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Abstract

Experimental and theoretical investigations into

divacancies in Si are reviewed. The results of EPR,
DLTS and theoretical modelling are described in detail.
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Talk overview

The lattice divacancy in silicon

� How is this native defect created?

� What techniques are used to detect and study it?

� What are its structural and electrical properties?

� Recent advances in theory
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The lattice divacancy in silicon

The lattice divacancy (V2) is one of the most important
native defects in irradiated and/or implanted silicon...
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It can be de�ned as two nearby monovacancies sharing a

unpaired `dangling-bond'.

� V2 defects are unavoidably created during any of the
following processing steps:

{ ion-implantation, electron-beam lithography or plasma
etching

� Intentionally, by irradiation or implantation at room-
temperature of: electrons (e�), protons (H+), �-particles
(He2+), heavier ions, neutrons (n) or 
-rays

� Appears in both Czochralski (O-rich) and 
oat-zone Si,
irrespectively of the dopant type
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Experimental tools

V2 is known to:

� be immobile and stable at room temperature

� anneal out � 200{300 �C

Its properties have been studied over the last 3 decades by:

� Electron-paramagnetic resonance (EPR)

� Electron-nuclear double resonance (ENDOR)

� Photoluminescence (PL)

� Infra-red (IR) absorption

� Photoconductivity measurements

� Deep-level transient spectroscopy (DLTS)

� Positron-annihilation spectroscopy
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The \defect-molecule" model

One-electron model for the single vacancy in Si (LCAO-MO):
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LCAO-MO model of V2 from EPR
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Information derived from EPR

The divacancy is a perfect example of the power of EPR.

From the experiments of Watkins and Corbett...

It is known that: : : From: : :

G6 (V+
2 ) & G7 (V�2 ): S = 1

2 g$, �ne structure

29Si hf satellites vs.
!

B

2 equivalent Si nuclei (4.7%, I = 1
2)

$

Ab =
$

Ab0

$

Ai & g$ shifts with
!

B
C2h symmetry at T < 40 K

Low-T stress studies

60% of wf localised on b & b0 hf interaction analysis
� 70% on the 6 atoms via a2i , b

2
i and �

2
i

EJahn�Teller(V
+
2 ) � 1:3 eV

EJahn�Teller(V
�

2 ) � 2:4 eV Low-T stress studies
`bond switching' �E � 0:06 eV

Motional narrowing : C2h ! D3d Linewidth vs. T
T -activated reorientation (40 < T < 110 K)

�E for di�usion: � 1.3 eV (V0
2) High-T stress studies
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Structural manifestation

of the Jahn-Teller e�ect

A \Mexican Hat"...

The potential surface V for a doubly degenerate state and a
contour map of V (Q2; Q3) including anharmomic terms
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Electrical activity

EPR and DLTS studies have provided two slightly di�erent

pictures for the level structure of the lattice divacancy in Si:1

EPR DLTS
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It is importante to note that:

� For T 6 40 K (EPR), the unpaired electron is trapped in
one of its 3 equivalent JT distortion directions

) C2h symmetry.

� In DLTS, 80 < T < 250 K, the electronic jump rate

between equivalent Jahn-Teller directions and the rate for
electron emission relate as follows:

1

�
(jump EPR)�

1

�
(emission DLTS)

) \Motionally average" state (D3d)

1EPR: G. D. Watkins and J. W. Corbett, Phys. Rev. 138, A543 (1965); DLTS:
A. O. Evwaraye and E. Sun, J. Appl. Phys. 47, 3776 (1976).
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The Poole-Frenkel e�ect

Electron emission enhancement under an electrical �eld
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� The study of the �Em vs. F (�Em / F 1=2) is a possible
way of determining the donor or acceptor character of the
centre!
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DLTS results

There is still some debate on the assignments of the charge
states 2�, � and 0, of V2 to the peaks observed by DLTS...

� The reported electron-capture cross-sections (�n) have not

con�rmed a double acceptor character for the Ec�0:23 eV

DLTS trap (H+-irradiated samples), e.g.

�n(==�) = 2:6� 10�15 cm2 : Ec � 0:23 eV

�n(�=0) = 1:7� 10
�15 cm2

: Ec � 0:43 eV

� �n for a (=/�) level is typically � 10�18{10�21 cm2;
unexpectedly, no Poole-Frenkel was ever reported for
V2(=/�)!

� From depth pro�ling studies, it was observed that:

{ MeV-e irradiation

[V2(�=0)]

[V2(==�)]
= 1

{ H+, He2+ or heavier ions

[V2(�=0)]

[V2(==�)]
� 1

� It has been argued2 that the formation of V2�
2 (D3d) is

improbable in highly damaged regions of the sample { the
high-T bond-switching does not occur, with the distortion
acting to relief the strain around the defect.

2Svensson et al., Phys. Rev. B 43, 2292 (1991).
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Modelling

The common denominator to all the recent theoretical
studies on V2 is...

Density Functional Theory (DFT):

Electron density is a quantity of fundamental importance

The Kohn-Sham scheme allows a description of the many

body-problem as a set of self-consistent one-electron equations:n
�

1

2
r

2
+ Ve�(r

!)
o
 j(r

!) = "j  j(r
!)

Ve� = vi�e + vHartree + vxc and n(r!) =
X
j

j j(r
!)j2

� vxc (exchange-correlation term) assumed to be something
simple { Local density approximation (LDA): electron-gas

of slow-varying density

� Core electrons are removed by using norm-conserving

pseudopotentials: only valence electrons come into play

� Write  is as sum of plane-wave or Cartesian Gaussian

orbitals

� The crystalline environment of the defects is simulated by:

periodic super-cells or H-terminated atomic clusters
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Simulating bulk silicon

Clusters vs. Supercells

128-atom fcc supercell bond-centred Si148H98 cluster

� The spatial extent of the divacancy wavefunction is of
particular importance. The system size has to be large enough
to avoid:

� defect-defect interactions (supercells)

� defect-surface interactions (clusters)
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Calculation of electrical levels

In order to understand the electrical properties of V2,

the prediction of its electrical-level structure is of great
importance...

� A donor level with respect to Ev is the di�erence between
the ionization energy of bulk Si and that of the defect, i.e.

Ec

BULKDEFECT

E (0/+)
Ev

FREE SPACE

E(0=+)d = Ib � Id

� To overcome di�culties on calculating the ionization energy
of bulk Si, we compare the ionization energies of the defect
and a standard defect with well-known electrical levels

E(0=+)d =

Ibz }| {
(Is + (E(0=+)s)�Id

E(0=+)s � observed donor level of the standard defect.

� The a�nity and ionisation potentials are calculated by
applying Slater's \transition state" scheme.
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Previous theoretical studies: A.

Saito & Oshiyama

Recently, Saito and Oshiyama3 have proposed a new model
for the structure of V2, and in particular V�2 ...

� For V�2 , the sense of the Jahn-Teller (JT) distortion is the
inverse of that proposed by Watkins & Corbett (pairing model)

b’

c’ a’

distortiondistortion

b’

c’ a’ c’ a’

b’

a c

b

JT JT 

ca

b
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b

C2h D3d C2h

Pairing model (P) Breathing model (B) \resonant-bond" model (R)

lac < lab = lbc lab = lac = lac lab = lac > lac

According to this model, the one-electron con�gurations of V2

in its paramagnetic charge states are:

V+
2 : (au)

1 (bu)
0 and V�2 : (au)

2 (bu)
1

� Note that the au level has no amplitude on the mirror plane!

364-atom cubic supercells { M. Saito and A. Oshiyama, Phys. Rev. Lett. 73, 866
(1994).
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Previous theoretical studies: B.

Pesola, von Boehm, P�oykk�o and Nieminen

Pesola et al.4 have suggested that the distortion exhibited
by V�2 is mixture between a \rebonding-by-pairs" distortion
and a \resonant-bond" one.

� This group was able to predict the electrical structure of V2

by �rst principles...

Table I. Calculated and electrical levels of V2 for di�erent supercell

sizes.

supercell Obs.

Level 216 128 EPR DLTS

(=/�) Ec � 0:73 Ec � 0:69 Ec � 0:40 Ec � 0:23

(�/0) Ec � 0:78 Ec � 0:84 Ec � 0:61� Ec � 0:42

(0/+) Ev + 0:04 Ev + 0:03 Ev + 0:25 Ev + 0:25

�
Positron annihilation spectroscopic studies

4M. Pesola, J. von Boehm, S. P�oykk�o and R. M. Nieminen, Phys. Rev. B, 58, 1106
(1998).
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Results: A.

Energetics

� The structure proposed by Saito and Oshiyama was
found to be unstable, relaxing spontaneously to a metastable
\rebonding-by-pairs"{like structure: weak pairing

Table II. Di�erences in total energies (eV) for the several competing

con�gurations of V2 in four di�erence charge states.

Energy di�. V2�
2 V�2 V+

2

strong pairing 0 0 0

D3d +0:5 +0:4 +0:3

weak pairing +0:4 +0:3 +0:6
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Results: B.

Structural parameters

Table III & IV. Calculated distances (�A) for Si atoms surrounding a

V2 defect, for two di�erent charge states.

lab lbc lac Type Symm. Ref.

3.75 3.75 3.61 P C2h [1]

V+
2 3.55 3.56 3.17 P C2h [2]

3.78 3.78 2.92 P C2h

lab lbc lac Type Symm. Ref.

3.60 3.60 3.69 R C2h [1]

V�2 3.55 3.52 3.45 M(P) S2 [2]

3.71 3.71 2.76 P C2h

[1] M. Saito and A. Oshiyama, PRL 73, 866 (1994).

(64-atom supercells; 8-Ry cut-o�)

[2] M. Pesola, J. von Boehm, S. P�oykk�o and R. M. Nieminen, PRB, 58, 1106 (1998).

(64-supercell; 15-Ry cut-o�)
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Results: C.

Spin density localisation

One-electron picture for V�
2
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\Rebonding-by-pairs Model Breathing Model \Resonant-bond" Model

Below: Projection of the wavefunction of the 2 highest occupied

states onto the defect's mirror plane { inwards distortion.
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Results: D.

Electrical levels

Table V. Calculated & observed electrical levels of V2 in two di�erent

con�gurations: distorted (P) and undistorted (B). Values in eV.

Levels C2h D3d Obs.

Ec � 0:36(a) Ec � 0:33(a) Ec � 0:23
(=/�)

Ec � 0:59(b) Ec � 0:56(b) Ec � 0:23

(�/0) Ec � 0:63 Ec � 0:61 Ec � 0:43

(0/+) Ev + 0:31 Ev + 0:46 Ev + 0:25

The standard defect levels (markers) were the following:

� (=/�):
(a) Au{H1 at Ec � 0:19 eV

(b) Pt{H2 at Ec � 0:18 eV

� (�/0): interstitial-carbon (Ci) level at Ec � 0:1 eV

� (0/+): Ci level at Ev + 0:28 eV
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