.45 0.09 (E3)\

AgH2 0.33 0.38 (H3)\ 0.50 0.5 (E6)\ 0

AgH3 0.00 · · · 0.13 · · ·
AgH4 0.00 · · · 0.97] · · ·

† Sveinbjörnsson and Engström (1995); ‡Deixler et al. (1998); \ Yarykin et al. (1999);
] The method has a larger error when the predicted level is further away from that of

the standard.

10.3.5 On the passivation of ioslated transition metal centres

Both Au and Ag can be passivated by hydrogen (Pearton & Tavendale, 1982; Pearton

& Tavendale, 1984) and our calculations suggest that AgH3 and AuH3 are candidates

given our errors can be around 0.2 eV. However, in the case of gold, a level at ≈ Ec −
0.28 eV (Wang & Evwaraye, 1976) arises after a long room temperature anneal (Rubaldo

et al., 1999) and this is close to the calculated (−/0) level of AuH3. If this level arises from

this defect, then the passive defect cannot be due to substitutional Au complexed with H

atoms.
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Molecular hydrides AuH or AgH are chemically stable with dissociation energies ∼
3.1 eV (Herzberg, 1945) and large ionization energies. If these formed within a void

whose surface is passivated by hydrogen, then the defects would be electrically inactive.

Calculations were carried out on a deca-vacancy, containing AuH1 and AgH1, and whose

inner surface was passivated by hydrogen (Hourahine et al., 1998) as described in the

previous chapter for the Pt and Pd di-hydrides. The resulting ionization and electron

affinity were such that no gap levels are present and such defects are then passive. However,

whereas it is known that voids form in plasma treated or H-implanted material, it is unclear

whether they, or a multi-vacancy complex containing Au and Ag, can be produced by wet

chemical etching.

10.4 Concluding remarks

In summary, the calculations have allowed us to determine the structure and electrical ac-

tivity of transition-metal–hydrogen defects (see Fig. 10.4). This has allowed us to assign the
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Figure 10.4: Structure and corresponding electrical levels of gold and silver and their

complexes with hydrogen in Si. Experimental and calculated levels are represented by

solid and dashed lines, respectively.
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observed DLTS levels to specific defects. AuH3 and AgH3 defects have filled t2-manifolds

lying in the valence band and lack donor activity. They possess shallow 6s and 5s acceptor

levels. Molecular hydrides of the metal impurities are passive when inserted into voids or

passivated multi-vacancy centres.
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Conclusions and Future Work

As mentioned in the abstract of this thesis, the main objective of the work described here

was the investigation of the electrical properties of point deep-levels defect in crystalline

silicon. It is crucial to understand the influence of this defects on the electrical and optical

properties of a semiconductor like crystalline silicon.

A novel approach to the calculation of the electrical levels within a cluster approach

was developed and successfully applied to the study of a number of defects.

Obviously, a calculation of the electronic affinity and ionisation energies of a given

defect by means of Slater’s transition-state scheme, despite being straightforward, is highly

dependent on the atomic arrangement of the defect structure. Consequently, an accurate

description of the ground-state configuration of the defect is fundamental. To describe the

structure of the defects, we have used the aimpro code, an ab initio pseudopotential spin-

polarised local density functional method applied to large hydrogen terminated atomic

clusters containing up to 346 atoms. This method is highly suited for the modelling of

covalent material, proving a wealth of information on the microscopic properties of such

systems.

Since the method is based on a comparison between the calculated affinities of the

defect in question and a standard one, it is imperative to verify the convergence with basis

and cluster size in order to reduce the error of the calculation to a minimum. We found

these error to be always less than about 0.2 eV.

Because of such an error, the method does not allow, in all cases, a clear distinction be-

tween the defects responsible for two closed spaced energy levels. Despite this, the method

has been successful in the identification of a number of transition-metal–hydrogen defects

containing several hydrogen atoms—a problem of immense technological and scientific im-

portance. Ultimately, the control of levels would allow a considerable improvement in the

performance of Si integrated device by supplying information about the impact of a defect

on its electrical and optical properties.

The method has also allowed us to study the influence of strong Jahn-Teller driven

distortions on the electrical properties of deep-levels. The vacancy-oxygen pair and the

lattice di-vacancy are excellent examples of this effect.

So far, this novel approach to the calculation of deep levels has only been applied to

194



Conclusions and Future Work 195

the study of defects in silicon. Obviously, there is no impediment to the application of

the present method to the characterisation of the electrical properties of defects in other

semiconducting materials.
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Resende A., Jones R., Öberg S., and Briddon P. R. (1999): Phys. Rev. Lett. 82, 2111

Roberson M. A. and Estreicher S. K. (1994): Phys. Rev. B 49, 17040

Rubaldo L., Deixler P., Hawkins I. D., Terry J., Maude D. K., Portal J.-C., Evans-Freeman

J. H., Dobaczewski L., and Peaker A. R. (1999): Mater. Sci. & Eng. B 58, 126
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