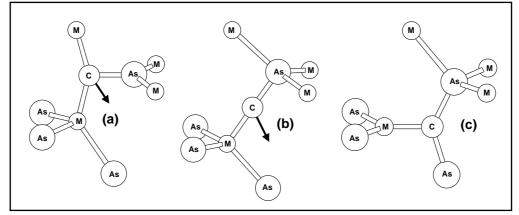
MECHANISM FOR DICARBON DEFECT FORMATION IN AIAs AND GaAs

C. D. Latham^{1*}, R. Jones¹, M. Haugk², Th. Frauenheim³, and P. R. Briddon⁴

¹School of Physics, University of Exeter, Exeter, EX4 4QL, UK


²Technische Universität, Institut für Physik, Theoretische Physik III, D-09107 Chemnitz, Germany

³Universität-GH Paderborn, Theoretische Physik, Warburger Str. 100, D-33098 Paderborn, Germany

⁴Department of Physics, University of Newcastle upon Tyne, Newcastle, NE1 7RU, UK

Key Words: aluminium-arsenide, gallium-arsenide, doping, defects, carbon.

There is a need to understand the degradation mechanism which results in the loss of substitutional C_{As} shallow acceptors in AlAs and GaAs containing high concentrations $\gtrsim 10^{20}$ cm⁻¹ of carbon. The activation energy for the migration of interstitial carbon atoms, C_i , in AlAs and GaAs is calculated using a local-density functional based method, AIMPRO, to be $\lesssim 1 \text{ eV}$. This model is consistent with a 'kick-out' mechanism being responsible for the observed loss of C_{As} , and formation of dicarbon defects. Three local minima separated by only a few tenths of an eV are encountered by a diffusing carbon atom along its path through the crystal. In order of decreasing energy these have $(C-As)_{As}$ split interstitial dicarbon defects, $(C-C)_i$, or substitutional dicarbon defects, $(C-C)_{As}$, are produced depending on whether a C_i meets a $(C-M)_M$ split interstitial or a C_{As} . These posses Raman-active C–C vibrational modes near to that for a free dicarbon molecule, C_2 .

ABOVE: Diffusion mechanism for C_i in AlAs and GaAs: local minima are found at (a) $(C-As)_{As}$ split interstitial, (b) bond-centred C interstitial, and (c) $(C-M)_M$ split interstitial configurations along the migration path.

^{*}Email: C.D.Latham@ex.ac.uk