
A new implementation of LATEX’s tabular andarray
environment�

Frank Mittelbach David Carlisle†

Printed May 29, 1997

Abstract

This article describes an extended implementation of the LATEX array– andtabu-
lar–environments. The special merits of this implementation are further options to for-
mat columns and the fact that fragile LATEX–commands don’t have to be\protect ’ed
any more within those environments.

The major part of the code for this package dates back to 1988—so does some of
its documentation.

1 Introduction

This new implementation of thearray– andtabular–environments is part of a larger project
in which we are trying to improve the LATEX-code in some aspects and to make LATEX even
easier to handle.

The reader should be familiar with the general structure of the environments men-
tioned above. Further information can be found in [3] and [1]. The additional options
which can be used in the preamble as well as those which now have a slightly different
meaning are described in table 1.

Additionally we introduce a new parameter called\extrarowheight . If it takes a\extrarowheight

positive length, the value of the parameter is added to the normal height of every row
of the table, while the depth will remain the same. This is important for tables with
horizontal lines because those lines normally touch the capital letters. For example, we
used\setlength{\extrarowheight}{1pt} in table 1.

We will discuss a few examples using the new preamble options before dealing with
the implementation.

� If you want to use a special font (for example\bfseries) in a flushed left column,
this can be done with>{\bfseries}l . You do not have to begin every entry of the
column with\bfseries any more.

� In columns which have been generated withp, m or b, the default value of
\parindent is 0pt. This can be changed with
>{\setlength{\parindent}{1cm}}p .

�This file has version number v2.3i, last revised 1996/06/14.
†David kindly agreed on the inclusion of thennewcolumntype implementation, formerly innewarray.sty

into this package

1

Unchanged options
l Left adjusted column.
c Centered adjusted column.
r Right adjusted column.

pfwidth g Equivalent to\parbox[t]{width} .
@fdecl. g Suppresses inter-column space and insertsdecl. instead.

New options

mfwidth g

Defines a column of widthwidth . Every entry will be cen-
tered in proportion to the rest of the line. It is somewhat like
\parbox{width} .

bfwidth g Coincides with\parbox[b]{width} .

>fdecl. g
Can be used before anl , r , c, p, mor ab option. It insertsdecl.
directly in front of the entry of the column.

<fdecl. g
Can be used after anl , r , c, p{..} , m{..} or ab{..} option. It
insertsdecl. right after the entry of the column.

|
Inserts a vertical line. The distance between two columns will
be enlarged by the width of the line in contrast to the original
definition of LATEX.

! fdecl. g

Can be used anywhere and corresponds with the| option. The
difference is thatdecl. is inserted instead of a vertical line, so
this option doesn’t suppress the normally inserted space between
columns in contrast to@{...} .

Table 1: The preamble options.

� The >– and<–options were originally developed for the following application:
>{$}c<{$} generates a column in math mode in atabular–environment. If you
use this type of a preamble in anarray–environment, you get a column in LR mode
because the additional $’s cancel the existing $’s.

� One can also think of more complex applications. A problem which has been men-
tioned several times in TEXhax can be solved with>{\centerdots}c<{\endcenterdots} .
To center decimals at their decimal points you (only?) have to define the following
macros:

{\catcode‘\.\active\gdef.{\egroup\setbox2\hbox\bgroup}}
\def\centerdots{\catcode‘\.\active\setbox0\hbox\bgroup}
\def\endcenterdots{\egroup\ifvoid2 \setbox2\hbox{0}\fi

\ifdim \wd0>\wd2 \setbox2\hbox to\wd0{\unhbox2\hfill}\else
\setbox0\hbox to\wd2{\hfill\unhbox0}\fi

\catcode‘\.12 \box0.\box2}

Warning: The code is bad, it doesn’t work with more than one dot in a cell and
doesn’t work when the tabular is used in the argument of some other command. A
much better version is provided in thedcolumn.sty by David Carlisle.

� Usingc!{\hspace{1cm}}c you get space between two columns which is enlarged
by one centimeter, whilec@{\hspace{1cm}}c gives you exactly one centimeter
space between two columns.

2

1.1 Defining new column specifiers

Whilst it is handy to be able to type\newcolumntype

>{ hsome declarationsi}{c}<{ hsome more declarationsi}

if you have a one-off column in a table, it is rather inconvenient if you often use columns
of this form. The new version allows you to define a new column specifier, sayx, which
will expand to the primitives column specifiers.1 Thus we may define

\newcolumntype{x}{>{ hsome declarationsi}{c}<{ hsome more declarationsi}}

One can then use thex column specifier in the preamble arguments of allarray or
tabular environments in which you want columns of this form.

It is common to need math-mode and LR-mode columns in the same alignment. If we
define:

\newcolumntype{C}{>{$}c<{$}}
\newcolumntype{L}{>{$}l<{$}}
\newcolumntype{R}{>{$}r<{$}}

Then we can useC to get centred LR-mode in anarray , or centred math-mode in a
tabular .

The example given above for ‘centred decimal points’ could be assigned to ad speci-
fier with the following command.

\newcolumntype{d}{>{\centerdots}c<{\endcenterdots}}

The above solution always centres the dot in the column. This does not look too good
if the column consists of large numbers, but to only a few decimal places. An alternative
definition of ad column is

\newcolumntype{d}[1]{>{\rightdots{#1}}r<{\endrightdots}}

where the appropriate macros in this case are:2

\def\coldot{.}% Or if you prefer, \def\coldot{\cdot}
{\catcode‘\.=\active

\gdef.{$\egroup\setbox2=\hbox to \dimen0 \bgroup$\coldot}}
\def\rightdots#1{%

\setbox0=\hbox{1}\dimen0=#1\wd0
\setbox0=\hbox{\coldot}\advance\dimen0 \wd0
\setbox2=\hbox to \dimen0 {}%
\setbox0=\hbox\bgroup\mathcode‘\.="8000 $}

\def\endrightdots{$\hfil\egroup\box0\box2}

Note that\newcolumntype takes the same optional argument as\newcommand which
declares the number of arguments of the column specifier being defined. Now we can
specifyd{2} in our preamble for a column of figures to at most two decimal places.

A rather different use of the\newcolumntype system takes advantage of the fact
that the replacement text in the\newcolumntype command may refer to more than one
column. Suppose that a document contains a lot oftabular environments that require the
same preamble, but you wish to experiment with different preambles. Lamport’s original
definition allowed you to do the following (although it was probably a mis-use of the
system).

1This command was namednnewcolumn in the newarray.sty . At the momentnnewcolumn is still sup-
ported (but gives a warning). In later releases it will vanish.

2The packagedcolumn.sty contains more robust macros based on these ideas.

3

\newcommand{\X}{clr}
\begin{tabular}{\X} . . .

array.sty takes great carenot to expand the preamble, and so the above does not work
with the new scheme. With the new version this functionality is returned:

\newcolumntype{X}{clr}
\begin{tabular}{X} . . .

The replacement text in a\newcolumntype command may refer to any of the prim-
itives of array.sty see table 1 on page 2, or to any new letters defined in other
\newcolumntype commands.

A list of all the currently active\newcolumntype definitions is sent to the terminal\showcols

and log file if the\showcols command is given.

1.2 Special variations ofnhline

The family oftabular environments allows vertical positioning with respect to the base-
line of the text in which the environment appears. By default the environment appears
centered, but this can be changed to align with the first or last line in the environment by
supplying at or b value to the optional position argument. However, this does not work
when the first or last element in the environment is a\hline command—in that case the
environment is aligned at the horizontal rule.

Here is an example:

Tables with no
hline
commands
used

versus

tables
with some
hline
commands

used.

Tables
\begin{tabular}[t]{l}

with no\\ hline \\ commands \\ used
\end{tabular} versus tables
\begin{tabular}[t]{|l|}

\hline
with some \\ hline \\ commands \\

\hline
\end{tabular} used.

Using\firsthline and\lasthline will cure the problem, and the tables will align\firsthline

\lasthline properly as long as their first or last line does not contain extremely large objects.

Tables with no
line
commands
used

versus

tables with some
line
commands

used.

Tables
\begin{tabular}[t]{l}

with no\\ line \\ commands \\ used
\end{tabular} versus tables
\begin{tabular}[t]{|l|}

\firsthline
with some \\ line \\ commands \\

\lasthline
\end{tabular} used.

The implementation of these two commands contains an extra dimension, which is called\extratabsurround

\extratabsurround , to add some additional space at the top and the bottom of such an
environment. This is useful if such tables are nested.

4

2 Final Comments

2.1 Handling of rules

There are two possible approaches to the handling of horizontal and vertical rules in
tables:

1. rules can be placed into the available space without enlarging the table, or

2. rules can be placed between columns or rows thereby enlarging the table.

array.sty implements the second possibility while the default implementation in the
LATEX kernel implements the first concept. Both concepts have their merrits but one has
to be aware of the individual implications.

� With standard LATEX adding rules to a table will not affect the width or height of the
table (unless double rules are used), e.g., changing a preamble fromlll to l|l|l
does not affect the document other than adding rules to the table. In contrast, with
array.sty a table that just fit the\textwidth might now produce an overfull box.

� With standard LATEX modifying the width of rules could result in ugly looking tables
because without adjusting the\tabcolsep , etc. the space between rule and column
could get too small (or too large). In fact even overprinting of text is possible. In
contrast, witharray.sty modifying any such length usually works well as the
actual visual white space (from\tabcolsep , etc.) does not depend on the width of
the rules.

� With standard LATEX boxed tabulars actually have strange corners because the hori-
zontal rules end in the middle of the vertical ones. This looks very unpleasant when
a large\arrayrulewidth is chosen. In that case a simple table like

\setlength{\arrayrulewidth}{5pt}
\begin{tabular}{|l|}

\hline A \\ \hline
\end{tabular}

will produce something like

A instead of A

2.2 Comparisons with older versions ofarray.sty

There are some differences in the way version 2.1 treats incorrect input, even if the source
file does not appear to use any of the extra features of the new version.

� A preamble of the form{wx*{0}{abc}yz} was treated by versions prior to 2.1 as
{wx} . Version 2.1 treats it as{wxyz}

� An incorrect positional argument such as[Q] was treated as[c] by array.sty ,
but is now treated as[t] .

� A preamble such as{cc*{2}} with an error in a�-form will generate different
errors in the new version. In both cases the error message is not particularly helpful
to the casual user.

5

� Repeated< or > constructions generated an error in earlier versions, but are
now allowed in this package.>{ hdecs1i}>{ hdecs2i} is treated the same as
>{ hdecs2ihdecs1i} .

� The \extracolsep command does not work with the old versions ofarray.sty ,
see the comments inarray.bug . With version 2.1\extracolsep may again be
used in@-expressions as in standard LATEX, and also in! -expressions (but see the
note below).

2.3 Bugs and Features

� Error messages generated when parsing the column specification refer to the pream-
ble argumentafter it has been re-written by the\newcolumntype system, not to
the preamble entered by the user. This seems inevitable with any system based on
pre-processing and so is classed as afeature.

� The treatment of multiple< or > declarations may seem strange at first. Earlier
implementations treated>{ hdecs1i}>{ hdecs2i} the same as>{ hdecs1ihdecs2i} .
However this did not give the user the opportunity of overriding the settings
of a \newcolumntype defined using these declarations. For example, sup-
pose in anarray environment we use aC column defined as above. TheC
specifies a centred text column, however>{\bfseries}C , which re-writes to
>{\bfseries}>{$}c<{$} would not specify a bold column as might be expected,
as the preamble would essentially expand to\hfil\bf#$ $\hfil and so the
column entry would not be in the scope of the\bfseries ! The present version
switches the order of repeated declarations, and so the above example now produces
a preamble of the form\hfil$ $\bfseries#$ $\hfil , and the dollars cancel each
other out without limiting the scope of the\bfseries .

� The use of\extracolsep has been subject to the following two restrictions. There
must be at most one\extracolsep command per@, or ! expression and the com-
mand must be directly entered into the@expression, not as part of a macro def-
inition. Thus\newcommand{\ef}{\extracolsep{\fill}} . . .@{\ef} does not
work with this package. However you can use something like\newcolumntype{e}{@{\extracolsep{\fill} }
instead.

� As noted by the LATEX book, for the purpose of\multicolumn each column with
the exception of the first one consists of the entry and thefollowing inter-column
material. This means that in a tabular with the preamble|l|l|l|l| input such as
\multicolumn{2}{|c|} in anything other than the first column is incorrect.

In the standard array/tabular implementation this error is not so noticeable as that
version contains negative spacing so that each| takes up no horizontal space. But
since in this package the vertical lines take up their natural width one sees two lines
if two are specified.

3 The documentation driver file

The first bit of code contains the documentation driver file for TEX, i.e., the file that will
produce the documentation you are currently reading. It will be extracted from this file
by thedocstrip program.

6

1 h�driveri
2 \NeedsTeXFormat{LaTeX2e}[1995/12/01]
3 \documentclass{ltxdoc}
4

5 \AtBeginDocument{\DeleteShortVerb{\|}} % undo the default is not used
6

7 \usepackage{array}
8

9 % Allow large table at bottom
10 \renewcommand{\bottomfraction}{0.7}
11

12 \EnableCrossrefs
13 %\DisableCrossrefs % Say \DisableCrossrefs if index is ready
14

15 \RecordChanges % Gather update information
16

17 \CodelineIndex % Index code by line number
18

19 %\OnlyDescription % comment out for implementation details
20 %\OldMakeindex % use if your MakeIndex is pre-v2.9
21 \begin{document}
22 \DocInput{array.dtx}
23 \end{document}
24h=driveri

4 The construction of the preamble

It is obvious that those environments will consist mainly of an\halign , because TEX
typesets tables using this primitive. That is why we will now take a look at the algorithm
which determines a preamble for a\halign starting with a given user preamble using the
options mentioned above.

The current version is defined at the top of the file looking something like this
25h�packagei
26%\NeedsTeXFormat{LaTeX2e}[1994/05/13]
27%\ProvidesPackage{array}[\filedate\space version\fileversion]

The most interesting macros of this implementation are without doubt those which
are responsible for the construction of the preamble for the\halign . The underlying
algorithm was developed by LAMPORT (resp. KNUTH, see texhax V87#??), and it has
been extended and improved.

The user preamble will be readtoken by token. A token is a single character
like c or a block enclosed in{...} . For example the preamble of\begin{tabular}
{lc||c@{\hspace{1cm}}} consists of thetoken l , c, | , | , @and\hspace{1cm} .

The currently usedtoken and the one, used before, are needed to decide on how
the construction of the preamble has to be continued. In the example mentioned
above thel causes the preamble to begin with\hskip\tabcolsep . Furthermore
\hfil would be appended to define a flush left column. The nexttoken is a c.
Because it was preceded by anl it generates a new column. This is done with
\hskip \tabcolsep & \hskip \tabcolsep . The column which is to be centered
will be appended with\hfil # \hfil . The token | would then add a space of
\hskip \tabcolsep and a vertical line because the lasttokens was ac. The follow-
ing token | would only add a space\hskip \doublerulesep because it was preceded

7

by the token | . We will not discuss our example further but rather take a look at the
general case of constructing preambles.

The example shows that the desired preamble for the\halign can be constructed as
soon as the action of all combinations of the preambletokens are specified. There are
18 suchtokens so we have 19�18= 342 combinations if we count the beginning of the
preamble as a specialtoken. Fortunately, there are many combinations which generate
the same spaces, so we can definetoken classes. We will identify atoken within a class
with a number, so we can insert the formatting (for example of a column). Table 2 lists
all token classes and their corresponding numbers.

token \@chclass \@chnum

c 0 0
l 0 1
r 0 2

p-arg 0 3
t-arg 0 4
b-arg 0 5

| 1 0
!-arg 1 1
<-arg 2 —
>-arg 3 —

token \@chclass \@chnum

Start 4 —
@-arg 5 —

! 6 —
@ 7 —
< 8 —
> 9 —
p 10 3
t 10 4
b 10 5

Table 2: Classes of preambletokens

\@chclass

\@chnum

\@lastchclass

The class and the number of the currenttoken are saved in thecount registers\@chclass
and \@chnum, while the class of the previoustoken is stored in thecount register
\@lastchclass . All of the mentioned registers are already allocated inlatex.tex ,
which is the reason why the following three lines of code are commented out. Later
throughout the text I will not mention it again explicitely whenever I use a%sign. These
parts are already defined inlatex.tex .
28% \newcount \@chclass
29% \newcount \@chnum
30% \newcount \@lastchclass

\@addtopreamble We will save the already constructed preamble for the\halign in the global macro
\@preamble . This will then be enlarged with the command\@addtopreamble .
31 \def\@addtopreamble#1{\xdef\@preamble{\@preamble #1}}

4.1 The character class of atoken

\@testpach With the help of\@lastchclass we can now define a macro which determines the class
and the number of a given preambletoken and assigns them to the registers\@chclass
and\@chnum.
32 \def\@testpach{\@chclass

First we deal with the cases in which thetoken (#1) is the argument of! , @, < or >. We
can see this from the value of\@lastchclass :
33 \ifnum \@lastchclass=6 \@ne \@chnum \@ne \else
34 \ifnum \@lastchclass=7 5 \else

8

35 \ifnum \@lastchclass=8 \tw@ \else
36 \ifnum \@lastchclass=9 \thr@@

Otherwise we will assume that thetoken belongs to the class 0 and assign the correspond-
ing number to\@chnum if our assumption is correct.
37 \else \z@

If the lasttoken was ap, mor ab, \@chnum already has the right value. This is the reason
for the somewhat curious choice of thetoken numbers in class 10.
38 \ifnum \@lastchclass = 10 \else

Otherwise we will check if\@nextchar is either ac, l or an r . Some applications
change the catcodes of certain characters like “@” in amstex.sty . As a result the tests
below would fail since they assume non-active character tokens. Therefore we evaluate
\@nextchar once thereby turning the first token of its replacement text into a char. At
this point here this should have been the only char present in\@nextchar which put into
via a \def .
39 \edef\@nextchar{\expandafter\string\@nextchar}%
40 \@chnum
41 \if \@nextchar c\z@ \else
42 \if \@nextchar l\@ne \else
43 \if \@nextchar r\tw@ \else

If it is a different token, we know that the class was not 0. We assign the value 0 to
\@chnum because this value is needed for the| –token. Now we must check the remaining
classes. Note that the value of\@chnum is insignificant here for most classes.
44 \z@ \@chclass
45 \if\@nextchar |\@ne \else
46 \if \@nextchar !6 \else
47 \if \@nextchar @7 \else
48 \if \@nextchar <8 \else
49 \if \@nextchar >9 \else

The remaining permittedtokens arep, mandb (class 10).
50 10
51 \@chnum
52 \if \@nextchar m\thr@@\else
53 \if \@nextchar p4 \else
54 \if \@nextchar b5 \else

Now the only remaining possibility is a forbiddentoken, so we choose class 0 and number
0 and give an error message. Then we finish the macro by closing all\if ’s.
55 \z@ \@chclass \z@ \@preamerr \z@ \fi \fi \fi \fi
56 \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi \fi}

4.2 Multiple columns (�–form)

\@xexpast

\the@toks

\the@toksz

Now we discuss the macro that deletes all forms of type*{ N}{ String} from a user pream-
ble and replaces them withN copies ofString. Nested�–expressions are dealt with cor-
rectly, that means�–expressions are not substituted if they are in explicit braces, as in
@{*} .

This macro is called via\@xexpast hpreamblei*0x\@@. The�–expression*0x is be-
ing used to terminate the recursion, as we shall see later, and\@@serves as an argument
delimiter. \@xexpast has four arguments. The first one is the part of the user preamble
before the first�–expression while the second and third ones are the arguments of the first

9

�–expression (that isN andStringin the notation mentioned above). The fourth argument
is the rest of the preamble.
57 \def\@xexpast#1*#2#3#4\@@{%

The number of copies ofString (#2) that are to be produced will be saved in acount
register.
58 \@tempcnta #2

We save the part of the preamble which does not contain a�–form (#1) in a PLAIN TEX
token register. We also saveString(#3) using a LATEX token register.
59 \toks@={#1}\@temptokena={#3}%

Now we have to use a little trick to produceN copies of String. We could try
\def\@tempa{#1} and thenN times\edef\@tempa{\@tempa#3} . This would have the
undesired effect that all macros within#1 and#3 would be expanded, although, for ex-
ample, constructions like@{..} are not supposed to be changed. That is why we\let
two control sequences to be equivalent to\relax .
60 \let\the@toksz\relax \let\the@toks\relax

Then we ensure that\@tempa contains{\the@toksz\the@toks...\the@toks} (the
macro\the@toks exactlyN times) as substitution text.
61 \def\@tempa{\the@toksz}%
62 \ifnum\@tempcnta >0 \@whilenum\@tempcnta >0\do
63 {\edef\@tempa{\@tempa\the@toks}\advance \@tempcnta \m@ne}%

If N was greater than zero we prepare for another call of\@xexpast . Otherwise we
assume we have reached the end of the user preamble, because we had appended*0x\@@
when we first called\@xexpast . In other words: if the user inserts*{0}{..} in his
preamble, LATEX ignores the rest of it.
64 \let \@tempb \@xexpast \else
65 \let \@tempb \@xexnoop \fi

Now we will make sure that the part of the user preamble, which was already dealt with,
will be saved again in\@tempa .
66 \def\the@toksz{\the\toks@}\def\the@toks{\the\@temptokena}%
67 \edef\@tempa{\@tempa}%

We have now evaluated the first�–expression, and the user preamble up to this point is
saved in\@tempa . We will put the contents of\@tempa and the rest of the user pream-
ble together and work on the result with\@tempb . This macro either corresponds to
\@xexpast , so that the next�–expression is handled, or to the macro\@xexnoop , which
only ends the recursion by deleting its argument.
68 \expandafter \@tempb \@tempa #4\@@}

\@xexnoop So the first big problem is solved. Now it is easy to specify\@xexnoop . Its argument is
delimited by\@@and it simply expands to nothing.
69% \def\@xexnoop#1\@@{}

5 The insertion of declarations (>, <, ! , @)

The preamble will be enlarged with the help of\xdef , but the arguments of>, <, ! and
@are not supposed to be expanded during the construction (we want an implementation
that doesn’t need a\protect). So we have to find a way to inhibit the expansion of those
arguments.

10

We will solve this problem withtoken registers. We need one register for every! and
@, while we need two for everyc, l , r , m, p or b. This limits the number of columns of
a table because there are only 256token registers. But then, who needs tables with more
than 100 columns?

One could also find a solution which only needs two or threetoken registers by pro-
ceeding similarly as in the macro\@xexpast (see page 9). The advantage of our approach
is the fact that we avoid some of the problems that arise with the other method3.

So how do we proceed? Let us assume that we had!{foo} in the user preamble and
say we savedfoo in token register 5. Then we call\@addtopreamble{\the@toks5}
where\the@toks is defined in a way that it does not expand (for example it could be
equivalent to\relax). Every following call of\@addtopreamble leaves\the@toks5
unchanged in\@preamble . If the construction of the preamble is completed we change
the definition of\the@toks to \the\toks and expand\@preamble for the last time.
During this process all parts of the form\the@toks hNumberi will be substituted by the
contents of the respectivetoken registers.

As we can see from this informal discussion the construction of the preamble has to
take place within a group, so that thetoken registers we use will be freed later on. For that
reason we keep all assignments to\@preamble global; therefore the replacement text of
this macro will remain the same after we leave the group.

\count@ We further need acount register to remember whichtoken register is to be used next.
This will be initialized with�1 if we want to begin with thetoken register 0. We use
the PLAIN TEX scratch register\count@ because everything takes place locally. All we
have to do is insert\the@toks \the \count@ into the preamble.\the@toks will remain
unchanged and\the\count@ expands into the saved number.

\prepnext@tok The macro\prepnext@tok is in charge of preparing the nexttoken register. For that
purpose we increase\count@ by 1:

70 \def\prepnext@tok{\advance \count@ \@ne

Then we locally delete any contents thetoken register might have.
71 \toks\count@{}}

\save@decl During the construction of the preamble the currenttoken is always saved in the macro
\@nextchar (see the definition of\@mkpream on page 12). The macro\save@decl saves
it into the next freetoken register, i.e. in\toks\count@ .
72 \def\save@decl{\toks\count@ \expandafter{\@nextchar}}

The reason for the use of\relax is the following hypothetical situation in the preamble:
..\the\toks1\the\toks2.. TEX expands\the\toks2 first in order to find out if the
digit 1 is followed by other digits. E.g. a5 saved in thetoken register 2 would lead TEX
to insert the contents oftoken register 15 instead of 1 later on.

The example above referred to an older version of\save@decl which inserted a
\relex inside the token register. This is now moved to the places where the actual token
registers are inserted (look for\the@toks) because the old version would still make@
expressions to moving arguments since after expanding the second register while look-
ing for the end of the number the contents of the token register is added so that later on
the whole register will be expanded. This serious bug was found after nearly two years
international use of this package by Johannes Braams.

3Maybe there are also historical reasons.

11

How does the situation look like, if we want to add another column to the preamble,
i.e. if we have found ac, l , r , p, mor b in the user preamble ? In this case we have the
problem of thetoken register from>{..} and<{..} having to be inserted at this moment
because formating instructions like\hfil have to be set around them. On the other hand
it is not known yet, if any<{..} instruction will appear in the user preamble at all.

We solve this problem by adding twotoken registers at a time. This explains, why we
have freed thetoken registers in\prepnext@tok .

\insert@column

\@sharp

We now define the macro\insert@column which will do this work for us.

73 \def\insert@column{%

Here, we assume that thecount register\@tempcnta has saved the value\count@ �1.
74 \the@toks \the \@tempcnta

Next follows the# sign which specifies the place where the text of the column shall be
inserted. To avoid errors during the expansions in\@addtopreamble we hide this sign in
the command\@sharp which is temporarily occupied with\relax during the build-up
of the preamble. To remove unwanted spaces before and after the column text, we set an
\ignorespaces in front and a\unskip afterwards.

75 \ignorespaces \@sharp \unskip

Then the secondtoken register follows whose number should be saved in\count@ . We
make sure that there will be no further expansion after reading the number, by finishing
with \relax . The case above is not critical since it is ended by\ignorespaces .

76 \the@toks \the \count@ \relax}

5.1 The separation of columns

\@addamp In the preamble a& has to be inserted between any two columns; before the first column
there should not be a&. As the user preamble may start with a| we have to remember
somehow if we have already inserted a# (i.e. a column). This is done with the boolean
variable\if@firstamp that we test in\@addamp, the macro that inserts the&.
77% \newif \@iffirstamp
78% \def\@addamp{\if@firstamp \@firstampfalse
79% \else \@addtopreamble &\fi}

\@acol

\@acolampacol

\col@sep

We will now define some abbreviations for the extensions, appearing most often in
the preamble build-up. Here\col@sep is a dimen register which is set equivalent to
\arraycolsep in anarray–environment, otherwise it is set equivalent to\tabcolsep .

80 \newdimen\col@sep
81 \def\@acol{\@addtopreamble{\hskip\col@sep}}
82% \def\@acolampacol{\@acol\@addamp\@acol}

5.2 The macron@mkpream

\@mkpream

\the@toks

Now we can define the macro which builds up the preamble for the\halign . First we
initialize \@preamble , \@lastchclass and the boolean variable\if@firstamp .
83 \def\@mkpream#1{\gdef\@preamble{}\@lastchclass 4 \@firstamptrue

During the build-up of the preamble we cannot directly use the# sign; this would lead
to an error message in the next\@addtopreamble call. Instead, we use the command
\@sharp at places where later a# will be. This command is at first given the meaning

12

\relax ; therefore it will not be expanded when the preamble is extended. In the macro
\@array , shortly before the\halign is carried out,\@sharp is given its final meaning.

In a similar way, we deal with the commands\@startpbox and\@endpbox , although
the reason is different here: these macros expand in manytokens which would delay the
build-up of the preamble.
84 \let\@sharp\relax \let\@startpbox\relax \let\@endpbox\relax

Now we remove possible�-forms in the user preamble with the command\@xexpast .
As we already know, this command saves its result in the macro\@tempa .
85 \@xexpast #1*0x\@@

Afterwards we initialize all registers and macros, that we need for the build-up of the
preamble. Since we want to start with thetoken register 0,\count@ has to contain the
value�1.
86 \count@\m@ne
87 \let\the@toks\relax

Then we call up\prepnext@tok in order to prepare thetoken register 0 for use.

88 \prepnext@tok

To evaluate the user preamble (without stars) saved in\@tempa we use the LATEX–macro
\@tfor . The strange appearing construction with\expandafter is based on the fact
that we have to put the replacement text of\@tempa and not the macro\@tempa to this
LATEX–macro.
89 \expandafter \@tfor \expandafter \@nextchar
90 \expandafter :\expandafter =\@tempa \do

The body of this loop (the group after the\do) is executed for onetoken at a time, whereas
the currenttoken is saved in\@nextchar . At first we evaluate the currenttoken with the
already defined macro\@testpach , i.e. we assign to\@chclass the character class and
to \@chnum the character number of thistoken.
91 {\@testpach

Then we branch out depending on the value of\@chclass into different macros that
extend the preamble respectively.

92 \ifcase \@chclass \@classz \or \@classi \or \@classii
93 \or \save@decl \or \or \@classv \or \@classvi
94 \or \@classvii \or \@classviii \or \@classix
95 \or \@classx \fi

Two cases deserve our special attention: Since the currenttoken cannot have the char-
acter class 4 (start) we have skipped this possibility. If the character class is 3, only the
content of\@nextchar has to be saved into the currenttoken register; therefore we call
up \save@decl directly and save a macro name. After the preamble has been extended
we assign the value of\@chclass to the counter\@lastchclass to assure that this in-
formation will be available during the next run of the loop.
96 \@lastchclass\@chclass}%

After the loop has been finished space must still be added to the created preamble, de-
pending on the lasttoken. Depending on the value of\@lastchclass we perform the
necessary operations.
97 \ifcase\@lastchclass

If the last class equals 0 we add a\hskip \col@sep .
98 \@acol \or

13

If it equals 1 we do not add any additional space so that the horizontal lines do not exceed
the vertical ones.
99 \or

Class 2 is treated like class 0 because a<{...} can only directly follow after class 0.
100 \@acol \or

Most of the other possibilities can only appear if the user preamble was defective. Class 3
is not allowed since after a>{..} there must always follow ac, l , r , p,mor b. We report
an error and ignore the declaration given by{..} .
101 \@preamerr \thr@@ \or

If \@lastchclass is 4 the user preamble has been empty. To continue, we insert a# in
the preamble.
102 \@preamerr \tw@ \@addtopreamble\@sharp \or

Class 5 is allowed again. In this case (the user preamble ends with@{..}) we need not
do anything.
103 \or

Any other case means that the arguments to@, ! , <, >, p, mor b have been forgotten. So
we report an error and ignore the lasttoken.
104 \else \@preamerr \@ne \fi

Now that the build-up of the preamble is almost finished we can insert thetoken registers
and therefore redefine\the@toks . The actual insertion, though, is performed later.
105 \def\the@toks{\the\toks}}

6 The macrosn@classz to n@classx

The preamble is extended by the macros\@classz to \@classx which are called by
\@mkpream depending on\@lastchclass (i.e. the character class of the lasttoken).

\@classx First we define\@classx because of its important rˆole. When it is called we find that the
currenttoken is p, mor b. That means that a new column has to start.
106\def\@classx{%

Depending on the value of\@lastchclass different actions must take place:
107 \ifcase \@lastchclass

If the last character class was 0 we separate the columns by\hskip\col@sep followed
by & and another\hskip\col@sep .
108 \@acolampacol \or

If the last class was class 1 — that means that a vertical line was drawn, — before this
line a \hskip\col@sep was inserted. Therefore there has to be only a& followed by
\hskip\col@sep . But this& may be inserted only if this is not the first column. This
process is controlled by\if@firstamp in the macro\addamp .
109 \@addamp \@acol \or

Class 2 is treated like class 0 because<{...} can only follow after class 0.
110 \@acolampacol \or

Class 3 requires no actions because all things necessary have been done by the preamble
token >.
111 \or

14

Class 4 means that we are at the beginning of the preamble. Therefore we start the pream-
ble with \hskip\col@sep and then call\@firstampfalse . This makes sure that a later
\@addamp inserts the character& into the preamble.
112 \@acol \@firstampfalse \or

For class 5tokens only the character& is inserted as a column separator. Therefore we
call \@addamp.
113 \@addamp

Other cases are impossible. For an example\@lastchclass = 6—as it might appear
in a preamble of the form...!p... —p would have been taken as an argument of! by
\@testpach .
114 \fi}

\@classz If the character class of the lasttoken is 0 we havec, l , r or an argument ofm, b or p.
In the first three cases the preamble must be extended the same way as if we had class
10. The remaining two cases do not require any action because the space needed was
generated by the lasttoken (i.e. m, b or p). Since\@lastchclass has the value 10 at this
point nothing happens when\@classx is called. So the macro\@chlassz may start like
this:
115\def\@classz{\@classx

According to the definition of\insert@column we must store the number of thetoken
register in which a preceding>{..} might have stored its argument into\@tempcnta .
116 \@tempcnta \count@

To have\count@ = \@tmpcnta +1 we prepare the nexttoken register.
117 \prepnext@tok

Now the preamble must be extended with the column whose format can be determinated
by \@chnum.
118 \@addtopreamble{\ifcase \@chnum

If \@chnum has the value 0 a centered column has to be generated. So we begin with
stretchable space.
119 \hfil

The command\d@llarbegin follows expanding into\begingroup (in the tabular–
environment) or into$. Doing this (provided an appropriate setting of\d@llarbegin)
we achieve that the contents of the columns of anarray–environment are set in math mode
while those of atabular–environment are set in LR mode.
120 \d@llarbegin

Now we insert the contents of the twotoken registers and the symbol for the column entry
(i.e. # or more precise\@sharp) using\insert@column .
121 \insert@column

We end this case with\d@llarend and \hfil where\d@llarend again is either$ or
\endgroup .
122 \d@llarend \hfil \or

The templates forl andr (i.e. \@chnum 1 or 2) are generated the same way. Since one
\hfil is missing the text is moved to the relevant side. The\kern\z@ is needed in case of
an empty column entry. Otherwise the\unskip in \insert@column removes the\hfil .
Changed to\hskip1sp so that it interacts better with\@bsphack .
123 \hskip1sp\d@llarbegin \insert@column \d@llarend \hfil \or
124 \hfil\hskip1sp\d@llarbegin \insert@column \d@llarend \or

15

The templates forp, m andb mainly consist of abox. In case ofm it is generated by
\vcenter . This command is allowed only in math mode. Therefore we start with a$.
125 $\vcenter

The part of the templates which is the same in all three cases (p, mandb) is built by the
macros\@startpbox and\@endpbox . \@startpbox has an argument: the width of the
column which is stored in the currenttoken (i.e. \@nextchar). Between these two macros
we find the well known\insert@column .
126 \@startpbox{\@nextchar}\insert@column \@endpbox $\or

The templates forp andb are generated in the same way though we do not need the$
characters because we use\vtop or \vbox .
127 \vtop \@startpbox{\@nextchar}\insert@column \@endpbox \or
128 \vbox \@startpbox{\@nextchar}\insert@column \@endpbox

Other values for\@chnum are impossible. Therefore we end the arguments to\@addtopreamble
and\ifcase . Before we come to the end of\@classz we have to prepare the nexttoken
register.

129 \fi}\prepnext@tok}

\@classix In case of class 9 (>–token) we first check if the character class of the lasttoken was
3. In this case we have a user preamble of the form..>{...}>{...}.. which is not
allowed. We only give an error message and continue. So the declarations defined by the
first >{...} are ignored.
130\def\@classix{\ifnum \@lastchclass = \thr@@
131 \@preamerr \thr@@ \fi

Furthermore, we call up\@class10 because afterwards always a new column is started
by c, l , r , p, mor b.
132 \@classx}

\@classviii If the currenttoken is a< the last character class must be 0. In this case it is not necessary
to extend the preamble. Otherwise we output an error message, set\@chclass to 6 and
call \@classvi . By doing this we achieve that< is treated like! .

133\def\@classviii{\ifnum \@lastchclass >\z@
134 \@preamerr 4\@chclass 6 \@classvi \fi}

\@arrayrule There is only one incompatibility with the original definition: the definition of\@arrayrule .
In the original a line without width4 is created by multiple insertions of\hskip .5\arrayrulewidth .
We only insert a vertical line into the preamble. This is done to prevent problems with
TEX’s main memory when generating tables with many vertical lines in them (especially
in the case offloats).

135\def\@arrayrule{\@addtopreamble \vline}

\@classvii As a consequence it follows that in case of class 7 (@token) the preamble need not
to be extended. In the original definition\@lastchclass = 1 is treated by inserting
\hskip .5\arrayrulewidth . We only check if the lasttoken was of class 3 which is
forbidden.
136\def\@classvii{\ifnum \@lastchclass = \thr@@

4So the space betweencc andc|c is equal.

16

If this is true we output an error message and ignore the declarations stored by the last
>{...} , because these are overwritten by the argument of@.
137 \@preamerr \thr@@ \fi}

\@classvi If the currenttoken is a regular! and the last class was 0 or 2 we extend the preamble
with \hskip\col@sep . If the lasttoken was of class 1 (for instance|) we extend with
\hskip \doublerulesep because the construction!{...} has to be treated like| .
138\def\@classvi{\ifcase \@lastchclass
139 \@acol \or
140 \@addtopreamble{\hskip \doublerulesep}\or
141 \@acol \or

Now \@preamerr... should follow because a user preamble of the form..>{..}!. is
not allowed. To save memory we call\@classvii instead which also does what we want.
142 \@classvii

If \@lastchclass is 4 or 5 nothing has to be done. Class 6 to 10 are not possible. So we
finish the macro.
143 \fi}

\@classii

\@classiii

In the case of character classes 2 and 3 (i.e. the argument of< or >) we only have to store
the currenttoken (\@nextchar) into the correspondingtoken register since the prepara-
tion and insertion of these registers are done by the macro\@classz . This is equivalent
to calling\save@decl in the case of class 3. To save command identifiers we do this call
up in the macro\@mkpream.

Class 2 exhibits a more complicated situation: thetoken registers have already been
inserted by\@classz . So the value of\count@ is too high by one. Therefore we decrease
\count@ by 1.
144\def\@classii{\advance \count@ \m@ne

Next we store the currenttoken into the correcttoken register by calling\save@decl and
then increase the value of\count@ again. At this point we can save memory once more
(at the cost of time) if we use the macro\prepnext@tok .
145 \save@decl\prepnext@tok}

\@classv If the currenttoken is of class 5 then it is an argument of a@token. It must be stored into
a token register.
146\def\@classv{\save@decl

We extend the preamble with a command which inserts thistoken register into the pream-
ble when its construction is finished. The user expects that this argument is worked out
in math mode if it was used in anarray–environment. Therefore we surround it with
\d@llar... ’s.
147 \@addtopreamble{\d@llarbegin\the@toks\the\count@\relax\d@llarend}%

Finally we must prepare the nexttoken register.
148 \prepnext@tok}

\@classi In the case of class 0 we were able to generate the necessary space between columns by
using the macro\@classx . Analogously the macro\@classvi can be used for class 1.
149\def\@classi{\@classvi

Depending on\@chnum a vertical line
150 \ifcase \@chnum \@arrayrule \or

17

or (in case of!{...}) the currenttoken — stored in\@nextchar — has to be inserted
into the preamble. This corresponds to calling\@classv .
151 \@classv \fi}

\@startpbox In \@classz the macro\@startpbox is used. The width of theparbox is passed as an
argument.\vcenter , \vtop or \vbox are already in the preamble. So we start with the
braces for the wanted box.
152\def\@startpbox#1{\bgroup

The argument is the width of the box. This information has to be assigned to\hsize .
Then we assain default values to several parameters used in aparbox.
153 \hsize #1 \@arrayparboxrestore

Our main problem is to obtain the same distance between succeeding lines of thepar-
box. We have to remember that the distance between twoparboxes should be defined by
\@arstrut . That means that it can be greater than the distance in aparbox. Therefore
it is not enough to set a\@arstrut at the beginning and at the end of theparbox. This
would dimension the distance between first and second line and the distance between the
two last lines of theparbox wrongly. To prevent this we set an invisible rule of height
\@arstrutbox at the beginning of theparbox. This has no effect on the depth of the first
line. At the end of theparbox we set analogously another invisible rule which only af-
fects the depth of the last line. It is necessary to wait inserting this strut until the paragraph
actually starts to allow for things like\parindent changes via>{...} .
154 \everypar{%
155 \vrule \@height \ht\@arstrutbox \@width \z@
156 \everypar{}}%
157 }

\@endpbox If there are any declarations defined by>{...} and<{...} they now follow in the macro
\@classz — the contents of the column in between. So the macro\@endpbox must insert
thespecialstrut mentioned earlier and then close the group opened by\@startpbox .
158\def\@endpbox{\@finalstrut\@arstrutbox \egroup\hfil}

7 Building and calling nhalign

\@array After we have discussed the macros needed for the evaluation of the user preamble we
can define the macro\@array which uses these macros to create a\halign . It has two
arguments. The first one is a position argument which can bet , b or c; the second one
describes the wanted preamble, e.g. it has the form|c|c|c| .
159\def\@array[#1]#2{%

First we define astrut whose size basically corresponds to a normalstrut multiplied by the
factor \arraystretch . Thisstrut is then inserted into every row and enforces a minimal
distance between two rows. Nevertheless, when using horizontal lines, large letters (like
accented capital letters) still collide with such lines. Therefore at first we add to the height
of a normalstrut the value of the parameter\extrarowheight .
160 \@tempdima \ht \strutbox
161 \advance \@tempdima by\extrarowheight
162 \setbox \@arstrutbox \hbox{\vrule
163 \@height \arraystretch \@tempdima
164 \@depth \arraystretch \dp \strutbox
165 \@width \z@}%

18

Then we open a group, in which the user preamble is evaluated by the macro\@mkpream.
As we know this must happen locally. This macro creates a preamble for a\halign and
saves its result globally in the control sequence\@preamble .
166 \begingroup
167 \@mkpream{#2}%

We again redefine\@preamble so that a call up of\@preamble now starts the\halign .
Thus also the arguments of>, <, @and ! , saved in thetoken registers are inserted into
the preamble. The\tabskip at the beginning and end of the preamble is set to0pt (in
the beginning by the use of\ialign). Also the command\@arstrut is build in, which
inserts the\@arstrutbox , defined above. Of course, the opening brace after\ialign
has to be implicit as it will be closed in\endarray or another macro.
168 \xdef\@preamble{\ialign \@halignto
169 \bgroup \@arstrut \@preamble
170 \tabskip \z@ \cr}%

What we have not explained yet is the macro\@halignto that was just used. Depending
on its replacement text the\halign becomes a\halign to hdimeni. Now we close the
group again. Thus\@startpbox and\@endpbox as well as alltoken registers get their
former meaning back.
171 \endgroup

To support thedelarray.sty package we include a hook into this part of the code which
is a no-op in the main package.

172 \@arrayleft

Now we decide depending on the position argument in whichbox the \halign is to be
put. (\vcenter may be used because we are in math mode.)
173 \if #1t\vtop \else \if#1b\vbox \else \vcenter \fi \fi

Now another implicit opening brace appears; then definitions which shall stay local fol-
low. While constructing the\@preamble in \@mkpream the# sign must be hidden in the
macro\@sharp which is \let to \relax at that moment (see definition of\@mkpream
on page 12). All these now get their actual meaning.
174 \bgroup
175 \let \@sharp ##\let \protect \relax

With the above definedstruts we fix down the distance between rows by setting
\lineskip and\baselineskip to 0pt. Since there have to be set$’s around every col-
umn in thearray–environment the parameter\mathsurround should also be set to0pt.
This prevents additional space between the rows. The PLAIN TEX–macro\m@th does
this.
176 \lineskip \z@
177 \baselineskip \z@
178 \m@th

Beside, we have to assign a special meaning (which we still have to specify) to the line
separator\\ . We also have to redefine the command\par in such a way that empty lines
in \halign cannot do any damage. We succeed in doing so by choosing something that
will disappear when expanding. After that we only have to call up\@preamble to start
the wanted\halign .
179 \let\\\@arraycr \let\tabularnewline\\\let\par\@empty \@preamble}

19

\extrarowheight Thedimen parameter used above also needs to be allocated. As a default value we use
0pt, to ensure compatibility with standard LATEX.
180\newdimen \extrarowheight
181\extrarowheight=0pt

\@arstrut Now the insertion of\@arstrutbox through\@arstut is easy since we know exactly in
which mode TEX is while working on the\halign preamble.

182\def\@arstrut{\unhcopy\@arstrutbox}

8 The line separatornn

\@arraycr In the macro\@array the line separator\\ is \let to the command\@arraycr . Its defi-
nition starts with a special brace which I have directly copied from the original definition.
It is necessary, because the\futurlet in \@ifnextchar might expand a following&
token in a construction like\\ & . This would otherwise end the alignment template at a
wrong time. On the other hand we have to be careful to avoid producing a real group, i.e.
{} , because the command will also beused for the array environment, i.e. in math mode.
In that case an extra{} would produce an ord atom which could mess up the spacing. For
this reason we use a combination that does not realy produce a group at all but modifies
the master counter so that a& will not be considered belonging to the current\haling
while we are looking for a* or [. For further information see [2, Appendix D].
183\def\@arraycr{\relax\iffalse{\fi\ifnum 0=‘}\fi

Then we test whether the user is using the star form and ignore a possible star (I also
disagree with this procedure, because a star does not make any sense here).
184 \@ifstar \@xarraycr \@xarraycr}

\@xarraycr In the command\@xarraycr we test if an optional argument exists.
185\def\@xarraycr{\@ifnextchar [%

If it does, we branch out into the macro\@argarraycr if not we close the special brace
(mentioned above) and end the row of the\halign with a \cr .

186 \@argarraycr {\ifnum 0=‘{}\fi\cr}}

\@argarraycr If additional space is requested by the user this case is treated in the macro\@argarraycr .
First we close the special brace and then we test if the additional space is positive.
187\def\@argarraycr[#1]{\ifnum0=‘{}\fi\ifdim #1>\z@

If this is the case we create an invisible vertical rule with depth\dp\@arstutbox +

hwanted spacei. Thus we achieve that all vertical lines specified in the user preamble
by a | are now generally drawn. Then the row ends with a\cr .

If the space is negative we end the row at once with a\cr and move back up with a
\vskip .

While testing these macros I found out that the\endtemplate created by\cr and&
is something like an\outer primitive and therefore it should not appear in incomplete
\if statements. Thus the following solution was chosen which hides the\cr in other
macros when TEX is skipping conditional text.

188 \expandafter\@xargarraycr\else
189 \expandafter\@yargarraycr\fi{#1}}

20

\@xargarraycr

\@yargarraycr

The following macros were already explained above.

190\def\@xargarraycr#1{\unskip
191 \@tempdima #1\advance\@tempdima \dp\@arstrutbox
192 \vrule \@depth\@tempdima \@width\z@ \cr}
193\def\@yargarraycr#1{\cr\noalign{\vskip #1}}

9 Spanning several columns

\multicolumn If several columns should be held together with a special format the command\multicolumn
must be used. It has three arguments: the number of columns to be covered; the format
for the result column and the actual column entry.
194\def\multicolumn#1#2#3{%

First we combine the given number of columns into a single one; then we start a new
block so that the following definition is kept local.
195 \multispan{#1}\begingroup

Since a\multicolumn should only describe the format of a result column, we redefine
\@addamp in such a way that one gets an error message if one uses more than onec, l , r ,
p, mor b in the second argument. One should consider that this definition is local to the
build-up of the preamble; anarray– or tabular–environment in the third argument of the
\multicolumn is therefore worked through correctly as well.
196 \def\@addamp{\if@firstamp \@firstampfalse \else
197 \@preamerr 5\fi}%

Then we evaluate the second argument with the help of\@mkpream. Now we still have
to insert the contents of thetoken register into the\@preamble , i.e. we have to say
\xdef\@preamble{\@preamble} . This is achieved shorter by writing:
198 \@mkpream{#2}\@addtopreamble\@empty

After the \@preamble is created we forget all local definitions and occupations of the
token registers.
199 \endgroup

In the special situation of\multicolumn \@preamble is not needed as preamble for a
\halign but it is directly inserted into our table. Thus instead of\sharp there has to be
the column entry (#3) wanted by the user.
200 \def\@sharp{#3}%

Now we can pass the\@preamble to TEX . For safety we start with an\@arstrut . This
should usually be in the template for the first column however we do not know if this
template was overwritten by our\multicolumn . We also add a\null at the right end to
prevent any following\unskip (for example from\\[..]) to remove the\tabcolsep .
201 \@arstrut \@preamble
202 \null
203 \ignorespaces}

10 The Environment Definitions

After these preparations we are able to define the environments. They only differ in the
initialisations of\d@llar... , \col@sep and\@halignto .

21

\@halignto

\d@llarbegin

\d@llarend

In order to relieve thesave stack we assign the replacement texts for\@halignto glob-
ally. \d@llar has to be local since otherwise nestedtabular andarray environments (via
\multicolumn) are impossible. When the new font selection scheme is in force we have
to we surround all\halign entries with braces. See remarks in TUGboat 10#2. Actu-
ally we are going to use\begingroup and\endgroup . However, this is only necessary
when we are in text mode. In math the surrounding dollar signs will already serve as the
necessary extra grouping level. Therefore we switch the settings of\d@llarbegin and
\d@llarend between groups and dollar signs.
204\let\d@llarbegin\begingroup
205\let\d@llarend\endgroup

\array Our new definition of\array then reads:
206\def\array{\col@sep\arraycolsep
207 \def\d@llarbegin{$}\let\d@llarend\d@llarbegin\gdef\@halignto{}%

Since there might be an optional argument we call another macro which is also used by
the other environments.
208 \@tabarray}

\@tabarray This macro tests for a optional bracket and then calls up\@array or \@array[c] (as
default).
209\def\@tabarray{\@ifnextchar[{\@array}{\@array[c]}}

\tabular

\tabular*

The environmentstabular and tabular� differ only in the initialisation of the command
\@halignto . Therefore we define
210\def\tabular{\gdef\@halignto{}\@tabular}

and analoguesly
211\expandafter\def\csname tabular*\endcsname#1{%
212 \gdef\@halignto{to#1}\@tabular}

\@tabular The rest of the job is carried out by the\@tabular macro:
213\def\@tabular{%

First of all we have to make sure that we start out inhmode. Otherwise we might find our
table dangling by itself on a line.
214 \leavevmode

It should be taken into consideration that the macro\@array must be called in math
mode. Therefore we open abox, insert a$ and then assign the correct values to\col@sep
and\d@llar... .
215 \hbox \bgroup $\col@sep\tabcolsep \let\d@llarbegin\begingroup
216 \let\d@llarend\endgroup

Now everythingtabular specific is done and we are able to call the\@tabarray macro.
217 \@tabarray}

\endarray When the processing ofarray is finished we have to close the\halign and afterwards the
surroundingbox selected by\@array . To savetoken space we then redefine\@preamble
because its replacement text isn’t longer needed.
218\def\endarray{\crcr \egroup \egroup \gdef\@preamble{}}

\endtabular

\endtabular*

To end atabular or tabular� environment we call up\endarray , close the math mode and
then the surrounding\hbox .
219\def\endtabular{\endarray $\egroup}
220\expandafter\let\csname endtabular*\endcsname=\endtabular

22

11 Last minute definitions

If this file is used as a package file we should\let all macros to\relax that were used
in the original but are no longer necessary.
221\let\@ampacol=\relax \let\@expast=\relax
222\let\@arrayclassiv=\relax \let\@arrayclassz=\relax
223\let\@tabclassiv=\relax \let\@tabclassz=\relax
224\let\@arrayacol=\relax \let\@tabacol=\relax
225\let\@tabularcr=\relax \let\@@endpbox=\relax
226\let\@argtabularcr=\relax \let\@xtabularcr=\relax

\@preamerr We also have to redefine the error routine\@preamerr since new kind of errors are pos-
sible. The code for this macro is not perfect yet; it still needs too much memory.
227\def\@preamerr#1{\def\@tempd{{..} at wrong position: }%
228 \PackageError{array}{%
229 \ifcase #1 Illegal pream-token (\@nextchar): ‘c’ used\or %0
230 Missing arg: token ignored\or %1
231 Empty preamble: ‘l’ used\or %2
232 >\@tempd token ignored\or %3
233 <\@tempd changed to !{..}\or %4
234 Only one column-spec. allowed.\fi}\@ehc} %5

12 Defining your own column specifiers5

\newcolumn In newarray.sty the macro for specifying new columns was named\newcolumn . When
the functionality was added toarray.sty the command was renamed\newcolumntype .
Initially both names were supported, but now (In versions of this package distributed for
LATEX 2ε) the old name is not defined.
235h�ncolsi

\newcolumntype As described above, the\newcolumntype macro gives users the chance to define letters,
to be used in the same way as the primitive column specifiers, ‘c’ ‘p’ etc.
236\def\newcolumntype#1{%

\NC@char was added in V2.01 so that active characters, like@in AMSLATEX may be used.
This trick was stolen fromarray.sty 2.0h. Note that we need to use the possibly active
token,#1, in several places, as that is the token that actually appears in the preamble
argument.
237 \edef\NC@char{\string#1}%

First we check whether there is already a definition for this column. Unlike\newcommand
we give a warning rather than an error if it is defined. If it is a new column, add\NC@do
hcolumni to the list\NC@list .
238 \@ifundefined{NC@find@\NC@char}%
239 {\@tfor\next:=<>clrmbp@!|\do{\if\noexpand\next\NC@char
240 \PackageWarning{array}%
241 {Redefining primitive column \NC@char}\fi}%
242 \NC@list\expandafter{\the\NC@list\NC@do#1}}%
243 {\PackageWarning{array}{Column \NC@char\space is already defined}}%

5The code and the documentation in this section was written by David. So far only the code from newarray
was plugged into array so that some parts of the documentation still claim that this is newarray and even worse,
some parts of the code are unnecessarily doubled. This will go away in a future release. For the moment we
thought it would be more important to bring both packages together.

23

Now we define a macro with an argument delimited by the new column specifier, this is
used to find occurences of this specifier in the user preamble.
244 \@namedef{NC@find@\NC@char}##1#1{\NC@{##1}}%

If an optional argument was not given, give a default argument of 0.
245 \@ifnextchar[{\newcol@{\NC@char}}{\newcol@{\NC@char}[0]}}

\newcol@ We can now define the macro which does the rewriting,\@reargdef takes the same
arguments as\newcommand, but does not check that the command is new. For a column,
say ‘D’ with one argument, define a command\NC@rewrite@D with one argument, which
recursively calls\NC@find on the user preamble after replacing the first token or group
with the replacement text specified in the\newcolumntype command.\NC@find will
find the next occurrence of ‘D’ as it will be\let equal to\NC@find@D by \NC@do.
246\def\newcol@#1[#2]#3{\expandafter\@reargdef
247 \csname NC@rewrite@#1\endcsname[#2]{\NC@find#3}}

\NC@ Having found an occurence of the new column, save the preamble before the column
in \@temptokena , then check to see if we are at the end of the preamble. (A dummy
occurrence of the column specifier will be placed at the end of the preamble by\NC@do.
248\def\NC@#1{%
249 \@temptokena\expandafter{\the\@temptokena#1}\futurelet\next\NC@ifend}

\NC@ifend We can tell that we are at the end as\NC@dowill place a\relax after the dummy column.
250\def\NC@ifend{%

If we are at the end, do nothing. (The whole preamble will now be in\@temptokena .)
251 \ifx\next\relax

Otherwise set the flag\if@tempswa , and rewrite the column.\expandafter introduced
1n V2.01
252 \else\@tempswatrue\expandafter\NC@rewrite\fi}

\NC@do If the user has specified ‘C’ and ‘L’ as new columns, the list of rewrites (in the token
register\NC@list) will look like \NC@do * \NC@do C \NC@do L. So we need to define
\NC@doas a one argument macro which initialises the rewriting of the specified column.
Let us assume that ‘C’ is the argument.
253\def\NC@do#1{%

First we let\NC@rewrite and \NC@find be \NC@rewrite@C and \NC@find@C respec-
tively.
254 \expandafter\let\expandafter\NC@rewrite
255 \csname NC@rewrite@\string#1\endcsname
256 \expandafter\let\expandafter\NC@find
257 \csname NC@find@\string#1\endcsname

Clear the token register\@temptokena after putting the present contents of the register in
front of the token\NC@find . At the end we place the tokens ‘C\relax ’ which \NC@ifend
will use to detect the end of the user preamble.
258 \expandafter\@temptokena\expandafter{\expandafter}%
259 \expandafter\NC@find\the\@temptokena#1\relax}

\showcols This macro is useful for debugging\newcolumntype specifications, it is the equivalent of
the primitive\show command for macro definitions. All we need to do is locally redefine
\NC@doto take its argument (say ‘C’) and then\show the (slightly modified) definition of

24

\NC@rewrite@C . Actually as the the list always starts off with\NC@do * and we do not
want to print the definition of the�-form, define\NC@do to throw away the first item in
the list, and then redefine itsef to print the rest of the definitions.
260\def\showcols{{\def\NC@do##1{\let\NC@do\NC@show}\the\NC@list}}

\NC@show If the column ‘C’ is defined as above, then\show\NC@rewrite@C would output
\long macro: ->\NC@find >{$}c<{$} . We want to strip thelong macro: -> and
the \NC@find . So first we use\meaning and then apply the macro\NC@strip to the
tokens so produced and then\typeout the required string.
261\def\NC@show#1{%
262 \typeout{Column #1\expandafter\expandafter\expandafter\NC@strip
263 \expandafter\meaning\csname NC@rewrite@#1\endcsname\@@}}

\NC@strip Delimit the arguments to\NC@strip with ‘ : ’, ‘ -> ’, a space, and\@@to pull out the
required parts of the output from\meaning .
264\def\NC@strip#1:#2->#3 #4\@@{#2 -> #4}

\NC@list Allocate the token register used for the rewrite list.
265\newtoks\NC@list

12.1 The�–form

We view the�-form as a slight generalisation of the system described in the previous
subsection. The idea is to define a� column by a command of the form:

\newcolumntype{*}[2]{%
\count@=#1\ifnum\count@>0

\advance\count@ by -1 #2*{\count@}{#2}\fi}

\NC@rewrite@* This does not work however as\newcolumntype takes great care not to expand anything
in the preamble, and so the\if is never expanded.\newcolumntype sets up various
other parts of the rewrite correctly though so we can define:
266\newcolumntype{*}[2]{}

Now we must correct the definition of\NC@rewrite@* . The following is probably more
efficient than a direct translation of the idea sketched above, we do not need to put a
� in the preamble and call the rewrite recursively, we can just put#1 copies of#2 into
\@temptokena . (Nested� forms will be expanded when the whole rewrite list is ex-
panded again, see\@mkpream)
267\long\@namedef{NC@rewrite@*}#1#2{%

Store the number.
268 \count@#1

Put#1 copies of#2 in the token register.
269 \loop
270 \ifnum\count@>\z@
271 \advance\count@\m@ne
272 \@temptokena\expandafter{\the\@temptokena#2}%
273 \repeat

\NC@dowill ensure that\NC@find is \let equal to\NC@find@* .
274 \NC@find}

25

12.2 Modifications to internal macros ofarray.sty

\@xexpast

\@xexnoop

These macros are used to expand�-forms inarray.sty . \let them to\relax to save
space.
275\let\@xexpast\relax
276\let\@xexnoop\relax

\save@decl We do not assume that the token register is free, we add the new declarations to the front
of the register. This is to allow user preambles of the form,>{foo}>{bar}.. . Users are
not encouraged to enter such expressions directly, but they may result from the rewriting
of \newcolumntype ’s.
277\def\save@decl{\toks \count@ = \expandafter\expandafter\expandafter
278 {\expandafter\@nextchar\the\toks\count@}}

\@mkpream The main modification to\@mkpream is to replace the call to\@xexpast (which expanded
�-forms) by a loop which expands all\newcolumntype specifiers.
279\def\@mkpream#1{\gdef\@preamble{}\@lastchclass 4 \@firstamptrue
280 \let\@sharp\relax \let\@startpbox\relax \let\@endpbox\relax

Now we remove possible�-forms and user-defined column specifiers in the user preamble
by repeatedly executing the list\NC@list until the re-writes have no more effect. The
expanded preamble will then be in the token register\@temptokena . Actually we need
to know at this point that this is not\toks0 .
281 \@temptokena{#1}\@tempswatrue
282 \@whilesw\if@tempswa\fi{\@tempswafalse\the\NC@list}%

Afterwards we initialize all registers and macros, that we need for the build-up of the
preamble.
283 \count@\m@ne
284 \let\the@toks\relax
285 \prepnext@tok

Having expanded all tokens defined using\newcolumntype (including *), we evalu-
ate the remaining tokens, which are saved in\@temptokena . We use the LATEX–macro
\@tfor to inspect each token in turn.
286 \expandafter \@tfor \expandafter \@nextchar
287 \expandafter :\expandafter =\the\@temptokena \do

\@testpatch does not take an argument sincearray.sty 2.0h.
288 {\@testpach
289 \ifcase \@chclass \@classz \or \@classi \or \@classii
290 \or \save@decl \or \or \@classv \or \@classvi
291 \or \@classvii \or \@classviii

In newarray.sty class 9 is equivalent to class 10.
292 \or \@classx
293 \or \@classx \fi
294 \@lastchclass\@chclass}%
295 \ifcase\@lastchclass
296 \@acol \or
297 \or
298 \@acol \or
299 \@preamerr \thr@@ \or
300 \@preamerr \tw@ \@addtopreamble\@sharp \or
301 \or

26

302 \else \@preamerr \@ne \fi
303 \def\the@toks{\the\toks}}

\@classix array.sty does not allow repeated> declarations for the same column. This is allowed
in newarray.sty as documented in the introduction. Removing the test for this case
makes class 9 equivalent to class 10, and so this macro is redundant. It is\let to \relax
to save space.
304\let\@classix\relax

\@classviii In newarray.sty explicitly allow class 2, as repeated< expressions are accepted by this
package.
305\def\@classviii{\ifnum \@lastchclass >\z@\ifnum\@lastchclass=\tw@\else
306 \@preamerr 4\@chclass 6 \@classvi \fi\fi}

\@classv Class 5 is@-expressions (and is also called by class 1) This macro was incorrect in
Version 1. Now we do not expand the@-expression, but instead explicitly replace an
\extracolsep command by an assignment to\tabskip by a method similar to the
\newcolumntype system described above.\d@llarbegin \d@llarend were introduced
in V2.01 to matcharray.sty 2.0h.
307\def\@classv{\save@decl
308 \expandafter\NC@ecs\@nextchar\extracolsep{}\extracolsep\@@@
309 \@addtopreamble{\d@llarbegin\the@toks\the\count@\relax\d@llarend}%
310 \prepnext@tok}

\NC@ecs Rewrite the first occurrence of\extracolsep{1in} to \tabskip1in\relax . As a side
effect discard any tokens after a second\extracolsep , there is no point in the user
entering two of these commands anyway, so this is not really a restriction.

311\def\NC@ecs#1\extracolsep#2#3\extracolsep#4\@@@{\def\@tempa{#2}%
312 \ifx\@tempa\@empty\else\toks\count@={#1\tabskip#2\relax#3}\fi}
313h=ncolsi

12.3 Support for thedelarray.sty

The delarray.sty package extends the array syntax by supporting the notation of de-
limiters. To this end we extend the array parsing mechanism to include a hook which can
be used by this (or another) package to do some additional parsing.

\@tabarray This macro tests for an optional bracket and then calls up\@@array or \@@array[c] (as
default).
314h�packagei
315\def\@tabarray{\@ifnextchar[{\@@array}{\@@array[c]}}

\@@array This macro tests could then test an optional delimiter before the left brace of the main
preamble argument. Here in the main package it simply is let to be\@array .
316\let\@@array\@array

\endarray

\@arrayright

We have to declare the hook we put into\@array above. A similar hook ‘\@arrayright ’
will be inserted into the\endarray to gain control. Both defaults to empty.

317\def\endarray{\crcr \egroup \egroup \@arrayright \gdef\@preamble{}}
318\let\@arrayleft\@empty
319\let\@arrayright\@empty

27

12.4 Support fornfirsthline and nlasthline

The Companion [1, p.137] suggests two additional commands to control the allignments
in case of tabulars with horizontal lines. They are now added to this package.

\extratabsurround The extra space around a table when\firsthline or \lasthline are used.
320\newlength{\extratabsurround}
321\setlength{\extratabsurround}{2pt}

\backup@length This register will be used internally by\firsthline and\lasthline .
322\newlength{\backup@length}

\firsthline This code can probably be improved but for the moment it should serve.
We start by producing a single tabular row without any visible content that will pro-

duce the external reference point in case[t] is used.
323\newcommand{\firsthline}{%
324 \multicolumn1c{%

Within this row we calculate\backup@length to be the height plus depth of a standard
line. In addition we have to add the width of the\hline , something that was forgotten in
the original definition.
325 \global\backup@length\ht\@arstrutbox
326 \global\advance\backup@length\dp\@arstrutbox
327 \global\advance\backup@length\arrayrulewidth

Finally we do want to make the height of this first line be a bit larger than usual, for this
we place the standard array strut into it but raised by\extratabsurround

328 \raise\extratabsurround\copy\@arstrutbox

Having done all this we end the line and back up by the value of\backup@length and
then finally place our\hline . This should place the line exactly at the right place but
keep the reference point of the whole tabular at the baseline of the first row.
329 }\\[-\backup@length]\hline
330}

\lasthline For \lasthline the situation is even worse and I got it completely wrong initially.
The problem in this case is that if the optional argument[b] is used we do want the

reference point of the tabular be at the baseline of the last row but at the same time do
want the the depth of this last line increased by\extratabsurround without changing
the placement\hline .

We start by placing the rule followed by an invisible row.
331\newcommand{\lasthline}{\hline\multicolumn1c{%

We now calculate\backup@length to be the height and depth of two lines plus the width
of the rule.
332 \global\backup@length2\ht\@arstrutbox
333 \global\advance\backup@length2\dp\@arstrutbox
334 \global\advance\backup@length\arrayrulewidth

This will bring us back to the baseline of the second last row:
335 }\\[-\backup@length]%

28

Thus if we now add another invisible row the reference point of that row will be at the
baseline of the last row (and will be the reference for the whole tabular). Since this row
is invisible we can enlarge its depth by the desired amount.
336 \multicolumn1c{%
337 \lower\extratabsurround\copy\@arstrutbox
338 }%
339}
340h=packagei

12.5 Getting the spacing around rules right

Beside a larger functionalityarray.sty has one important difference to the standard
tabular andarray environments: horizontal and vertical rules make a table larger or
wider, e.g.,\doublerulesep really denotes the space between two rules and isn’t mea-
sured from the middle of the rules.

\@xhline For vertical rules this is implemented by the definitions above, for horizontal rules we
have to take out the backspace.

341\CheckCommand*\@xhline{\ifx\reserved@a\hline
342 \vskip\doublerulesep
343 \vskip-\arrayrulewidth
344 \fi
345 \ifnum0=‘{\fi}}
346\renewcommand*\@xhline{\ifx\reserved@a\hline
347 \vskip\doublerulesep
348 \fi
349 \ifnum0=‘{\fi}}

References

[1] M. GOOSSENS, F. MITTELBACH and A. SAMARIN . The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

[2] D. E. KNUTH. The TEXbook (Computers & Typesetting Volume A). Addison-
Wesley, Reading, Massachusetts, 1986.

[3] L. L AMPORT. LATEX — A Document Preparation System. Addison-Wesley, Reading,
Massachusetts, 1986.

29

