
Theafterpage package�

David Carlisle
carlisle@cs.man.ac.uk

1995/10/27

This package implements a command,\afterpage , that causes the commands
specified in its argument to be expanded after the curent page is output.1

1. Sometimes LATEX’s float positioning mechanism gets overloaded, and all float-
ing figure s and table s drift to the end of the document. One may flush
out all the unprocessed floats by issuing a\clearpage command, but this
has the effect of making the current page end prematurely. Now you can issue
\afterpage{\clearpage} and the current page will be filled up with text as
usual, but then a\clearpage command will flush out all the floats before the
next text page begins.

2. An earlier mechanism to help with float placement was the optional argument[H]
(meaningHERE!) which was originally added to the standard floating environ-
ments byhere.sty , and is now provided byfloat.sty . However some[H]
users have commented that they did not really mean ‘Here!’ They actually wanted
‘Somewhere close’. This can now be achieved by
\afterpage{\clearpage\begin{figure}[H] . . .\end{figure}}
This ensures that the figure is at the top of the next page. (The\clearpage stops
any other figures drifting past the[H] figure.)

3. Floating longtables.longtable.sty provides thelongtable environment,
a multi-page version oftabular . Many longtable users have told me that
it is difficult to set the text surrounding the long table, and that they wanted a
‘floating’ version. As, presumably,longtable s are long, they are probably too
large to hold in memory, and float in the way that thetable environment is floated,
however if the table is in a separate file, sayltfile.tex , you can now use one
of:
\afterpage{\clearpage\input{ltfile}}
\afterpage{\clearpage\input{ltfile}\clearpage} .
The first form lets text apear on the same page as the end of the longtable, the
second ensures that the surrounding text starts again on a new page.

1 h�packagei

\afterpage The token register used to save the old output routine.

�This file has version number v1.08, last revised 1995/10/27.
1This is really a pre-release, to see whether people like the idea of a command like this. This implementation

is not particularly robust. This implementation does not work in two column mode, and can get ‘confused’ by
LATEX’s floating environments.

1

2 \newtoks\AP@output
3 \global\AP@output\expandafter{\the\output}

A box register used to save any part of the next page which has already been pro-
cessed.

4 \newbox\AP@partial

A box register used to save any footnote texts that are ‘tied’ to the text that gets saved
in \AP@partial .

5 \newbox\AP@footins

The following macro attempts to get safely into vertical mode, and then invokes a
special output routine to grab the current page into\AP@partial .

6 \def\AP@savetop{%

Now begins a test to see what state we are in.\AP@noindent will be defined so as to
return to this state (well, almost!) after afterpage has finished.

7 \ifvmode

Vertical mode. This is the simplest case, do nothing.
8 \let\AP@noindent\empty
9 \else\ifhmode

Horizontal mode. ‘Back out’ into vertical mode, removing the indentation box as we go.
If in fact there was no indentation box, the output routine was invoked by\noindent
(what bad luck!) so we have to remember to re-insert the\noindent before the para-
graph is seen again.\everypar tokens have already been inserted, so don’t insert them
again.
10 \setbox\z@\lastbox
11 \edef\AP@noindent
12 {{\everypar{}\ifvoid\z@\noindent\else\indent\fi}}%
13 \par
14 \else

The remaining (even worse) possibility that the ouput routine was triggered by the start
of displaymath within a paragraph.

Come out of displaymath with$$, then adjust the spacing (getting into vmode at
the same time).\AP@noindent will restart display math later.\everydisplay
tokens have already been inserted (they apply to the math list that will be started by
\AP@noindent , even though they were triggered by the display math that was closed
by the lines below!). Save the values\prevgraf and\predisplaysize for use in
the re-started math list.
15 \abovedisplayshortskip\z@\abovedisplayskip\z@
16 \belowdisplayshortskip\z@\belowdisplayskip\z@
17 \xdef\AP@disp{%
18 \predisplaysize\the\predisplaysize
19 \prevgraf\the\prevgraf\relax}%
20 $$\vskip-\baselineskip\vskip-\parskip
21 \edef\AP@noindent{%

Do not insert\everydisplay tokens again.

22 \toks@{\the\everydisplay}\everydisplay{}%

Start displaymath mode with no spurious paragraph line above it. Restore\prevgraf
and \predisplaysize . Use \aftergroup to restore the correct setting for
\everydisplay after this display has finished.

2

23 {\everypar{}\noindent}$$\AP@disp\aftergroup\noexpand\AP@ed}%
24 \fi\fi

Now switch the output routine and remove everything from the current page into the box
\AP@partial .
25 \begingroup
26 \nointerlineskip\null
27 \output{%
28 \global\setbox\AP@partial\vbox{%
29 \unvbox\@cclv
30 \global\setbox\@ne\lastbox}%

If the text that is saved in\AP@partial had footnotes, we’d better grab them as well
otherwise they may come out on a page with the ‘afterpage’ text, before the page that has
the footnote mark! (Added at v1.08.)

31 \global\setbox\AP@footins\box\footins}%

Having defined the output routine, trigger it. . .
32 \eject
33 \endgroup}

\AP@stores all the commands that must be executed after the page break.

34 \let\AP@\relax

Restore the\everydisplay register.\ignorespaces prevents a space or new-
line after$$ creating rogue a indentation or paragraph.
35 \def\AP@ed{\everydisplay\expandafter{\the\toks@}\ignorespaces}

Remove the current vertical list, insert the commands\AP@at the top of the page,
and then re-insert the saved text.
36 \def\AP@@{%
37 \AP@savetop
38 \global\expandafter\let\expandafter\AP@\expandafter\relax\AP@
39 \par

The text originally at the top of this page is now stored in the box\AP@partial , in-
cluding \topskip glue. Now we want to unbox\AP@partial , placing the baseline
of the first row\baselineskip below the baseline of the last line coming from the
afterpage text. If we assumed nothing has too much height or depth (and\topskip
is rigid), it would be fairly trivial to position the contents of\AP@partial so that the
baseline of the first row was\baselineskip below the last row just added.

In this version, I thought it might be fun to try to exactly achieve the\baselineskip –
or–\lineskip calculation that TEX normally does internally. The call to\addboxcontents
does the right thing (I hope).
40 \addboxcontents\AP@partial

Now re-insert any footnote text. This may not be quite the right place, as the text that has
just been unboxed may break over a page in its new position. Also it may not be the right
number if the text from\afterpage itself contains footnotes. Too bad!
41 \ifvoid\AP@footins\else
42 \insert\footins{\unvbox\AP@footins}\fi

Now repair things if we started off in horizontal mode.
43 \AP@noindent}

3

If \AP@ is not \relax then the current page already has some ‘afterpage’ com-
mands, so just add the new commands to the end of the list. Otherwise save the com-
mands in\AP@. (within a local group), and switch the output routine. (The new output
routine just calls the old one if it is invoked by a LATEX float.
44 \long\def\afterpage#1{%
45 \ifx\AP@\relax
46 \gdef\AP@{{#1\par}}%
47 \global\output{%
48 \the\AP@output
49 \ifnum\outputpenalty>-\@Mi
50 \global\output\expandafter{\the\AP@output}%
51 \aftergroup\AP@@
52 \fi}%
53 \else
54 \expandafter\gdef\expandafter\AP@\expandafter{\AP@{#1\par}}%
55 \fi}

If we have got to the end of the document or clearpage just put the stuff out without
any trickery.
56 \let\AP@clearpage\clearpage
57 \def\clearpage{%
58 \ifx\AP@\relax
59 \AP@clearpage
60 \else
61 \global\output\expandafter{\the\AP@output}%
62 \AP@clearpage

At this point (since v1.08) Need to clear\AP@beforeusing its expansion, as otherwise
hit an infinite loop. Sigh.
63 \global\expandafter\let\expandafter\AP@\expandafter\relax
64 \expandafter\expandafter\AP@
65 \fi}
66 \let\AP@enddocument\enddocument
67 \def\enddocument{%
68 \ifx\AP@\relax\else
69 \global\output\expandafter{\the\AP@output}%
70 \AP@clearpage
71 \global\expandafter\let\expandafter\AP@\expandafter\relax
72 \expandafter\expandafter\AP@
73 \fi
74 \AP@enddocument}

\addboxcontents Given a vbox#1 , add to the current vertical list such that the end result is equivalent to
the list that TEX would have built had the contents of#1 (apart from any initial glue) been
added individually to the current list.

So essentially, the problem is that of unboxing#1 , but replacing the glue at the top of
#1 with (something equivalent to) the\baselineskip or \lineskip glue that TEX
would normally have placed before the first box in#1 . Also \prevdepth must be set
at the end.

75 \def\addboxcontents#1{{%

Perhaps I shouldnt use grouping here, as I probably don’t really want to save#1 . If it
is removed,\splittopskip and\splitmaxdepth would need to be restored by
hand.

4

First replace any glue at the top by\vskip 0pt .

76 \splittopskip\z@
77 \splitmaxdepth\maxdimen
78 \setbox#1\vbox{\break\unvbox#1}%
79 \setbox\z@\vsplit#1to\z@

Put the breakpoint back.
80 \setbox#1\vbox{\break\unvbox#1}%

Set\skip@ to be height of#1 (without top glue)
81 \skip@\ht#1%

Now make the first baseline of the first row be\vsize from the top. (This assumes that
the first row has height less than\vsize .)
82 \splittopskip\vsize
83 \setbox\z@\vsplit#1to\z@

Subtract the new height of#1 from \skip@ , and add back on\splittopskip , so
\skip@ is now the height of the first row of#1 This may still be 0pt if (eg) a mark or
whatsit is between the top glue and the first box. Save (this height� \splittopskip)
in \skip\tw@ .
84 \advance\skip@-\ht#1%
85 \skip\tw@\skip@
86 \advance\skip@\splittopskip

Now fake TEX’s \baselineskip calculation.
87 \advance\skip@\prevdepth
88 \advance\skip@-\baselineskip
89 \advance\skip\tw@\ifdim-\skip@<\lineskiplimit\lineskip\else-\skip@\fi

Finally add the glue.
90 \vskip\skip\tw@

Now unbox the box, setting\prevdepth by hand, as\unvbox (unlike \box) does
not automatically set it.

91 \global\dimen@i\dp#1%
92 \unvbox#1}%
93 \prevdepth\dimen@i}

94h=packagei

5

