\extrarowheight

A new implementation ofAIEX’s tabular andarray
environmernt

Frank Mittelbach David Carlisle
Printed May 29, 1997

Abstract

This article describes an extended implementation ofAfXLarray— andtabu-
lar—environments. The special merits of this implementation are further options to for-
mat columns and the fact that fragilgjX—commands don’t have to bgrotect ’ed
any more within those environments.

The major part of the code for this package dates back to 1988—so does some of
its documentation.

1 Introduction

This new implementation of theray— andtabular—environmentsis part of a larger project
in which we are trying to improve théTgX-code in some aspects and to makigX even
easier to handle.

The reader should be familiar with the general structure of the environments men-
tioned above. Further information can be found in [3] and [1]. The additional options
which can be used in the preamble as well as those which now have a slightly different
meaning are described in table 1.

Additionally we introduce a new parameter callegtrarowheight . If it takes a
positive length, the value of the parameter is added to the normal height of every row
of the table, while the depth will remain the same. This is important for tables with
horizontal lines because those lines normally touch the capital letters. For example, we
used\setlength{\extrarowheight{1pt} in table 1.

We will discuss a few examples using the new preamble options before dealing with
the implementation.

¢ If you want to use a special font (for examfiléseries) in a flushed left column,
this can be done witk{\bfseries}| . You do not have to begin every entry of the
column with\bfseries ~ any more.

¢ In columns which have been generated withm or b, the default value of
\parindent is Opt. This can be changed with
>{\setlength{\parindent{lcm}}p

*This file has version number v2.3i, last revised 1996/06/14.
TDavid kindly agreed on the inclusion of theewcolumntype implementation, formerly imewarray.sty
into this package

Unchanged options
| Left adjusted column.
c Centered adjusted column.
r Right adjusted column.
p{width } | Equivalent tdparbox]t}{width}
@decl. } | Suppresses inter-column space and insieds instead.
New options
Defines a column of widthwidth . Every entry will be cen-
m{width } | tered in proportion to the rest of the line. It is somewhat llke
\parbox{width}
b{width } | Coincides withparbox[b}{width}
>{decl. } Qan be gsed before &nr, c, p, mor ab option. It insertglecl.
directly in front of the entry of the column.
<{dedl. } _Can be used gfter anr,c,p{.} ,m{} orab{} option.It
insertsdecl. right after the entry of the column.
Inserts a vertical line. The distance between two columns will
| be enlarged by the width of the line in contrast to the origipal
definition of BTEX.
Can be used anywhere and corresponds witH thption. The
| {decl. } differenpe is thatlecl. is inserted instead' of a vertical line, so
this option doesn’t suppress the normally inserted space betyveen
columns in contrast t@y...}

Table 1: The preamble options.

e The >— and<—options were originally developed for the following application:
>{$}c<{$} generates a column in math mode inaaular—environment. If you
use this type of a preamble in array—environment, you get a column in LR mode
because the additional $'s cancel the existing $'s.

¢ One can also think of more complex applications. A problem which has been men-
tioned several times ingKhax can be solved with{\centerdots}c<{\endcenterdots}
To center decimals at their decimal points you (only?) have to define the following
macros:

{\catcode"\.\active\gdef.{\egroup\setbox2\hbox\bgroup}}
\deficenterdots{\catcode‘\.\active\setbox0\hbox\bgroup}
\defiendcenterdots{\egroup\ifvoid2 \setbox2\hbox{O}\fi
\ifdim \wd0>\wd2 \setbox2\hbox to\wdO{\unhbox2\hfill}\else
\setboxO\hbox to\wd2{\hfill\unhboxO}\fi
\catcode\.12 \box0.\box2}

Warning: The code is bad, it doesn’'t work with more than one dot in a cell and
doesn’t work when the tabular is used in the argument of some other command. A
much better version is provided in tdeolumn.sty by David Carlisle.

e Usingc!{\hspace{lcm}jc you get space between two columns which is enlarged
by one centimeter, while@{\hspace{lcm}}c gives you exactly one centimeter
space between two columns.

\newcolumntype

1.1 Defining new column specifiers
Whilst it is handy to be able to type

>{ (some declaration¥c}<{ (some more declaratiolis

if you have a one-off column in a table, it is rather inconvenient if you often use columns
of this form. The new version allows you to define a new column specifier ,saiich
will expand to the primitives column specifier§ hus we may define

\newcolumntype{x}{>{ (some declaration¥c}<{ (some more declaratioh$

One can then use the column specifier in the preamble arguments ofaalhy or
tabular environments in which you want columns of this form.

Itis common to need math-mode and LR-mode columns in the same alignment. If we
define:

\newcolumntype{CH{>{$}c<{$}}
\newcolumntype{L{>{$}<{$}}
\newcolumntype{R{>{$}r<{$}}

Then we can us€ to get centred LR-mode in aaray , or centred math-mode in a
tabular

The example given above for ‘centred decimal points’ could be assigned $peci-
fier with the following command.

\newcolumntype{d{>{\centerdots}c<{\endcenterdots}}

The above solution always centres the dot in the column. This does not look too good
if the column consists of large numbers, but to only a few decimal places. An alternative
definition of ad column is

\newcolumntype{d}[1[{>{\rightdots{#1}}r<{\endrightdots}}
where the appropriate macros in this case?are:

\deficoldot{.}% Or if you prefer, \deficoldot{\cdot}
{\catcode"\.=\active
\gdef.{$\egroup\setbox2=\hbox to \dimenO \bgroup$\coldot}}
\defirightdots#1{%
\sethox0=\hbox{1\dimen0=#1\wd0
\setbox0=\hbox{\coldotadvance\dimen0 \wd0
\setbox2=\hbox to \dimen0 {}%
\setbox0=\hbox\bgroup\mathcode"\.="8000 $}
\deflendrightdots{$\hfi\egroup\box0\box2}

Note that\newcolumntype takes the same optional argument\@svcommand which
declares the number of arguments of the column specifier being defined. Now we can
specifyd{2} in our preamble for a column of figures to at most two decimal places.

A rather different use of th&newcolumntype system takes advantage of the fact
that the replacement text in theewcolumntype command may refer to more than one
column. Suppose that a document contains a lahofar environments that require the
same preamble, but you wish to experiment with different preambles. Lamport’s original
definition allowed you to do the following (although it was probably a mis-use of the
system).

1This command was nameghewcolumn in the newarray.sty . At the moment\newcolumn is still sup-
ported (but gives a warning). In later releases it will vanish.
2The packagecolumn.sty ~ contains more robust macros based on these ideas.

\newcommand{\X}{cIr}
\begin{tabular}{\X}

array.sty takes great camot to expand the preamble, and so the above does not work
with the new scheme. With the new version this functionality is returned:

\newcolumntype{X}{clr}
\begin{tabulari{X}

The replacement text in\aewcolumntype command may refer to any of the prim-
itives of array.sty see table 1 on page 2, or to any new letters defined in other
\newcolumntype commands.

\showcols A list of all the currently activanewcolumntype definitions is sent to the terminal
and log file if thel\showcols command is given.

1.2 Special variations of\hline

The family oftabular environments allows vertical positioning with respect to the base-
line of the text in which the environment appears. By default the environment appears
centered, but this can be changed to align with the first or last line in the environment by
supplying a or b value to the optional position argument. However, this does not work
when the first or last element in the environmentisliane command—in that case the
environment is aligned at the horizontal rule.

Here is an example:

Tables with no versus

hii Tables
ine \begin{tabular){t}{l}
commands with no\\ hline \\ commands \\ used
o used g \end{tabular} versus tables
tables used. i
With some \b\ﬁﬁ:]ne{tabular}[t]{|l|}
hline with some W\ hline \\ commands \\
commands \hline
\end{tabular} used.
\firsthline Using\firsthline and\lasthline will cure the problem, and the tables will align
\lasthline properly as long as their first or last line does not contain extremely large objects.
Tables withno versus
line Tables
\begin{tabular}[t){I}
commands with no\\ line \ commands \\ used
used \end{tabular} versus tables
tableg with some |used. \begin{tabular}{ti]i[}
line \firsthline
commands with some \\ line \\ commands \\
\lasthline
\end{tabular} used.
\extratabsurround The implementation of these two commands contains an extra dimension, which is called
\extratabsurround , to add some additional space at the top and the bottom of such an

environment. This is useful if such tables are nested.

2 Final Comments

2.1 Handling of rules

There are two possible approaches to the handling of horizontal and vertical rules in
tables:

1. rules can be placed into the available space without enlarging the table, or
2. rules can be placed between columns or rows thereby enlarging the table.

array.sty implements the second possibility while the default implementation in the
IATEX kernel implements the first concept. Both concepts have their merrits but one has
to be aware of the individual implications.

¢ With standardATEX adding rules to a table will not affect the width or height of the
table (unless double rules are used), e.g., changing a preamblé froto ||l||
does not affect the document other than adding rules to the table. In contrast, with
array.sty atable that just fit thééextwidth ~ might now produce an overfull box.

¢ With standardATEX modifying the width of rules could resultin ugly looking tables
because without adjusting ttighcolsep , etc. the space between rule and column
could get too small (or too large). In fact even overprinting of text is possible. In
contrast, witharray.sty modifying any such length usually works well as the
actual visual white space (frottabcolsep , etc.) does not depend on the width of
the rules.

o With standardATEX boxed tabulars actually have strange corners because the hori-
zontal rules end in the middle of the vertical ones. This looks very unpleasant when
a larg€arrayrulewidth is chosen. In that case a simple table like

\setlength{\arrayrulewidth}{5pt}
\begin{tabular}{|I|}

\hline A \\ \hline
\end{tabular}

will produce something like

instead of

2.2 Comparisons with older versions ofirray.sty

There are some differences in the way version 2.1 treats incorrect input, even if the source
file does not appear to use any of the extra features of the new version.

e A preamble of the fornfwx*{0{abc}yz} was treated by versions prior to 2.1 as
{wx} . Version 2.1 treats it algvxyz}

e An incorrect positional argument such [@§ was treated ag] by array.sty
but is now treated g

e A preamble such agc*{2}} with an error in ax-form will generate different
errors in the new version. In both cases the error message is not particularly helpful
to the casual user.

e Repeateck or > constructions generated an error in earlier versions, but are
now allowed in this package.>{ (decs}}>{ (decs2} is treated the same as
>{ (decs2({decs}}.

e The\extracolsep command does not work with the old versionsaofy.sty
see the comments #rray.bug . With version 2.1\extracolsep may again be
used in@expressions as in standafdgX, and also in -expressions (but see the
note below).

2.3 Bugs and Features

e Error messages generated when parsing the column specification refer to the pream-
ble argumenafter it has been re-written by theewcolumntype system, not to
the preamble entered by the user. This seems inevitable with any system based on
pre-processing and so is classed ésadure.

e The treatment of multipl& or > declarations may seem strange at first. Earlier
implementations treates{ (decs}}>{ (decs2} the same as{{decs}{decs2}.
However this did not give the user the opportunity of overriding the settings
of a \newcolumntype defined using these declarations. For example, sup-
pose in anarray environment we use & column defined as above. TH&
specifies a centred text column, howewdbfseries}C , which re-writes to
>{\bfseries}>{$}c<{$} would not specify a bold column as might be expected,
as the preamble would essentially expandhfi\of$#$ $\hfil and so the
column entry would not be in the scope of théseries ! The present version
switches the order of repeated declarations, and so the above example now produces
a preamble of the formfil$ $\bfseries#$ $\hfil , and the dollars cancel each
other out without limiting the scope of thigfseries

e The use ofextracolsep has been subject to the following two restrictions. There
must be at most onextracolsep command pe@ or! expression and the com-
mand must be directly entered into t@expression, not as part of a macro def-

inition. Thus\newcommand{\ef{\extracolsep{\fill}} ...@{ef} does not
work with this package. However you can use somethingtiggcolumntype{e}{ @{\extracolsep{\fill}
instead.

e As noted by theATpX book, for the purpose dfnulticolumn ~ each column with
the exception of the first one consists of the entry anddewing inter-column
material. This means that in a tabular with the preanifjlg input such as
\multicolumn{2}|c|} in anything other than the first column is incorrect.

In the standard array/tabular implementation this error is not so noticeable as that
version contains negative spacing so that gatdkes up no horizontal space. But
since in this package the vertical lines take up their natural width one sees two lines
if two are specified.

3 The documentation driver file

The first bit of code contains the documentation driver file fX,Ti.e., the file that will
produce the documentation you are currently reading. It will be extracted from this file
by thedocstrip program.

1 (xdriver)

2\NeedsTeXFormat{LaTeX2e}[1995/12/01]

3\documentclass{ltxdoc}

4

5\AtBeginDocument{\DeleteShortVerb{\[}} % undo the default is not used
6

7 \usepackage{array}

8

9 % Allow large table at bottom

10 \renewcommand{\bottomfraction}{0.7}

11

12\EnableCrossrefs

13 %\DisableCrossrefs % Say \DisableCrossrefs if index is ready
14

15\RecordChanges % Gather update information
16

17\Codelinelndex % Index code by line number
18

19 %\OnlyDescription % comment out for implementation details
20 %\OldMakeindex % use if your Makelndex is pre-v2.9
21\begin{document}

22 \Doclnput{array.dtx}

23\end{document}

24 (/driver)

4 The construction of the preamble

It is obvious that those environments will consist mainly ofilealign , because gx
typesets tables using this primitive. That is why we will now take a look at the algorithm
which determines a preamble fothalign starting with a given user preamble using the
options mentioned above.

The current version is defined at the top of the file looking something like this
25 (xpackage)

26 %\NeedsTeXFormat{LaTeX2e}[1994/05/13]
27%\ProvidesPackage{array}[\filedate\space version\fileversion]

The most interesting macros of this implementation are without doubt those which
are responsible for the construction of the preamble foltign . The underlying
algorithm was developed byAMPORT (resp. KNUTH, see texhax V87#?7?), and it has
been extended and improved.

The user preamble will be readken by token. A token is a single character
like ¢ or a block enclosed ifi..} . For example the preamble tfegin{tabular}
{Icl|c@{\hspace{lcm}}} consists of theoken | , ¢, | , | , @and\hspace{lcm}

The currently usedoken and the one, used before, are needed to decide on how
the construction of the preamble has to be continued. In the example mentioned
above thel causes the preamble to begin withskip\tabcolsep . Furthermore
\nfil would be appended to define a flush left column. The nekn is ac.
Because it was preceded by &nit generates a new column. This is done with
\hskip \tabcolsep & \hskip \tabcolsep . The column which is to be centered
will be appended with\hfil # \hfil . Thetoken | would then add a space of
\hskip \tabcolsep and a vertical line because the lastens was ac. The follow-
ing token | would only add a spacéskip \doublerulesep because it was preceded

\@chclass
\@chnum
\@lastchclass

\@addtopreamble

\@testpach

by thetoken | . We will not discuss our example further but rather take a look at the
general case of constructing preambles.

The example shows that the desired preamble fokhddign can be constructed as
soon as the action of all combinations of the preantditens are specified. There are
18 suchtokens so we have 1918 = 342 combinations if we count the beginning of the
preamble as a specialken. Fortunately, there are many combinations which generate
the same spaces, so we can defifken classes. We will identify #oken within a class
with a number, so we can insert the formatting (for example of a column). Table 2 lists
all token classes and their corresponding numbers.

token \@chclass \@chnum token \@chclass \@chnum
c 0 0 Start 4 —
[0 1 @-arg 5 —
r 0 2 ! 6 —
p-arg 0 3 @ 7 —
t-arg 0 4 < 8 —
b-arg 0 5 > 9 —
| 1 0 p 10 3
l-arg 1 1 t 10 4
<-arg 2 — b 10 5
>-arg 3 —

Table 2: Classes of preamhti&ens

The class and the number of the curreiken are saved in theount registerd@chclass

and \@chnum, while the class of the previousken is stored in thecount register
\@lastchclass . All of the mentioned registers are already allocatedaiex.tex
which is the reason why the following three lines of code are commented out. Later
throughout the text | will not mention it again explicitely whenever | udésiggn. These
parts are already defined latex.tex

28% \newcount \@chclass

29% \newcount \@chnum

30% \newcount \@lastchclass

We will save the already constructed preamble for \tiadign in the global macro
\@preamble . This will then be enlarged with the commai@addtopreamble

31\def\@addtopreamble#1{\xdef\@preamble{\@preamble #1}}

4.1 The character class of aoken

With the help of\@lastchclass ~ we can now define a macro which determines the class
and the number of a given preamid&en and assigns them to the registe@zhclass
and\@chnum.

32\def\@testpach{\@chclass

First we deal with the cases in which ttuden (#1) is the argument of, @ < or >. We

can see this from the value \@lastchclass

33 \ifnum \@lastchclass=6 \@ne \@chnum \@ne \else
34 \ifnum \@Ilastchclass=7 5 \else

\@xexpast
\the@toks
\the@toksz

35 \ifnum \@lastchclass=8 \tw@ \else

36 \ifnum \@lastchclass=9 \thr@@

Otherwise we will assume that theken belongs to the class 0 and assign the correspond-
ing number td@chnum if our assumption is correct.

37 \else \z@

If the lasttoken was ap, mor ab, \@chnum already has the right value. This is the reason
for the somewhat curious choice of tlaken numbers in class 10.

38 \ifnum \@lastchclass = 10 \else

Otherwise we will check ifl@nextchar is either ac, | or anr. Some applications
change the catcodes of certain characters |@erf amstex.sty . As a result the tests
below would fail since they assume non-active character tokens. Therefore we evaluate
\@nextchar once thereby turning the first token of its replacement text into a char. At
this point here this should have been the only char presé@mnextchar which putinto

via a\def .

39 \edef\@nextchar{\expandafter\string\@nextchar}%

40 \@chnum

41 \if \@nextchar c\z@ \else

42 \if \@nextchar \@ne \else

43 \if \@nextchar Ntw@ \else

If it is a differenttoken, we know that the class was not 0. We assign the value 0 to
\@chnum because this value is needed for theoken. Now we must check the remaining
classes. Note that the value\@chnum is insignificant here for most classes.

44 \z@ \@chclass

45 \if\@nextchar |\@ne \else

46 \if \@nextchar !6 \else

47 \if \@nextchar @7 \else

48 \if \@nextchar <8 \else

49 \if \@nextchar >9 \else

The remaining permittetbkens arep, mandb (class 10).

50 10

51 \@chnum

52 \if \@nextchar mithr@@\else

53 \if \@nextchar p4 \else

54 \if \@nextchar b5 \else

Now the only remaining possibility is a forbidderken, so we choose class 0 and number
0 and give an error message. Then we finish the macro by clositifg &l

55 \z@ \@chclass \z@ \@preamerr \z@ \fi \fi \fi \fi

s6 Mi Vi Mi Vi M M Vi MMV i)

4.2 Multiple columns (x—form)

Now we discuss the macro that deletes all forms of typé}{ String} from a user pream-
ble and replaces them witki copies ofString Nested«—expressions are dealt with cor-
rectly, that means—expressions are not substituted if they are in explicit braces, as in
@{.

This macro is called vig@xexpast (preamble*0x\@@. The x—expressioriOx is be-
ing used to terminate the recursion, as we shall see latef@@serves as an argument
delimiter. \@xexpast has four arguments. The first one is the part of the user preamble
before the firsk—expression while the second and third ones are the arguments of the first

x—expression (that i andStringin the notation mentioned above). The fourth argument
is the rest of the preamble.

57\def\@xexpast#1*#2#3#4\@ @{%

The number of copies dbtring (#2) that are to be produced will be saved irt@unt
register.
58 \@tempcnta #2

We save the part of the preamble which does not contaifam #1) in a PLAIN TpX
token register. We also sav@tring (#3) using a ATEX token register.

59 \toks@={#1}\@temptokena={#3}%

Now we have to use a little trick to produde copies of String We could try
\def\@tempa{#l} and therN times\edef\@tempa{\@tempa#3} . This would have the
undesired effect that all macros with#t and#3 would be expanded, although, for ex-
ample, constructions lik@{..} are not supposed to be changed. That is whylete
two control sequences to be equivaleniréax

60 \let\the@toksz\relax \let\the@toks\relax

Then we ensure tha@tempa contains{\the@toksz\the@toks...\the@toks} (the
macrolthe@toks exactlyN times) as substitution text.

61 \def\@tempa{\the@toksz}%

62 \ifnum\@tempenta >0 \@whilenum\@tempcnta >0\do

63 {\edef\@tempa{\@tempa\the@toks}\advance \@tempcnta \m@ne}%

If N was greater than zero we prepare for another cal@oxpast . Otherwise we
assume we have reached the end of the user preamble, because we had app@@ed
when we first called@xexpast . In other words: if the user insertf0}..} in his
preamble,ATeX ignores the rest of it.

64 \let \@tempb \@xexpast \else

65 \let \@tempb \@xexnoop \fi

Now we will make sure that the part of the user preamble, which was already dealt with,
will be saved again iN@tempa.

66 \defithe@toksz{\the\toks@}\def\the@toks{\the\@temptokena}%

67 \edef@tempa{\@tempa}%

We have now evaluated the firstexpression, and the user preamble up to this point is
saved in@tempa. We will put the contents df@tempa and the rest of the user pream-
ble together and work on the result wit@tempb. This macro either corresponds to
\@xexpast , so that the next—expression is handled, or to the ma@xexnoop , which
only ends the recursion by deleting its argument.

68 \expandafter \@tempb \@tempa #4\@@}

\@xexnoop So the first big problem is solved. Now it is easy to spe@yexnoop . Its argument is
delimited by\@@and it simply expands to nothing.

69% \def\@xexnoop#l\@@{}

5 The insertion of declarations &, <,!, @

The preamble will be enlarged with the help\xdef , but the arguments of, <, ! and

@are not supposed to be expanded during the construction (we want an implementation
that doesn't need\arotect). So we have to find a way to inhibit the expansion of those
arguments.

10

\count@

\prepnext@tok

\save@decl

We will solve this problem withoken registers. We need one register for eviegnd
@ while we need two for every, |, r, m p orb. This limits the number of columns of
a table because there are only 28ken registers. But then, who needs tables with more
than 100 columns?

One could also find a solution which only needs two or thoken registers by pro-
ceeding similarly as in the mact@xexpast (see page 9). The advantage of our approach
is the fact that we avoid some of the problems that arise with the other nfethod

So how do we proceed? Let us assume that we{f@dl in the user preamble and
say we savedbo in token register 5. Then we cal@addtopreamble{\the@toks5}
wherelthe@toks is defined in a way that it does not expand (for example it could be
equivalent tdrelax). Every following call of\@addtopreamble leaves\the@toks5
unchanged in@preamble . If the construction of the preamble is completed we change
the definition ofithe@toks to \theltoks and expand@preamble for the last time.
During this process all parts of the forthe@toks (Numbej will be substituted by the
contents of the respectiveken registers.

As we can see from this informal discussion the construction of the preamble has to
take place within a group, so that tlagen registers we use will be freed later on. For that
reason we keep all assignmentd@preamble global; therefore the replacement text of
this macro will remain the same after we leave the group.

We further need @&ount register to remember whicioken register is to be used next.
This will be initialized with —1 if we want to begin with theoken register 0. We use
the RLAIN TpX scratch registefcount@ because everything takes place locally. All we
have to do is insefthe@toks \the \count@ into the preambléthe@toks will remain
unchanged anthelcount@ expands into the saved number.

The macrdprepnext@tok is in charge of preparing the nextken register. For that
purpose we increadeount@ by 1:

70\def\prepnext@tok{\advance \count@ \@ne
Then we locally delete any contents thken register might have.
71 \toks\count@{}}

During the construction of the preamble the curtekrén is always saved in the macro
\@nextchar (see the definition df@mkpream on page 12). The macksave@decl saves
it into the next freaoken register, i.e. intoks\count@

72\deflsave@decl{\toks\count@ \expandafter{\@nextchar}}

The reason for the use bélax is the following hypothetical situation in the preamble:
.\theltoks1\the\toks2.. TeX expanddtheltoks2 firstin order to find out if the
digit 1 is followed by other digits. E.g. & saved in theoken register 2 would leadgX
to insert the contents abken register 15 instead of 1 later on.

The example above referred to an older versionsafe@decl which inserted a
\relex inside the token register. This is now moved to the places where the actual token
registers are inserted (look fiihe@toks) because the old version would still mafe
expressions to moving arguments since after expanding the second register while look-
ing for the end of the number the contents of the token register is added so that later on
the whole register will be expanded. This serious bug was found after nearly two years
international use of this package by Johannes Braams.

3Maybe there are also historical reasons.

11

\insert@column
\@sharp

\@addamp

\@acol
\@acolampacol
\col@sep

\@mkpream
\the@toks

How does the situation look like, if we want to add another column to the preambile,
i.e. if we have found &, |, r, p, morb in the user preamble ? In this case we have the
problem of theoken register fron®{.} and<{.} having to be inserted at this moment
because formating instructions likéil have to be set around them. On the other hand
it is not known yet, if any{..} instruction will appear in the user preamble at all.

We solve this problem by adding twaken registers at a time. This explains, why we
have freed théoken registers inprepnext@tok

We now define the machkmsert@column which will do this work for us.
73\deflinsert@column{%

Here, we assume that theunt registen@tempcnta has saved the valleount@ — 1.

74 \the@toks \the \@tempcnta

Next follows the# sign which specifies the place where the text of the column shall be
inserted. To avoid errors during the expansiongliaddtopreamble ~ we hide this sign in

the command@sharp which is temporarily occupied withielax ~ during the build-up

of the preamble. To remove unwanted spaces before and after the column text, we set an
\ignorespaces in front and dunskip afterwards.

75 \ignorespaces \@sharp \unskip

Then the secontbken register follows whose number should be savettonnt@ . We

make sure that there will be no further expansion after reading the number, by finishing
with \relax . The case above is not critical since it is endedignprespaces

76 \the@toks \the \count@ \relax}

5.1 The separation of columns

In the preamble & has to be inserted between any two columns; before the first column
there should not be & As the user preamble may start with ave have to remember
somehow if we have already inserted &.e. a column). This is done with the boolean
variable\if@firstamp that we test in@addamp, the macro that inserts tige

77% \newif \@iffirstamp

78% \def\@addamp{\if@firstamp \@firstampfalse

79% \else \@addtopreamble &\fi}

We will now define some abbreviations for the extensions, appearing most often in
the preamble build-up. Herfeol@sep is adimen register which is set equivalent to
\arraycolsep in anarray—environment, otherwise it is set equivalenttébcolsep
80\newdimen\col@sep

81 \def\@acol{\@addtopreamble{\hskip\col@sep}}

82% \def\@acolampacol{\@acol\@addamp\@acol}

5.2 The macro\@mkpream

Now we can define the macro which builds up the preamble folhtiign . First we
initialize \@preamble , \@lastchclass and the boolean variablig@firstamp
83\def\@mkpream#1{\gdef\@preamble{}\@Ilastchclass 4 \@firstamptrue

During the build-up of the preamble we cannot directly useftisggn; this would lead
to an error message in the négaddtopreamble call. Instead, we use the command
\@sharp at places where laterf&awill be. This command is at first given the meaning

12

\relax ; therefore it will not be expanded when the preamble is extended. In the macro
\@array , shortly before théhalign is carried out\@sharp is given its final meaning.

In a similar way, we deal with the comman@startphox and\@endpbox , although
the reason is different here: these macros expand in mo&ays which would delay the
build-up of the preamble.
84 \let\@sharp\relax \let\@startpbox\relax \let\@endpbox\relax

Now we remove possible-forms in the user preamble with the commag@kexpast .

As we already know, this command saves its result in the m@empa.

85 \@xexpast #1*0X\@@

Afterwards we initialize all registers and macros, that we need for the build-up of the
preamble. Since we want to start with tlagen register 0\count@ has to contain the
value—1.

86 \count@m@ne

87 \letithe@toks\relax

Then we call upprepnext@tok in order to prepare theken register O for use.

88 \prepnext@tok

To evaluate the user preamble (without stars) savé@fempa we use theATpX—macro
\@tfor . The strange appearing construction witkpandafter is based on the fact
that we have to put the replacement texi@fempa and not the macri@tempa to this
IATEX—macro.

89 \expandafter \@tfor \expandafter \@nextchar

90 \expandafter :\expandafter =\@tempa \do

The body of this loop (the group after tiie) is executed for onwken at a time, whereas
the currentoken is saved in@nextchar . At first we evaluate the curretiken with the
already defined mach@testpach , i.e. we assign té@chclass the character class and
to \@chnum the character number of thisken.

91 {\@testpach

Then we branch out depending on the valué@thclass into different macros that
extend the preamble respectively.

92 \ifcase \@chclass \@classz \or \@classi \or \@classii

93 \or \save@decl \or \or \@classv \or \@classvi
94 \or \@classvii \or \@classviii \or \@classix
95 \or \@classx \fi

Two cases deserve our special attention: Since the cuuiet cannot have the char-
acter class 4 (start) we have skipped this possibility. If the character class is 3, only the
content of\@nextchar has to be saved into the curreoken register; therefore we call
up\save@decl directly and save a macro name. After the preamble has been extended
we assign the value d@chclass to the countek@lastchclass to assure that this in-
formation will be available during the next run of the loop.

96 \@lastchclass\@chclass}%

After the loop has been finished space must still be added to the created preamble, de-
pending on the lagbken. Depending on the value &®lastchclass we perform the
necessary operations.

97 \ifcase\@lastchclass

If the last class equals 0 we adéhakip \col@sep

98 \@acol \or

13

If it equals 1 we do not add any additional space so that the horizontal lines do not exceed
the vertical ones.

9 \or
Class 2 is treated like class 0 becausé.d can only directly follow after class O.
100 \@acol \or

Most of the other possibilities can only appear if the user preamble was defective. Class 3
is not allowed since afterg.} there must always follow e, |, r, p,morb. We report
an error and ignore the declaration given{ldy .

101 \@preamerr \thr@@ \or

If \@lastchclass is 4 the user preamble has been empty. To continue, we ingdrt a
the preamble.

102 \@preamerr \tw@ \@addtopreamble\@sharp \or

Class 5 is allowed again. In this case (the user preamble end€{ith) we need not
do anything.
103 \or

Any other case means that the argumeni@tq <, >, p, mor b have been forgotten. So
we report an error and ignore the lasiten.

104 \else \@preamerr \@ne \fi

Now that the build-up of the preamble is almost finished we can insettitbe registers
and therefore redefinthe@toks . The actual insertion, though, is performed later.

105 \defithe@toks{\the\toks}}

6 The macros\@classz to \@classx

The preamble is extended by the macv@slassz to \@classx which are called by
\@mkpream depending on@lastchclass (i.e. the character class of the lasiten).

\@classx First we define@classx because of its importantké. When it is called we find that the
currenttoken is p, mor b. That means that a new column has to start.

106\def\@classx{%
Depending on the value t@lastchclass different actions must take place:
107 \ifcase \@lastchclass

If the last character class was 0 we separate the columiisitigicol@sep followed
by & and anothethskip\col@sep

108 \@acolampacol \or

If the last class was class 1 — that means that a vertical line was drawn, — before this
line a\hskip\col@sep was inserted. Therefore there has to be on§/fallowed by
\hskip\col@sep . But this& may be inserted only if this is not the first column. This
process is controlled by@firstamp in the macrdaddamp .

109 \@addamp \@acol \or
Class 2 is treated like class 0 becagggl can only follow after class 0.
110 \@acolampacol \or

Class 3 requires no actions because all things necessary have been done by the preamble
token >.

111 \or

14

\@classz

Class 4 means that we are at the beginning of the preamble. Therefore we start the pream-
ble with\hskip\col@sep and then call@firstampfalse . This makes sure that a later
\@addamp inserts the charactérinto the preamble.

112 \@acol \@firstampfalse \or

For class Sokens only the charactet is inserted as a column separator. Therefore we
call\@addamp.

113 \@addamp

Other cases are impossible. For an exam@lastchclass = 6—as it might appear
in a preamble of the form.Ip... —p would have been taken as an argumerit bfy
\@testpach

114 \fi}

If the character class of the lasken is O we havet, |, r or an argument oy b or p.

In the first three cases the preamble must be extended the same way as if we had class
10. The remaining two cases do not require any action because the space needed was
generated by the lagiken (i.e.m b or p). Since\@lastchclass has the value 10 at this
point nothing happens whé@classx is called. So the maci@chlassz may start like

this:

115\defl@classz{\@classx

According to the definition ofinsert@column ~ we must store the number of thaken
register in which a precedirg..} might have stored its argument in@tempcnta .

116 \@tempenta \count@

To havelcount@ =\@tmpenta + 1 we prepare the nextken register.

117 \prepnext@tok

Now the preamble must be extended with the column whose format can be determinated
by \@chnum.

118 \@addtopreamble{lifcase \@chnum

If \@chnum has the value 0 a centered column has to be generated. So we begin with
stretchable space.

119 \hfil

The commandd@Ilarbegin follows expanding intdbegingroup (in the tabular—
environment) or intcs. Doing this (provided an appropriate setting\@®llarbegin)

we achieve that the contents of the columns odasy—environment are set in math mode
while those of gabular—environment are set in LR mode.

120 \d@llarbegin

Now we insert the contents of the twaken registers and the symbol for the column entry
(i.e.# or more precis&@sharp) using\insert@column

121 \insert@column

We end this case witid@llarend and\hfl where\d@llarend again is eithef or
\endgroup

122 \d@llarend \hfil \or

The templates for andr (i.e.\@chnum 1 or 2) are generated the same way. Since one
\hfil is missing the text is moved to the relevant side. khm\z@ is needed in case of

an empty column entry. Otherwise thiaskip in\insert@column removes théhfil

Changed tdhskiplsp so that it interacts better witl@bsphack .

123 \hskip1sp\d@llarbegin \insert@column \d@llarend \hfil \or
124 \hfil\hskiplsp\d@llarbegin \insert@column \d@llarend \or

15

\@classix

\@classviii

\@arrayrule

\@classvii

The templates fop, mandb mainly consist of éox. In case ofmit is generated by
\vcenter . This command is allowed only in math mode. Therefore we start with a

125 $\center

The part of the templates which is the same in all three cas@sandb) is built by the
macros\@startpbox and\@endpbox . \@startpbox has an argument: the width of the
columnwhich is stored in the curremken (i.e.\@nextchar). Between these two macros
we find the well knowninsert@column

126 \@startpbox{\@nextcharjinsert@column \@endpbox $\or

The templates fop andb are generated in the same way though we do not nee#l the
characters because we igep or\vbox .

127 \vtop \@startpbox{\@nextcharj\insert@column \@endpbox \or

128 \vbox \@startpbox{\@nextcharj\insert@column \@endpbox

Other values fox@chnum are impossible. Therefore we end the argumen®@addtopreamble
and\ifcase . Before we come to the end @classz we have to prepare the newrken
register.

129 \fij\prepnext@tok}

In case of class 9>(token) we first check if the character class of the lasten was

3. In this case we have a user preamble of the forfn.}>{...}.. which is not
allowed. We only give an error message and continue. So the declarations defined by the
first>{..} areignored.

130\def\@classix{\ifnum \@Ilastchclass = \thr@@

131 \@preamerr \thr@@ \fi

Furthermore, we call uj@class10 because afterwards always a new column is started
byc,!|,r,p, morb.

132 \@classx}

If the currentioken is a< the last character class must be 0. In this case it is not necessary
to extend the preamble. Otherwise we output an error messag@chefass to 6 and
call\@classvi . By doing this we achieve thatis treated like .

133\def\@classviii{\ifnum \@Ilastchclass >\z@
134 \@preamerr 4\@chclass 6 \@classvi \fi}

There is only one incompatibility with the original definition: the definitioh@#rrayrule

In the original a line without widthis created by multiple insertions Wkip .5\arrayrulewidth
We only insert a vertical line into the preamble. This is done to prevent problems with
TeX's main memory when generating tables with many vertical lines in them (especially
in the case ofioats).

135\defl@arrayrule{\@addtopreamble \vline}

As a consequence it follows that in case of class@token) the preamble need not

to be extended. In the original definitid@lastchclass = 1 is treated by inserting
\hskip .S\arrayrulewidth . We only check if the lastoken was of class 3 which is
forbidden.

136\def\@classvii{\ifnum \@Ilastchclass = \thr@@

4So the space between andc|c is equal.

16

\@classvi

\@classii
\@classiii

\@classv

\@classi

If this is true we output an error message and ignore the declarations stored by the last
>{..} , because these are overwritten by the argumegt of

137 \@preamerr \thr@@ \fi}

If the currenttoken is a regulat and the last class was 0 or 2 we extend the preamble

with \hskip\col@sep . If the lasttoken was of class 1 (for instandg we extend with
\hskip \doublerulesep because the constructid{n.} has to be treated like.
13g\defi@classvi{\ifcase \@lastchclass

139 \@acol \or

140 \@addtopreamble{\hskip \doublerulesep}or

141 \@acol \or

Now \@preamerr... should follow because a user preamble of the farfn}!. is

not allowed. To save memory we céiclassvii instead which also does what we want.
142 \@classvii

If \@lastchclass is 4 or 5 nothing has to be done. Class 6 to 10 are not possible. So we
finish the macro.

143 \fi}

In the case of character classes 2 and 3 (i.e. the argumemtrof) we only have to store
the currentoken (\@nextchar) into the correspondingpken register since the prepara-
tion and insertion of these registers are done by the m@ulassz . This is equivalent
to calling\save@decl in the case of class 3. To save command identifiers we do this call
up in the macra@mkpream.

Class 2 exhibits a more complicated situation: thien registers have already been
inserted by@classz . So the value otount@ is too high by one. Therefore we decrease
\count@ by 1.

144\def\@classii{\advance \count@ \m@ne

Next we store the curremken into the correctoken register by callingsave@decl and
then increase the value @bunt@ again. At this point we can save memory once more
(at the cost of time) if we use the madpoepnext@tok

145 \save@decl\prepnext@tok}

If the currenttoken is of class 5 then it is an argument o@oken. It must be stored into
atoken register.

146\def\@classv{\save@decl

We extend the preamble with a command which insertsdké register into the pream-

ble when its construction is finished. The user expects that this argument is worked out
in math mode if it was used in amray—environment. Therefore we surround it with
\d@llar... ’s.

147 \@addtopreamble{\d@llarbegin\the@toks\the\count@\relax\d@llarend}%
Finally we must prepare the nexken register.
148 \prepnext@tok}

In the case of class 0 we were able to generate the necessary space between columns by
using the macré@classx . Analogously the macr@classvi can be used for class 1.

149\def\@classi{\@classvi
Depending on@chnum a vertical line
150 \ifcase \@chnum \@arrayrule \or

17

\@startpbox

\@endpbox

\@array

or (in case of{...}) the currentoken — stored in\@nextchar — has to be inserted
into the preamble. This corresponds to cali@glassv .

151 \@classv \fi}

In\@classz the macro@startpbox is used. The width of thearbox is passed as an
argumentlvcenter , \wtop or\vbox are already in the preamble. So we start with the
braces for the wanted box.

152\def\@startpbox#1{\bgroup

The argument is the width of the box. This information has to be assigndize .
Then we assain default values to several parameters useqehibcx.

153 \hsize #1 \@arrayparboxrestore

Our main problem is to obtain the same distance between succeeding linespaf-the

box. We have to remember that the distance betweerpbsmoxes should be defined by
\@arstrut . That means that it can be greater than the distanceatx. Therefore

it is not enough to set ¥arstrut at the beginning and at the end of terbox. This

would dimension the distance between first and second line and the distance between the
two last lines of theparbox wrongly. To prevent this we set an invisible rule of height
\@arstrutbox at the beginning of thparbox. This has no effect on the depth of the first

line. At the end of theparbox we set analogously another invisible rule which only af-
fects the depth of the last line. Itis necessary to wait inserting this strut until the paragraph
actually starts to allow for things likKparindent ~ changes vi&{...}

154 \everypar{%

155 \vrule \@height \ht\@arstrutbox \@width \z@
156 \everypar{}}%
157}

If there are any declarations defined¥y.} and<{..} they now follow in the macro
\@classz — the contents of the column in between. So the mg@endpbox mustinsert
thespecialstrut mentioned earlier and then close the group openéd@bstartpbox

158\def\@endpbox{\@finalstrut\@arstrutbox \egroup\hfil}

7 Building and calling \ halign

After we have discussed the macros needed for the evaluation of the user preamble we
can define the maci@array which uses these macros to creatbatign . It has two
arguments. The first one is a position argument which cain, beor ¢; the second one
describes the wanted preamble, e.g. it has the fdcio|

159\def\@array[#1}#2{%

First we define atrut whose size basically corresponds to a norstrat multiplied by the
factor\arraystretch . Thisstrut is then inserted into every row and enforces a minimal
distance between two rows. Nevertheless, when using horizontal lines, large letters (like
accented capital letters) still collide with such lines. Therefore at first we add to the height
of a normalstrut the value of the parametextrarowheight

160 \@tempdima \ht \strutbox

161 \advance \@tempdima by\extrarowheight
162 \setbox \@arstrutbox \hbox{\vrule

163 \@height \arraystretch \@tempdima
164 \@depth \arraystretch \dp \strutbox
165 \@width \z@}%

18

Then we open a group, in which the user preamble is evaluated by the Y@adkaream.
As we know this must happen locally. This macro creates a preambléifaiga and
saves its result globally in the control sequek@greamble .

166 \begingroup

167 \@mkpream{#2}%

We again redefing@preamble so that a call up of@preamble now starts théhalign
Thus also the arguments Bf <, @and!, saved in theoken registers are inserted into
the preamble. Thiabskip at the beginning and end of the preamble is selpta(in
the beginning by the use &élign). Also the commant@arstrut is build in, which
inserts the@arstrutbox , defined above. Of course, the opening brace &tian

has to be implicit as it will be closed bandarray or another macro.

168 \xdef\@preamble{lialign \@halignto

169 \bgroup \@arstrut \@preamble

170 \tabskip \z@ \cr}%

What we have not explained yet is the ma@balignto that was just used. Depending
on its replacement text thealign becomes &alignto (dimer). Now we close the
group again. Thu¥@startpbox and\@endpbox as well as altoken registers get their
former meaning back.

171 \endgroup

To support thelelarray.sty package we include a hook into this part of the code which
is a no-op in the main package.
172 \@arrayleft

Now we decide depending on the position argument in whishthe \halign is to be
put. (vcenter may be used because we are in math mode.)

173 \if #1t\top \else \ifflb\vbox \else \vcenter \fi \fi

Now another implicit opening brace appears; then definitions which shall stay local fol-
low. While constructing th&@preamble in \@mkpream the# sign must be hidden in the
macro\@sharp which is\let to\relax at that moment (see definition @®mkpream

on page 12). All these now get their actual meaning.

174 \bgroup
175 \let \@sharp ##\let \protect \relax

With the above definedtruts we fix down the distance between rows by setting
\lineskip and\baselineskip to Opt. Since there have to be si¢ around every col-
umn in thearray—environment the parametenathsurround should also be set tapt.
This prevents additional space between the rows. TihaNPTeX—macro\m@th does
this.

176 \lineskip \z@

177 \baselineskip \z@

178 \m@th

Beside, we have to assign a special meaning (which we still have to specify) to the line
separatoll . We also have to redefine the commauadl in such a way that empty lines
in\halign cannot do any damage. We succeed in doing so by choosing something that
will disappear when expanding. After that we only have to call@preamble to start

the wantedhalign

179 \let\@arraycr \let\tabularnewlineWet\pan@empty \@preamble}

19

\extrarowheight

\@arstrut

\@arraycr

\@xarraycr

\@argarraycr

The dimen parameter used above also needs to be allocated. As a default value we use
Opt, to ensure compatibility with standarlix.

180\newdimen \extrarowheight
181\extrarowheight=0pt

Now the insertion of@arstrutbox ~ through\@arstut is easy since we know exactly in
which mode EX is while working on théhalign ~ preamble.

182\def\@arstrut{lunhcopy\@arstrutbox}

8 The line separator)\

In the macrd@array the line separatdr is\let to the commanti@arraycr . Its defi-

nition starts with a special brace which | have directly copied from the original definition.

It is necessary, because tigurlet in \@ifnextchar ~ might expand a followingk

token in a construction liké\ & . This would otherwise end the alignment template at a
wrong time. On the other hand we have to be careful to avoid producing a real group, i.e.
{} , because the command will also beused for the array environment, i.e. in math mode.
In that case an ext{h would produce an ord atom which could mess up the spacing. For
this reason we use a combination that does not realy produce a group at all but modifies
the master counter so thagawill not be considered belonging to the curréhaling

while we are looking for & or[. For further information see [2, Appendix D].

183\def\@arraycr{\relax\iffalse{\fi\ifnum 0="p\fi

Then we test whether the user is using the star form and ignore a possible star (I also
disagree with this procedure, because a star does not make any sense here).

184 \@ifstar \@xarraycr \@xarraycr}

In the command@xarraycr ~ we test if an optional argument exists.
185\def\@xarraycr{\@ifnextchar [%

If it does, we branch out into the macd@argarraycr if not we close the special brace
(mentioned above) and end the row of thaign ~ with a\cr .

186 \@argarraycr {\ifnum O="{}\fi\cr}}

If additional space is requested by the user this case is treated in the\@ayaraycr
First we close the special brace and then we test if the additional space is positive.

187\def\@argarraycr[#1]{\ifnum0="{\filifdim #1>\z@

If this is the case we create an invisible vertical rule with degph@arstutbox — +
(wanted space Thus we achieve that all vertical lines specified in the user preamble
by a| are now generally drawn. Then the row ends witbra.

If the space is negative we end the row at once wittr aand move back up with a
\vskip

While testing these macros | found out that Yrltemplate created bycr andé&
is something like afouter primitive and therefore it should not appear in incomplete
\if statements. Thus the following solution was chosen which hidekrithén other
macros whengX is skipping conditional text.
188 \expandafter\@xargarraycr\else
189 \expandafter\@yargarraycr\fi{#1}}

20

\@xargarraycr
\@yargarraycr

\multicolumn

The following macros were already explained above.

190\def\@xargarraycr#1{\unskip

191 \@tempdima #1l\advance\@tempdima \dp\@arstrutbox
192 \vrule \@depth\@tempdima \@width\z@ \cr}
193\def\@yargarraycr#1{\cr\noalign{\vskip #1}}

9 Spanning several columns

If several columns should be held together with a special format the commaiticblumn
must be used. It has three arguments: the number of columns to be covered; the format
for the result column and the actual column entry.

194\defimulticolumn#1#2#3{%

First we combine the given number of columns into a single one; then we start a new
block so that the following definition is kept local.

195 \multispan{#1}\begingroup

Since amulticolumn should only describe the format of a result column, we redefine
\@addamp in such a way that one gets an error message if one uses more than png

p, mor b in the second argument. One should consider that this definition is local to the
build-up of the preamble; asrray— or tabular—environment in the third argument of the
\multicolumn s therefore worked through correctly as well.

196 \def\@addamp{lif@firstamp \@firstampfalse \else

197 \@preamerr 5\fi}%

Then we evaluate the second argument with the hel@ofkpream. Now we still have

to insert the contents of theken register into the@preamble , i.e. we have to say
\xdef\@preamble{\@preamble} . This is achieved shorter by writing:

198 \@mkpream{#2})\@addtopreamble\@empty

After the \@preamble is created we forget all local definitions and occupations of the
token registers.

199 \endgroup

In the special situation dfnulticolumn \@preamble is not needed as preamble for a
\halign but it is directly inserted into our table. Thus insteadsbérp there has to be
the column entry#3) wanted by the user.

200 \def\@sharp{#3}%

Now we can pass thé@preamble to TeX . For safety we start with af@arstrut . This
should usually be in the template for the first column however we do not know if this
template was overwritten by olmulticolumn . We also add &ull at the right end to
prevent any followindunskip (for example from\[..]) to remove thétabcolsep

201 \@arstrut \@preamble

202 \null
203 \ignorespaces}

10 The Environment Definitions

After these preparations we are able to define the environments. They only differ in the
initialisations of\d@llar... , \col@sep and\@halignto

21

\@halignto
\d@llarbegin
\d@Ilarend

\array

\@tabarray

\tabular
\tabular*

\@tabular

\endarray

\endtabular
\endtabular*

In order to relieve theave stack we assign the replacement texts f@halignto glob-

ally. \d@llar has to be local since otherwise nestalilar andarray environments (via
\multicolumn) are impossible. When the new font selection scheme is in force we have
to we surround allhalign entries with braces. See remarks in TUGboat 10#2. Actu-
ally we are going to ustegingroup and\endgroup . However, this is only necessary
when we are in text mode. In math the surrounding dollar signs will already serve as the
necessary extra grouping level. Therefore we switch the setting®@dérbegin and
\d@llarend between groups and dollar signs.

204\let\d@llarbegin\begingroup
205\let\d@Ilarend\endgroup

Our new definition ofarray then reads:

206\deflarray{\col@sep\arraycolsep
207 \def\d@Ilarbegin{$j\let\d@llarend\d@llarbegin\gdef\@halignto{}%

Since there might be an optional argument we call another macro which is also used by
the other environments.
208 \@tabarray}

This macro tests for a optional bracket and then call§@goray or \@array[c] (as
default).
209\def\@tabarray{\@ifnextchar[{\@array{\@array|c]}}

The environmentsabular andtabularx differ only in the initialisation of the command
\@halignto . Therefore we define

210\defitabular{\gdef\@halignto{\@tabular}

and analoguesly

211\expandafter\deficsname tabulart\endcsname#1{%
212 \gdef\@haligntofto#1}\@tabular}

The rest of the job is carried out by th@tabular macro:

213\def\@tabular{%

First of all we have to make sure that we start ouiriiode. Otherwise we might find our
table dangling by itself on a line.

214 \leavevmode

It should be taken into consideration that the maéarray must be called in math
mode. Therefore we operbax, insert & and then assign the correct valuektb@sep
and\d@llar...

215 \hbox \bgroup $\col@sep\tabcolsep \let\d@llarbegin\begingroup
216 \let\d@llarend\endgroup

Now everythingabular specific is done and we are able to call {@gabarray macro.
217 \@tabarray}

When the processing afray is finished we have to close thiwlign and afterwards the
surroundinghox selected by@array . To saveoken space we then redefi@preamble
because its replacement text isn’t longer needed.

218\deflendarray{\crcr \egroup \egroup \gdef\@preamble{}}

To end aabular or tabularx environment we call ujgndarray , close the math mode and
then the surroundingbox .

219\deflendtabular{\endarray $\egroup}
220\expandafter\leticsname endtabular\endcsname=\endtabular

22

\@preamerr

\newcolumn

\newcolumntype

11 Last minute definitions

If this file is used as a package file we sholldtl all macros tdrelax that were used
in the original but are no longer necessary.

221\let\@ampacol=\relax \let\@expast=\relax
222\let\@arrayclassiv=\relax \let\@arrayclassz=\relax
223\let\@tabclassiv=\relax \let\@tabclassz=\relax
224\let\@arrayacol=\relax \let\@tabacol=\relax
225\let\@tabularcr=\relax \let\@@endpbox=\relax

226\let\@argtabularcr=\relax \let\@xtabularcr=\relax

We also have to redefine the error routi@mreamerr since new kind of errors are pos-
sible. The code for this macro is not perfect yet; it still needs too much memory.
227\def\@preamerr#1{\def\@tempd{{..} at wrong position: }%

228 \PackageError{array}%

229 \ifcase #1 lllegal pream-token (\@nextchar): ‘c’ used\or %0

230 Missing arg: token ignored\or %1
231 Empty preamble: ‘I' used\or %2
232 >\@tempd token ignored\or %3
233 <\@tempd changed to X..}\or %4
234 Only one column-spec. allowed.\fi\@ehc} %5

12 Defining your own column specifiers

In newarray.sty the macro for specifying new columns was nartmedicolumn . When

the functionality was added toray.sty the command was renameadwcolumntype

Initially both names were supported, but now (In versions of this package distributed for
IATEX 2¢) the old name is not defined.

235 (xncols)

As described above, theewcolumntype macro gives users the chance to define letters,
to be used in the same way as the primitive column specifiers, ‘c’ ‘p’ etc.

236 ldeflnewcolumntype#1{%

\NC@char was added in V2.01 so that active characters,@keAMSIATEX may be used.
This trick was stolen fromarray.sty ~ 2.0h. Note that we need to use the possibly active
token,#1, in several places, as that is the token that actually appears in the preamble
argument.

237 ledefINC@char{\string#1}%

First we check whether there is already a definition for this column. Ukréeecommand

we give a warning rather than an error if it is defined. If it is a new column\ldd@do
(column) to the listINC@list .

238 |@ifundefined{NC@find@\NC@char}%
239 {\@tforl\next:=<>clrmbp@!|\do{\ifinoexpand\next INC@char

240 \PackageWarning{array}%
241 {Redefining primitive column \NC@char}\fi}%6
242 INC@listlexpandafter{\theINC@IistINC@do#1}}%

243 {\PackageWarning{array}{Column \NC@char\space is already defined}}%

5The code and the documentation in this section was written by David. So far only the code from newarray
was plugged into array so that some parts of the documentation still claim that this is newarray and even worse,
some parts of the code are unnecessarily doubled. This will go away in a future release. For the moment we
thought it would be more important to bring both packages together.

23

\newcol@

\NC@

\NC@ifend

\NC@do

\showcols

Now we define a macro with an argument delimited by the new column specifier, this is
used to find occurences of this specifier in the user preamble.

244 \@namedef{NC@find@\NC@char}##1#1{\INC@{##1}}%

If an optional argument was not given, give a default argument of 0.

245 |\@ifnextchar[{\newcol@{INC @char}}{\newcol@{INC @char}[0]}}

We can now define the macro which does the rewriti@yeargdef takes the same
arguments asmewcommand, but does not check that the command is new. For a column,
say ‘D’ with one argument, define a commaN@@rewrite@D with one argument, which
recursively callSNC@find on the user preamble after replacing the first token or group
with the replacement text specified in tlnewcolumntype command.\NC@find will

find the next occurrence of ‘D’ as it will béet equal toNC@find@D by \NC@da

246 |deflnewcol @#1[#2]#3{\expandafter\@reargdef
247 lcsname NC@rewrite@#1\endcsname[#2J{\NC@find#3}}

Having found an occurence of the new column, save the preamble before the column
in \@temptokena , then check to see if we are at the end of the preamble. (A dummy
occurrence of the column specifier will be placed at the end of the preamNE€@da

248 |defINC@#1{%
249 |@temptokenalexpandafter{\thel@temptokena#1}\futurelet\nextiINC@ifend}

We can tell that we are at the endB€@dowill place alrelax after the dummy column.
250 |defINC @ifend{%

If we are at the end, do nothing. (The whole preamble will now Bé@iemptokena .)

251 lifxlnextlrelax

Otherwise set the flag@tempswa , and rewrite the columnexpandafter introduced
1nVv2.01

252 lelsel@tempswatruelexpandafterINC @rewritelfi}

If the user has specified ‘C’ and ‘L’ as new columns, the list of rewrites (in the token
registeANC@list) will look like \NC@do *\NC@do C \NC@do LSo we need to define
\NC@doas a one argument macro which initialises the rewriting of the specified column.
Let us assume that ‘C’ is the argument.

253 ldefINC@do#1{%

First we let\NC@rewrite and\NC@find be\NC@rewrite@C and\NC@find@C respec-
tively.

254 lexpandafterllet\expandafter\NC @rewrite

255 lcsname NC@rewrite@\string#1\endcsname
256 lexpandafterlletlexpandafter NC @find
257 lcsname NC@find@\string#1\endcsname

Clear the token regist&@temptokena after putting the present contents of the register in
front of the tokenNC@find . Atthe end we place the toker@felax ' which \NC@ifend
will use to detect the end of the user preamble.

258 lexpandafter\@temptokenalexpandafter{lexpandafter}%
259 lexpandafter\NC@find\the\@temptokena#1\relax}

This macro is useful for debuggitgewcolumntype specifications, it is the equivalent of
the primitive\show command for macro definitions. All we need to do is locally redefine
\NC@doto take its argument (say ‘C’) and thishow the (slightly modified) definition of

24

\NC@show

\NC@strip

\NC@list

\NC@rewrite@*

\NC@rewrite@C . Actually as the the list always starts off withC@do * and we do not
want to print the definition of the-form, definelNC@doto throw away the first item in
the list, and then redefine itsef to print the rest of the definitions.

260 |deflshowcols{{\deANC @do##1{\letiINC@doINC @show}theINC@list}}

If the column ‘C’ is defined as above, theshow\NC@rewrite@C would output

\long macro: ->\NC@find >{$}c<{$} . We want to strip thdong macro: -> and
the\NC@find . So first we usémeaning and then apply the mactC@strip to the
tokens so produced and theypeout the required string.

261 |defINC@show#1{%

262 ltypeout{Column #1\expandafter\expandafterlexpandafterINC@strip

263 lexpandafter\imeaning\csname NC@rewrite@#1\endcsname\@@}}

Delimit the arguments t&dNC@strip with *:’, *->’, a space, and@@to pull out the
required parts of the output froimeaning .

264 \defINC @strip#1:#2->#3 #4\@@{#2 -> #4)}

Allocate the token register used for the rewrite list.
265 Inewtoks\NC @list

12.1 Thex—form

We view thex-form as a slight generalisation of the system described in the previous
subsection. The idea is to define aolumn by a command of the form:

\newcolumntype{*}[2]{%
\count@=#1\ifnum\count@>0
\advance\count@ by -1 #2*{\count@}{#2}\fi}

This does not work however agwcolumntype takes great care not to expand anything
in the preamble, and so thié is never expandedinewcolumntype sets up various
other parts of the rewrite correctly though so we can define:

266 Inewcolumntype{*}{2]{}

Now we must correct the definition tC@rewrite@* . The following is probably more
efficient than a direct translation of the idea sketched above, we do not need to put a
% in the preamble and call the rewrite recursively, we can justputopies of#2 into
\@temptokena . (Nestedx forms will be expanded when the whole rewrite list is ex-
panded again, se@mkpream)

267 llong\@namedef{NC @rewrite @*}#1#2{%

Store the number.

268 lcount@#1

Put#1 copies of#2 in the token register.

269 lloop

270 lifnumlcount@>\z@

271 ladvancelcount@\m@ne

272 |\@temptokenalexpandafter{\the\@temptokena#2}%
273 lrepeat

\NC@dowill ensure thatNC@find is\let equal toNC@find@* .
274 INC@find}

25

12.2 Modifications to internal macros ofarray.sty

\@xexpast These macros are used to expaddrms inarray.sty . \let them tolrelax to save
\@xexnoop space.

275 \let\@xexpastirelax
276 \let\@xexnoopl\relax

\save@decl We do not assume that the token register is free, we add the new declarations to the front

of the register. This is to allow user preambles of the forfiop}>{bar}.. . Users are

not encouraged to enter such expressions directly, but they may result from the rewriting
of \newcolumntype 's.

277 \deflsave@decl{\toks \count@ = \expandafterlexpandafterlexpandafter

278 {\lexpandafter\@nextchar\theltoks\count@}}

\@mkpream The main modification ti@mkpream is to replace the call t@xexpast (which expanded
x-forms) by a loop which expands atlewcolumntype specifiers.
279 \defl@mkpream#1{\gdefl@preamble{}\@Iastchclass 4 \@firstamptrue
280 llet\@sharplrelax \let\@startpboxlrelax \let\@endpboxirelax
Now we remove possibleforms and user-defined column specifiers in the user preamble
by repeatedly executing the I C@list until the re-writes have no more effect. The
expanded preamble will then be in the token regis§@emptokena . Actually we need
to know at this point that this is nétbks0
281 |@temptokenaf{#1}\@tempswatrue
282 |@whileswlif@tempswalfifl@tempswafalseltheINC@list}%
Afterwards we initialize all registers and macros, that we need for the build-up of the
preamble.
283 lcount@\m@ne
284 \let\the @toks\relax
285 |prepnext@tok
Having expanded all tokens defined usingwcolumntype (including *), we evalu-
ate the remaining tokens, which are saved@temptokena . We use theATpX—macro
\@tfor to inspect each token in turn.
286 lexpandafter \@tfor \expandafter \@nextchar
287 lexpandafter :\expandafter =\thel@temptokena \do
\@testpatch does not take an argument sircgy.sty 2.0h.

288 {\@testpach

289 lifcase \@chclass \@classz \or \@classi \or \@classii
290 lor \save@decl \or \or \@classv \or \@classvi
291 lor \@classvii \or \@classviii

In newarray.sty class 9 is equivalent to class 10.

292 lor \@classx

293 lor \@classx \fi

294 |@lastchclass\@chclass}%

295 lifcase\@lastchclass

296 \@acol \or

297 lor

298 |\@acol \or

299 \@preamerr \thr@@ lor
300 \@preamerr tw@ \@addtopreamble\@sharp \or
301 lor

26

\@classix

\@classviii

\@classv

\NC@ecs

\@tabarray

\@@array

\endarray
\@arrayright

302 lelse |@preamerr \@ne |fi
303 |deflthe @toks{\theltoks}}

array.sty does not allow repeateddeclarations for the same column. This is allowed
in newarray.sty as documented in the introduction. Removing the test for this case
makes class 9 equivalent to class 10, and so this macro is redundakit It i \relax

to save space.

304 \let\@classix\relax

In newarray.sty explicitly allow class 2, as repeate&dexpressions are accepted by this
package.

305 ldefl@classviii{lifnum \@lastchclass >\z@\ifnum\@lastchclass=\tw@\else
306 |@preamerr 4\@chclass 6 \@classvi |filfi}

Class 5 is@expressions (and is also called by class 1) This macro was incorrect in
Version 1. Now we do not expand th@expression, but instead explicitly replace an
\extracolsep command by an assignment tabskip by a method similar to the
\newcolumntype system described abovd@llarbegin \d@llarend were introduced

in V2.01 to matcharray.sty 2.0h.

307 ldefl@classv{lsave @decl

308 lexpandafterINC@ecs\@nextcharlextracolsep{}\extracolsep\ @ @@

309 |\@addtopreamble{\d@llarbegin\the @toks\the\count@\relax\d@llarend}%

310 |prepnext@tok}

Rewrite the first occurrence &dxtracolsep{lin} to \tabskipZlin\relax . As a side
effect discard any tokens after a secdextracolsep , there is no point in the user
entering two of these commands anyway, so this is not really a restriction.

311 ldefINC@ecs#1\extracolsep#2#3\extracolsep#4\@ @ @{\defl @tempa{#2}%

312 lifxl@tempal@emptylelseltoks\count@={#1\tabskip#2\relax#3}\fi}

313(/ncols)

12.3 Support for thedelarray.sty

The delarray.sty package extends the array syntax by supporting the notation of de-
limiters. To this end we extend the array parsing mechanism to include a hook which can
be used by this (or another) package to do some additional parsing.

This macro tests for an optional bracket and then call@array or\@@array[c] (as
default).

314 (xpackage)
315 ldefl@tabarray{\@ifnextchar[{\@ @array}{\@ @array|c]}}

This macro tests could then test an optional delimiter before the left brace of the main
preamble argument. Here in the main package it simply is let i@agay .

316 \let\@ @array\@array

We have to declare the hook we put in@array above. A similar hooK\@arrayright
will be inserted into théendarray to gain control. Both defaults to empty.

317 \deflendarray{\crcr \egroup \egroup \@arrayright \gdefi@preamble{}}

318 \let\@arraylefti@empty

319 \let\@arrayright\@empty

27

\extratabsurround

\backup@length

\firsthline

\lasthline

12.4 Support for \firsthline and \lasthline

The Companion [1, p.137] suggests two additional commands to control the allignments
in case of tabulars with horizontal lines. They are now added to this package.

The extra space around a table whiesthline or\lasthline are used.

320 lnewlength{\extratabsurround}
321 |setlength{\extratabsurround}{2pt}

This register will be used internally Bijrsthline and\lasthline
322 lnewlength{\backup@Iength}

This code can probably be improved but for the moment it should serve.

We start by producing a single tabular row without any visible content that will pro-
duce the external reference point in cfie is used.
323 lnewcommand{\firsthline}{%
324 Imulticolumnlc{%
Within this row we calculatébackup@length to be the height plus depth of a standard
line. In addition we have to add the width of tiine , something that was forgotten in
the original definition.
325 lglobal\backup@length\ht\@arstrutbox
326 lgloballadvancel\backup@length\dp\@arstrutbox
327 lgloballadvance\backup@length\arrayrulewidth
Finally we do want to make the height of this first line be a bit larger than usual, for this
we place the standard array strut into it but raisedekiyatabsurround
328 lraiselextratabsurround\copy\@arstrutbox
Having done all this we end the line and back up by the valubaokup@length and
then finally place oukhline . This should place the line exactly at the right place but
keep the reference point of the whole tabular at the baseline of the first row.

329 H[-\backup@length]\hline
330}

For\lasthline the situation is even worse and | got it completely wrong initially.

The problem in this case is that if the optional argunigntis used we do want the
reference point of the tabular be at the baseline of the last row but at the same time do
want the the depth of this last line increasedéxratabsurround without changing
the placemeritline

We start by placing the rule followed by an invisible row.

331 lnewcommand{\lasthline}{\hline\multicolumn1c{%

We now calculatébackup@length to be the height and depth of two lines plus the width
of the rule.

332 lglobal\backup@length2\ht\@arstrutbox
333 lgloballadvancelbackup@length2\dp\@arstrutbox
334 lgloballadvancel\backup@length\arrayrulewidth

This will bring us back to the baseline of the second last row:
335 H[-\backup@length]%

28

\@xhline

Thus if we now add another invisible row the reference point of that row will be at the
baseline of the last row (and will be the reference for the whole tabular). Since this row
is invisible we can enlarge its depth by the desired amount.

336 Imulticolumni1c{%

337 llowerlextratabsurround\copy\@arstrutbox
338 }9%

339}

340(/package)

12.5 Getting the spacing around rules right

Beside a larger functionalitgrray.sty ~ has one important difference to the standard
tabular andarray environments: horizontal and vertical rules make a table larger or
wider, e.g.\doublerulesep really denotes the space between two rules and isn’'t mea-
sured from the middle of the rules.

For vertical rules this is implemented by the definitions above, for horizontal rules we
have to take out the backspace.

341\CheckCommand*\@xhline{\ifx\reserved@a\hline

342 \vskip\doublerulesep

343 \vskip-\arrayrulewidth

344 \fi

345 \ifnumO0="{\fi}}
346\renewcommand*\@xhline{\ifx\reserved@a\hline
347 \vskip\doublerulesep

348 \fi

349 \ifnumO="{\fi}}

References

[1] M. GOOSSENS F. MITTELBACH and A. S\MARIN. The BIpX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

[2] D. E. KNUTH. The EXbook (Computers & Typesetting Volume A). Addison-
Wesley, Reading, Massachusetts, 1986.

[3] L. LAMPORT. IATEX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, 1986.

29

