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Abstract

The results of first principles calculations are presented for several types of point

defect in crystalline silicon that contain hydrogen. The information presented in

this work is derived using cluster and supercell geometries within the local density

functional theory.

The properties of molecular hydrogen within bulk silicon are considered and

compared with recent experimental observations. The interaction between hydrogen

molecules and other defects such as chemically inert voids or oxygen impurities are

also examined.

Several defects which have been suggested to form in proton-implanted sili-

con are examined. The behaviour of hypothetical complexes between silicon self-

interstitials and several hydrogen atoms are examined in an attempt to resolve a

long standing argument over the nature of two families of complexes between native

defects and hydrogen. A new form of hydrogen dimer which is suggested to form in

such material is simulated for the first time, and compared against both experiment

and other dimer structures.

The interaction of hydrogen with multiple vacancies in the silicon lattice is

simulated, leading to an assignment for a large family of optically active defects

as complexes between hydrogen and the largest vacancy centre so far observed in

silicon.

The behaviour of complexes between hydrogen and isolated carbon impurities,

which substitute for silicon atoms in the lattice, is simulated, allowing a consis-

tent model for two sets of apparently disparate experimental observations to be

suggested.
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Chapter 1

Introduction

This thesis contains the results of a set of first-principles simulations for several

hydrogen-related centres in silicon. The question of what “first-principles” or ab

initio1, actually means is debatable. For the purposes of this work it is taken

to be that, in principle, only the chemical composition (the number and type of

species in a system), needs to be known to simulate that system. In practice

experimental information on the structure of the system is gratefully received, since

this can greatly curtail the set of configurations to be investigated. This paradigm

contrasts with the empirical or semi-empirical approach where a variable number

of parameters are adjusted to fit some observed properties of a calibration system.

These parameterised models are then used on other problems, but in practice the

nagging worry that the parameterisation will fail for some cases remains.

The particular implementation used for these calculations is the aimpro code,

in both its cluster and periodic supercell incarnations. The many-body behaviour of

the electrons in the simulated systems is considered using the density functional the-

ories of Hohenberg–Kohn and Kohn–Sham, within the local density approximation.

The computation effort in calculating such systems is reduced by a combination

of the use of pseudopotentials and a localised Gaussian basis with a novel fitting

procedure.

Hydrogen is one of the most important and ubiquitous impurities in silicon,

and is introduced at almost every stage and step of manufacture and processing of

commercial material. Water impurities lead to incorporation of H during growth or

processing steps such as plasma and chemical etching or the Smart Cutr process [1]

rely on hydrogen for their effectiveness. Additionally, hydrogen is directly included

into silicon by plasma based etching or passivation methods. Amorphous, polycrys-

talline material and CVD grown silicon contain substantial amounts of hydrogen

1From the beginning
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1. Introduction

due to the growth processes used, and for specific applications such as amorphous

solar-cells further hydrogen is added to improve the material.

The surrounding lattice modifies the properties of this simplest of atoms tremen-

dously, leading to somewhat different behaviour from when it is present in small

molecules. In addition to the Si–H and H–H bonds familiar in chemistry, the lattice

leads to new structures such as the H∗
2 dimer (see chapter 7 for a description of this

defect), or hydrogen bonded to pairs of other atoms.

Monoatomic hydrogen in silicon is a fast diffusing species and is also chemically

active, so readily travels to and binds with many other defects. The resulting com-

plexes are often electronically inactive, but this does not always follow. In some

cases such as transition metals, new electronic levels are are introduced into the

forbidden bandgap, or existing levels are displaced. The passivation of defects also

leads to change in the electronic properties of the material, for example passivating

part of the doping in the material, leading to a lower carrier concentration. Addi-

tionally hydrogen has a catalytic role in processes such as oxygen diffusion, leading

to substantially increased mobility of this impurity. The presence of molecular hy-

drogen in silicon leads to a large reservoir of “hidden” hydrogen in the material

which is mobile at room temperature and above. This can then act as an unex-

pected source of hydrogen atoms to processes in the material.

The wide ranging properties of hydrogen have led to a spectrum of experi-

mental techniques being applied to the study of related defects. For example,

one of the first applications of the recently developed Laplace deep level transient

spectroscopy (LDLTS) method was to study transition-metal–hydrogen complexes

where conventional DLTS could not resolve signals from many distinct defects.

Both Fourier transform infrared-spectroscopy (FTIR) and electron paramagnetic

resonance (EPR) have been particularly useful for the study of both proton im-

planted material and also silicon treated by indiffusion of hydrogen gas at high

temperature, leading to an understanding of the bonding and symmetry of defects.

The wide variety of of chemistry involved in hydrogen defects has also provided

an important proving ground for modern theoretical methods. To successfully de-

scribe the behaviour of a defect, not only must methods be able to simulate the

chemical bonding between the atoms to sufficient accuracy, but also the calcula-
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1. Introduction

tions should be efficient enough to allow sufficient of the surrounding lattice to be

modeled, allowing for effects such as long range strain fields and polarisation of

the host. This has lead to a drive towards parallel computational codes which can

treat several hundred atoms routinely to an accuracy of meV per atom, while also

exposing some of the short comings of many methods. For example, as discussed in

chapter 5, all of the theoretical methods so far applied to the interstitial hydrogen

molecule in silicon have been unable to produce the fine details of the experimen-

tally observed spectra, though whether this is a failing in the theory or the model

for the defect remains unclear. On a more positive note, theory has been success-

ful in helping to resolve experimental puzzles such as the structure of anomalous

muonium in silicon, and continues to act as a test for defect models such as those

discussed in chapter 8.

The layout of the thesis is as follows. In chapter 2 the problems of simulating

quantum mechanically many-particle systems are discussed, and the customary so-

lutions based on the Hartree independent electron model and the Hartree-Fock cor-

rections are discussed. The alternative charge-density based approach of Hohenberg

and Kohn is introduced and the Kohn-Sham equations are discussed. Chapter 3

presents the formalism used in this work as implemented in the aimpro code. Short

descriptions of several experimental methods which have been used in studying the

defects discussed in this thesis are presented in chapter 4. The succeeding chapters

then present the results of simulations performed on selected defects.

Chapter 5 is concerned with the behaviour of the hydrogen molecule within the

silicon lattice and its interaction with oxygen impurities. The recent experimen-

tal observation(s) of the molecule are discussed, and observed vibrational modes

and the diffusion barrier are compared with the results of simulation. Chapter 6

presents results upon the properties of hydrogen pairs at open defects in the lat-

tice. It is shown that the behaviour of hydrogen molecules within voids or platelet

structures in silicon is consistent with the data which were used to provide the first

spectroscopic observation of the molecule in silicon. The behaviour of hydrogen

interacting with the stable ring hexavacancy in silicon is also considered in this

chapter, leading to an assignment for a family of bound-exciton centres observed

by photo-luminescence as complexes between hydrogen and V6, this allows an iden-
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1. Introduction

tification of the B4
80 centre to be made as the hexavacancy. Chapter 7 suggests

that in addition to the two known hydrogen dimers in silicon, the molecule and

the H∗
2 pair, a third dimeric structure, H∗∗

2 , is present in silicon at low tempera-

tures. Chapter 8 discusses the continuing debate as to whether a prominent family

of infrared active centres are related to interstitial- or vacancy-hydrogen centres.

The vacancy related forms of these defects has already been simulated and agree

well with the observed spectra, but this has not prevented further argument, the

interstitial alternative defects are therefore considered and shown to be inconsis-

tent with the observed data. As a final set of results, the interaction of a single

substitutional carbon with hydrogen is considered in chapter 9. There have been

two distinct sets of experimental observations on this system, the electrical levels

observed which are considered to be consistent with the hydrogen sitting next to

the carbon, but the observed infrared modes match a defect where the hydrogen

is further away. The properties of these systems are simulated, and the resulting

vibrational and electronic data is used to suggest a reconciliation between the two

sets of observations.

17



Chapter 2

The many body problem

To accurately simulate the properties of real molecules and solids at a level which

both qualitative and quantitative predictions can be made with confidence, requires

an excellent representation of the behaviour of the components of such systems.

While classical approximations using simple parametrized models, such as inter-

atomic potentials [2] or bond-charge models [3] have been employed in the past

to study problems involving collections of atoms with some success2, quantum me-

chanical methods have (fairly recently) become well established in the study of such

systems.

Successful non-relativistic simulation of the electronic and structural properties

of objects containing up to about 1,000 atoms [5, 6] have become almost routine in

the last few years. Such systems require an accurate solution to a Schrödinger-like,

many-particle equation.

The Schrödinger equation itself is easily constructed for arrangements of many

particles, but is impossible to directly solve for anything beyond the simplest of

systems without some approximations. A large range of choices for these necessary

simplifications have been provided by various workers. Several of the most popular

(and their antecedents) are briefly discussed in this chapter.

2.1 The many-particle Schrödinger equation

The non-relativistic, time independent, many-particle equation for a distribution of

electrons and nuclei can be written in the general form

{H − E}Ψ(r,R) = {TK.E. + Ve−e + Ve−n + Vn−n − E}Ψ(r,R) = 0 , (2.1)

with E being the many-body energy of the system, TK.E. the kinetic energy of both

the electrons and nuclei in the system, Ve−e the potential energy due to electron-

2Systems consisting of millions of atoms [4] are currently simulated using such methods.

18



2. The many body problem

electron interactions, Ve−n the electron nuclear interactions, and Vn−n the nuclear-

nuclear interactions. The many-body wavefunction, Ψ(r,R) then depends on both

the positions and spins of all N nuclei and n electrons in the system.

Ignoring effects such as spin-orbit coupling, and spin–spin interactions, it is

possible to explicitly write out all of the potentials in equation 2.1.

In atomic units, ~ = e = me = 4πε0 = 1, for a normalised distribution of

electrons at the set of coordinates ri and nuclei of charges Za at coordinates Ra,

these terms become

TK.E. = −1

2

{∑
µ

∇2
µ +

∑
a

1

Ma

∇2
a

}

Ve−e = +
1

2

∑
µ,ν(6=µ)

1

|rµ − rν |

Ve−n = −
∑
µ,a

Za
|rµ − Ra|

Vn−n = +
1

2

∑
a,b(6=a)

ZaZb
|Ra − Rb|

.

The kinetic energy (TK.E) is summed over all of the electrons (µ = 1 → N)

and nuclei (a = 1 → n). The electron–electron and nuclear–nuclear potentials

are summed over each distinct pair combination, hence the 1
2

to remove double

counting.

2.2 The Born–Oppenheimer approximation

As written, the Schrödinger equation is intractable, but a simplification due to Born

and Oppenheimer [7] has been used in almost all attacks on this problem. They

noted that since the ratio of the masses of the electron and atomic nuclei is so large,

the energy scales on which electronic and nuclear motion occurs are distinct3.

The decoupling of the nuclear and electronic motion can be used to write an ap-

proximate Schrödinger equation for the motion of electrons in solids and molecules.

3It is interesting to note that caution should be exerted in using the Born–Oppenheimer ap-

proximation for vibro-rotary motion of molecules (see chapter 5), since molecular rotation causes

a “centrifugal distortion” which manifests itself in the vibrational spectrum.
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2. The many body problem

If Ψ(r,R) written as the product

Ψ(r,R) = ΨR(r) · χ(R) , (2.2)

where ΨR(r) is a function of the distribution of the electrons for a fixed nuclear

arrangement and χ(R) is a function which modulates the wavefunction dependent

on nuclear position, then ΨR(r) satisfies a wave-equation of the form{
−1

2

∑
µ

∇2
µ + Ve−e + Ve−n + Vn−n

}
ΨR(r) = U(R)ΨR(r) . (2.3)

So for each nuclear distribution, U(R) is part of a set of eigenvalues for different

electronic states. ΨR and U must be continuous functions of R, particularly for the

case of degenerate systems.

Substituting equation 2.2 into the Schrödinger equation, and considering equa-

tion 2.3 leads to{
−1

2

∑
n

1

Mn
∇2
n + U(R)

}
Ψ(r,R) = EΨ(r,R) , (2.4)

which can then be written as

ΨR(r)

{
−1

2

∑
n

1

Mn
∇2
n + U(R) − E

}
χ(R) =

∑
n

1

2Mn

{
χ(R)∇2

nΨR(r) + 2∇nχ(R) · ∇nΨR(r)
}
, (2.5)

where the right hand side of equation 2.5 is zero if ΨR(r) only depends parametri-

cally on R.

This will then leave an approximate Schrödinger equation for the motion of the

nuclei, which is decoupled from the electron motion, of the form{
−
∑
n

1

2Mn
∇2
n + U(R)

}
χ(R) = Eχ(R) . (2.6)

Taken together with equation 2.3 this allows separate descriptions for the elec-

tronic and nuclear motion.

2.3 The Hartree approximation

Having simplified H by writing it as a function of the fixed distribution of nuclei,

the Schrödinger equation is still intractable due to the presence of the Ve−e potential.

Clearly some form of simplifying approximation is needed for this term.
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2. The many body problem

Hartree [8] proposed that the electronic wavefunction could be written such that

the electrons behaved as a collection of orthogonal single-particle states experienc-

ing an interaction with both the fixed nuclei and an average of all of the other

electrons in the system. These electronic states must also be self-consistent within

this averaged field, i.e., the field due to all of the electrons and nuclei is identical to

that acting to produce that distribution of electrons.

This approximation is tantamount to writing the many-body wavefunction as

ΨR(r) = Πiψi(ri) , (2.7)

where ψ(ri) are a set of independent single particle wavefunctions, which are func-

tions of position and spin for the n electrons.

From this ansatz wavefunction it is then possible to write a Hamiltonian em-

bodying this approximation. For a normalised set of wavefunctions the Hamiltonian

for the energy of state ψi is
−1

2
∇2
i −

∑
n

Zn
|ri −Rn|

+
∑
j(6=i)

∫
|ψj(rj)|2

drj
|ri − rj |


ψi(ri) = Eiψi(ri).(2.8)

This then gives a set of n simultaneous integro-differential equations to solve self-

consistently for the set of n ψi states.

The customary method of solution to this problem is by an iterative approach in

which the potential energy approximating the second and third terms in equation 2.8

is assumed, from which the single particle wavefunctions are then calculated. These

eigenfunctions then give a new potential from the new total charge distribution,

which is again used to re-evaluate yet another set of wavefunctions. The process

is repeated until the functions remain unchanged between iterative cycles (or differ

below a certain tolerance).

It is straightforward to show that the Hartree wavefunction is the lowest energy

solution possible for the Hamiltonian described by using the variational principle

(Raleigh ratio) [9], which states that for a wavefunction of energy

E =
〈Ψ|H |Ψ〉
〈Ψ|Ψ〉 (2.9)
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2. The many body problem

the lowest possible energy is given when

δE

δΨ
= 0

δ2E

δ2Ψ
> 0 (2.10)

The solutions to the Hartree equation have one very obvious failing, they are

not anti-symmetric on exchange of electrons, so they cannot represent Fermionic

systems without some adjustment. The Pauli exclusion principle [10] can be tacked

on ad hoc by forcing an occupancy of the one electron levels to give unique quantum

numbers for each of the n electrons in the system, but this is clearly unsatisfactory.

There are several well known problems with this method for finding the elec-

tronic wavefunction. Calculation of excited states using this approach are fraught

with problems. The näıve approach of taking the non-ground state functions of the

n one electron equations literally as excited many-body states (Koopmans’ theo-

rem [11]) fails. This is due to the lack of a “relaxation” correction to the energy

of all of the other states in the system, since they would re-adjust to the new

Hartree potential due to this change in the electron distribution. This leads to

the realization that the only meaningful states in the system are those which are

occupied. A more accurate method of considering transitions between states is due

to Slater [12]. If the energy of a system which is experiencing a transition from

| · · · , 1, · · · , 0, · · · 〉 → | · · · , 0, · · · , 1, · · · 〉 is considered to be a continuous function

of the change in occupancy between the two levels, then the energy of the system

can be expressed as a Taylor expansion about | · · · , 1
2
, · · · , 1

2
, · · · 〉. The difference

in the total energy between the two configurations is then, up to the third order,

related to the derivative of the energy with respect to the occupancy of the two

levels4.

In the case of solids, if the Hartree approximation is applied to a jellium system

then the Somerfield independent electron model for metals results. Jellium is a

good approximation for conduction electrons in simple metals such as sodium, and

consists of a uniform positive charge spread over the whole volume of the solid. This

positive charge typically exactly balances the negative charge of the n electrons in

4As we shall see later, this can be linked directly to the energy of Kohn-Sham energy levels via

Janak’s theorem, as discussed in section 2.5.3.
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2. The many body problem

the system. The jellium solid is usually taken to be infinite in extent, removing the

requirement to consider surface effects.

For neutral jellium the Somerfield model gives no net cohesive energy for the

electron, i.e., the electrons are not bound to the solid in this simple model. This lack

of cohesive energy can be traced back to the independent electron approximation.

More sophisticated approximations, which include more accurate representations of

the collective electron behaviour, do not suffer from this effect.

2.4 The Hartree-Fock approximation

For Fermionic systems, the approximate wavefunction of Hartree (eqn. 2.7) lacks

some relevant physics, namely the Pauli exclusion principle. Both Fock [13] and

Slater [9] suggested a method of including this by writing the many-body wavefunc-

tion as a set of single-particle states that are explicitly anti-symmetric with respect

to exchange of particles.

For a set of n particles this wavefunction can be written as a normalised Slater

determinant [9] of the form

Ψ(r1 · · · rn) =
1√
n!

det |ψa(r1)ψb(r2) · · ·ψz(rn)| , (2.11)

where ψa(ri) is the a-th orthonormal single-particle spin-orbital at spatial and spin

coordinates ri. This determinant then guarantees that the overall wavefunction is

anti-symmetric with respect to exchange of the particles.

The single particle states are then orthogonal with respect to both spatial dis-

tribution (i, j) and spin (α, β), i.e.,

〈ψαi |ψβj 〉 = δijδαβ , (2.12)

with i being the spatial dependency, and α the spin, leading to the familiar Fermion-

ic level filling.

By applying the variational principle to this wavefunction it is possible to derive

an appropriate Hamiltonian for the Hartree-Fock approximation.

Starting from

E =

〈
Ψ

∣∣∣∣∣
∑
i

hi +
1

2

∑
i,j(6=i)

1

|ri − rj|

∣∣∣∣∣ Ψ

〉
(2.13)
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where

hi = −1

2
∇2
i −

∑
n

Zn
|ri −Rn|

. (2.14)

Using the indistinguishability of the electrons in the determinant, this energy be-

comes 〈
Ψ

∣∣∣∣∣
n∑
i

hi

∣∣∣∣∣ Ψ

〉
+

1

2
n(n− 1)

〈
Ψ

∣∣∣∣∣ 1

|r1 − r2|

∣∣∣∣∣ Ψ
〉
, (2.15)

Expanding the second term in equation 2.15 as a set of spin-orbitals from the

HF determinant gives

1

2

∑
i,j(6=i)

〈
ψi(1)ψj(2)

∣∣∣∣∣ 1

|r1 − r2|

∣∣∣∣∣ {ψi(1)ψj(2) − ψj(1)ψi(2)}
〉

(2.16)

which can be rewritten as

∑
i

〈ψi(1)|hi|ψi(1)〉 +

1

2

∑
i,j(6=i)

{〈
ψi(1)∗ψi(1)

∣∣∣∣∣ 1

|ri − rj|

∣∣∣∣∣ ψj(2)∗ψj(2)

〉
−

〈
ψi(1)∗ψj(1)

∣∣∣∣∣ 1

|ri − rj|

∣∣∣∣∣ ψj(2)∗ψi(2)

〉}
(2.17)

If the energy is then minimized subject to the orthonormality of the single-

particle states, then with the introduction of a set of undetermined multipliers this

becomes

δE −
∑
i,j

λij {〈δψi|ψj〉 + 〈ψi|δψj〉} = 0 . (2.18)

This is satisfied when[
h1 +

∑
j

{Jj(1) −Kj(1)}
]
ψi(1) =

∑
j

λjiψj(1) (2.19)

where the Coulomb operator, Ju, and the exchange operator, Ku, are defined as

Ju(1)ψa(1) =

〈
ψu(2)

∣∣∣∣∣ 1

|r1 − r2|

∣∣∣∣∣ ψu(2)

〉
ψa(1) (2.20)

Ku(1)ψa(1) =

〈
ψu(2)

∣∣∣∣∣ 1

|r1 − r2|

∣∣∣∣∣ ψa(2)

〉
ψu(1) . (2.21)

24
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If we then define the Fock operator as

F1 = h1 +
∑
u

{Ju(1) −Ku(1)} (2.22)

then

F1ψi(1) =
∑
j

λjiψj(1). (2.23)

If this equation is then transformed by the introduction of new set of canonical spin

orbitals ψ′
i(n), such that the form of F1 is unchanged and λji becomes a diagonal

matrix, then the familiar Hartree-Fock equation results

F1ψ
′
i(1) = E ′

iψ
′
i(1) . (2.24)

Dropping the primes then gives

F1ψi(1) = Eiψi(1) , (2.25)

i.e., the conventional form for this expression.

The set of n spin-orbitals are then evaluated self-consistently, as with the Hartree

wavefunctions, since from the definition of the Fock operator in equation 2.22, the

solution for a particular spin-orbital is dependent on the other n−1 occupied states

in the system.

The exchange anti-symmetry that the resulting wavefunctions possesses leads

to an “exchange hole” of net unit charge around each electron in the system, where

all of the other electrons of parallel spin are repelled. This exchange potential for

the a-th electron in the system is of the form

V a
x (r1, r2) =

−1

|r1 − r2|
∑
b(6=a)

〈ψb(r1)|ψb(r2)〉 (2.26)

where the sum is over all of the other electrons of parallel spin. It is this exchange

term which then will give a net cohesive energy for jellium.

From this exchange energy, the exchange energy Ex can be defined for a spin-

average uniform electron gas as a function of the charge density such that

Exc =

∫
ρ(r)εxc[ρ(r)]dr , (2.27)
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with

εx(ρ) = −3

2

(
3ρ

8π

) 1
3

. (2.28)

Similarly the spin polarised exchange energy is given by

Ex(ρ↑, ρ↓) = −3

2

(
3

4π

) 1
3 (
ρ

4/3
↑ + ρ

4/3
↓
)
. (2.29)

2.4.1 The Roothaan equations

When applied to molecules or solids, in contrast to isolated atoms, numerical so-

lution of the set of Hartree-Fock equations becomes infeasible. Roothaan and Hall

suggested a reformulation of the HF equations by using of a set of basis functions

to expand the spatial dependency of the spin-orbitals, thus allowing the problem to

be numerically solved by matrix diagonalization [14].

If the spatial part of the orbitals is represented as a sum of M basis functions,

i.e.,

ψi =

M∑
j

cjiθj , (2.30)

where θj is one of the M orbitals weighted by cji, then the set of M basis func-

tions allows the expression of up to M linearly independent spatial wavefunctions.

Substituting this definition into equation 2.25 then gives

F1

M∑
j

cjiθj(1) = Ea
M∑
j

cjiθj(1) (2.31)

which can be transformed into

M∑
j

cji 〈θi(1)|F1|θj(1)〉 = Ea
M∑
j

cji 〈θi(1)|θj(1)〉 . (2.32)

If overlap (S) and Fock (F) matrices of the form

Sji = 〈θi(1)|θj(1)〉 (2.33)

Fji = 〈θi(1)|F1|θj(1)〉 (2.34)

are introduced, then the Roothaan matrix equation becomes

Fc = ESc , (2.35)
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with c being an M × M matrix, and E being a diagonal M × M matrix of the

orbital energies. This equation possesses a non-trivial solution only in the case of

det |F − EaS| = 0 (2.36)

which again requires a self-consistent solution, but couched in terms of the ad-

justable mixing coefficients cji. The resulting set of E energies consist of n occupied

orbitals, and (M − n) virtual orbitals. If M were an infinite set of basis functions,

this set of virtual orbitals would give the full set of possible unoccupied Hartree-Fock

wavefunctions.

If the form of the Fji elements is then written in full, they become

Fji = hji +
∑
l,m

blm {2(ij|lm) − (im|lj)} (2.37)

with the density matrix elements b being defined as

blm =
∑
u

c∗lucmu , (2.38)

and the terms of the form (ab|cd) being two electron, four centre, integrals over the

basis functions, i.e.,

(ab|cd) =

∫
θ∗a(1)θb(1)

1

|r1 − r2|
θ∗c (2)θd(2)dr1dr2 . (2.39)

These equations have been extended to the spin polarized case by Pople and Nes-

bet [15].

The initial determination of the four electron integrals of the form (ab|cd), com-

bined with the requirement of re-evaluating the set of b density matrix elements,

are the main computational bottle necks for this method, leading to a calculation

that scales as O(n4).

2.4.2 Approximations to the Hartree-Fock method

Due to this large computational effort, there is an incentive to simplify the HF

calculations in some way. A large number of approximations have been suggested

by various workers to simplify this problem in some way.

As described, the spin of all n electrons in the system are considered explicitly,

this is referred to as an unrestricted open-shell Hartree-Fock (UHF) calculation.
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In the case of “closed shell” systems where the electrons are all in fully occupied

orbitals with a total many-body symmetry of Γ1, if we were to assume that the

behaviour of the two electrons in an orbital shared the same spatial distribution,

then the calculation can be simplified by considering a system containing half the

number of particles, each of which possesses a charge of -2. Such restricted HF

(RHF) would be known as spin averaged to DFT practitioners (see section 2.5).

Alternatively a hybrid of the two methods, namely restricted open-shell HF, where

the full shells are treated as with RHF and any open shell states are treated as in

UHF, is also used.

Many of the alternative methods to simplify the HF equations rely on some

form of parameterisation to the four-centre overlap integrals, leading to a class of

semi-empirical methods. The simplest parameterisation of this form is the zero

differential overlap approximation (ZDO) [16] or complete neglect of differential

overlap (CNDO), where the four centre overlap integrals (ab|cd) are taken to be

non-zero only in the case that a = b and c = d. The integral (aa|cc) is then

usually taken to be an empirical parameter fitted to give agreement with a set of

Hartree-Fock calculations.

A slightly more sophisticated version of this approximation is the intermediate

neglect of differential diatomic overlap (INDO). In this approximation the four-

centre exchange integrals are retained if they centred on the same atom and of

the form (ij|ij) (which is equal to (ij|ji) for real basis functions). Pople [17]

developed an improved form of INDO, known as neglect of diatomic differential

overlap (NDDO). With NDDO, functions of the form (im|li) are retained when

they are centred on the same atom, and two centre-functions are retained in the

case (ab|cd) where a and b are centred on one atom and c and d on another atom.

Several variants of NDDO approximation have been developed by Dewar, lead-

ing to the modified intermediate neglect of differential diatomic overlap (MINDO)

approximation, which increase in sophistication from MINDO/1 to MINDO/3 [18].

An alternative “neglect” approximation is the partial retention of differential

diatomic overlap (PRDDO), where most of the overlap integrals are removed by a

careful use of orthogonality between states [19].

28



2. The many body problem

2.4.3 Improvements on the Hartree-Fock approximation

For the jellium system mentioned in section 2.3, the HF approximation has several

notable failings. Principle amongst these is the density of states at the Fermi-level.

If we represent the electronic states as a set of plane-waves then the energy of jellium

filled to the Fermi-wavevector kF is [20]

E =

kF∑
k

k2 − kF

π

kF∑
k

{
1 +

k2
F − k2

2kFk
ln

∣∣∣∣kF + k

kF − k

∣∣∣∣
}
. (2.40)

The most obvious problem with this expression is that the density of states,

which is given by

g(E) =
∂k

∂E
,

is zero at the Fermi energy, leading to an unphysical model for simple metals [21].

Of more relevance to this thesis, structural parameters of defects in silicon such

as CsHi have been shown to be incorrectly predicted by pure HF theory (see chap-

ter 9).

The deficiencies of HF theory can be traced back to the assumption that each

electron in the system experiences an average potential due to the other electrons in

the system, i.e., the electronic behaviour lacks correlation. Since there is allowance

for exchange in this method, the electrons with parallel spin are in some respects

correlated, but the anti-parallel case is not accounted for.

Whilst it might be possible to introduce a correlation function into the many-

body wavefunction in a similar manner to the exchange potential, there is no obvious

form for this term(s) [22], instead the methods used to introduce correlation rely on

considering the corrections due to “excited states” of the one-electron determinants.

2.4.3.1 Configuration interaction

If the ground state determinant from the Roothaan equations (section 2.4.1) is

taken as a reference, adopting the notation

Ψ0 = |ψ1ψ2 · · ·ψx · · ·ψn−1ψn| (2.41)

for the “ground” state, and

Ψe
x = |ψ1ψ2 · · ·ψex · · ·ψn−1ψn| (2.42)
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for a determinant in which the x-th single-particle state has been excited into the

e-th level. This allows excited determinants to be written as

Ψefg···
xyz··· , (2.43)

for a determinant in which the x-th, y-th, and z-th single-particle states have been

excited into their e-th, f -th, and g-th states respectively.

Following the discussion reviewed in reference [23], since every normalizable

antisymmetric wavefunction can be represented as a sum of Slater determinants

built up from a complete set of one-electron functions, then the correlated ground

state can be found by optimising the set of all Slater determinants. If the many-

body wavefunction is written as the set of all of the possible excited and ground

state determinants, i.e.,

ΨCI = C0Ψ0 +
∑
a,i

Ci
aΨ

i
a · · ·+

∑
ab,ij

Cij
abΨ

ij
ab · · · + · · · (2.44)

then by optimising both the one-electron and one-determinant parameters c and C

it is possible to find the “exact” non-relativistic energy of the system.

The energy difference between this “exact” energy and that of the ground-state

HF determinant is the correlation energy for the system. In practice including

an infinite set of determinants each with an infinite basis set is impossible. The

number of determinants to be included can be pruned back somewhat, since only

the functions with the same symmetry as the ground state will form part of the

ground state function, i.e., for the H2 molecule only determinants of symmetry 1Σ+
g

need to be included. This is due to the well known result that integrals of the form

〈Ψi|Ψj〉 (2.45)

are only non-zero in the case that the products of the irreducible symmetries of the

functions contains the totally symmetric representation, and since the Hamiltonian

is always of symmetry Γ1, this means that ΓΨi
= ΓΨj

for the integral to be non-zero.

In practice, this still leaves an infinite set of functions to consider, therefore “full

CI” is the best energy which can be evaluated for a given finite set of basis func-

tions. Alternatively “limited CI” can be performed by considering only a subset of

the possible determinants for a given basis set. Of these limited CI calculations the
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common types are the single, double, and triple excited CI (SDTCI), and similarly

the SDCI and DCI forms. Such limited CI suffers from one major flaw, since it is

not “size consistent”, i.e., the energy of molecules A and B are different when calcu-

lated separately versus when in the same calculation but with an infinite separation

between the molecules.

2.4.3.2 Møller–Plesset perturbation theory

Since typical limited CI calculations routinely involve 108 or more configurations

even for small problems, the incentive to use a simplified method for including cor-

relation corrections is present. If the HF wavefunction is similar to the “correct”

correlated wavefunction then perturbation theory can be applied to improve the cor-

respondence. In Møller–Plesset perturbation theory, the zeroth order Hamiltonian

is taken to be

H (0) =

n∑
i=1

fi (2.46)

where fi is the one-electron Fock operator. The energy is then

ESCF = E(0) = 〈Ψ0|H (0)|Ψ0〉 (2.47)

The first order perturbation is then

H (1) = H −
n∑
i=1

Fi (2.48)

with H being the Born-Oppenheimer electronic Hamiltonian, and F the Fock

operator. This gives a total energy of

E(0) + 〈Ψ0|H (1)|Ψ0〉 (2.49)

It is only for second order perturbation theory (or better) that correlation cor-

rections apply to the wavefunction. The perturbation in the energy for the second

order is

E(2) =
1

4

∑
abij

{(ia|jb) − (ib|ja)}2

Ea + Eb − Ei − Ej
(2.50)

leading to a total energy of

E(0) + E(1) + E(2) (2.51)
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The standard notation for a given level of Møller–Plesset perturbation is MPn

where n is the order of perturbation. The scaling with level of perturbation is poor,

since the computational effort is O(Nn+3), but unlike limited CI this approach does

have the advantage of size consistency.

2.5 Density functional theory

Instead of considering the many-body problem in terms of a set of wavefunctions,

considerable simplification can be achieved if the distribution of charge can be

taken to be the fundamental variable. Before the Hohenberg-Kohn theorem (sec-

tion 2.5.2), all such attempts represented only model systems, with historically the

Thomas-Fermi model being the first of these.

2.5.1 Thomas-Fermi theory

Thomas [24] and Fermi [25] assumed that “Electrons are distributed uniformly in

the six-dimensional phase space for the motion of electrons at a rate of two for each

h3 of volume”, and that there is an effective potential which “is itself determined

by the nuclear charge and this distribution of electrons”. From these assumptions,

jellium with a range of electron momenta at zero temperature of up to the Fermi

level, i.e., kF, possess an energy and charge density of

EF =
k2

F

2
(2.52)

ρ =
N

V
=

k3
F

3π2
. (2.53)

This leads to an expression for the Fermi wavevector kF in terms of the charge

density

kF =
(
3π2ρ

) 1
3 , (2.54)

which then allows the electronic kinetic energy to be defined in terms for the charge

density as

T =

kF∫
0

3k4

2k3
F

ρ dk. (2.55)
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If the electron density is then taken to be slowly varying, the kinetic energy at

a particular point can be taken to be locally equal to the uniform gas case, i.e.,

T (r) =
3

10

(
3π2
) 2

3 ρ(r)
5
3 . (2.56)

The total energy for the non-uniform electrons can then be written as a function

of the kinetic energy, external potential on the electrons V (r), and the electron–

electron repulsion, i.e.,

E = T + Ve−V + Ve−e (2.57)

=
3

10

(
3π2
) 2

3

∫
ρ(r)

5
3 dr −

∫
ρ(r)V (r) dr +

1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2

If this energy is minimised with respect to the charge distribution (while keep-

ing the same total charge), then the Thomas–Fermi (TF) equation results. This

minimisation can be cast in the form of

δ (E − µN) = 0 , (2.58)

with µ being the chemical potential of the set of N electrons. The resulting form

for the TF equation is

µ =
1

2

{
3π2ρ(r)

} 2
3 − V (r) +

∫
ρ(r1)

|r1 − r2|
dr2 (2.59)

which can then be solved self-consistently, allowing the charge-density to be used

as a fundamental variable.

2.5.2 The Hohenberg–Kohn theorem

The TF theory has two major failings, in that there is no physical justification for

taking the charge density as the fundamental variable and the theory itself does

not provide energies which are accurate enough to predict molecular structures

correctly [26].

The first of these problems is somewhat alleviated by the work of Hohenberg and

Kohn [27], who demonstrated that the charge density, for the non-degenerate case at

least, uniquely determines the energy of the system (the theorem has subsequently

been extended to theN representable degenerate case by Levy [28], see reference [29]

for a review of this).
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If we assume, for the moment, that the ground-state charge density is not

uniquely determined by the potential acting on it, then it is possible to show that

this assumption leads to an inconsistency. If two distinct external potentials V1 and

V2 lead to many-body wavefunctions Ψ1 and Ψ2, which both have the same charge

density, n, then from the variational principle

E1 = 〈Ψ1|HV1|Ψ1〉 6 〈Ψ2|HV1 |Ψ2〉 = 〈Ψ2|HV2 + V1 − V2|Ψ2〉 .

This then gives

E1 6 E2 +

∫
[V1(r) − V2(r)]n(r) dr . (2.60)

But similarly,

E2 6 E1 +

∫
[V2(r) − V1(r)]n(r) dr , (2.61)

then, by adding 2.60 and 2.61 this would give

E2 + E1 6 E1 + E2, (2.62)

which for a non-degenerate ground state becomes

E2 + E1 < E1 + E2 , (2.63)

which is clearly impossible. Therefore the charge density must uniquely determine

the potential experienced by the system, and hence the self-energy of the electrons.

Hohenberg and Kohn then defined an energy functional of charge density

FHK[ρ] = T [ρ] + Vee[ρ] (2.64)

where

Vee[ρ] = J [ρ] + non − classical term, (2.65)

with J [ρ] being the classical electrostatic repulsion of a charge distribution, and

T [ρ] its kinetic energy.

This then allows the energy to be written as

E[ρ] =

∫
ρ(r)V (r) dr + FHK[ρ] (2.66)
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for which an energy variational principle of the form

E0 6 E[ρ̃] , (2.67)

with ρ̃ being a trial charge density, can be constructed. This follows since

〈Ψ̃|H |Ψ̃〉 = E[ρ̃] > E[ρ], (2.68)

which from the stationary principle gives

δ

{
E[ρ] − µ

[∫
ρ(r) dr −N

]}
= 0 , (2.69)

which gives an Euler-Lagrange equation of the form

µ =
δE[ρ]

δρ(r)
= V (r) +

δFHK[ρ]

δρ(r)
. (2.70)

If a new functional G[ρ] is then defined such that

G[ρ] = FHK[ρ] − 1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2, (2.71)

i.e., the Hartree energy (section 2.3) is removed from FHK[ρ], then the total energy

can be written such that

E[ρ] =

∫
V (r)ρ(r) dr +

1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 +G[ρ]. (2.72)

Hohenberg and Kohn then suggested forms for G[ρ], but the use of this function

was superseded by the work of Kohn and Sham the following year.

2.5.3 The Kohn-Sham equations

Following on from the definition for G[ρ] given by Hohenberg and Kohn, Kohn and

Sham [30] formulated a more tractable functional of the charge density, which could

be expressed exactly for certain problems.

They defined a new exchange-correlation functional of the form

Exc[ρ] = G[ρ] − T [ρ] , (2.73)

where T [ρ] is the kinetic energy of a non-interacting electron gas. Kohn and Sham

introduced a set of normalised orthogonal orbitals, ψi, which allow the kinetic energy

be written as

T = −1

2

∑
i

〈ψi|∇2|ψi〉 , (2.74)
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and the total charge density as

ρ(r) =
∑
i

|ψi(r)|2 . (2.75)

This then gives a total energy of

E[ρ] = T +
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 +

∫
Vappl.(r)ρ(r) dr + Exc[ρ]. (2.76)

If this energy is then minimised subject to the constraint that the Kohn-Sham or-

bitals remain normalised, then with the introduction of a set of Lagrange multipliers,

Ei,

E −
∑
i

Ei (〈ψi|ψi〉 − 1) , (2.77)

is stationary with respect to variation in 〈ψi|. This then leads to a set of wave

equations of the form

Eiψi(r) =

[
−1

2
∇2 + Vappl.(r) +

∫
ρ(rj)

|ri − rj|
drj +

δExc

δρ

]
ψi(r) , (2.78)

where Vappl. is due to external potentials, and δExc

δρ
is the exchange-correlation po-

tential. This equation is then solved by the usual self-consistent method.

This still leaves the problem of what form Exc takes. As yet there is no exact

form for this term, but a number of approximations to it have been suggested.

2.5.3.1 Janak’s theorem

Janak demonstrated [31] that the variation of the total energy within density func-

tional theory with respect to the occupancy of a Kohn-Sham orbital is equal to

the energy of the many-body equivalent to that level. Hence the highest occupied

Kohn-Sham level is seen to be at the same energy as the ionization energy of the

system [31–33]. The proof of this theorem follows by considering the change in the

energy of the system with the occupancy, f , of the i-th level

dE

dfi
=

∂E

∂fi
+

(
δE

δψi

)(
δψi
δfi

)
. (2.79)

The second of these two terms is zero, since(
δE

δψi

)
= Eifi

(
δ〈ψi|ψi〉
δψi

)
= Eifi · 0 ,
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as a result of equation 2.78. Similarly the first term of equation 2.79 is Ei.

This theorem has subsequently also been proved by an independent approach

based on considering the exchange-correlation potential for a system intermediate

to the states between which a transition occurs [33].

It is then possible to combine the transition state theory of Slater discussed in

section 2.3 with Janak’s theorem. This then allows the evaluation of the energy of

electronic transitions from the ground to excited states within density-functional

theory.

A variant of this method has recently been developed to study electronic tran-

sitions of carriers from the valence or conduction bands to defects in solids by

Resende et al. [34, 35]. If the electronic affinity of the highest occupied state of the

defect is calculated by considering

Ad = En(Rn) − En+1(Rn+1) , (2.80)

i.e., the energy difference between the relaxed structures in the charge states with

n and n+ 1 electrons, at their corresponding relaxed coordinates of Rn and Rn+1.

When expanded as a Taylor series about En+ 1
2
(Rn+ 1

2
) this gives

−
∂En+ 1

2
(Rn+ 1

2
)

∂n
−
∂2En+ 1

2
(Rn+ 1

2
)

∂n∂Rn+ 1
2

· · · (2.81)

If the displacement of atomic coordinates is small during the transition, this gives

Ad = En+ 1
2
(Rn+ 1

2
), i.e., the highest (partially) occupied KS level. This electron

affinity can then be compared against that calculated for a known defect. The

electron affinity of this standard defect can then be corrected by comparison with

experiment to give the adjustment needed to produce the transition energy to the

appropriate band-edge. If both the standard defect and also the defect of interest

posseses similar many-body electronic states, this allows the correction to then be

used for the defect of interest. This circumvents the necessity to calculate transitions

to an electronically excited state since the experimentally measured level contains

the energy of the electron or hole in the excited configuration in addition to the

ground-state affinity. This has the advantage of avoiding having to calculate excited

state configurations of the defect, which would be beyond the scope of the ground-

state density functional theory.
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2.5.3.2 The local density approximation

If we return to the question of the approximation used for Exc, then the most

common starting point is the local charge density.

This is very much in the spirit of the Thomas-Fermi method, which uses the

kinetic energy of jellium as the local K.E. of a non-uniform electron gas. If Exc[ρ(r)]

is assumed to be locally the same as a uniform gas of density ρ, then the total

exchange and correlation energy for a spin-polarised electron gas can be written as

Exc[ρ↑(r), ρ↓(r)] =

∫
Exc[ρ↑(r), ρ↓(r)]ρ(r) dr. (2.82)

This of course still leaves the question of what the form of Exc[ρ] is. In practice

this term is derived from parameterisation of results from diffusion or variational

quantum Monte Carlo (see section 2.6) and formal perturbation theory. This then

leads to a class of local density functional theories which are parametrized from

different Monte Carlo calculations, for example the Ceperly-Alder QMC calcula-

tions [36], from which an LDA parameterisation for spin-polarised electron gases

was developed by Vosko, Wilk, and Nusair (the VWN functional [37]). Details of

the approximate Perdew-Zunger [38] functionals used in the cluster calculations in

this thesis are given in chapter 3.

2.5.3.3 Beyond LDA

Several attempts have been made to improve upon the LDA by incorporating local

gradient information, to give exchange correlation energies of the form

Exc[ρ↑(r), ρ↓(r)] =

∫
E [ρ↑(r), ρ↓(r),∇ρ↑(r),∇ρ↓(r)]ρ(r) dr, (2.83)

which again are parameterised against accurate calculations. No single “best” choice

for these functions has been suggested, but one of the most popular is that of Perdew

and Wang (PW91 functional [39]).

Alternatively, empirical hybrid functionals such as that formed by a mixture of

the Lee-Yang-Parr correlation functional [40], Becke’s gradient correction [41] and

Hartree-Fock exchange energy (the BLYP and B3LYP functionals) have been found

to give good results for small molecules [42].
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2.6 Quantum Monte Carlo

Applying Monte-Carlo methods directly to the many-particle wavefunction of a sys-

tem to minimize the energy is now starting to become a feasible method of studying

defects in solids [43]. Historically, stochastic methods have been used to find the

correlated wavefunction of jellium and provide the exchange-correlation potential

needed for LDF calculations. The two classes of method for such calculations are ei-

ther variational (VMC) or projector Monte Carlo, the most common form of which

is diffusion Monte Carlo (DMC).

In the first of these techniques the energy of the anti-symmetric many-body

wavefunction (represented as a determinant) is minimized by considering the Ral-

eigh ratio for a trial function, which is then modified to find the lowest energy

state. The method usually chosen to perform the minimization is to generate a set

of walkers on the multi-dimensional configurational surface of the problem, repre-

senting a population of possible solutions. The energy of each trial solution is then

evaluated, the walkers are then displaced randomly on the energy surface and their

energy re-evaluated. The choice of whether use any of the new set of displaced walk-

ers as replacements for their predecessors in further steps is then made on basis of

a selection criteria, commonly the Metropolis algorithm [44]. This is a probabilistic

selection which based on a Boltzmann-like distribution (for such calculations, the

variation in the energy of the walkers is usually minimized instead of the total en-

ergy since this gives equivalent results). The newly selected population is then again

displaced and selections made, and this is iterated over the displacement-selection

criteria. In principle the Metropolis algorithm asymptotically converges towards

the ground state, but this convergence is not always realised since computational

constraints limit the configuration space searched.

The second, and potentially more accurate method of projector Monte Carlo de-

fines an operator which projects out the ground state wavefunction from a trial func-

tion. In the case of diffusion Monte Carlo this takes the form of a time-dependent

Schrödinger equation, with an imaginary time direction, which over a sufficiently

long time period causes any trial state to decay to the ground-state. The projec-

tion of the system forward in time is then achieved by representing a many-body
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γ β1 β2

Averaged -0.1423 1.0529 0.3334

Polarised -0.0843 1.3981 0.2611

A B C D

Averaged 0.0311 -0.0480 0.0020 -0.0116

Polarised 0.0155 -0.0269 0.0007 -0.0048

Table 2.1: The Perdew-Zunger parametrisation for the spin-averaged and fully spin-

polarised electron gas.

wavefunction as a set of walkers which are randomly displaced, then duplicated

or destroyed depending if the position displaced to lowers the energy. The ma-

jor difficulty with this approach is the Fermion problem, in that the method will

project out a Bosonic ground-state, this is usually overcome by forcing the system

to possess a fixed 3N - 1 dimensional nodal surface running through the many-body

wavefunction. Unfortunately finding the best choice of such a surface is then one

of the limiting factors to projecting out the true Fermionic ground-state.

Ceperley and Alder [36] applied VMC to find the correlation energy of low-

density jellium, for both spin averaged and polarised systems. By interpolating

between these results and the high-density jellium case obtained by formal pertur-

bation theory, Perdew and Zunger [38] parameterised Ec for unpolarised and fully

polarised jellium as

Ec = γ (1 + β1

√
rs + β2rs)

−1
(for rs > 1) ,

Ec = B + (A+ Crs) ln(rs) +Drs (for rs < 1) ,

where the Weigner-Seitz radius of each electron is rs = (4πρ/3)−1/3. The coefficients

for the averaged and polarised electron gas is given in table 2.1.

For a system of intermediate polarisation ξ, where

ξ =
ρ↑ − ρ↓
ρ↑ + ρ↓

,
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the averaging procedure of von Barth and Hedin [45] can be applied to give

Ec(ρ, ξ) = Ec(ρ, 0) + f(ξ)(Ec(ρ, 0) − Ec(ρ, 1))

f(ξ) =
(1 + ξ)4/3 + (1 − ξ)4/3 − 2

24/3 − 2
.

This then leads to functions which can be closely approximated by power series

in ρ [21].

2.7 Pseudopotentials

Even with the computational speed of density-functional calculations, treating suf-

ficiently many atoms to be able to simulate large systems such as defects in solids

requires a method of reducing the number of states that must be considered explic-

itly.

The approximation of replacing the potential due to the atomic nuclei and “core”

electrons in a group of atoms with some form of simplified approximate potential

is known as a pseudopotential. As yet, there has not been any formal proof that it

is possible to do this whilst retaining the correct chemical and physical properties

for such pseudo-atoms. This of course has not prevented the widespread use of this

approximation, since there are several major advantages to its use.

There are three main incentives to use pseudo-atoms in calculations. The first

of these is due to the orthogonality of all of the states in the system. If the valence

electrons in the problem are to be orthonormal to the core electrons, then these

valence states each require a large number of nodal surfaces. For example, the

valence s orbitals of isolated silicon atoms require 2 nodes each. This means that the

basis used for an “all electron” calculation with every electron included explicitly

should be able to represent very rapid changes in the wavefunctions, so contain

many functions. This can then lead to a tendency towards numerical instability.

The second reason is accuracy, since as the energy of the core levels is appreciably

lower than the valence states, if there is the same fractional error in calculating both,

the effect from the core states is disproportionately larger. Hence if the core states

can be removed, then calculations become more sensitive to energy changes in the

valence states.
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The final reason is speed, since the number of electronic states considered is

reduced dramatically. In addition, for heavy atoms where the core levels require

relativistic treatment, as the pseudopotential need only be calculated from one

relativistic simulation of the atom, then subsequent calculations using the pseudo-

atoms can treat the valence states as non-relativistic wavefunctions, leading to

simplification of many further calculations.

In practice, pseudopotentials have been developed in the context of solid state

physics, hence are often used within density-functional calculations. Hartree-Fock

pseudopotentials are less well-developed, due partly to the complexity of dealing

with the four-centre terms from the Coulomb and exchange terms.

The history of pseudopotentials in calculations on solids dates back to the

1950s [46], where empirical functions were fitted to produce some observable(s)

of the system by varying V pseud. in

(
T + V pseud.

)
ψi = Eiψi. (2.84)

The fitted pseudopotential is then used to model some related system. There is an

issue in the transferability of such pseudopotentials, since there will be a component

in the potential due to the exact form of the valence states in the system which the

parameterisation is carried out. One solution to this is to adjust the form of the

pseudopotential to leave a transferable “ionic” potential,

V pseud.
ionic (r) = V pseud.(r) −

∫
ρpseud.(r1) dr1

|r − r1|
− Vxc

[
ρpseud.(r)

]
, (2.85)

with ρpseud. being the total charge density of the single particle pseudo-wavefunct-

ions.

A substantial improvement occurred over these ionic pseudopotentials with the

modern norm-conserving pseudopotentials [47], which possess the same charge dis-

tribution beyond a defined radius from the core as an all electron calculation.

Bachelet, Hamann and Schlüter [48] developed transferable norm-conserving

pseudopotentials for all elements between H and Pu. Their prescription is now

described.

The first stage is to solve the Kohn-Sham equations for the isolated, spherically

symmetric, atom of interest, allowing the states to be labeled in terms of the angular
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momentum, l, (or j = l± 1
2

for heavier atoms using the Dirac equation). All of the

atomic states necessary for bonding in the solid are used as part of the basis for this

calculation, such as additional d or f functions. In order that these functions should

actually be used as part of the basis, the atom is calculated in a slightly ionised

state with a small occupancy of these functions. This ionization is tabulated for

each atom, and for relevant angular momentum states, by the originators of the

pseudo-potential used. It is this ionization which lead to the construction of ab

initio pseudo-potential being considered a “black art” by some.

The set of all-electron wavefunctions and eigenvalues from the atomic calcu-

lation are then used to construct an all electron potential V ν(r), which contains

contributions from nuclear, Hartree and exchange-correlation potentials. This po-

tential then possesses a singularity at r = 0. Hence a new potential, the first-stage

pseudo-potential, is constructed to the form

Vl(r) = V ν(r) (1 − f(r/rc,l)) − cνl (r/rc,l). (2.86)

The function f(x) is chosen such that as x→ 0, then f(x) → 1, a common choice

for this function is something like exp (−x3.5). This then leads to Vl → cνl at x = 0,

with cνl chosen such that the lowest energy eigenvalue generated by using the poten-

tial V ν is the same as that from using Vl. This leads to the pseudo-wavefunction,

ψν1l, for this potential being the same as the all-electron wavefunction at large radii,

apart from a Normalisation constant. This naturally follows since the potential

Vl is the same as V ν at large distance. The value of rc,l, termed the core-radius,

determines the distance at which the true- and pseudo-wavefunction match. Care

must be exerted in the choice of rc,l to remove nodes from the pseudo-wavefunction,

but still leave the pseudo-wavefunction capable of describing the chemical nature

of the atom. The usual choice of rc,l is halfway between the last node and the last

extremum of the all-electron wavefunction.

The pseudo-wavefunction, ψν1l, is now modified so that it normalised to match

the all-electron function. This is done by defining

ψν2l = γνl
[
ψν1l(r) + δνl r

l+1f(r/rc,l)
]
, (2.87)

with γ and δ being normalisation coefficients.
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The pseudo-potential which would generate ψν2l can be found by inverting the

Schrödinger equation using the eigenvalues of the all-electron system. This leads to

a new pseudo-potential which will generate the ψν2l eigenfunction, but still contains

Hartree and exchange-correlation potentials. The Hartree potential can be removed

exactly by subtraction, but the exchange-correlation is somewhat more difficult to

deal with, since it can only be approximately separated from the pseudo-potential.

This is done by subtracting the all-electron exchange-correlation potential due to

the charge density and any spin-polarisation from the pseudo-potential. This then

leaves the bare electron-ion pseudo-potential Vl(r). For heavier atoms, a scalar

relativistic pseudopotential can be defined which contains a spin-orbit contribution,

but for the light atoms in this work this is not considered to be required.

The pseudo-potential is then fitted to a simple functional form of

Vl(r) = −Zv
r

[
2∑
i=1

cci erf
(√

αcir
)]

+

3∑
i=1

[
Ai,l + r2Ai+3,l

]
exp

(
−αi,lr2

)
,(2.88)

with Zv and αci being the charge of the valence electrons and the inverse of the

extent of the core charge. The first term in the new potential is strictly local, since

it is independent of angular momentum, and appears only as the Coulombic charge

due to the valence electrons at αcir � 1. The second term does depend on the

angular momentum of the state, and so is non-local. It is possible to account for

additional spin-orbit interactions by using a further, non-local, angular dependent

potential [48], but this has not been used in the current work.
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Chapter 3

The aimpro methodology

The particular methods used in this work, and embodied in the aimpro code, are

now described. There are two forms of the code. The first is at heart a cluster-based,

local density functional approach (using a modified form of the Perdew–Zunger [38]

exchange-correlation energy), with a localised basis of Cartesian Gaussian and

Gaussian-type functions and the pseudopotentials of Bachlet et al. [48]. The super-

cell code is also a Gaussian basis code, and uses the exact Perdew–Wang [39] local

exchange-correlation.

There are several approximations and methods specific to these implementation

which merit some additional description.

Matrix formulation

As with the Hartree-Fock equations, the Kohn-Sham equations can be cast in the

form of a matrix problem similar to the Roothaan equations (see section 2.4.1), i.e.,

(H − ES)c = 0 , (3.1)

with two set of matrices, one of each spin. For the cluster code, the overlap matrix

S takes the customary form, with the Hamiltonian matrix for this system being

Hij = Tij + V pseud.
ij + V H

ij + V xc
ij,s , (3.2)

i.e., the kinetic, pseudopotential, Hartree and exchange potentials. In the case of

spin-polarized calculations, there will be a set of matrix problems for each of the

two spin components of the system.
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3.1 Basis

The Gaussian functions used as a basis are commonly of either s or p type, with

their form being

φi(r) = F exp
{
−αi(r− R)2

}
(3.3)

at site R [49]. The function F is either 1 for s functions, or (v −Riv), with v = x,

y or z for p-type orbitals.

In addition to the more conventional atom centred Gaussian basis used in other

codes, further s-type functions are commonly placed at bond-centred sites between

atoms. These additional functions are particularly useful for materials such as

silicon, where there is a d component required in the basis, which is then provided by

these additional Gaussian functions, without the use of computationally expensive

atom centred polarisation functions.

Using such Gaussians, the charge density then becomes

ρ(r) =
occ.∑
λ=1

fλ|ψλ|2 =
occ.∑
λ=1

fλ
∑
i

∣∣cλi φi∣∣2 , (3.4)

where fλ is the occupancy of the λ-th single particle state, ψλ, in the system.

If the density matrix is

bsij =
∑
λ

f sλc
λ
i,sc

λ
j,s , (3.5)

(note that this is real for these functions) then

ρ(r) =
∑
ij,s

bsijφi(r)φj(r). (3.6)

The adoption of a Gaussian basis set also leads to particularly simple forms for

the kinetic and pseudopotential matrices, i.e.,

Tij = −1

2

∫
φi∇2φj dr (3.7)

V pseud.
ij =

∫
φi
∑
a

V pseud.
a φj dr , (3.8)

both of which are readily evaluated analytically.
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3.2 Accelerated evaluation of the Hartree terms

As described in section 2.3, the Hartree energy is given by

UH =
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 .

Since the evaluation of this term using localised basis functions scales as O(N4),

there is a very strong incentive to approximate this part of the calculation.

Sambe and Felton [50] introduced the concept of an “intermediate fit” to the

charge density, using a second set of basis functions which were more convenient for

the evaluation of the Hartree energy. This intermediate charge density takes the

form of

ρ̃(r) =
∑
k

ckgk(r). (3.9)

This then leads to the approximate Hartree energy being expressed in terms of

a set of two-centre integrals, taking the form

ẼH =

∫
ρ(r1)ρ̃(r2)

|r1 − r2|
dr1dr2 −

1

2

∫
ρ̃(r1)ρ̃(r2)

|r1 − r2|
(3.10)

which is exact when ρ̃ = ρ. If the difference between the Hartree energy and this

“fitted” energy is then written as

UH − ŨH =
1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 −

∑
ijk

ckbijtijk −
1

2

∑
kl

ckclgkl , (3.11)

which can then be minimised with respect to the fitting coefficients of the interme-

diate charge density to give

∑
ij

tijkbij =
∑
l

gklcl , (3.12)

where

tijk =

∫
φi(r1)φj(r1)gk(r2)

|r1 − r2|
dr1dr2 (3.13)

gkl =

∫
gk(r1)gl(r2)

|r1 − r2|
dr1dr2. (3.14)

The solution to equation 3.12 gives the coefficients to the intermediate fit, and

also allows that the expression for the fitted Hartree energy as

ŨH =
1

2

∑
kl

ckclgkl. (3.15)
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This energy is alway bounded by ŨH 6 UH, allowing an assessment of the quality

of the intermediate fit by the increase in ŨH with a larger basis.

There are a number of possible choices for the set of gk functions used in this

intermediate basis. For this work, the form of the intermediate basis used for the

cluster calculation is a set of simple s-type Gaussians [51]

gk(r) = exp
{
−α(r − R)2)

}
. (3.16)

This then leads to a fitted Hartree potential

Ṽ H
ij =

∂ŨH

∂bij
(3.17)

=
∑
k

cktijk. (3.18)

It is important to note at this point that the potential should be calculated from

a fitted charge density which has not been forced to be normalised [52], since this

would lead to an unphysical shift in the energy of the occupied eigenvalues.

For the supercell code the alternative choice of planewaves is taken [52]. The

charge density

ρ(r) =
∑
ij

bijφiφj

is Fourier transformed (using a FFT in practice) to give the intermediate fit (in

terms of a set of plane-waves, which are an exact fit for a sufficiently large cut-

off) to the charge density, where the φ’s are the original Cartesian Gaussian basis

functions. The charge density in reciprocal space, n(G), that comes out of this

FFT is then used to calculated the Hartree energy from n(G), this is done using

the method of Ewald [53].

3.3 Evaluation of exchange-correlation

Similarly, a second basis set can be introduced to calculate the other “difficult”

term in the energy, namely the exchange-correlation [21].

For the supercell, since the intermediate fit is the set of planewaves already

produced for the Hartree energy, the standard method for supercell codes can be
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applied. The exchange-correlation potential, εxc(r), can be constructed in real space

and then εxc(r)ρ(r) is Fourier transformed to give Exc.

For the cluster code, if a fitted charge density ρ̃ is introduced such that

Ẽxc =

∫
Exc (ρ̃ ↑, ρ̃ ↓) ρ̃ dr, (3.19)

then the evaluation of this energy can be simplified. This is an alternative to the

other common method of evaluating this term for real-space calculations, which

is to numerically integrate on a mesh of points (see for example Ref. [54] for a

discussion of this method within linear scaling methodology).

While there is a natural choice of fitting the intermediate Hartree basis to min-

imise the electrostatic energy, there is no similarly obvious criterion for fitting the

exchange–correlation basis. For the cluster code, a basis of s-Gaussian functions

are fitted by minimising ∫
[ρs(r) − ρ̃s(r)]

2 dr, (3.20)

to give

ρ̃s(r) =
∑
k

dskhk(r) , (3.21)

with hk being the set of new basis functions. Hence

∑
l

Hkld
s
l =

∑
ij

uijkb
s
ij , (3.22)

with

Hkl =

∫
hk(r)hl(r) dr (3.23)

uijk =

∫
φi(r −Ri)φj(r − Rj)hk(r) dr. (3.24)

The spin-averaged exchange energy then becomes (after dropping the spin la-

bel s)

Ẽxc =
∑
k

dk

∫
hk(r)Exc(ρ̃) dr. (3.25)

For a set of s-Gaussians, these integrals are proportional to the average exchange-

correlation density for the charge represented by the basis hk, which for a slowly
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i Ai pi qi

1 -0.9305 0.3333 0

2 -0.0361 0.0 0

3 0.2327 0.4830 1

4 -0.2324 0.0 1

Table 3.1: Parameters for the spin-polarised exchange-correlation potential in clus-

ter aimpro.

varying charge density will be approximately the exchange-correlation energy for

the average charge density. Hence

(
Ẽxc

)
k

≈ Exc



∑
l

dl

∫
hlhk dr

∫
hk dr


 . (3.26)

Now since Exc(ρ) ' Aρn, with n = 0.30917 (see section 2.6), the expression for

Exc can be further approximated. If a function is set up to interpolate between

n = 0 → 2 of the form

f(n) = ln

(
〈ρ̃ n〉k
〈ρ̃〉nk

)
, (3.27)

then around n = 0.3, f(n) is approximated by interpolating between the exact

results at n =0, 1, and 2 to give

f(n) =
n(n− 1)f(2)

2
, (3.28)

where f(2) can then be found from
〈
ρ̃ 2
〉
k
.

This formalism can then be readily extended to the spin-polarised case [21], with

Ẽxc (ρ↑, ρ↓) =
∑
i,s

Ai

∫
ρ pi+1
s ρqi−s , (3.29)

with the coefficients for Ai, pi and qi given in table 3.1. Then, replacing ρ with ρ̃

gives

Ẽxc =
∑
k,s

dskEk,s , (3.30)
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with

Ek,s =
∑
i

Ai 〈ρ̃pi
s ρ̃

qi
−s〉k

∫
hk dr. (3.31)

As with the spin averaged case, if f(p, q) is then defined to interpolate between

the known integer cases, such that

〈ρ̃ psρ̃ q−s〉k = 〈ρ̃s〉pk 〈ρ̃−s〉
q
k exp[f(p, q)] , (3.32)

with

f(p, q) = ln

(
〈ρ̃ psρ̃ q−s〉k

〈ρ̃s〉pk 〈ρ̃−s〉
q
k

)
. (3.33)

f(p, q) can then be approximated by

f(p, q) =
1

2
p(p− 1)f(2, 0) +

1

2
q(q − 1)f(0, 2) + pqf(1, 1) . (3.34)

3.4 Self-consistency

The customary method of solution to the Kohn–Sham equations is to use a self

consistency cycle, ideally with the minimum number of iterations. The initial charge

density in aimpro is taken either from the same atomic calculations used to produce

the pseudopotentials (as in the cluster code), or the charge density produced during

optimisation of the basis set for a particular material (as in the supercell code).

This then leads to an “initial guess” for the k coefficients c0
in of the basis sets used.

After the first evaluation of eigenvalues, the resulting eigenvectors give a new set of

expansion coefficients c1
out. If it is assumed that improved coefficients for the next

step in the self-consistency cycle can be constructed from a weighted combination

of the new coefficients, c1
out, and the originals, c0

in, then

c1
in = (1 − w)c0

in + wc1
out . (3.35)

This weighting factor w can then be chosen such that the difference between cnin and

the new cn+1
out which is derived from it rapidly become identical between iterations.

If the operation of determining the new charge density is denoted as

cn+1
out = L̂[cnin] , (3.36)
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then assuming that w is small this can be linearised to give

cn+2
out = cn+1

out + wD̂
[
cn+1

out − cnin
]
, (3.37)

with

D̂ =
δL̂

δc
. (3.38)

This then gives the condition for self-consistency as
[
cn+1

out − cnin
]

= 0, which in

turn gives

(1 − w)(cnin − cn+1
out ) − wD̂

[
cn+1

out − cnin
]

= 0 , (3.39)

i.e., since the input and output are identical

(1 − w)(cin − cout) − wD̂ [cout − cin] = 0 (3.40)

If w is a small value, say w, then the output density cout will be

cout = cin + wD̂ [cout − cin] , (3.41)

and hence

(1 − w)(cin − cout) − w(cout − cin)/w = 0 (3.42)

= e. (3.43)

The vector e can then be minimised by considering the Coulomb energy of this

difference in charge density, i.e,

1

2
ekelGkl. (3.44)

This procedure can be extended to include a greater history of previous charge

densities, allowing a rapid evaluation of the self-consistent charge density.

3.4.1 Finite temperature

The smooth convergence of energy can only occur if the charge density changes

without major discontinuities between iterations. One of the situations where such

discontinuous changes regularly occur is that of a previously unfilled level sinking
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below the highest occupied state of the system, which causes a sharp redistribution

of charge. A possible solution to this, as used in both forms of aimpro is to

apply a finite electron temperature, not in a attempt to physically model excited

electrons, but instead to allow a smooth reordering of levels. As the two levels

become closer, charge will gradually transfer between the lower an upper levels

without a discontinuous jump.

In practice this finite temperature (typically of around kBT = 0.04 eV) is imple-

mented by using a Fermi distribution for the occupancy (fi) of each of the i levels.

The obvious method of implementing this is to consider the electronic free energy

F of the N electrons, which would be

F = E + kBT
∑
i

{fi ln fi + (1 − fi) ln(1 − fi)} − µ

{∑
i

fi −N

}
. (3.45)

Minimising this expression with respect to fi and µ give

fi =
1

exp(Ei − µ)/kBT + 1
(3.46)∑

i

fi = N . (3.47)

3.5 Forces and second derivatives

After the self-consistent energy is generated, the question of the minimum energy

of the atomic positions then arises. There are a large variety of possible methods

for optimising structures, but the particular choice made for this work is to use

analytical forces and a conjugate gradient algorithm to determine the position of a

nearby (local) minimum.

Unlike plane-wave calculations, the Hellmann-Feynman theorem [55, 56] cannot

be directly used for fixed, atom centred basis functions, due to the presence of

addition Pulay terms [57] arising from the force due to moving the basis functions.

Instead the individual terms of the Hamiltonian must be separately differentiated.
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3.5.1 Forces

Starting from the energy for cluster, using the fitted Hartree and exchange-correla-

tion terms

E[ρ] = Ts[ρ] +

∫
V ext.(r)ρ(r) dr +

1

2

∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 + Exc[ρ] + Ei−i ,

from which the forces can be explicitly differentiated in respect of displacements

positions of the ion cores, ∆R, i.e.,

∆E =
∑
ij

bij∆
(
Tij + V pseud.

ij

)
+
∑
ij

(
Tij + V pseud.

ij

)
∆bij

+∆ẼH + ∆Ẽxc + ∆Ei−i ,

with

∆ẼH =
∑
kl

ckGkl∆cl +
1

2

∑
kl

ckcl∆Gkl

∆Ẽxc =
∑
ks

Eks∆dks +
∑
ks

dks∆Eks

The changes in the weighting vectors, ∆c and ∆d, for the two fitted basis sets

can be evaluated by considering

∑
k

Gkl∆cl , (3.48)

which equals

∑
ij

(tijk∆bij + bij∆tijk) −
∑
l

cl∆Gkl , (3.49)

and similarly

∑
k

Hkl∆d
s
l =

∑
ij

(
uijk∆bij,ds + bsij∆uijk

)
−
∑
l

dsl∆Hkl . (3.50)

These terms can be combined [21] to give

∑
λ

Eλ∆

(∑
ij

cλi c
λ
jSij

)
−
∑
ijλ

Eλc
λ
i c
λ
j∆Sij , (3.51)

and since

∑
ij

cλi c
λ
jSij = N , (3.52)
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this becomes

−
∑
ijλ

Eλc
λ
i c
λ
j∆Sij . (3.53)

∆Eks is dealt with by considering ∆〈ρ̃s〉k and ∆〈ρ̃2
s〉k, similarly Tij and Sij depend

only on the form of the basis functions for their dependence on R so are easily

differentiated. The energy due to the pseudopotententials has a dependency on

(r −Ra), so is evaluated from integrating∫
φi∆V

pseud.
a φj dr (3.54)

by parts.

3.5.2 Second derivatives

Once the structure has been relaxed, using the derived forces, the dynamical-matrix

for the system can be calculated. In aimpro the second derivatives of the energy

are evaluated by a finite-difference method where atoms in the cluster (usually only

a subset of interest) are displaced in turn from their equilibrium, and a new set of

forces from a separate self-consistency cycle is calculated.

If the force on atom b, in the Cartesian direction m, due to the atom a having

been displaced a distance +ε along the direction l is f+ε
mb(l, a), then the second

derivative matrix is

Dla,mb =
[
f+ε
mb(l, a) − f−ε

mb(l, a)
]
/2ε . (3.55)

An advantage of this approach is that the resulting matrix contains contributions

from the even anharmonic terms of the potential energy surface [58], so reaches

beyond the harmonic approximation to some extent.

Since only part of the dynamical matrix is explicitly calculated, the rest is

commonly filled with approximate derivatives for the rest of the cluster or supercell.

The usual choice for this is the inter-atomic potential of Musgrave and Pople [59],

which considers only interaction between nearest neighbours.

The vibrational modes of the system can then be calculated from the second

derivatives matrix by starting from the set of equations for motion of the atoms.
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The equation for the l-th atom of mass Ml is

Ml
∂2Rmb

∂t2
= −

∑
la

Dla,mbRmb . (3.56)

If a trial solution to eqn. 3.56 of the form

Rmb(t) =
1√
Ml

Amb exp(−iωt) (3.57)

is introduced, then an easily soluble matrix equation

∑
la

[
Dla,mb√
MlMm

− δabδlmω2

]
Ala = 0 , (3.58)

gives the frequencies, ω, and normal modes, Q. In practice the terminating atoms

on the surface of clusters are usually chosen to have an artificially high mass (>

1000 a.m.u.) to remove their local modes.

Unfortunately, the frequencies derived by this method are only accurate for those

modes localised on the defect or within the phonon-gap. For modes which are in

resonance with the lattice, other methods such as Green’s functions [21] must be

considered.

Once the normal coordinates of the modes have been obtained, the infrared

intensity of a particular vibrational transition can be found by considering the net

change in dipole moment over the course of the mode. The total dipole moment of

a cluster is

P =
∑
a

ZaRa −
∫

rρ(r) dr , (3.59)

and the atoms can be displaced along the normal mode to give ∆P, which allows

the square of the effective charge of the i-th mode to be calculated from

η2
i = Mi

∑(
∂Pi

∂Qi

)2

, (3.60)

where the sum is over any degenerate components of the mode.
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Chapter 4

Experimental techniques

Several common experimental techniques which are of relevance to the defects stud-

ied in this thesis are now briefly described. Since I cannot claim to be anything

approaching expert in any of the techniques outlined here, the reader is referred

for further information on all of these methods to the recent review edited by

Stavola [60], and references therein.

For electrically active defects, such as the carbon-hydrogen defects studied in

chapter 9, where the electrical states of the defect are deep within the band-gap of

the host semiconductor5 the usual technique of choice to characterise the electronic

levels defects is Deep Level Transient Capacitance Spectroscopy (DLTS). Such levels

in the forbidden gap of the semiconductor can be detected by other techniques,

such as photoluminescence. Luminescence comes into its own for excited states

of defects such as excitons bound to a defect, as with the B centres described in

chapter 6. While the vibrational modes of a system can be studied by luminescence,

the more common method is to make use of absorption or scattering of light by the

vibrations of a defect, as in infrared and Raman spectroscopy. Such techniques

are readily applied to both molecular hydrogen (chapter 5), other hydrogen dimers

(chapter 7), and complexes between hydrogen and native defects (chapter 8). In

addition to the techniques directly applied to the defects discussed in this thesis,

the versatile method of electron paramagnetic resonance is also described. All of

the above techniques can also be allied to the application of uniaxial stress on the

crystal, allowing the symmetry of the defect to, usually, be unambiguously assigned.

5Deep is a relative term, for silicon this is typically taken to be at least 0.1 eV away from the

band edges, where the hydrogenic model [61] is inapplicable
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4.1 Vibrational spectroscopy

In a one-phonon transition between two of a defect’s vibrational levels there are two

main optical processes that can occur. Either a photon is absorbed (or emitted,

but we will consider the first process only in this section), or alternatively scattered

by the defect. The first process is used in infrared absorption spectroscopy and the

second in Raman spectroscopy.

Since the total crystal momentum of the process must be conserved, this gives

rise to an additional constraint on the absorption process. So for example one

phonon processes are restricted to vertical transitions in the dispersion space, and

two phonon processes must produce both phonons with equal but opposite mo-

menta.

4.1.1 Infrared absorption

For a photon to be absorbed during a vibrational transition between states of a de-

fect 〈χi|µ|χf〉 must be non-zero, where µ is the electric dipole alowing the transition

between the initial, χi, and final , χf , states. This naturally leads to the additional

selection criteria that for a transition to be symmetry allowed, Γχi
⊗Γµ⊗Γχf

⊃ Γ1,

i.e., the product of the symmetries contains the totally symmetric irreducible rep-

resentation.

The integrated intensity of a particular absorption line can be derived [62] by

considering the absorption coefficient as a function of frequency, hence

I =

∫
α(ω) dω =

2π2ρν2

ncM
, (4.1)

with ρ and M being the concentration and mass of the oscillating part of the

impurity, inside a material of refractive index n (c is of course the speed of light).

The apparent charge, ν, is related to the effective charge, e, of the defect by a local

field correction which is material dependent. A further consideration arises from

orientational degeneracy of the defect, since the observed effective charge will be

reduced by a factor related to this degeneracy [63].
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4.1.2 Raman scattering

If intense light (typically from a laser source) is shone onto a sample containing de-

fects, then light scattered from such centres can give information on the vibrational

states of the defects. The main component of the scattered light is that due to

elastic Raleigh scattering at the same energy as the incident light, which contains

no information about the vibrational properties of the defects. On either side of

the main Raleigh line are the Stokes (at lower energy) and anti-Stokes lines. Of

these two weak bands, the Stokes lines are the stronger components (except in the

case of a population inversion) and are due to energy transfer from the incoming

photons to a vibrational state(s) of the defects in the sample.

The dipole moment, µ, induced on a defect by an electrical field E will be µ =

αE, where the polarisability tensor α is of the same irreducible representation as the

product functions (x2, xy, . . . ) for the symmetry, if any, of the defect considered.

Whether any energy can be transfered depends on the magnitude of µ, i.e.,

|µ| = |E|
〈
χi|α|χf

〉
. (4.2)

The information from Raman and infrared absorption spectroscopy is often com-

plimentary, since due to the different selection rules one technique can often observe

modes that the other cannot, for example in the case of CAsH complexes in GaAs,

the bend-related mode at 739 cm−1 which should be observable by infrared spec-

troscopy has so far only been seen by Raman spectroscopy [64], presumably in part

through a small effective charge for the mode.

4.2 Photoluminescence spectroscopy

There are a variety of luminescence techniques, the name of the method usually

giving the source of the energy which excites the emitted light, such as electro-

luminescence or triboluminescence. In the case of photoluminescence, the light is

produced by the relaxation of the system after it is pumped by previous illumi-

nation. Above band-gap (hν > Eg) illumination creates electron-hole pairs which

then recombine, often mediated by trapping at a defect site (this is distinct from

below band-gap illumination, where internal states of a defect are excited directly).
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This recombination need not necessarily be radiative, but in the cases where at least

part of the process emits light this can give information about the trapping defect.

For example in the case of bound excitons, such as the B family, both the electron

and hole are trapped as a pair, with one of the components of the exciton localised

on the defect, binding the other via a Coulombic interaction. The recombination

then gives a measure of the binding energy to the defects, since this decreases the

energy of the free exciton recombination at 1.1551 eV by this binding (note that

this free exciton recombination is 14.3±0.5 eV lower than the band-gap of silicon

due to the binding between the electron and hole [65]).

The recombination probability of an electron-hole pair, as with the vibrational

techniques discussed so far, is controlled by an overlap integral of the form 〈ψiχi|µ|ψfχf〉,

which again gives rise to a symmetry condition of Γψiχi
⊗ Γµ ⊗ Γψfχi

⊃ Γ1, where

µ is the dipole. Unlike the purely vibrational transitions in the previous technique,

the initial and final states are labeled by both their electronic and vibrational states.

This leads to the possibility of measuring information on both the electronic and

vibrational states of the defect simultaneously. It is worth noting at this point that

since electron and hole spin are important in these transitions, the symmetry labels

for states should come from the full double group for the centre, and not merely

the spatial symmetry [66].

The electron-phonon coupling between the electronic and vibrational states of

the defect appears in the intensity of the transitions, which can be expressed as

Ie,v = 〈ψi(r)|r|ψf(r)〉〈χi(q)|q|χf(q)〉 , (4.3)

for the transition from the initial (i) to the final (f) states, with ψ and χ are the

electronic and vibrational parts of the wavefunction, dependent on the electronic

(r) and normal-mode (q) coordinates. This allows the, usually unknown, electronic

states and, often harmonic, vibrational states to be analysed separately. As with

Raman spectroscopy, this leads to a series of Stokes and anti-Stokes lines flanking a

central zero-phonon line (ZPL), but unlike Raman spectroscopy the ZPL is specific

to the defect and depends on the electronic properties of the state as well as its

vibrational ground state.

This dependence on vibrational state also means that the mass of the isotopes
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in the defect affect the spectra, as with the hydrogenated and deuterated B lines

(chapter 6). This is most clearly seen in the sharp zero-phonon band, which shifts

with isotope due to the difference between the zero point energy of the electronic

ground and excited states, which is in turn due to the difference in their vibrational

anharmonicity. Care must be exerted in analysing such spectra, since if the ground

and excited states do not involve appreciable amplitude on one of the defect atoms,

no isotope shift from that atom will be observed. This means that PL can sometimes

be used to obtain the lower bound on the number of atoms of a particular chemical

type in the defect, but more may be present. For example, it was initially suggested

that one of the B centres contained three hydrogen atoms, but this has been revised

to at least four [67].

Application of an electrical field to the sample during photoluminescence gives

a method to determine whether the defect possesses inversional symmetry, since

an alternating field will cause centro-asymmetric defects to display a line shape of

derivative form [68, 69], due to a first order Stark effect. The use of a magnetic field

also adds further information through the Zeeman effect, on any unpaired spin in

the defect, since the field will split the degeneracy between formerly equivalent m

states, leading to a spin Hamiltonian with components from the spin-orbit coupling

of both the hole and the electron, and their mutual interaction. For the case of

bound excitons, the response of the hole and electron components will be different,

due to the local screening effects of the defect, and hence this gives a technique to

discriminate the properties due to the hole and electron within the exciton. This

discrimination can also be achieved through studying the temperature dependence

of the luminescence, since the hole and the electron will be unequally bound to

the centre, and hence ionise at different rates with temperature, which allows the

intensity to be fitted to a simple equation [70] of the form

I(T ) =
I0

(1 + f)(1 + p)
, (4.4)

with f and p describing the shallow and deeply trapped parts of the centre. f and

p are Boltzmann like distributions of the form

f =
a

1 + bT 3/2 exp(−Es/kT )

p = gT 3/2 exp(−Ed/kT ) .
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Es and Ed are then the ionisation energies for the shallow and deeply trapped parts

of the exciton, which are fitted using the variables a, b and g.

One of the most prominent photoluminescence systems in silicon is the I1 or W

line luminescence at 1018.2 meV which is produced in silicon by irradiation or ion

implantation [71, 72]. There is a well resolved local vibrational mode at 70.0 meV

observed as a phonon replica of the main line, which is considered to be due to a

strong Si–Si bond. Uniaxial stress studies of this centre have been used to assign a

trigonal symmetry, but the actual structure of the defect remains contentious [73,

74], since models based on both vacancy and self-interstitial related centres have

been put forward to explain the observed spectra. The most recent observations

which combine luminescence with techniques such as stress [75] or correlation with

growth of other, interstitial related, defects [76] suggest that the centre is due to an

interstitial aggregate, with the most recent theoretical model [73] proposing that it

consists of a ring of three interstitials lying in a (111) plane around the centre of a

Td site.

4.3 Capacitance spectroscopy

The usual definition of the depths of electronic levels within the band gap are with

respect to the valence and conduction band edges. If the energy of the system when

a carrier is trapped at the defect is compared against that of an un-trapped carrier

in a band-state, then the position of the state with respect to the conduction band

for emission of an electron can be defined as

E|ed, 0c〉 −E|0d, ec〉 ,

and similarly for hole emission to the valence band as

E|0d, hv〉 −E|hd, 0v〉 ,

with the electron or hole occupancies given for the defect and the appropriate band

edge.

For shallow states this gives an easy classification into donor and acceptor states.

If the energy of the state is deeper, then the level can instead be better thought of
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as an electron or hole trap, depending of which process is the faster to change the

charge state. For example given a defect with a single state deep in the gap that

when filled gives as neutral centre, and when empty a positive defect6, this will be

a hole trap if the (+n) → (+n−1) process is more rapid, or an electron trap if the

reverse process were faster. The capture rate of a centre is given by [77, 78]

Cc = σc[c]

√
3kT

m∗
c
, (4.5)

with [c] being the concentration of the carrier of interest, which possesses an effective

mass of m∗, and would be captured by the centre with an effective cross-section of

σc. Similarly the thermal emission rate from a centre is given by a Boltzmann like

relation

ec = σe exp(−∆E/kT ) . (4.6)

Whether a state is filled for a given Fermi-level and temperature then depends

on the relative rates of capture and emission for electrons and holes. Using the

principle of detailed balance [79] leads to the occupancy of an electron trap being

Occ. =
σ〈ν〉gc
g

exp

(
−∆E

kT

)
, (4.7)

with gc and g being the degeneracy of the conduction band and the defect, ∆E the

trapping energy, and

〈ν〉 =

√
3kT

m∗
c
,

with a similar relation holding for hole traps. This can then be used to measure

the position of many-body electronic transitions in the band gap by producing a

Arrhenius plot of the log of emission rate over the temperature squared, ln(ecT
−2),

against 1/T , but the “energy” obtained is the change in the total enthalpy, since

∆E is a change in the Gibbs free energy.

The measurement of the transition position is usually performed by deep level

transient capacitance spectroscopy (DLTS) [80]. This method makes use of a Schot-

tky barrier or p-n junction diode, within which the space-charge formed by the junc-

tion can be probed. The innate electrical field within the diode acts to sweep free
6i.e., a 0/+ many-body state, where the standard notation of i/j is used for a state which is

of charge i when it is filled and j when empty.
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carriers out of the space-charge region, leaving an insulator-like region, the width

of which can be varied by applied voltage. In the case of a p-n junction the width

of this depletion region is then given by

W =

√
2ε(Vint. + Vappl.)

q [I]
,

where ε is the dielectric constant of the junction, Vint. and Vappl. are the internal

and applied voltages across the junction, q the charge on the defect, and [I] is the

concentration of the defects. This leads to the junction possessing a capacitance of

εA/W , where A is the area of the junction. This then gives a technique to measure

the position of the levels by applying a transient voltage pulse to the diode, and

then watching the exponential decay in the capacitance change this induces7.

The capacitance change from the pulse arises since as the width of the depletion

zone is changed by the applied pulse, defect centres which were at equilibrium inside

the edge of the depletion layer are now outside the depletion zone during the pulse.

In this position, the centres rapidly reach equilibrium by capture of the abundant

carriers present outside of the depletion zone, at a rate given by [81]

[d] − [dc(t)] = ([d] − [dc(0)]) exp(−Cct) , (4.8)

where the concentration of the defect [d] after it has captured a carrier [dc] changes

in proportion to the capture rate of that process, Cc. If the pulse lasts sufficiently

long enough, all of the defects will then reach equilibrium in the region outside the

depletion zone, at which point if the pulse ends, they are returned to the depletion

region and again find themselves in a non-equilibrium charge state. This additional

space charge within the depletion region then manifests in the capacitance of the

junction as a decaying transient as the defects relax back into equilibrium at a rate

of

[dc(t)] = [d] exp(−Ect) (4.9)

7The nature of the thermal decay of the capacitance is more complicated for situations such as

very high defect concentrations, traps that change their behaviour strongly with strength of the

applied field (such as the Poole-Frenkel effect), and multiple centres with similar electronic levels,

but other than to note that these effects exist, they will not be discussed further here.
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by emission of trapped carriers. This relaxation can be followed by capacitance

measurement, typically at frequencies of > 1 MHz, i.e., too rapidly for the traps to

respond to any changes in the width of the depletion region.

In DLTS, the filling pulse is repeated at a constant frequency while the tempera-

ture of the sample is slowly varied. The original method of analysing the capacitance

transient introduced by Lang [80], was to make use of box-car integration between

times t1 and t2 after the filling pulse at t0, with the capacitance change then defined

as

∆C = C(t1) − C(t2) , (4.10)

which then gives the pulse rate at which the maximum capacitance change would

occur as

ec =
1

t1 − t2
ln(t1/t2) , (4.11)

with ec being the carrier emission rate for the appropriate process (hole or electron

emission).

The interval t1−t2 is known as the “rate window” of the system. The capacitance-

change signal is then maximised when the rate of thermal emission by the defects

matches the rate window of integrator. The resulting signal for a fixed rate window

as a function of temperature is shown pictorially in figure 4.1 If the rate window

is then changed this signal maximum shifts to a new temperature, and hence the

change in emission rate can be found as a function of temperature, which from

an Arrhenius plot of equation 4.7 gives the thermal emission energy, and also the

capture cross-section, σ∞, at 1/T = 0.

The most recent method developed to analyse the capacitance transients is

“Laplacian” DLTS [82], where the recorded transient at a particular temperature

is processed to give a spectral-density function by an finding the inverse Laplace

transform for the transient, with the activation energy and cross-section then ob-

tained by repeating the experiment at several temperatures as with conventional

DLTS.

There are several variants of the basic DLTS technique, such as double-DLTS

where two filling pulses at different voltages are used to map the depth distribution
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Temperature
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Figure 4.1: Schematic of a deep level transient spectra for a fixed rate window, i.e,

the change in capacitance, ∆C, over the time period between t1 and t2 after the

filling pulse at t0.

of defects, since each pulse fills a different region of the space-charge layer. In

addition other methods of inducing a capacitance transient such as optical excitation

(ODLTS) can be applied [83]. Minority carrier (MCTS) traps can be examined in

addition to the majority carriers [84], since flood-lighting the sample fills minority

traps and hence causes a capacitance change.

4.4 Electron paramagnetic resonance

For defects with unpaired electronic spin, the technique of EPR can be applied to

study the structure and localisation of the spins in the system and also the nu-

clear spins of surrounding atoms. When the defect centres are at a sufficiently low

concentration that there is no appreciable interaction between the spins of differ-

ent centres, then absorption of radiation can be described in terms of transitions

between the Zeeman split spin states of the electronic spin. In practice, the transi-

tion energies of the states of a defect are studied as a function of applied magnetic

field within a resonant cavity operating at a specific frequency. The most common

method of detecting the position of a resonance peak is to apply a modulation to
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the applied magnetic field. Typically the field is varied at a frequency of around

100 KHz by an amount which is small in comparison to the line width. The com-

ponent of the EPR absorption signal at 100 KHz is then amplified via a lock-in

system, leading to a derivative signal which clearly shows the peak position. More

advanced methods using field modulations at more than one frequency have also

been developed [85].

The magnetic dipole of a paramagnetic centre is given by

µ = −gJµB , (4.12)

in terms of the Bohr magneton, µB = eh/2mc. The total angular momentum of the

spin consists of the orbital and electron spin momenta, J = L+S. In the case of light

elements possessing only s and p valence orbitals, as with the defects considered in

this thesis, the orbital angular momentum is strongly quenched, leading to J = S.

This then allows the g factor for the system, due to the anisotropic environment of

a crystal, to be written as two components

g = g1 + ga (4.13)

where the isotropic g term is the Landé g-factor (=2.0023), and the anisotropic

tensor is due to the local environment. This anisotropic term can be considered as

due to a small perturbation from spin-orbit coupling of the form [86]

gaij = −2λ
∑
n>0

〈Ψ0|Li|Ψn〉〈Ψn|Lj |Ψ0〉
En − E0

, (4.14)

where the interaction of states Ψn, of energies En, with the ground state are gov-

erned by the their orbital momentum and the spin-orbit coupling strength of λ.

In an applied magnetic field, B, this then leads to a spin Hamiltonian of the

form

HZ = µBSgB0 . (4.15)

The (2S+1) eigenstates of such a Hamiltonian can then be labeled by the azimuthal

quantum number mz , where the energy of the mz state is then µBgB0mz , with g

having an angular dependence on the applied magnetic field of the form

g2 =
∑
i

g2
ii cos2 θi , (4.16)
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where the angles θi are between the applied magnetic field and the principle axes of

the diagonal form of g. This then allows the principle values of g to be obtained for

tetrahedral semiconductors by rotating B0 within a (110) plane, giving the change

in the resonant magnetic field between the major cubic symmetry axes 〈110〉, 〈100〉

and 〈111〉. This then allows the symmetry of the centre to be deduced.

Additionally for paramagnetic centres, there are further hyperfine splittings of

the Zeeman levels due to interactions with the spins of nearby nuclei. The additional

term this introduces into the Hamiltonian is then of the form

HHyp.F. = SAI , (4.17)

with the interaction, A, between the electronic spin, S, and the nuclear spins I

taking the general form [87]

HHyp.F. = −8π

3
gµBgnµN |ψs(0)|2I · S− gµBgnµN

(
I · S
r3

− 3[I · r][S · r]
r5

)
,

with gn being the nuclear g value and µn the nuclear magneton. The wavefunction

of the unpaired spin, ψs, is considered at the nuclear core with which the hyperfine-

splitting arises. The first term in this correction is the isotropic Fermi-contact

term (correcting for the point-dipole approximation at the nuclei), and the second

anisotropic term is due to the types of nuclear spin present near the electron, and

also the character of the electronic spin, i.e., s, p, d, etc. The additional energy

splitting arising from these terms then takes the form

∆E = Amsmi , (4.18)

with

A2 =
∑
i

A2
ii cos2 θi (4.19)

as with the g factors of the normal Zeeman splitting. The (2I + 1) levels are then

superimposed over the Zeeman split electron resonance.

The double-resonance condition of both the electronic and nuclear Zeeman split-

tings can be then probed via the ENDOR method. The typical continuous-wave

form of the technique uses a microwave source to saturate the electronic Zeeman
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transition at the resonant energy. The nuclear transition is then selectively ex-

cited at radio frequency, leading to a measurable change in the electronic resonance

condition. There are also alternative techniques based on pulsed excitation of the

nuclear transitions [88, 89].

4.5 Uniaxial stress

The preceding techniques can all be coupled with uniaxial stress to determine the

symmetry and reorientation barriers of defects. If stress is applied along a crystal-

lographic direction of a particular class such as [100], [110] or [111], this will have

the effect of lowering the symmetry of defects in the material.

This lowering of symmetry is particularly noticeable in the case of orientational

degeneracies of non-cubic defects, leading to distinct populations of defects oriented

amongst what become separable crystallographic directions. Kaplyanskii [90] tabu-

lated the stress induced shifts between non-degenerate vibrational levels of defects

of the seven crystalographically allowed types of symmetry for cubic crystals. The

non-degenerate modes shift according to the applied stress σij , giving a second-rank

piezospectroscopic tensor, A, such that

∆ν =
∑
ij

Aijσij . (4.20)

The symmetry of the defect under stress can reduce the number of independent

components of the tensor. For the case of degenerate modes, the stress induced

splittings also can contain contributions from the breaking of the mode degeneracies.

The splittings of such modes have been tabulated by Hughes and Runciman [91].

Similarly the perturbation of the 3942 cm−1 silicon zero-phonon photolumines-

cence line has been tabulated by Davies et al. [92] for small stresses on defects of

various symmetries, where the resulting spectral splitting are obtained by consid-

ering the transitions between all of the allowed combinations of split ground and

excited states.

In addition to revealing symmetry, photoluminescence measurements which are

made while under [110] stress using plane-polarised light can show whether a tran-

sition is due to an electrical or magnetic dipole. This occurs since spectra taken
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along [110] and [001] are identical for [110] plane-polarised light if the transition

occurs through an electric dipole transition. Alternatively, if the signal is the same

for the two orientations for light polarised perpendicular to [110], the transition

must be magnetic-dipole allowed [90, 93]. This occurs since the [110] stress cre-

ates compressive and sheer stresses that couple distinctly to magnetic and electrical

dipoles.

Stress also gives a method of determining reorientation barriers and rates. Since

applied stress splits the degeneracy of sites for a defect, given the opportunity these

centres will reorient into the alignment that is the lowest energy. The population

of the higher energy forms of the defect will then follow a Boltzmann distribution

if given sufficient time to relax, hence if the defects are cooled down under stress

(or indeed formed whilst under stress as with the vacancy defects in chapter 6)

then there will be a large population in the preferred alignment as compared to the

others. If the fraction of the defects in this alignment is then monitored by a method

sensitive to dichroism, such as optical spectroscopy with polarised light, then if the

sample is re-heated without applied stress the dichroism will decay by the defects

thermally reorienting. Alternatively, if the relaxed system is stressed, the growth in

the population along the low energy orientation also gives the reorientation rate, and

hence the activation energy when this is considered as a function of temperature.
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Chapter 5

Calculations on H2 i in crystalline silicon

The existence of interstitial molecular hydrogen in silicon was first proposed by

theory in 1983 [94, 95]. Since then a large number of calculations on this system

have been published employing a diverse selection of methods, initially just on the

structure and energetics of the molecule, and its relative energy with respect to other

hydrogen species in silicon. Later calculations, in addition to these properties, also

obtained the bond–stretching frequency for the interstitial molecule.

The general consensus of the various authors is that the equilibrium position of

the single molecule within the lattice is at the tetrahedral site. As to the alignment

of the molecule at that site, the majority view (particularly in the later papers) is

that the molecule lies with its H–H bond aligned along a [100] direction, but some

authors state that a [111] alignment is preferred. Where calculated, the barrier to

rotation of the molecule is always found to be less than 0.1 eV in later calculations

this is typically > 0.01 eV.

The calculated vibrational modes for the molecule range from 3396 to 4849 cm−1

between authors. Observation of two distinct molecular forms of hydrogen in silicon

(see section 5.1.2), with frequencies differing by 500 cm−1 led to two different views

amongst theoreticians, who favoured one type or the other of the experimental data

as being due to interstitial molecules, but this has now been largely resolved.

Unfortunately a further problem subsequently arose, in that while all of the

calculations find that the molecule should be free to rotate within the crystal, much

like in the case if H2 in GaAs, the experimental evidence is that the molecular

motion is strongly restricted. This discrepancy has not been resolved, and remains

an area of active study in several groups.

71



5. Calculations on H2 i in crystalline silicon

5.1 Previous work

5.1.1 Theoretical calculations

Mainwood and Stoneham [94, 96] used CNDO in a cluster based set of calculations,

with a static lattice. They found the molecule to be most stable at the Td i site

aligned along [100] (they also considered [110] and [111] alignments), with a barrier

of 0.093 eV to rotation about the [110] axis. The barrier to molecular diffusion, via

Td i → Hexi → Td i, was calculated to be 0.95 eV, and the relative stability of the

molecule with respect to 2×H0 atoms in the lattice was found to be ∼ 2 eV/atom.

Corbett et al. [95] performed MNDO based calculations using a Si14H20 cluster.

The molecule was found to be most stable at the Td i site, and relative stability of

H2 with respect to two H0 atoms at M sites in the lattice was found to be 1.6 eV,

with a barrier to diffusion through the lattice of 2.7 eV. The molecule was thought

to be [111] aligned.

Deák et al. [97, 98] using MINDO/3 cyclic cluster calculations on Si32 predicted

that both H∗
2 (see chapter 7) and also isolated H0 were more stable than H2 by 0.49

and 0.24 eV respectively. The molecule was found to be nearly degenerate in both

the [100] and [111] alignments, with a 0.56 eV barrier to diffusion.

Chang et al. [99, 100] using a LDA-DFT Si8 supercell, preferred the [111] align-

ment of the molecule at Td i, and found the barrier to rotation to be negligible.

In both p− and n−type silicon, the molecule was found to be 2.7 eV more stable

than isolated H0
BC and 0.4 eV more stable than H∗

2. The molecular bond length was

calculated to be 0.88 Å in the earlier paper and 0.85 Å in the later.

Briddon et al. [101] and Jones [102] using an LDA-DFT approach (aimpro), in

Si51H52 clusters, found the molecule possesses a bond length of 0.85 Å when at the

Td i site. The vibrational frequency of the molecule at this site was calculated to

be 3561 cm−1. The most stable alignment of the molecule was found to be along

[100] with a diffusion barrier of greater than 1 eV. The molecule was calculated to

be 3.3 eV more stable than separate H0
BC atoms.

Maric et al. [103] and Estreicher et al. [104] using both PRDDO in 14 and 44

atom clusters, and also Hartree–Fock calculations in 14 atom clusters, found the
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molecule at the tetrahedral site to have a bond length of 0.70 Å and a barrier

to rotation of less than 0.1 eV. The preferred alignment was along [111], and the

barrier to diffusion was calculated to be less than 2 eV. The molecule was found to

be higher in energy than H∗
2 in both calculations, by 0.82 eV for the PRDDO and

0.34 eV for the HF.

Van de Walle et al. [105–110] using a 32 atom supercell LDA-DFT method,

found the molecule at the Td i site to favour [100] over [111] by 0.01 eV, with a

0.86 Å bond length, which gave rise to a molecular frequency of 3396 cm−1, based

on a polynomial fit of the molecular bond-length vs. energy [111]. Based on an

examination of trends in the molecular bond length in other semiconductors [109],

a correlation between the interstitial charge density and the downward shift of the

molecular frequency from that observed in free H2 molecules was suggested (similar

to the downward shift in molecular stretch frequency noted by Nørskov for H2 in

jellium [112]). The barrier to migration of the molecule was found to be 1.1 eV and

the binding energy of the molecule was calculated to be 2 ± 0.5 eV (i.e., 0.54 and

1.74 eV lower in energy than H∗
2 and H0

BC ).

Kim et al. [113], using empirical tight-binding calculations in 54 atom supercells

found the H–H distance to be 0.74 Å with a molecular stretching frequency of

4396 cm−1 at Td i.

Nakamura et al. [114–118] using a combination of HF, MP2–HF and DFT with

both GGA and LDA in Si10H16 cluster calculations found the molecule to pref-

erential align along [100], with a rotational barrier of the order ∼ 30 meV. The

frequencies of the molecule obtained using different calculational schemes are sum-

marised in table 5.1. The earlier work [115–118] attempted to correct the harmonic

frequencies by scaling by 0.89 to obtain an estimate of the anharmonic frequency.

The frequencies obtained agree approximately with those of Murakami et al., but

contrast with those of Pritchard et al. and Leitch et al. (see section 5.1.2).

Okamoto et al. [119] using GGA and LDA-DFT supercell calculations with Si32

and Si64 found a preferred molecular alignment along [100], with a barrier to rotation

of 0.003 (0.002) eV for LDA (GGA) calculations. The barrier for diffusion of the

molecule was calculated to be 0.91 (0.89) eV for LDA (GGA), with a frequency

of the molecule in the [100] and [111] alignments of 3020 (3310) cm−1 and 3078
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Method Basis H–H (Å) ω0 cm−1

Restricted-HF 3-21G 0.708 4849

6-31G* 0.709 4969

MP2–HF 3-21G 0.727 4649

LDA-VWN 6-31G* 0.789 3773

GGA-BPW91 6-31G* 0.764 4020

GGA-BLYP 6-31G* 0.747 4380

GGA-B3LYP 6-31G* 0.739 4468

6-31+G* 0.740 4470

HF [116] 3-21G 0.702 4470

HF [118] 3-21G 0.709 4423

Table 5.1: Calculated frequencies for a H2 molecule in Si10H16 clusters after Naka-

mura et al. [114] (note: The work in earlier papers [116, 118] presents a frequency

scaled by 0.89 in an attempt to allow for anharmonicity.)

(3363) cm−1 for LDA (GGA).

Further calculations by Okamoto et al. [120] using Hartree–Fock, HF with MP2

corrections, DFT, and hybrid DFT, with a variety of basis sets and cluster sizes in

the gaussian 94 code, showed that pure HF calculations on the hydrogen molecule

at the tetrahedral site overestimate the molecular stretch frequency, typically by

several hundred cm−1. This error in frequency was ascribed to a combination of the

lack of electron correlation in HF, and the small clusters used by Nakamura et al.

In addition, they found that including Si 3d orbital functions in the basis caused a

large downward shift in the molecular stretch frequency, showing the importance of

a sufficiently large basis set. Frequencies were calculated for H2i using a polynomial

fit to the energy as a function of bond length [111], which included a correction for

anharmonicity. Unfortunately, due to computing constraints, the largest relaxed

cluster that was used in this work (Si60H56) was not sufficient to ensure that the

molecular vibrational frequency was converged with respect to cluster size, but

they estimated the frequency, with a correction for anharmonicity, of the molecule

to be of the order of 275 cm−1 lower than of free hydrogen, when the molecule is
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encapsulated in the silicon lattice (see table 5.2 for a summary of their calculations).

Cluster Method Basis ωanharmonic cm−1

Si10H16 B3LYP 6-31G 4162

6-31G(d) 4002

6-31G(2d) 4001

6-311G(d) 3999

6-311G(2d) 4025

6-311G(2d, p) 4011

HF 6-31G(2d) 4568

LDA(SVWN) 3436

GGA(BLYP) 3859

B3LYP 4001

MP2-HF 3992

Si60H56 relaxed B3LYP 6-31G(d on central Si26) 3893

Si10H16 fixed 6-31G(d) 3945

Si60H56 fixed 6-31G(d on central Si26) 3770

Si84H64 fixed 6-31G(d on central Si26) 3693

Table 5.2: Calculated frequencies for a H2 molecule in silicon clusters after Okamoto

et al. [120]. Clusters labeled fixed did not did not have the atoms surrounding the

hydrogen molecule relaxed.

LDA and GGA supercell calculations by Kim et al. [121, 122] found broad agree-

ment with the work of Okamoto, and also suggested the presence of an additional

localised mode at around 650–700 cm−1.

5.1.2 Experimental work

Markevich et al. [123–125] after heating n-type float-zone (fz) and Czochralski (Cz)

silicon to 1200 ◦C in hydrogen or deuterium atmospheres of 1.5 atm, and then an-

nealing at a temperature between 40 and 80 ◦C, produced an infrared active defect

with a line at 1075.1 cm−1 in H2 treated samples (consisting of two closely spaced

peaks), which shifted upwards to 1076.3 cm−1 in deuterated samples. The defect
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was initially thought to be a OBCHi pair similar to those observed by Bech Nielsen

et al. [126], but in the light of the later work by Pritchard et al. [127], was in-

stead re-identified as an interstitial H2 molecule sited near a bond-centred oxygen

atom. Using the absorption due to the nearby 18OBC peak (which accounts for

0.2% of natural oxygen), and assuming that the oscillator strength of the two com-

plexes were similar, the concentration of the OH2 complex was estimated to be

7 × 1014 cm−3, i.e., about 10% of the solubility limit of atomic H at 1200 ◦C [128].

The presence of the defect was found to introduce no new DLTS levels in the sam-

ple [124]. The annealing properties of the defect [125] were found to be unusual,

since the defect dissociated on annealing above 80 ◦C, but reformed upon annealing

at lower temperatures (typically around 40 ◦C), whilst heating above 100 ◦C irre-

versibly destroyed the complex. The binding energy of the complex was measured

to be 0.28± 0.02 eV and the barrier to diffusion of the dissociated components was

found to be 0.78 ± 0.05 eV [125].

Murakami et al. [129–132, 116, 133–135] after treating n−type fz-Si with a re-

mote hydrogen (deuterium) plasma observed a Raman line at 4158 ± 3 (2990 ±

2) cm−1, with a line–width at half maximum intensity, ∆ω, of 34 (20) cm−1. An

additional mode at 590 cm−1 in the H treated samples was also observed. These

lines were interpreted to be due to the high frequency stretch mode of interstitial H2

(which was not resolved into the expected ortho- and para-lines) and an associated

rotational line of ortho–H2 (see section 5.4 for a discussion of the ortho/para forms

of hydrogen). The width of the H2 related stretch mode decreased with increasing

substrate temperature during hydrogenation.

The intensities of the observed lines reached a maximum for hydrogenation of

the Si-substrate at a temperature of 400 ◦C. Due to the lack of a change in the

Raman Si longitudinal-optical phonon mode at 521cm−1 on hydrogenation, and the

narrowing of an EPR H-related line for hydrogenation above 300 ◦C, Murakami et al.

suggested that the hydrogen was in the form of molecules sited in the undamaged

lattice, and not trapped inside extended defects.

Modes characteristic of platelets were observed at 2100 cm−1 with an addi-

tional mode at around 2140 cm−1 in the hydrogen treated samples. Murakami

et al. claimed that these features were due to a distinct, damaged, surface layer
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based on SIMS profiling and Raman spectroscopy of samples with varying thick-

nesses of surface material etched away [116, 134]. These measurements showed a

peak in hydrogen concentration corresponding to the defects responsible for the

∼ 2100 cm−1 platelet-like modes at ∼ 250 Å, and a slightly deeper peak for the

H2 concentration at ∼ 750 Å (with measurable penetration of H2 to between 1000

and 3000 Å). In addition the peak concentrations for the two species occurred at

different temperatures (500 K for the SiH modes, and 650 K for the H2 modes).

Isothermal annealing [132] gave an activation energy for the dissociation the H2

species as 1.6±0.4 eV, with the H2 related line annealing out at about 500 ◦C [132].

The SiH related modes annealed out over the range 250–500 ◦C, with a small peak

at 2120 cm−1 remaining at 450 ◦C [132], this peak has been implicated as being

important precursor in exfoliation of silicon [136].

Studies using crystalline, micro-crystalline (with ∼ 7 nm grain size) and amor-

phous silicon [116, 134], gave a ratio for the intensity of the H2 related modes of

1 : 1
5

: 0 for the three materials treated with a 1 × 1016 cm−2 area doses of hydro-

gen [129].

Treatment with deuterium plasma followed by hydrogen plasma gave rise to no

mixed HD stretch mode [131], suggesting that desorption of hydrogen from platelet

structures did not form part of the mechanism for the formation of H2.

Leitch et al. [137–139] also produced the H2 and D2 related complex in n− and

p−type fz silicon, with an additional HD form with a Raman active stretch mode

at 3629± 2 cm−1. ∆ω for the lines was somewhat smaller than those of Murakami

et al. at ∼ 25 cm−1. This contrasts with the much sharper and lower frequency

H2 line previously observed in GaAs by Vetterhöffer et al. [140] (see table 5.3), in

which the ortho and para forms of H2i were resolved, which coupled with uniaxial

stress measurements [141] demonstrates that the molecule freely rotates in GaAs.

The mode at 590 cm−1 attributed to a rotation of o-H2 by Murakami et al. was not

observed.

As with Murakami et al. the line width of the H2 related mode decreased as

the substrate temperature used during hydrogenation was increased. SiH related

modes were always seen with the H2 related modes, and the SiH related mode was

always intense if the H2 mode was also intense. Based on attenuation of the laser
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intensity within the sample, the peak H2 depth was estimated as ∼ 250 nm, and the

SiH complex depth as 100 – 200 nm. Etching away 25 nm of the surface reduced

the intensity of both the H2 and SiH peaks to 85%. Annealing of the samples gave

a dissociation energy of for the H2 complex as 2.3 eV (the defect disappeared at

about 400 ◦C), which was comparable to the 2.2 eV free energy of platelets [142].

The peak at 4157 cm−1 was observed to have a shoulder at 4129 cm−1 which

gained intensity from the main, higher frequency peak, to become the dominant line

after annealing at 475 ◦C. During annealing , the SiH related mode at 2132 cm−1

dropped in both intensity and frequency, falling to 2112 cm−1.

H2 HD D2

ω (cm−1) 3925.9 (J=1) 3446.5 2842.6

3934.1 (J=0)

∆ω (cm−1) 3 8 7

Table 5.3: Experimental frequencies of H2 molecules in crystaline GaAs after Vet-

terhöffer et al. [140]

The intensity of the SiH and H2 related peaks as a function of sample tempera-

ture show two overlapping profiles [139] (see figure 5.1 for the profiles measured by

Leitch et al.), and based on this, Leitch et al. suggest a two stage process leading to

the formation of the H2–related complex. First, formation of platelets occur in the

silicon at around 150 ◦C, then these defects behave as trapping sites for any further

hydrogen introduced into the material. This leads to a build-up of H2 within the

open space inside the platelets, and hence a gas–like environment. This is unlike

the situation in GaAs, where platelets are not formed, and so true interstitial, H2

is produced directly. Based on this model, Leitch et al. attempted hydrogenation

of silicon at below 150 ◦C (and hence did not form the platelets necessary for de-

fects of the type observed by Murakami et al.) and produced defects that at room

temperature possessed Raman lines at 3601 and 2622 cm−1 for H and D plasma.

On cooling these samples to 10 K, these lines shifted upwards to the frequencies

observed by Pritchard et al. for isolated H2i [143], with line widths of ∼ 6 cm−1.

Like Pritchard et al., no o-/p- splitting was observed in these lines.
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Figure 5.1: Overlapping Raman profiles for intensities of the Si − H and H2 related

modes in silicon as a function of sample temperature during plasma hydrogenation

of the material, after Leitch et al. [139].

Pritchard et al. [144, 143], performed hydrogenation of fz and also Cz silicon

similar to that of Markevitch et al. in H2, D2 and mixed H2 + D2 atmospheres, for

n− and p−type Cz and fz silicon, at between 1000 and 1300 ◦C. Infrared spectra

were then taken at 10 K. The line observed by Markevitch et al. was resolved into

two components, a line at 1075.1 cm−1 with a shoulder at 1075.8 cm−1. As with

the previous samples, these lines shifted up to 1076.6 and ∼ 1076 cm−1 in the

deuterated material. Satellite lines were detected around the modes, in a pattern

consistent with the line being due to a defect containing bond-centred oxygen, and

so having neighbouring silicon atoms of several isotopic combinations as found in

the sample, i.e., 28Si, 29Si, 30Si (this type of satellite lines were also observed for

the nearby 18OBC absorption line). Based on the intensity of the 18OBC line, it was

estimated that 1
2

of the hydrogen present at the solubility limit [128] was involved

in complexes of this type (assuming a single H atom was present in each complex).

The oxygen related line around 1075 cm−1 was decomposed into two Voight–

type profiles with widths of ∼ 0.9 cm−1 and a separation of 1.1 cm−1 in the case

of the H2 treated material, and widths of ∼ 0.6 cm−1 and separation of 0.5 cm−1

in the D2 treated material. The relative intensities of the two profiles were 3 : 1
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for the 1075.1 cm−1 and 1075.8 cm−1 H–related lines and 2 : 1 for the 1076.6 and

1076 cm−1 D–related lines. In the case of mixed H2 + D2 treated material, the

oxygen–related line fell at 1076.3 cm−1 with a width of 0.7 cm−1.

In addition a new set of higher frequency lines, which were very sharp (∆ω =

0.1 – 0.2 cm−1) were also observed in thicker (> 5 mm) samples (see table 5.4 for

a full list of the observed lines). The intensities of ν1 and ν2 were found to be

correlated with that of the oxygen–related line, but ν3 was anti-correlated to it, ν3

was also found to be present in low oxygen fz material. Annealing the Cz samples

at between 70 – 110 ◦C, resulted in a transfer of intensity from ν1 and ν2 to ν3,

whilst from 110 – 320 ◦C the intensity of ν3 remained unchanged, but that of ν1 and

ν2 continued to decrease.

H2 HD D2

ν1 3788.9 3304.3 2775.4

ν2 3730.8 3285.3 2715,2716.0

ν3 3618.3 3264.8 2642.5

Main O line 1075.1 1076.3 1076.6

Table 5.4: Local vibrational modes, cm−1, of H related modes observed in silicon

by Pritchard et al. [144, 143] after in-diffusion of hydrogen into material containing

oxygen.

The possibility that the high frequency ν1 and ν2 lines were due to interstitial

water molecules was ruled out, since water would be expected to have an intense

molecular wag mode at ∼ 1595 cm−1. Also, mixed HDO would be expected to have

a high frequency mode at ∼ 3707 cm−1 little shifted from H2O and a low frequency

mode at ∼ 2727 cm−1 similar to that of D2O, unlike the observed lines mid way

between the H2 and D2 cases at 3304.3 and 3285.3 cm−1. Instead it was suggested

that the modes were due to a single hydrogen molecule trapped at one of two sites

near Oi in the lattice (the possibility of the two lines being due to ortho/para states

of the molecule was discounted, due to the large size of the splitting).

Based on the assumption that the effective charge of the oxygen related mode

in the complexes responsible for ν1 and ν2 was little changed from that of isolated
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OBC , i.e., 3.5 e [145] in the H2 treated material, this then gave the effective charges

for the ν1 and ν2 lines associated with the two different oxygen peaks as ην1 = 0.07 e

and ην2 = 0.14 e, assuming that the main O peak was associated with ν1 and the

shoulder with ν2. The alternative assignments gave ην1 = 0.12 e and ην2 = 0.08 e.

In the case of the D2 treated material, the first set of assignments gave ην1 = 0.06 e

and ην2 = 0.17 e, which was considered to be more consistent with the H2 samples

than the alternative alignment which gave ην1 = 0.09 e and ην2 = 0.12 e. Using this

preferred assignments, this gave ην3 to be ∼ 0.1 e.

The realisation that the O–related complex contained two H atoms, then chang-

ed the concentration of hydrogen in these defects to 1×1016 cm−3 for hydrogenation

at 1300 ◦C, and 4 × 1015 cm−3 for 1200 ◦C, which was considered to be in good

agreement with previous SIMS profiling of similar material [146].

In the earlier paper, the structure responsible for ν3 was not identified, but later,

more detailed annealing studies [143] using sequential annealing for 30 – 60 minutes

at temperatures of between 35 – 130 ◦C followed by an immediate cool-down to 10 K

for measurement, found 1.3 – 2.6 × 1023 cm−3 sites that the complex responsible

for ν3 could be present at, i.e., the concentration of Td i. The samples used were

17 mm thick Cz silicon crystals, in which no extra modes around 1800 – 2300 cm−1

(see chapter 8) had been observed after hydrogenation (i.e., little lattice damage).

Based upon a two centre statistical model for the process I(ν1+ν2) → Iν3 (if further

trapping sites were present, then they would have to possess similar properties to

those of ν3 for the reversible annealing behaviour to occur, but also be IR inactive)

and assuming the structural degeneracy of the two O–H2 complexes to be 6 (i.e.,

the number of equivalent Td i sites around OBC ), then fitting the annealing data to

[Oi–H2](T )

[ν3](T )

=

(
g1

g2

)
exp

∆E

kT
(5.1)

gave ∆E = 0.26 ± 0.02 eV, in good agreement with the binding energy found by

Markevitch et al. If the value of g1 is 6 × 2 (six cage sites for two complexes), then

g2 is 1.3 – 2.6 × 1023 cm−3, which is approximately equal to the number of sites

an isolated molecule could occupy times the number of orientations at an isolated

site, which would be 4 for [111], 6 for [110], or 3 for [100]. The gives the number

density of sites for the isolated molecule to be between 6× 1022 and 1× 1022 cm−3,
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i.e., comparable to the concentration of Td i.

Zhou and Stavola [147, 148] studied the stress response of the 3618.4 cm−1 line

assigned to the isolated H2 molecule. Using samples with [H2]∼ 5 × 1015 cm−3 they

obtained a nearly diagonal piezospectroscopic tensor A, in terms of the positive

compressive stress and the resulting stress-split shifts of the component of the line

in cm−1/GPa, of the form 


9.6

−1.8 −15.6

1.4 −2.8 1.1


 . (5.2)

The shifts obtained were characteristic of a triclinic centre, which was taken to

probably be of C1 symmetry, which is in strong contradiction with the theoretical

predictions of D2d or C3v symmetry. The tensor is rotated less than 14 ◦ from the

〈100〉 cube axes, and the large effect caused by 〈100〉 stresses suggest the molecule

is aligned approximately along a 〈100〉 direction, but the exact orientation and

placement of the molecule could not be determined in this study.

The molecule was found not to reorient under stress at 4.2 K. Furthermore based

on the effect of cooling down the sample from room temperature under stress, Zhou

and Stavola concluded that there must be a barrier of at least 60 K to molecular

rotation.

Despite the low symmetry of the centre, as with previous studies, no splitting

in the molecular stretch mode for HD molecules was observed. The suggestion was

made that only one of two possible forms of the molecule is observed, since if there

is sufficient difference in energy between the two forms then the higher energy form

will reorient. The anomalous frequency of the HD line when compared with H2 and

D2 in silicon and GaAs was taken to support this model.

5.2 Calculations on the Oi–H2i complex

5.2.1 Interstitial water in silicon

To investigate the structure and vibrational properties of the water molecule in

silicon both as an isolated molecule and bound to Oi , calculations using a 148 atom
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H-terminated cluster centred on the tetrahedral interstitial site were performed.

The basis consisted of independent s and p Gaussian orbitals, with 5 (4) different

charge (wavefunction) Gaussians with differing exponents sited at each Si atom, and

three at each H atom of the molecule. An additional 6 charge and wavefunction

Gaussians were also placed on the oxygen atom(s). A fixed linear combination of

two Gaussian orbitals was sited on the terminating H atoms. In addition another

set of Gaussian s orbitals were placed at each Si–Si bond centre in both the charge

and wavefunction basis sets. All atoms, except the terminating H ones, were allowed

to relax. The second derivatives of the energy were found for the water molecule,

and also the Oi (and it’s neighbouring Si atoms), where present.

The O-H bonds of the isolated molecule in free space are calculated to be 0.960 Å

and the H-Ô-H angle equal to 107.9 ◦. These are close to the experimental values

of 0.957 Å and 104.5 ◦. The vibrational modes are given in table 5.5 and compared

with experimental values for free H2O [149].

It is noticeable that although the two O-H stretch modes at 3521.6, 3352.1 (H2)

and 2571.8, 2432.7 (D2) cm−1 lie close to those observed in Si, there is no mode in the

HDO case lying in the region mid-way between these values. This is because there

is little direct coupling between the H atoms. Thus the H-D modes observed by

Pritchard et al. around 3300 cm−1 cannot be explained. This argument is shown to

be unaffected by inserting the molecule into a cluster containing Oi (see table 5.5).

The O-H lengths and angle of the water molecule placed near an interstitial

Td site are 0.99 Å and 109 ◦. The effect of the cluster is then to weaken the O

-H bonds. This molecular species is probably metastable and would in practice

dissociate forming H2 and Oi defects. The local modes are given in table 5.5 and

demonstrate the absence of any H-D mode around 3000 cm−1.

The mode at 1100 cm−1 is the antisymmetric stretch mode of Oi. This drops by

54 cm−1 for 18Oi — the oxygen mass on the water remaining 16O. In the D2 case,

the 1512 cm−1 bend mode drops and couples strongly with the 1100 cm−1 Oi mode.

In fact the two modes at 1095 and 1115 cm−1 involve substantial amplitude on Oi.

This can be seen as these modes shift to 1111 and 1044 cm−1 for 18Oi. For a fictional

mass on the hydrogen atoms of 2.5 a.m.u, the bend mode of water lies at 1011.7 cm−1

and below that of the Oi mode which has been pushed upwards to 1100.6 cm−1.
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Free Water

(H2O) (HDO) (DHO) (D2O)

Experiment

3756 3707 2788

3657 2727 2671

1595 1402 1178

This work

3755 3710 3708 2752

3659 2691 2692 2635

1574 1380 1379 1153

Water in Si

(H2O)16
i OBC (HDO)16

i OBC (DHO)16
i OBC (D2O)16

i OBC (H2O)18
i OBC

3521.6 3354.9 3519.2 2571.8 3521.6

3352.1 2560.3 2444.2 2432.7 3352.1

1512.3 1373.0 1309.6 1114.7 1512.3

1100.3 1100.1 1099.2 1095.3 1046.4

723.5 689.4 697.6 682.5 723.0

708.6 681.6 653.2 651.6 708.5

659.6 616.0 617.0 594.8 659.6

591.2 576.4 580.9 576.4 591.1

Table 5.5: Calculated local vibrational modes (cm−1) for the (H2
16O)i molecule

near OBC in silicon or for isolated water molecules.

This demonstrates that a molecule of water can cause an upward displacement of

the local mode due to Oi in favourable cases. However, as emphasised above, the

observed H-D vibrational modes rule out this molecule as responsible for the effect.
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5.2.2 Oi + H2i

There are several obvious locations for the molecule close to Oi in the silicon lattice

but since the binding between the molecule and the O atom is so weak, these are

close in energy and difficult to distinguish. Furthermore, it seems that there are a

large number of configurations differing in the orientation of the molecule and all

of these have to be considered as candidate structures.

Figure 5.2: Schematic illustration of the OiH2 defect suggested to have modes

similar to one of the observed O–H defects.

It is supposed that the molecule resides near a Td cage site and oxygen decorates

one of the nearby Si-Si bonds. The case of the O atom bridging a [111̄] Si-Si bond

which forms part of the cage surrounding the Td site as shown in figure 5.2 is first

considered. The molecule in the relaxed configuration then is orientated almost

perpendicular to the Si-O-Si bond, and nearly along [11̄0]. The H-H bond length

is 0.77 Å and each H atom is about 2.37 Å from O. The molecule has been pushed

slightly away from the Td site as the two nearest Si atoms (which are themselves

not bonded to O) are 2.19 Å away. The vibrational modes of the cluster are given

in table 5.6.

The H2 stretch mode at 3855 cm−1 is again lower than that calculated for an

isolated molecule. The molecular frequency depends on the size of the surrounding

cage. The 3855 cm−1 mode lies close to the experimental modes around 3750 cm−1

associated with oxygen. The two H atoms are almost equivalent and this explains

why only one H-D mode is present although the calculations show a 10 cm−1 split-
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H2i +16 OBC HDi +16 OBC DHi +16 OBC D2i +16 OBC H2i +18 OBC

3855.6 3339.5 3350.1 2726.7 3855.6

1129.8 1129.7 1129.6 1129.5 1078.1

733.3 685.6 690.6 678.6 731.4

696.2 663.2 654.6 653.7 685.3

655.3 650.1 645.0 630.9 649.0

643.6 627.6 627.4 536.3 638.9

630.6 539.5 542.6 533.6 622.6

576.7 536.0 536.1 532.8 576.1

Table 5.6: Local vibrational modes (cm−1) of the H2i + OBC complex in silicon

shown in figure 5.2.

ting caused by deviations from ideal σh symmetry.

The mode at 1129.8 cm−1 is clearly due to Oi as it shifts downwards by only

0.3 cm−1 when D replaces H but by 52 cm−1 with 18O. This is comparable with

the 51 cm−1 shift observed in the 1136 cm−1 mode of Oi when 18O replaces 16O.

The small downward shifts on replacement of H with D demonstrate that there

is very little direct coupling between Oi and the molecule and this is essential to

these arguments, based on anharmonicity, if an upward shift is to be seen in the

deuterated case. It is not clear why the experimental O mode is shifted downwards

by as much as 65 cm−1 from that of isolated Oi.

The modes at 733 to 576 all involve the movement of H, and have not been

detected so far. They represent H2 bend and librational modes. Their shifts with

18O given in table 5.6 demonstrate that many of them also involve the movement

of O.

Of particular interest here is the mode at 577 cm−1. This represents a libra-

tional mode as the two H atoms are displaced almost parallel to their bond. It

can be argued that the anomalous frequency shift of the 1075 cm−1 band is to be

understood through an anharmonic coupling between an overtone, or combination

band, of these low frequency modes and the O mode resulting in a Fermi resonance.

Let |nO〉 be the n’th oscillator state for the vibrations of the oxygen atom whose
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fundamental occurs at νO = 1129.8 cm−1, and |mH〉 be the m th state for a mode

whose frequency, νH, is about half that of the Oi mode. The states of the coupled

system are then described by linear combinations of |nO, mH〉. The effect of an-

harmonicity, V , is to couple together these states and second order perturbation

theory gives the shift in the energy of the |1O, 0H〉 state to be dominated by

〈1O, 0H|V |0O, 2H〉2
(νO − 2νH)

. (5.3)

This follows as the energy denominator is particularly small for these modes. The

perturbation is negative for the 577 cm−1 mode and lowers the energy of the |1O, 0H〉

state, and hence that of the fundamental transition. On the other hand, when H

is replaced by D, as the frequency of this mode drops below 575 cm−1, then the

perturbation acts to raises the energy of the state. Thus the two cases reinforce

the tendency to depress the O mode in the H case below that of D. Another way

of describing the effect is an anti-crossing between the O mode and an overtone of

the librational mode (as shown in fig. 5.3). If this mechanism is correct, there have

to be unreported modes in the 550 cm−1 region.

H2

2L

O

2D

500

1000

L

Figure 5.3: Schematic of the anti-crossing of the oxygen mode and an overtone of a

lower energy librational mode, leading to the net upward shift of the oxygen related

mode on increase of the hydrogen mass from 1H to 2H.

A second and almost degenerate configuration occurs when the molecule lies

in the mirror plane containing the Oi . This has similar modes to the first and
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could account for the second defect which is observed. A third possibility is that

the molecule lies along the Si-O-Si axis near a Td site. This site is stable but the

molecule is then close to the Si neighbour of Oi and this results in an O related

mode that is strongly coupled with H in conflict with the experiment. However, the

energy of this structure appears to be lower than that shown in fig. 5.2 by 0.5 eV.

This may be a due to the proximity of Oi to the surface of the cluster and further

investigations are needed to clarify the most stable configuration.

5.3 Calculations on H2i

5.3.1 H2i alignments and frequencies

To investigate the structure and vibrational properties of the isolated molecule,

cluster calculations using a Si84H64 atom H-terminated cluster centred on the tetra-

hedral interstitial site were performed. The wave function basis consisted of inde-

pendent s and p Gaussian orbitals, with eight different exponents, sited at each Si

site and three at each H atom of the molecule. A fixed linear combination of two

sets of s- and p-type Gaussian orbitals was sited on the terminating H atoms. In

addition three Gaussian s and p orbitals were placed at each Si–Si bond centre. The

charge density was fitted with eight independent Gaussian functions with different

widths on each Si atom, and four (three) on the central (terminating) H atoms

(with the basis on the terminating H again being a fixed combination). Three fur-

ther Gaussians were placed at each bond centre. All atoms, except the terminating

H, were allowed to relax. The second derivatives of the energy were found with

respect to the positions of the two central H atoms.

The molecule is stable when oriented along [100], [111] or [110] at the Td site.

Displacing the molecule away from the Td site results in a strong restoring force on

the molecule back towards the site. For example if the molecule is displaced along

[100], so that one of the H-atoms is positioned at the C site, the molecule relaxes

back to a [100] alignment at the Td site with an energy change of 2.6 eV.

The [100], [111] and [110] configurations at the Td site are essentially degenerate

in energy. The rotational barrier between the structures is also negligible, but the
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uncertainty in energy can easily exceed 0.1 eV, so the barrier is difficult to calculate

accurately. This is similar to the situation in GaAs [150]. The vibrational modes

are given in table 5.7. These are all close together and lie within 90 cm−1 of the

observed ν3 band. They are slightly lower than that found for the molecule trapped

near oxygen (3855.6 cm−1). The H–H length is found to be 0.785 Å for the [110] and

[111] structures and 0.788 Å for the [100] alignment. These are slightly longer than

the gas value (0.74 Å). It appears that the energy calculations are not sufficiently

accurate to resolve the reorientation energy or the stable alignment. However,

the vibrational modes do present us with a method to discriminate between the

structures if the molecule is assumed to be statically aligned (see section 5.4 for the

effects of molecular rotation, and an estimate for the barrier needed to prevent this

happening).

Alignment D2 HD D2

[110] 3708.4 3217.1 2622.2

[111] 3713.0 3221.4, 3221.6 2625.5

[100] 3606.8 3128.6 2559.1

Expt. 3618.3 3264.8 2642.5

Table 5.7: Calculated frequencies (cm−1) of H2 molecules in Si with different align-

ments, and a comparison with those for the ν3 mode observed by Pritchard et al.

The A1 mode of molecules lying along [100], with D2d symmetry, would be

infra-red inactive; while those along [111] possesses inequivalent H atoms. The

latter defect produces two distinct HD modes shown in table 5.7. As these are

separated by 0.25 cm−1, they would give two bands with intensities corresponding

to the different populations of the defects, contrary to the observations. The ν3 band

could not arise from these defects if the HD splitting was as large as this. The [110]

orientation is infra-red active with equivalent H atoms, and gives rise to only one

mode in the HD case. Alternatively the molecule may possess lower symmetry, as

suggested by the measurements of Zhou and Stavola, but the positions of the atoms

in the molecule would have to be of greater inequivalence than for the molecule

aligned along [111] to give sufficient energy to cause the reorientation necessary to
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depopulate one of the forms of the molecule.

Figure 5.4: Schematic figure of the molecule at a Td i site aligned along [110]. The

cube axes are aligned along 〈100〉. Arrows show an exaggerated movement of the

atoms in the stretch mode leading to a transition dipole along [001]

The transition dipole moment of the molecule lying along [110] can be calculated

directly. This is done by finding the change in the dipole moment of the cluster

when the atoms are displaced according to their normal coordinates, as shown

schematically in figure 5.4. The induced dipole lies along [001] and arises as there

is a slight displacement of the H atoms along this direction. The effective charge of

the induced dipole is 0.10 e and comparable with that of the molecule trapped by

oxygen. For the [111] alignment, the effective charge is very similar at 0.08 e.

The low frequency of the molecule is due to the leaking of charge from the

surrounding bonds screening the intra-molecular proton-electron attraction (see the

work of Van de Walle in section 5.1.1).

5.3.2 Effects of lattice expansion on frequencies

Since the drop in the stretch frequency of the molecule from the gas–phase value is

due to screening from the surrounding lattice, then if the cage size was increased, the

charge density at the centre of the cage would decrease and the molecular frequency

increase.

This is seen in fig 5.5 where a relaxed molecule is placed in a cage of increasing
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Figure 5.5: Variation of molecular stretch frequency (cm−1) verses multiples of

the equilibrium interstitial cage size for a [111] aligned molecule, demonstrating

schematically the effect of surroundings on vibrational frequency.

size by scaling the surrounding Si-Si bonds. It is seen that the gas value is reached

for voids about 1.4 times the actual cage. This shows that the large red-shift in the

molecular stretch frequency is due to the size of the surrounding cage and is not an

artifact of the calculational method. It is also consistent with the suggestion that

the crystal field is sufficiently strong to freeze molecular rotation (see section 5.4).

These results strongly suggest that Raman active modes at 4158 cm−1 found

in H–plasma treated Si are due to molecules in voids where the electron density

arising from the lattice is small and are not due to isolated molecules at interstitial

sites. A realistic model of the void must have surface dangling bonds saturated by H

[151] and a correlation of the Raman signals due to these Si–H bonds and the 4158

cm−1 band is then to be expected, as has been found by Leitch et al. (see section

5.1.2). For a discussion of the possible candidates for the open defect responsible

see chapter 6.

5.3.3 Molecular diffusion barriers and Fermi-level

The molecule is not stable at the centre of the puckered hexagon (Hexi site) but

this site lies on a diffusion trajectory linking different Td i sites. The energy of
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a molecule constrained to lie at the H site is 0.72 eV greater than that at a Td i

site and this then is an estimate of the migration energy of the molecule, which

compares well to that measured by Markevich et al. and Pritchard et al.

The weakening of the interstitial hydrogen molecule bond, due to screening ef-

fects from the surrounding lattice, might be expected to have an effect on the barrier

to the molecule passing through a hexagonal site on its diffusion path through the

crystal. If the charge density within the lattice was severely affected by excess

carrier generated by, for example irradiation, then the diffusion barrier would be

changed, and this is indeed what we find. The diffusion barrier drops from 0.73 eV in

the neutral case, to 0.33 and 0.46 eV for clusters charged to +2 or -2 e respectively,

with an expansion of the bond length whilst the molecule is at the hexagonal site

from 0.788 Å to 0.901 and 0.930 Å respectively (The bond length at the tetrahedral

site is insensitive to charge state). Obviously such large charges are unphysical for

doped material, but serve to illustrate that perturbation of the lattice charge den-

sity can effect the diffusion barrier of the molecule. Laser illumination can lead to

substantial exciton concentrations, for example the intensity of 2.5 eV Ar light falls

to 1/e within ∼ 1 µm of the surface [152], so if we were to assume all of the energy is

deposited as electron-hole pairs with an energy of around twice the band gap (and

a phonon of enrgy around 50 meV [152]), then for illumination of ∼ 100 mW mm2

this would lead to a carrier pair production rate of around 3×1023 per cm3s.

Raman Spectroscopic studies performed on the plasma treated material, led to

the unusual discovery [153] that the intensity of the hydrogen molecule signal within

the crystal drops to essentially zero in the presence of extended laser illumination at

cryogenic temperatures, this observation has recently been disputed however [154].

One possible model for this effect would be if the molecule were capable of bind-

ing an exciton; which was created by the illumination, which would then partially

dissociate the molecule, leading to a lowering of the barrier to the molecule passing

through a hexagonal site on its diffusion path through the crystal and allowing dif-

fusion away from the illuminated spot. This effect in turn suggests that conduction

band electrons and valence band holes could also affect such partial dissociation, in

accordance with the above calculations.
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5. Calculations on H2 i in crystalline silicon

5.4 The effect of rotation on hydrogen molecules

The observation of a single stretch mode of the isolated molecule is in contrast with

Raman-scattering studies of H2 molecules, introduced from a plasma, in GaAs [140].

Here, two H-H stretch modes, separated by 8 cm−1, attributed to para- and ortho-

H2 molecules occupying the lowest energy rotational states J = 0 and J = 1,

respectively, were detected in the expected intensity ratio of 1:3. This ratio comes

about since protons are spin half particles and therefore Fermionic, hence the overall

wavefunction for the 1H2 molecule must be antisymmetric on permutation of the

nuclei. Since there are two possible relative orientations for the spins, i.e., ortho

(o-) (↑↑) and para (p-) (↑↓), which are symmetric and antisymmetric respectively

on permutation, then to give an overall antisymmetry the rotational part of the

wavefunction must be antisymmetric for the o states and symmetric for the p states.

At high temperatures when the molecule form, the equilibrium ratio of o-:p- for

1H2 is 3:18, and although the energy difference between these states corresponds to

∼ 170 K, they are both occupied, even at cryogenic temperatures because of the

absence of strong nuclear spin-flip processes during cool-down. Similarly, for 2H2,

the molecule is overall Bosonic, leading to a 1:2 p-:o- ratio. It seems likely that this

is also true in Si. In this case, if the molecule was freely rotating, then two H2 (or

D2) modes would be expected, whereas only one is detected. This implies, contrary

to the case of GaAs, that molecular rotation is prevented by the crystalline field.

The effects of a crystal field on molecular rotation can be understood in terms

of a model where rotating the molecule by θ from its equilibrium axis is accom-

panied by an increase in energy equal to V (1 − cos 2θ)
(
r0/r

)2

where r0 is the

molecular bond length. The molecular Schrödinger equation is then separable and

the solutions in the variables θ and φ have definite parity. If V I/~2 is small, then

the lowest energy states are the rotational levels J = 0 and J = 1. Here I is the

moment of inertia of the molecule. On the other hand, if V I/~2 is large, then they

are symmetric and asymmetric combinations of harmonic oscillator states bound in

the potential wells around θ = 0 and θ = π. The symmetric and asymmetric states

are labeled by “+” and “−” respectively, with the ortho H2 molecules occupying the

8Due to the ratio of products for the spin and rotational degeneracies of o- and p-hydrogen

93



5. Calculations on H2 i in crystalline silicon

“−” state, in the case of D2 this ordering is reversed. For the molecule in Si, V I/~2

is presumably large and the energy difference between the “±” states, µ+ − µ−, is

very small. This difference leads to distinct centrifugal potentials,

µ±
(r0
r

)2

,

in the two cases. For free rotation, V = 0, and µ− − µ+ = 1
2
~

2J(J + 1)/I. The

centrifugal potentials lead to a H-H stretch mode for the J = 1 state lying 5.9

cm−1 below that of J = 0 [155]. However, as V increases, the separation between

the two stretch modes diminishes. If we assume that the splitting in ν3 is, in fact,

less than 0.1 cm−1, and has not been so far resolved, then (µ− − µ+) must be less

than 0.02~
2/I and this imposes a lower limit on the rotation barrier. Using the

expressions for µ+ and µ− given by Stern [156], the barrier must be at least 0.17

eV. This means that the molecular rotation is frozen below about 70 K.

Thus at low temperatures, the molecules are aligned along one or more axes.

The observation of only one mode in the H-D case means that either the hydrogen

atoms are equivalent, and the center of the molecule lies on a mirror plane or a C2

axis, or, if they are inequivalent, then the two H-D modes must be separated by at

least 20 cm−1 and only one is thermally populated at 10 K.

5.5 Problems unresolved by ab initio calculation

Whilst the calculation for the frequency of the isolated interstitial molecule, and the

molecule near OBC agree generally (within ∼ 100 cm−1) with the experimentally

observed spectra of both Pritchard et al. and Leitch et al. (section 5.1.2), several

features seen in the spectra are not adequately explained by these calculations.

The low rotational barrier obtained in these calculations and the work of others

(section 5.1.1), suggest that the behaviour of the interstitial molecule in silicon

should be akin to that of H2i in GaAs, i.e., with a clearly resolvable ortho-/para-

structure in the spectra of the molecular stretch mode. This contrasts strongly with

the experimental work of Zhou and Stavola, who find a barrier of at least 60 K to

molecular rotation, combined with an asymmetric structure. The unusual splitting

of only the ν2 line in deuterated Cz silicon is also unexplained.
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5. Calculations on H2 i in crystalline silicon

Furthermore, the question of why an interstitial hydrogen molecule should be

infrared active at all remains, since freely rotating H2 and weakly hindered H2 in

GaAs are both considered infrared inactive.

The obvious suggestion that the molecule is not in fact isolated, but instead is

bound to another defect in the lattice, leads to some fairly exotic properties for

the required extra centre. This X defect would have to be able to diffuse at least

as rapidly as the molecule, be invisible to both infrared and Raman spectroscopy,

and be present in large concentrations. If the molecule were present as part of a

group of (H2)n molecules, then this agglomerate would have to be strongly bound

to compete with the entropy gained by dispersing the molecules throughout the

lattice. If we were to assume that there were about 1015 cm−3 pairs of molecules

and only 1014 cm−3 single molecules in the material of Pritchard et al., then at

room temperature the binding energy would need to be approximately 0.5 eV [157].

Provisional calculations using the same cluster and basis as for the single molecule

find that pairs on molecules sharing a common cage site are strongly unbound, and

molecules in neighbouring Td sites are degenerate with the separate molecules.

Clearly further experimental and theoretical study is needed to clarify the prop-

erties of this “apparently simple” system.
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Chapter 6

Hydrogen inside lattice defects

Having considered the behaviour of hydrogen dimers at interstitial sites in the

lattice, we now move on to examine hydrogen pairs within open and chemically

inert or active voids in the lattice.

6.1 Interaction of H2 with inert voids

The low frequency of the interstitial hydrogen molecule can be thought of as due

to the leaking of charge from the surrounding bonds screening the intra-molecular

proton-electron attraction [109]. If the size of the lattice cage were to be increased,

for example by a defect in the crystal, then the charge density at the centre of the

cage due to the surrounding Si would fall. The molecular stretch frequency would

then rise towards that of isolated hydrogen molecules.

Several types of extended defects in silicon are known to exist, with associated

vibrational bands around 2100 cm−1, so the behaviour of H2 trapped at such sites

becomes of interest in understanding the effects of plasma treatment on silicon (see

section 5.1.2).

6.1.0.1 Nano-voids

This dependence on surroundings is confirmed by a calculation in which the inner

shells of Si atoms surrounding the Td interstitial site are removed and the resulting

dangling bonds hydrogenated. Removing just one shell and inserting passivating H

atoms leads to a smaller volume for the cage but it is enlarged when ten Si atoms

in two shells are removed. Relaxing the cluster in this case gives a H-H bond length

of 0.759 Å which is shorter than the interstitial molecule. The stretch frequency

(table 6.1.0.1) is then increased to 4324.6 cm−1 (H2) and to 3057.9 cm−1 (D2).

These are within 170 cm−1 of the modes observed in plasma irradiated material by
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6. Hydrogen inside lattice defects

Molecule in void H-H H-D D-D

Calculated 4324.6 3745.9, 3743.8 3057.9

Experimental 4158 3629 2990

Isolated 4373.0 3788.9 3092.2

Table 6.1: Calculated and experimental frequencies, cm−1, of H2 molecules trapped

in Si at small voids.

Raman scattering (section 5.1.2) and about 100 cm−1 below the calculated value of

the molecule in vacuum. The distance of the centre of the cage to a Si (H) atom

on the void surface is 4.72 (3.36) Å. Thus molecules within voids ∼50% larger than

that surrounding an interstitial site possess frequencies close to the gas value.

The void discussed here has a different structure from platelets, where molecules

appear to push apart neighbouring (111) planes [151], and these must be considered

to be distinct defects.

6.1.0.2 Platelets

While there is no general consensus regarding the microscopic structure of 〈111〉

platelets, if the assumption is made that the structure is more open than the

undamaged lattice (as suggested by the possible NMR observation of D2 inside

platelets [158]) then some general remarks can be made from simulation of only one

of the proposed platelet models.

Of the models so far suggested for the 〈111〉 platelet, TEM studies [151] and

calculations [159], favour the structure with a pair of hydrogen atoms saturating

each broken bond between (111) planes displaced apart by ∼ 3 Å. This structure

does not include any silicon vacancies. If this defect is constructed inside a Si84H64

cluster, by cutting the cluster through the centre and hydrogenating the two exposed

faces, the vibrational modes of a H2 molecule trapped within such a platelet can be

calculated. The stretch frequencies for the molecule lie at 4385 cm−1 for H2, 3796

and 3804 for HD, and 3101 cm−1 for D2. The modes of the hydrogen saturating

the surrounding silicon atoms fall between 2117 and 2098 cm−1. The experimental

values for platelets [160] lie at ∼ 2110 and ∼ 1960 cm−1. The molecule has a bond
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6. Hydrogen inside lattice defects

length of 0.748 Å when sited in the platelet, and is centred 2.459 (3.255) Å from

the nearest passivating hydrogen (structural silicon) atoms.

Taken together, these results suggest that the 4158 cm−1 band might be due to

molecules within voids or platelets and this is consistent with a correlation that has

been found between the Raman intensities due to Si-H stretch modes arising from

H atoms on the surface of a void, and the 4158 cm−1 band (see the work of Leitch

et al. in section 5.1.2). The calculations also suggests that the higher frequencies

found by ab initio calculations on molecules in small clusters (see section 5.1.1) may

be due to an underestimate in the charge density at the interstitial site arising from

the use of a limited basis set.

6.2 Interaction of hydrogen with V6

Electron paramagnetic investigation of multi-vacancy centres in Si have successful

identified V1 [161], V2 [162], V3, V4 and V5 [163]. The last has been correlated with

the P1 centre and is a non-planar defect with C1h symmetry. The larger vacancy

centres are formed in irradiated material when subjected to a heat treatment. Thus

V5 is formed around 170 ◦C and is stable until ∼450 ◦C.

Theoretical investigations have predicted that the ring hexavacancy (V6) is a

particularly stable defect [164, 165]. There are several metastable configurations of

V6, but they are all at least 0.8 eV higher in energy than the ring structure [165,

166]. Removing six atoms of a puckered hexagon in Si (figure 6.1) leaves 12 broken

bonds. However these can be rejoined in pairs, suggesting that the reconstruction

can eliminate, or reduce, the electrical activity of the centre. One would suppose

that this defect would be formed after V5 between 170 ◦C and 450 ◦C. It is tempting

to argue that, among the various multi-vacancy defects, V6 should be exceptionally

numerous. Even if it is not electrically active, it should provide a trap for interstitial

impurities such as transition metals [167], oxygen and hydrogen. Then evidence of

a V6 core could be found from an analysis of the spectra of impurity related defects.

It is argued here that the 1.107 eV photoluminescent (PL) centre called B4
80 [168] or

the J-line centre [72], arises from a reconstructed V6 defect, and that a large family

of related hydrogen-containing centres are due to V6 complexed with hydrogen.
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Figure 6.1: V6 displaying the six vacancy sites, and the subsequent reconstruction

caused by them.

The evidence for this assignment comes from a study of the J-line defect and a

family of hydrogen related PL centres with similar optical characteristics. The J-

line defect is one of the most dominant luminescence systems formed in irradiated Si

after a heat treatment between 300 and 500 ◦C [168, 72] (see figure 6.2). However,

a number of other shallow luminescence centres have been observed in Si grown

in a hydrogen atmosphere after thermal neutron irradiation and subsequent heat

treatment at 400-480 ◦C [168] which grow at the expense of the J-line defect, as

shown in figure 6.2. These radiation-related defects have labels of the form Bx
yz,

which specifies the exciton binding energy relative to the free exciton as xy.z meV.

So for example, B1
71 has an exciton binding energy of 17.1 meV, and a main PL line

at 1.138 eV.

Isotopic analysis of Si samples saturated with hydrogen-deuterium mixtures have

unambiguously established the direct involvement of hydrogen in the defects and

have shown that they contain two or more H atoms [169, 170]. High resolution

spectroscopic studies involving uniaxial stress and magnetic field measurements

reveal that each of the centres has a complex structure of bound exciton states

arising from the interaction between a bound electron and a hole in a defect field

of particular symmetry [171, 172]. A detailed quantitative analysis of the optical

transitions under external field perturbations has shown that, despite the apparent
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Figure 6.2: Thermal stability of the B4
80 (J) centre (circles), the B1

71 centres

(squares), and the W centre (triangles), after Safonov [67]. The behaviour of the

centres is shown in non-hydrogenated (open symbols) and hydrogenated (filled sym-

bols) silicon. The samples used were high resistivity (∼ 1000 Ωcm) fz Si with [C]

∼ 1017 cm−3 and [O]< 1016 cm−3.

differences between these optical systems and their multiple transition structures,

all of them have a similar origin. In each case the luminescence activity arises from

a single (−/0) level in the vicinity of Ec [173, 170].

This suggests that these multi-hydrogen defects possess a common core. The

symmetry of this core must allow the possible symmetries of the different hydrogen

related centres and, in particular, B41 and B1
71 which contain equivalent and inequiv-

alent pairs of hydrogen atoms respectively arranged in trigonal symmetry. Other

centres, such as B1
81 and B1

18 also contain two H atoms but have C1h symmetry,

while others like B80 and B1
19 contain more H atoms without any symmetry [169,

170, 172].

The high symmetry of B41 and B1
71 strongly restricts possible structures of the

defects, as the two equivalent hydrogen atoms in B41 must lie along a C3 〈111〉

axis and requires an additional C2, S2 or σh symmetry element. There are only

two sites in the diamond lattice at which the centre of this defect can lie. These

are the bond-centre and hexagonal lattice sites, which yield D3d symmetry. The
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6. Hydrogen inside lattice defects

obvious structure, consisting of two anti-bonded hydrogen atoms attached to the

pair of silicon atoms surrounding a bond centred site must be discounted, since such

a defect should be stable only at low temperatures (see chapter 7).

The combined requirements of creation by irradiation and high thermal stability

point towards a multi-vacancy–hydrogen complex. V1 – V5 can be excluded either

because they are not centred at these sites or do not possess trigonal symmetry. V6

has D3d symmetry, and thus the simplest candidate is a complex involving V6 and

hydrogen. As stated above, V6 is expected to form in irradiated material which is

heated between ∼200 ◦C and 450 ◦C. If the material contains hydrogen molecules

these will readily react with V6 to form dimer structures.

The defects considered were each constructed in a Si154H108 cluster centred on

the hexagonal site. The size of the cluster meant that there is at least two layers of

Si–Si bonds separating the terminating H atoms and the H atoms in the defect.

The wave-function basis consisted of independent s and p Gaussian orbitals,

with either four different exponents sited at each Si atom, or three at the H atoms

of the dimers. A fixed linear combination of two Gaussian orbitals was sited on the

H atoms which terminated the cluster. In addition, two Gaussian functions were

placed across every Si–Si bond and the Si–H bonds the defects. The charge density

was fitted with five independent Gaussian functions with different widths on each Si

atom, and four (three) on the central (terminating) H atoms. Two extra Gaussian

functions were placed at each bond centre. All atoms, including the terminators,

were allowed to relax by a conjugate gradient method.

V6 was first simulated by removing the six atoms nearest to the hexagonal

site. The resulting structure possesses D3d symmetry and strongly reconstructs on

relaxation to form six new bonds of length 2.63 Å between the twelve dangling

bonds, as shown in figure 6.1. The length of the two nearest Si–Si bonds along

the trigonal axis is then 2.53 Å, demonstrating that tensile strain resides in this

direction. The resulting electronic Kohn-Sham (KS) levels display a well defined

band-gap, which is consistent with previous calculations [166]. This defect possibly

possesses states in the gap very near the conduction band, but it is difficult to

decide whether such near-conduction levels are localised on the defect in cluster

calculations. The character of the deepest of these shallow states is a1g (figure 6.3),
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6. Hydrogen inside lattice defects

this state is anti-bonding to both the six reconstructed bonds and the two nearby

axial bonds in the defect.

Figure 6.3: Isosurface plot of the a1g pseudowavefunction corresponding to the

lowest unoccupied state of V6, as shown in figure 6.1. The red and blue lobes are at

a phase difference of π. The function shows anti-bonding character between both

the atoms in the six central reconstructed bonds, and also the two nearby axial Si

–Si bonds.

There are several potential structures for B41 based on V6 and one possible

model would be a hydrogen molecule aligned along [111] and sited at the centre

of inversion of the defect, or alternatively the H–H bond could be broken and the

atoms placed at anti-bonding sites to the axial Si–Si bonds. Both structures are

shown in figure 6.4.

The second, anti-bonded structure is unstable and spontaneously relaxes back to

the [111] aligned molecule structure, however the molecule itself is only metastable

at the defect’s centre of inversion, and will dissociate with a barrier of less than

0.23 eV (the barrier to this reaction is shown in figure 6.5). It does this by breaking

one of the reconstructed Si–Si bonds shown in figure 6.1, to form two Si–H bonds,

giving rise to a structure which is 1.76 eV lower in energy and of C1h symmetry, as

shown in figure 6.6.
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Figure 6.4: Reconstructed V6 plus either a hydrogen molecule or two anti-bonding

hydrogen atoms.
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Figure 6.5: Barrier to dissociation of a H2 molecule inside V6, as shown in figure 6.4.

The molecule dissociates by breaking one of the reconstructed bonds to form the

structures shown in figure 6.6.

A third possibility is that the hydrogen atoms are near the bond-centred sites

within the axial Si–Si bonds. This third, bond-centred structure, causes a further

reconstruction of V6, by breaking the two axial Si–Si bonds and forming Si–H bonds.

The two dangling Si bonds thus formed pair together in the middle of the defect,

leaving the structure with D3d symmetry shown in figure 6.7. This new bond is then

2.42 Å, and the six reconstructed bonds relax to a length of 2.58 Å – a lowering of
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Figure 6.6: The result of dissociating a H2 molecule inside V6, leading to the break-

ing of one of the reconstructed Si–Si bonds to form two Si–H bonds.

0.02 Å. The reconstruction is energetically very favourable, being 0.80 eV lower in

energy than the C1h structure in figure 6.6. Thus the most stable structure has D3d

symmetry.

The KS levels of this defect again show evidence for a very shallow (−/0) level,

of symmetry a1g (see figure 6.8. There are two high frequency modes related to

the hydrogen in this structure of symmetries A1g and A2u (which is infrared active),

which lie at 2033 and 2021 cm−1 respectively. It is clear that this structure possesses

properties entirely consistent with B41, although electrical field and stress alignment

studies are necessary to verify this assignment.

Potential structures for B1
71 are now considered. Again this structure requires

a C3 axis, but due to the inequivalent hydrogen atoms the symmetry of the defect

must be of lower order, i.e. C3v. If it is assumed that dangling silicon bonds are

energetically infeasible, there is an obvious structure which can be derived from

the bond-centred model for B41. This defect consists of one hydrogen atom lying

at a bond centred site, and the other atom directly passivating the silicon atom

which is displaced by the bond-centred H. There are two locations on either side

of the silicon atom at which the hydrogen might be positioned. If the hydrogen

were placed on the side nearest the other H atom, this would bring the two atoms

into close proximity and thus raise the energy of the defect, this suggest that the
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Figure 6.7: The reconstruction of V6 when complexed with two bond-centred hy-

drogen atoms, giving rise to the B41 structure.

Figure 6.8: Isosurface plot of the a1g pseudowavefunction corresponding to the

lowest unoccupied state of the B41 structure, as shown in figure 6.7. As with V6,

the wavefunction shows anti-bonding character between both the atoms in the six

central reconstructed bonds.
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Figure 6.9: Schematic diagrams of the B1
71 structure, with the two inequivalent

hydrogen atoms arranged as in H∗
2, or together in the same bond, similar to the

dimer proposed by Aradi and Deák (see chapter 7).

hydrogen is sited on the opposite side of the silicon atom, as shown in figure 6.9a.

The relative energies of these defects are 0.13 eV in favour of the structure with the

hydrogen atoms on opposite sides of the silicon. The more stable structure, which

is reminiscent of H∗
2 (see chapter 7), is 0.09 eV higher in energy than the C1h defect

formed by the dissociation a hydrogen molecule inside V6. The KS levels again

show evidence of a near conduction-band a1 state localised on the defect in both

cases. Both of these models possess two high frequency A1 vibrational modes, lying

at 2149 and 2029 cm−1 for the structure with the two H atoms lying close together,

or 2051 and 2010 cm−1 for the hydrogen on opposite sides of the silicon.

It is also clear that other, stable centres containing more H atoms could arise by

inserting H pairs into the reconstructed bonds, as well as along the trigonal axis.

These investigations then favour V6 to be a precursor for the family of H-related

optical centres. It is clear that an unreconstructed V6 defect has deep levels arising

from the dangling bonds but these are pushed to the band edges on reconstruction.

A greater degree of reconstruction results in increasingly shallow levels. As the

effect of hydrogen is to reduce the strain in the defect, the expectation is that the

acceptor (−/0) level of V6 will be deeper than that of V6H2. The KS levels also

suggest that V6 itself should be optically active.
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In non-hydrogenated Si, the B4
80 centre (J-line) is observed after irradiation and

subsequent heat treatment between 300 – 500 ◦C [72] as shown in figure 6.2. Zee-

man splitting studies have also shown that B4
80 possesses trigonal symmetry [72].

However, in hydrogenated Si, the J-line intensity declines at a much lower temper-

ature ∼450 ◦C, which coincides with the appearance of the hydrogenated related

B-centres. figure 6.2 shows the variation in the J -line intensity and the intensity

of B1
71 in non-hydrogenated and hydrogenated Si respectively, after a 30 minute

isochronal anneal at different temperatures [173]. As one can see, there is an anti-

correlation between B1
71 and the B4

80 centres with B1
71 created at temperatures when

the B4
80 centres are disappearing. The figure also shows that B1

71 is not related to

the 1.018 eV W (I1) centre, which is also known to be trigonal [72, 75].

The identification of B4
80 with a vacancy aggregate is consistent with the strong

preference for the defect to align under [111] stress during formation [174]. This is

directly analogous with V2, where stress alignment studies show that V±
2 favours

an orientation where the reconstructed bonds are parallel to the stress axis [162].

Uniaxial stress along the trigonal axis leads to a reduction in the exciton binding en-

ergy consistent with the idea that anti-bonding orbitals on the dilated reconstructed

bonds are the origin of the gap acceptor level. Recent Zeeman and uniaxial studies

demonstrate that the exciton consists of a electron in a deep (−/0) level near Ec

with a loosely bound hole in a similar way to B41 [67]. Thus this defect shares the

properties expected for V6 and can be identified with this centre. However, in the

absence of experiments performed in an electric field, the question of whether B4
80

has a centre of inversion has yet to be resolved.

The dependence of the intensity of the PL due to B4
80 demonstrates that the

exciton is thermally bound with an energy of 18 meV [168] and this can be taken

to be the ionization energy of the hole. The exciton binding energy relative to a

free electron and hole is the sum of 48.0 meV and the free exciton binding energy of

14.3 meV. From these results, the (−/0) level of V6 can be placed at Ec−44.3 meV.
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Chapter 7

A new hydrogen dimer in proton

implanted silicon

7.1 Introduction

In addition to the hydrogen molecule already discussed (see chapter 5), a second

type of hydrogen dimer is know to exist in silicon.

H∗
2, which is a pair of atoms bonded within the lattice, was first predicted

to exist in diamond [175] and silicon [176] by theory, and subsequently identified

experimentally [177] by infrared absorption in proton implanted silicon. Neutron

and electron irradiation of silicon containing hydrogen molecules also forms H∗
2 [146]

at room temperature, by converting the H2 molecule into this defect [178], with the

two dimers then coexisting in the material. This defect is also directly observed in

small quantities after high temperature in-diffusion of H2 gas [179]. H∗
2 consists of

a nearly bond centered hydrogen atom, HBC , which is displaced towards one of the

two neighboring lattice atoms, with a nearby anti-bonded hydrogen, HAB , further

along the same 〈111〉 direction, and attached to the other side of the second lattice

atom (see figure 7.1c for a schematic of the defect). The resulting structure is then

trigonal, with C3v symmetry.

It has been suggested [146] that the formation of H∗
2 in irradiated silicon con-

taining H2 molecules proceeds by one of two mechanisms. One possibility is that a

hydrogen molecule reacts with a self interstitial to form IH2, which then captures

a lattice vacancy to form H∗
2. Alternatively the molecule reacts, instead, with the

vacancy to form VH2, which then captures an interstitial to again make H∗
2. In

either case, it is possible that the precursor (IH2 or VH2) should be produced in

detectable quantities before H∗
2.

For proton implanted silicon, a modified form of this reaction must occur, since

108



7. A new hydrogen dimer in proton implanted silicon

[001]

[110]

[100]

[111]

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.4

0.8

1.2

b

b

b

b
b b b

b b
b b

b

b

b

b

b

b

E
n
er

gy
(e

V
)

SiHb

SiHa

a b c

Figure 7.1: Schematic diagrams of a) H∗∗
2 , b) the local minimum structure consisting

of an anti-bonding hydrogen atom and a next-nearest neighboring bond-centered

hydrogen atom, and c) H∗
2. The barrier to inter-conversion between H∗∗

2 and H∗
2,

passing through the weak local minima at the bond-center site, is shown. The

barrier to the conversion from H∗∗
2 to H∗

2 via this path is calculated to be 6 0.7 eV.

the majority of the hydrogen in such material at low temperatures is in the form

of bond-centered H+ [180], hence a mechanism to convert H+ into H0 or H− must

be present to form neutral dimers. If we assume that a large number of vacancy-

interstitial pairs are created during the implantation, then these will act as trap-

ping sites for the hydrogen in the lattice. It has been suggested that the single

vacancy [161] is present in the V2− state in n-type silicon [181], and can diffuse to

H+
BC to form immobile VH− at about 80 K [161, 180]. As the material is heated

further, H+
BC becomes mobile at ∼ 200 K [180], and this will then react with VH−

to form VH0
2. Presumably VH0

2 reacts with a mobile interstitial to form H∗
2, or other

dimer structures such as the molecule. Little is known about the charge-state of

the single interstitial in implanted silicon, but the absence of large quantities of IH1

in proton-implanted silicon suggests that a similar reaction between Ix− and H+

does not occur at low temperatures. IH2 has been observed in implanted silicon

annealed at room temperature [182], and may then be formed either by the reac-
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tion of a hydrogen molecule with an interstitial [183], or directly with the neutral

or negative hydrogen atoms present at higher temperatures [180, 184].

Both VH2 and IH2 have been observed in proton implanted silicon annealed at

room temperature [182, 185], and IH2 has been observed in irradiated [186–188]

silicon containing hydrogen. Both defects are of comparable thermal stability to H∗
2

[182, 185], but, perplexingly, H∗
2 has been observed to be present in the material

before VH2 has formed [189].

Estreicher et al. have performed molecular dynamics (MD) simulations of the

interaction between interstitial H2 and native defects [183], and find the molecule

is easily dissociated by both interstitial and vacancy related radiation damage. In

addition, the same authors have simulated the reaction between IH2 and a lattice

vacancy [190], and find that H∗
2 is indeed formed in this process. The alternative

reaction between VH2 and an interstitial was not observed during the course of the

MD simulations.

Vibrational modes lying at 1792, 812 and 1607 cm−1 have recently been ob-

served, consistent with stretch, bend and overtone modes of a new defect [189].

The stretch and bend modes lie at 1307 and 581 cm−1 in deuteron implanted ma-

terial. Mixed H/D implantation shows no new modes. These stretch and bend

modes are similar to those due to the anti-bonding hydrogen atom in H∗
2, with the

presence of a single bend mode suggesting that the system possesses high trigonal

symmetry.

It is now suggested that these modes are consistent with the properties of a

third type of hydrogen dimer present in proton-implanted silicon, consisting of two

anti-bonding hydrogen atoms attached to opposite ends of a Si–Si pair, with overall

D3d symmetry (see figure 7.1a).

7.2 Cluster and supercell calculations

The theoretical studies in this work use local density-functional formalism as im-

plemented in the aimpro code, both as clusters [21] and periodic supercells [52].

For the former calculations, the dimers were each inserted into a Si98H78 cluster

centered on a Si–Si bond-center. The wave-function basis consisted of independent
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s and p Gaussian orbitals, with four different exponents sited at each Si site, and

three at each H atom of the dimer. A fixed linear combination of two Gaussian

type orbitals was sited on the terminating H atoms. In addition, two Gaussian

functions were placed at the center of each Si–H bond of the dimers and every

Si–Si bond center. The charge density was fitted with five independent Gaussian

functions with different widths on each Si atom, and four (three) on the central

(terminating) H atoms, with two extra Gaussian functions placed at each bond

center. All atoms, except the terminating H ones, were allowed to relax by a

conjugate gradient method. Further details of the method can be found in Ref. [21].

The supercell calculations made use of a Si54 FCC cell, with the Monkhorst–Pack

k-point sampling scheme [191]. The real-space basis used consisted of independent

s- and p-Gaussian orbitals, with four different exponents, sited at each Si site and

three at each H atom of the dimer. In addition, a single Gaussian function was

placed at each Si–H bond of the dimer and every Si–Si bond center. The Hartree

and Perdew–Wang [39] exchange-correlation energies were calculated in reciprocal

space with an energy cut-off of 40 atomic units. All atoms were allowed to relax by

a conjugate gradient method.

For both types of calculation the normal modes of the system were examined

using the quasi-harmonic second derivatives of the energy, which were evaluated for

the defects using the method described in Ref. [21]. The second derivatives were

calculated directly for the H atoms, neighboring silicon atoms, and their neighbors,

with the rest of the dynamical matrix filled using a previously evaluated Musgrave-

Pople potential. The transition dipole moment of the defect was calculated directly

in the cluster method by finding the change in the total dipole moment of the

cluster as the atoms were displaced according to the normal coordinates of each of

the modes.

The barrier to conversion between H∗∗
2 and H∗

2 was evaluated by performing a

full structural relaxation, where the position of one of the hydrogen atoms in the

dimer was forced to lie on a constraint surface of the form r2
a − r2

b = c, where ra

and rb were the separation of the constrained H atom from two points on opposite

sides of the silicon atom marked SiHa
in figure 7.1a. The value of the variable c was

adjusted after each constrained relaxation to force the hydrogen atom to move from
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Si98H78 Si148H
§
98 Si98H

†
78 54 FCC 128 FCC

SiH · · ·SiH (Å) 3.74 3.84 3.78 3.53 3.62

SiH–H (Å) 1.50 1.51 1.50 1.54 1.54

SiH–Si (Å) 2.36 2.35 2.22 2.32 2.32

HŜiHSi (◦) 86.4 87.3 88.2 86.2 86.6

SiŜiHSi (◦) 119.6 119.8 119.9 119.6 119.7

Table 7.1: Effect of increasing cluster size (§), basis (†), or supercell size (the

structure is insensitive to the number of k-points chosen between 13 and 43) on

the bond lengths and angles of the H∗∗
2 defect. The silicon atoms marked SiH are

bonded directly to the hydrogen in the structure shown in figure 7.1a.

its position in the H∗∗
2 dimer to that in H∗

2. This constraint surface is equivalent to

fixing the H atom to a plane perpendicular to the axis between the two constraint

points, with the position of the plane along this axis determined by the constant c, as

shown by the following analysis : Since the constraint is cylindrically symmetric the

discussion can be restricted to the two dimensional case, and by applying a suitable

translation, rotation and scaling the two constraining points can be transformed to

lie at [0, 0] and [1, 0]. This then leads to the constraint surface, (xi, xj), being of

the form

c =


 xi − 0

xj − 0




2

−


 xi − 1

xj − 0




2

= 2xi − 1 ,

i.e., there is only a constraint on the xi component of the surface.

To test the convergence of the molecular properties in the cluster calculations,

the local modes of H∗∗
2 were re-calculated in a larger Si148H98 (plus defect) cluster,

also centered on a Si–Si bond-center. All of the atoms, except the surface termi-

nating hydrogen were allowed to relax. Similarly, to test for effects of increasing

the basis, the calculations were repeated in the Si98H78 (plus defect) atom cluster

with a larger basis, using eight different exponents sited at each Si atom for both

the wave-function and charge density, the hydrogen atoms in the defect were fitted

using six different exponents of both types. In addition, a third Gaussian function
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Mode Si98H78 Si148H
§
98 Si98H

†
78

A1g 2019.8 2065.0 2094.3

A2u 2015.7 2061.8 2070.4

Eu 809.7 843.7 783.0

Eg 806.8 838.7 780.1

Table 7.2: Effect of increasing cluster size (§), or basis (†) on the local vibrational

modes (cm−1) of H∗∗
2 , as described in the text.

was placed between every bonded pair of atoms in both types of basis. The effects

on the molecular vibrational frequency of these changes are shown in table 7.2, the

frequency is seen to be converged to within ∼ 100 cm−1 with respect to both cluster

size and basis. table 7.1, shows the convergence of the structural properties for the

defect, the bond lengths and angles change by 6 0.15 Å or 2 ◦ respectively, within

the cluster calculations.

Convergence in the supercell calculations was tested by increasing the number

of special k points used to sample the Brillouin zone from a single point at Γ up to

the MP-43 sampling (i.e., 10 irreducible k points with D3d symmetry), and similarly

increasing the size of the supercell from 54 to 128 lattice sites, as shown in table 7.3.

The vibrational and structural properties are seen to be well converged with respect

to supercell size and k-point sampling, but the relative energies of H∗
2 and H∗∗

2 are

only convergent for more than one k-point. The structure is insensitive to change

in the number of k-points, and changes by 6 0.1 Å or 0.5 ◦ on increasing from 54

to 128 atom (plus defect) FCC supercells.

The question of the disparity between the supercell and cluster frequencies then

arises. In principle, the intermediate charge-density fitting (see section 3.2) used in

the supercell method should be more accurate than that of the cluster method, as

for a sufficiently large cut-off the planewave fit should converge to the exact Hartree

and exchange-correlation energies for the given wavefunctions. As an empirical rule

of thumb, a 1.3% error the in calculation of bond lengths leads to a ∼4% error in

the frequency of the derived stretch-modes [192]. By comparing the bond lengths

for the Si–H bonds between the cluster and supercell, the cluster results are seen
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MP-x3 k-points

size 1 2 4 MP-x3 A1g A2u Eg Eu

54 0.06 0.82 0.81 1 1870.2 1850.1 741.2 733.9

128 0.43 0.75 – 2 1880.0 1874.2 762.5 758.7

Table 7.3: Relative energy (eV) of H∗∗
2 compared to H∗

2 for various supercell sizes and

k-point sets, and the effect of increasing the number of k-points on the vibrational

modes of the 54 atom supercell containing H∗∗
2 . The relative energy of the two

defects is ∼0.75 eV in favor of H∗
2 (c.f. 0.60 eV from the Si98H78 cluster calculations).

Mode cluster supercell Expt.

A1 1983.0 2097.5 2061.5

A1 1894.0 1717.0 1838.3

E 837.7 717.7 817.2

Table 7.4: Modes of H∗
2 (cm−1) calculated in this work using a Si98H78 cluster or

a 54 atom FCC supercell with MP-23 k-points, compared with the experimental

observations of Holbech et al. [177].

to be 2.7% shorter, translating to an 8.3% increase in the hydrogen-related stretch

frequency. Scaling by this amount gives the A1g and A2u stretch modes as 1865 and

1861 cm−1, i.e., comparable to the supercell results.

7.3 Results

As a preliminary to examining H∗∗
2 , we first calculate the vibrational modes of HBC

and H∗
2 using both formalisms. The derived frequencies of H∗

2 are shown in table 7.4,

and both types of calculation agree within ∼ 120 cm−1 with the experimental data

of Holbech et al. [177], with the E bend mode of the cluster calculation falling within

. 20 cm−1 of experiment. The vibrational modes of H+
BC are shown in table 7.5,

for the cluster calculations the A2u mode of the proton falls within ∼ 100 cm−1

of the observed vibrational mode at 1998 cm−1 [180], and displays a shift of less

than 1 cm−1 with variation in the mass of the neighboring silicon atoms, consistent
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with the lack of experimental resolution of such lines. Following the expression for

the integrated intensity of the vibrational modes by Leigh and Szigeti [62], and the

discussion of Clerjaud and Côte [63], if it is assumed that the mass of this A2u

mode is ∼ 1 a.m.u., the effective charge of this mode is 0.618 e, i.e., a fifth of

that observed [180]. The vibrational modes of H0
BC are shown in table 7.6. The

proton and also the muon pseudo-isotope display an additional Eu mode above

the Raman edge absent for the other isotopes. The energy of the A transitions is

sufficiently large to ionize the Ec− 0.16 eV level of 1H0 [193], effectively preventing

the observation by IR, but the lower energy Eu mode of 1H0 may be observable.

The effective charges for the 1H0 modes, again assuming a mass of ∼ 1 a.m.u., are

0.187 and 0.183 e for the Eu and A2u modes respectively.

We now turn our attention to H∗∗
2 . The optimized structure of H∗∗

2 is shown in

figure 7.1a, with the structural parameters given in table 7.1. It is worth noting

the effect of the two anti-bonding hydrogen atoms on opposite ends of the same

Si–Si pair, which dilates the distance between these two silicon atoms to ∼ 3.6 Å,

effectively breaking this bond (this compares to 2.35 Å for bulk silicon), and leaving

the two Si atoms almost co-planar to their silicon neighbors.

table 7.7 gives the calculated vibrational modes in comparison to experiment.

Again the IR active A2u stretch mode calculated in the supercell method, or the

scaled cluster calculations, is within < 100 cm−1 of the experimental value, with the

cluster calculation for the observable Eu bend mode again falling within < 20 cm−1

of experiment. The overtone, marked A∗ in table 7.7, must be of symmetry A2u

and consists of a mixture of the Eu and Eg modes which lie at around 800 cm−1.

As shown in the mixed isotopic case, the motion of the two hydrogen atoms is

practically decoupled, since the A1 and E modes of the HD∗∗ complex are within

∼ 3 cm−1 of the A2u and Eu modes of the isotopically pure H∗∗
2 and D∗∗

2 defects.

We calculate the ratio of the intensities of the fundamental A2u and Eu IR active

modes to be 0.29. Assuming the mass of the oscillator is ∼ 1 a.m.u., the effective

charges of these two modes is then 0.13 and 0.25 e respectively.

The cluster and supercell calculations both find H∗
2 to be between 0.6 and 0.75 eV

lower in energy than H∗∗
2 (table 7.3). This energy for H∗∗

2 is still ∼1.4 eV more stable

than two isolated H0
BC atoms [194]. Although this defect is less stable than H∗

2, it
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a b µ+ H+ D+ T+

Cluster

28 28 A2u 5646.2 Eu 943.0 A2u 1903.5 A2u 1353.1 A2u 1110.7

28 29 A1 5646.2 E 943.0 A1 1903.3 A1 1352.8 A1 1110.4

28 30 A1 5646.1 E 943.0 A1 1903.1 A1 1352.6 A1 1110.1

29 29 A2u 5646.1 Eu 943.0 A2u 1903.1 A2u 1352.6 A2u 1110.1

29 30 A1 5646.1 E 943.0 A1 1903.0 A1 1352.4 A1 1109.8

30 30 A2u 5646.0 Eu 943.0 A2u 1902.8 A2u 1352.1 A2u 1109.5

Supercell

28 28 A2u 6348.7 Eu 557.7 A2u 2141.4 A2u 1523.1 A2u 1250.9

28 29 A1 6348.6 E 557.1 A1 2141.2 A1 1522.8 A1 1250.6

28 30 A1 6348.5 E 556.7 A1 2141.0 A1 1522.5 A1 1250.2

29 29 A2u 6348.5 Eu 556.9 A2u 2141.0 A2u 1522.5 A2u 1250.2

29 30 A1 6348.4 E 556.8 A1 2140.8 A1 1522.2 A1 1249.8

30 30 A2u 6348.4 Eu 556.4 A2u 2140.6 A2u 1521.9 A2u 1249.5

Table 7.5: Vibrational modes, cm−1, of several different isotopic combinations of

aSi–H+–bSi in silicon, calculated in the Si98H78 cluster or 64 atom simple-cubic su-

percell. The muon pseudo-isotope displays an additional E mode above the Raman

edge absent for the other isotopes. The hydrogen mode calculated by the cluster

code to lie at 1903.5 cm−1 is within ∼ 100 cm−1 of the observed vibrational mode at

1998 cm−1 [180], and displays a shift of less than 1 cm−1 with variation in the mass

of the neighboring silicon atoms, consistent with the lack of experimental resolution

of such lines.
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a b mu0 H0 D0 T0

28 28 A2u 4128.4 Eu 1765.9 A2u 1389.7 Eu 604.2 A2u 986.3 A2u 808.3

28 29 A1 4128.3 E 1765.8 A1 1389.6 E 604.0 A1 986.1 A1 808.1

28 30 A1 4128.3 E 1765.8 A1 1389.6 E 603.9 A1 986.0 A1 808.0

29 29 A2u 4128.3 Eu 1765.8 A2u 1389.5 Eu 603.9 A2u 986.0 A2u 808.0

29 30 A1 4128.3 E 1765.8 A1 1389.5 E 603.7 A1 985.9 A1 807.8

30 30 A2u 4128.2 Eu 1765.8 A2u 1389.4 Eu 603.6 A2u 985.8 A2u 807.7

Table 7.6: Vibrational modes of several different isotopic combinations of aSi–H0

–bSi in silicon, calculated in the Si98H78 cluster. The proton and also the muon

pseudo-isotope display an additional E mode above the Raman edge absent for the

other isotopes. The energy of the A transitions is sufficiently large to ionize the

Ec − 0.16 eV level of 1H0 [193], effectively preventing the observation by IR, but

the lower energy Eu mode of 1H0 may be observable.

may exist as a metastable species if the barrier to conversion into H∗
2 is large enough.

The barrier between H∗∗
2 and H∗

2 ∼ 0.7 eV. During the diffusion path, the hydrogen

atom hops into a neighboring Si–Si bond, as shown in figure 7.1b. This structure

is a weak local minimum, and can be relaxed as a separate structure. This allows

an alternative method to be used to calculate the diffusion barrier. To simulate

the migration of an atom through a chosen set of fully optimized local minima,

the structure was relaxed at points along the vector defining the direct trajectory

connecting neighboring metastable sites, while simultaneously modifiying the force

experienced by the atoms such that the dot product of the new force with the

constraint vector is zero. The energy of this trajectory is shown in figure 7.1.

An alternative dimer structure [195], consists of two equivalent hydrogen atoms

sharing a common bond-centered site with C2h symmetry. To compare the prop-

erties of this dimer against the observed spectra we simulate this structure in the

Si98H78 cluster or MP-23 54 atom supercell. There are two possible forms of this

defect with the hydrogen atoms either staggered or eclipsed to the neighboring Si–Si

bonds (see figure 7.2). Neither of these structures possess levels in the gap. We

find the staggered form to be ∼ 0.3 eV higher in energy than the H∗∗
2 structure.
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1H1H 2H1H 2H2H

D3d C3v D3d

cluster A2u 2019.8(0.0528) A1 2017.8(0.0256) A2u 1452.4

A1g 2015.7(0.0) A1 1451.2(0.0049) A1g 1450.0

Eu 809.8(0.1838) E 808.3(0.0834) Eu 576.4

Eg 806.8(0.0) E 575.4(0.0436) Eg 574.4

supercell A1g 1880.0 A1 1877.2 A1g 1348.6

A2u 1874.2 A1 1347.0 A2u 1345.5

Eg 762.5 E 760.6 Eg 545.5

Eu 758.7 E 543.8 Eu 542.2

Expt. A 1792. ND 1307.

A∗ 1607.6 ND ND

E 812.4 ND 581.

Table 7.7: Calculated and experimental modes of H∗∗
2 , cm−1, the A∗ mode is the

A overtone referred to in the text, several of the modes marked ND have not been

detected. Frequencies from the Si98H78 cluster and 54 atom supercell calculations

are shown with the character of the vibrational modes. η2

M
is shown in brackets

for modes in the cluster calculation, i.e., the square of the effective charge over the

mass of the oscillator in e2/a.m.u., only the A2u and Eu modes are infrared active.

The overtone mode must be of symmetry A2u and consists of a mixture of the Eu

and Eg modes.
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Figure 7.2: The a) staggered and b) eclipsed forms of the alternative dimer. Both

structures are electronically inactive. The eclipsed structure is ∼ 0.1 eV higher in

energy than the staggered form, giving this as a barrier to rotation for this dimer.

The vibrational modes of the staggered form are shown in table 7.8.

The eclipsed structure is found to be ∼ 0.1 eV higher in energy than the staggered

form, implying that the dimer can easily rotate leading to effective D3d symmetry.

For the fixed, staggered, form of the dimer the vibrational modes, as calculated in

the same supercell as H∗∗
2 , are shown in table 7.8. The IR active vibrational modes

of this structure do not match those observed for H∗∗
2 , particularly the low lying Au

mode which is a singlet, whereas the experimental mode is a doublet. Even if the

structure rapidly rotates to give an effective symmetry of D3d, this Au mode cannot

explain the observed IR active doublet unless there is another nearby mode of Bu

symmetry to mix with this Au vibration. These calculations find no such Bu mode

above the Raman edge of the silicon lattice. Additionally, the large, ∼ 14 cm−1,

shift of the high-frequency Bu mode of this defect in the isotopically mixed case is

inconsistent with the absence of a distinct mixed mode of the observed dimer.

7.4 Summary

The calculations have shown that modes detected at 1792 cm−1 and 812 cm−1 are

probably due to a new form of hydrogen dimer, labelled H∗∗
2 . Here, the H atoms are

located at AB sites to a common Si–Si bond. The high D3d symmetry of the defect
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1H1H 2H1H 2H2H

C2h C1h C2h

Bu 1963.9 A′ 1950.2 Bu 1408.7

Ag 1936.2 A′ 1399.7 Ag 1390.7

Ag 1080.9 A′ 937.6 Ag 765.3

Au 566.2 A′′ 563.9 Au 520.2

Bg 562.3 A′′ 514.3 Bg 513.3

Table 7.8: Modes of the alternative dimer [195] as shown in figure 7.2a, calculated

using the 54 atom supercell with 23 k-points. This structure is ∼0.3 eV higher in

energy than H∗∗
2 , and the only infrared active modes (Bu and Au) do not match the

observed properties of H∗∗
2 (as shown in table 7.7).

makes only a few of the possible modes infrared active. The defect is electrically

inert and appears to be formed just before H∗
2.

Like, H∗
2, the formation mechanism of H∗∗

2 is not understood. In low temperature

proton implanted material, H appears to form almost exclusively H+
BC defects. This

is to be contrasted with muon implantation where Mu0 defects are prominent and

may reflect the different irradiation damage in the two case. Proton irradiation

creates V− and V2− defects. It is difficult to see how neutral dimers can form,

without H+ being trapped by V− or V2− first.

Subsequent reactions with interstitials must be very rapid as modes of VH2 or

VH are not detected at this stage. Nevertheless, these reactions can lead to H∗∗
2

and H∗
2 formation but further work is necessary to unravel the mechanisms.
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Chapter 8

Calculations upon interstitial silyl and

silane molecules in silicon

8.1 2222 cm−1 – vacancy or interstitial related?

Numerous infrared absorption lines associated with hydrogen have been observed

by various experimental groups [196], with those related to complexes of native de-

fects with hydrogen being particularly common in irradiated and proton implanted

material.

A large number of infrared absorption lines have been observed in the range

1800 – 2300 cm−1 after proton implantation, which shift downwards in frequency

by ∼
√

2 in deuteron implanted material [197]. This implies that the modes are due

to the stretch in covalent bonds between hydrogen and silicon, since this frequency

range is near to that of the Raman active A1 mode at 2187.0 cm−1 and the IR and

Raman active T2 mode at 2190.6 cm−1 of the isolated silane molecule [198].

One particular infrared line observed at 2210 cm−1 in room temperature mea-

surements, but rising to 2222 cm−1 on cooling to 10 K, has been a source of dispute

within the literature. Different workers have assigned this line (and subsequently a

class of related defects) to two distinct types of native defects: namely either to a

fully hydrogenated lattice vacancy, VH4 [199], or to a Si interstitial bonded to four

interstitial hydrogen atoms as in the molecule SiH4 which has been trapped within

the Si lattice.

Early infra-red absorption studies [196] on irradiated Si containing both H and

D, found that the 2222 cm−1 line was consistent with a defect of Td symmetry and

containing four H atoms bonded to Si. It was also suggested that, as this mode was

close to those of the silane (SiH4) molecule, the defect consisted of this molecule

lying at the Td interstitial site [200]. Confirmation that the defect had Td symmetry
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came from uniaxial stress measurements [201].

Subsequent ab initio calculations were consistent with an assignment of the

2222 cm−1 mode to the fully hydrogenated vacancy, VH4. The calculated T2 stretch

frequencies obtained by two different groups [201, 202] at 2319 and 2334 cm−1

respectively lie within 120 cm−1 of the observed line. Moreover, the calculations

were able to predict that the infra-red inactive, but Raman active, A1 mode lies

above the T2 mode. This was confirmed by observation of an infra-red active mode

for the VH3D defect lying above 2222 cm−1 [201]. Indeed, assuming this assignment,

infra-red [203] and electron paramagnetic studies [204] on low temperature proton

implantation experiments have indicated that VHn (n < 4) and VmHn (m > 1) are

readily formed. Naturally, the lattice damage caused by proton implantation creates

both vacancies and interstitials and both defects contain unsaturated Si bonds which

would be expected to complex with H. Further studies, both theoretical [205] and

experimental [182], did indeed reveal that a bonded interstitial Si atom can complex

with H. Moreover, the evidence that lines at 1986.5 and 1989.4 cm−1 and assigned

to a [100] oriented split-interstitial which has trapped two H atoms is overwhelming

as the effect of uniaxial stress, and the effect of isotopic substitution, leads to a

detailed model entirely consistent with both the ab initio theory and experimental

data. There is then no evidence from these studies that absorption lines arising

from (SiH4)i are present.

However, the assignment of the 2222 cm−1 mode to VH4 has recently been

questioned by Suezawa [206, 207]. IR studies on Si grown in a H-atmosphere reveal

the 2222 cm−1 band whose integrated intensity increases with B, C and Au doping.

These elements are assumed to lead to an increase in the production of Sii which

could then lead to increased concentrations of (SiH4)i. It is known that interstitial

related A- and B-swirl defects are produced during the growth of Si doped with C

and B while vacancy related D-defects are suppressed [208]. Specifically, in float-

zone samples with [C] = 5×1016 cm−3 or [B] = 1.5×1016 cm−3, the intensity of the

2222 cm−1 band was enhanced relative to material doped with 5 × 1018 cm−3 Sn.

Although, this is consistent with the idea that the 2222 cm−1 band is interstitial

related, this does not provide irrefutable evidence. It is known that both B and C

react with interstitials via a kick-out mechanism, moving from substitutional sites
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to interstitial positions themselves [209, 210] and so removing interstitials from the

lattice. Similarly, Sn can trap vacancies below 180 ◦C [211, 212] and this then

might prevent VH4 being formed in the Sn-doped material. It is more difficult to

understand whether gold-doping should act to remove interstitials from the lattice,

since Au normally sits at substitutional sites in the lattice, and so would be expected

to remove vacancies from the lattice instead of interstitials.

Moreover, arguments about (SiH4)i rather than VH4 being produced in Si con-

taining impurities with smaller covalent radii than Si must be treated with reserva-

tion. It is known that VH4, unlike the vacancy, compresses the surrounding lattice

since VH4 is 67% larger than the vacancy [201]. Such an expansion can be argued

to favour the production of VH4 in material doped with elements with small atomic

radii such as B or C.

Further work by Suezawa [213, 214] demonstrates that there is a growth in the

intensity of the 2222 cm−1 band around 180 ◦C which is correlated with a decrease

in the intensity of the 0.34 eV optical transition [215] due to V −
2 . The suggestion

is made that Si interstitial clusters break up around this temperature releasing in-

terstitials which are trapped by divacancies, or hydrogen leading to (SiH4)i defects.

Such experiments once again are capable of alternative interpretations, where diva-

cancies are thermally dissociated releasing vacancies which are subsequently trapped

by hydrogen forming VH4.

In addition to the controversy in the assignment of the 2222 cm−1 line, the center

responsible for the 2190.3 and 2166.1 cm−1 lines – previously assigned to VH3 [201,

203] – has been reassigned by Suezawa [213] to SiH3.

8.2 Calculations

Given these contrary viewpoints, there is a clear need to investigate theoretically

the structure and vibrational properties of the interstitial silane and silyl molecules

to ascertain whether assignment to the 2222 and 2166 cm−1 modes is credible.

The defect molecules were each inserted into a Si84H64 cluster centered on the

tetrahedral interstitial site. The wave-function basis consisted of independent s and

p Gaussian orbitals, with four different exponents, sited at each Si site and three at
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each H atom of the molecule. A fixed linear combination of two Gaussian orbitals

was sited on the terminating H atoms. In addition, single Gaussian functions were

placed at each Si–H bond of the molecule and every Si–Si bond center. The charge

density was fitted with five independent Gaussian functions with different widths

on each Si atom, and four (three) on the central (terminating) H atoms. Two

extra Gaussian functions were placed at each bond center. All atoms, except the

terminating H ones, were allowed to relax by a conjugate gradient method. The

second derivatives of the energy were found for the atoms of the interstitial molecule.

As a preliminary to calculating the vibrational properties of interstitial silane,

the isolated molecule in free space was simulated using the same type of basis. The

calculated quasiharmonic modes are shown in table 8.1. It is worth noting that

whilst the one-dimensional A1 modes match experiment well (within ∼ 5 cm−1) in

the isotopically pure cases, the higher dimensional (T2 and E) modes and those of

the isotopically mixed molecules are of poorer agreement (∼ 60 cm−1). This leads

to an incorrect ordering of some of the vibrational levels, when compared with

experiment.

There are two forms of interstitial (SiH4)i with Td symmetry, with the four Si–

H bonds aligned either towards the four nearby hexagonal sites, or alternatively

towards the four neighbouring Si atoms. The first configuration is calculated to be

9.3 eV lower in energy than the second. This is due to strong interaction between

the molecular hydrogen atoms and the nearby silicon atoms in the surrounding cage,

which are forced close together in the second configuration.

To test the convergence of the molecular properties with respect to cluster size,

the lower energy structure was re-calculated in a cluster with all of the atoms,

including the surface terminating hydrogen allowed to relax. In a cluster of this

size, the fixed-surface relaxation could be expected to give an unphysically rigid

surrounding to the molecule, and the relaxed surface cluster would give an exces-

sively flexible model for the surrounding crystal, hence the two types of simulation

will give results lying on either side of the true defect properties. Similarly, to test

for effects of increasing the basis, the calculations were repeated in the 148 (plus

defect) atom cluster with fixed surface, but with a larger basis using eight differ-

ent exponents sited at each Si atom for both the wavefunction and charge density,
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SiH4 (Td) SiH3D (C3v) SiH2D2 (C2v) SiHD3 (C3v) SiD4 (Td)

Isolated (SiH4)g

2190(2187.0)A1 2174A1 2156(2198)A1 2138(2182)A1 1549(1545)A1

2123(2190.6)T2 2122E 2121(2183)B2 1546(1573)A1 1541(1597)T2

1546A1 1545(1587)A1 1542(1598)E

1544(1601)B1

Trapped

Theoretical(SiH4)i

1812(A1) 1809(A1) 1806(A1) 1803(A1) 1312(T2)

1802(T2) 1801(E) 1801(B2) 1313(E) 1281(A1)

1306(A1) 1314(B1) 1313(A1)

1297(A1) 1289(A1)

Experimental(XH4)

2221.9(T2) 2250.4(A1) 2243.5(A1) 2236.1(A1) 1616.6(T2)

NIR(A1) 2223.5(E) 2225.4(B1) 1636.1(A1) NIR(A1)

1620.3(A1) 1628.3(A1) 1615.6(E)

1614.6(B2)

Table 8.1: Calculated quasi-harmonic frequencies (cm−1) for the fundamental vibra-

tional transitions of isolated, non-rotating, silane molecules (experimental frequen-

cies [198, 216] are shown in brackets), and the low energy form of trapped interstitial

silane at the Td site, as compared with observed frequencies for the tetrahedral XH4

defect [203] (note: the two entries marked NIR are infrared inactive modes).

in addition, a second Gaussian was placed between every bonded pair of atoms.

The effects on the molecular vibrational frequency of these changes are shown in

table 8.2, the frequency is seen to be converged to within ∼ 100 cm−1 with respect

to both cluster size and basis.

8.3 Results

The calculated quasiharmonic vibrational modes of the low energy form of inter-

stitial silane are shown in table 8.1, and compared with the experimental XH4
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mode Fixed Surface Relaxed Surface Increased Basis

A1 1812 1861 1877

T2 1802 1755 1829

Table 8.2: Effect of allowing free-relaxation of the surface of the Si84H64 cluster, or

increasing basis size on the higher frequency modes of interstitial silane, as described

in the text.

defect modes [203] The calculated frequencies for the interstitial molecule differs

from experimental values by > 300 cm−1 for all modes, which is large enough to be

reasonably confident in ruling out SiH4 as being the defect species responsible.

To further test the assignment of the 2222 cm−1 to interstitial SiH4, the energy

of this defect was compared against that of two experimentally known defects with

an equivalent stoichiometry. The previously identified hydrogen saturated split–

interstitial [182] and the interstitial hydrogen molecule [143] were chosen as obvious

candidates for competing defects in the material. The calculated energy difference,

using the same basis as the interstitial–hydrogen complexes, between (IH4)i and

(IH2)i + (H2)i (with an infinite separation between the components) is 2.74 eV in

favour of (IH2)i + (H2)i.

We consider next the assignment of the 2190.3 and 2166.1 cm−1 lines to (SiH3)i.

There are four possible structures for trigonal interstitial silyl SiH3 molecules with

C3v symmetry. The calculated relaxed forms of the neutral defect are shown in

figure 8.1. Structure A has the three equivalent hydrogen atoms aligned towards

three of the nearby hexagonal sites, with the molecular dangling bond pointing

towards the fourth hexagonal site. Structure B has the dangling bond pointing

instead towards the nearby silicon atom in the opposite direction from the hexagonal

site. Structures C and D are similar to A and B respectively, but rotated about the

molecular three-fold axis so that the hydrogen atoms approach nearby Si–Si bonds

closely. The relative energies and quasiharmonic modes of the four structures,

relaxed in the positive, neutral and negative charge states are shown in table 8.3.

The calculated vibrational modes for the interstitial silyl molecule, for both

of the degenerate low–energy A and B structures and in all three charge-states,
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c

a

d

b

Figure 8.1: Relaxed structures for the neutral form of the four distinct C3v config-

urations of interstitial SiH3

differ from experiment by at least 300 cm−1. Similarly for the intermediate energy

(∼ 1.6 eV above ground state for all charges) C structures, again all vibrational

modes do not match the experimental values. Only the high energy (∼ 4.2 eV above

the lowest energy structures for the three charge states) D structure has modes that

are close to the experimental values, but due to the high energy of this structure,

it must be discounted as a possible candidate for the defect.

So for both the silane and silyl molecules, the calculated vibrational frequen-

cies differ from the experimental observed spectra by more than 300 cm−1 for all

structures, with the exception of the very high energy D structure. Taken together,

these results rule out SiH4 and SiH3 molecules as the candidates for the defects

responsible for the 2222 cm−1 and 2190.3/2166.1 cm−1 groups of lines.

The large downward shifts in the H stretch frequencies for the interstitial mole-

cules compared with free molecules are reminiscent of the 540 cm−1 red-shift found

for the stretch mode of the interstitial H2 molecule (see chapter 5). This is believed
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Calculated A B C D

+1

Energy 0.21 0.00 1.84 4.37

SiH3 modes 1853 (E) 2045 (E) 1643 (A1) 2373 (A1)

1551 (A1) 1949 (A1) 1194 (A1) 2239 (E)

1067 (E) 1155 (A1)

0

Energy 0.00 0.04 1.61 4.29

SiH3 modes 1668 (E) 1849 (E) 1844 (A1) 2317 (A1)

1371 (A1) 1629 (A1) 1369 (A1) 2162 (E)

1228 (E)

1161 (E)

-1

Energy 0.00 0.00 1.48 4.16

SiH3 modes 1390 (E) 1032 (E) 1971 (A1) 1873 (A1)

1188 (A1) 1006 (A1) 1519 (A1) 1271 (E)

1513 (E)

1401 (E)

Experimental: 2190.3 (A1) 2166.1 (E)

Table 8.3: Relative energies (eV) and modes (cm−1) of the four C3v configurations

of interstitial SiH3 in the +1, neutral and -1 charge states, and the experimental

frequencies of XH3

to arise from the screening of the molecular proton-electron attraction by the lattice

charge distribution partially filling the molecular anti-bonding orbitals, leading to

a weakened H–H bond. A similar mechanism may operate in the present case and

suggests a universal effect.
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8.4 Summary

The ab initio calculations offer no support to the idea that the 2222 cm−1 line

originates from an interstitial SiH4 molecule. The frequency of the interstitial silane

molecule is found to lie around 1800 cm−1. There are no examples apparent in the

literature of modes in this region due to tetrahedral defects and hence we can

conclude that such interstitial molecules do not exist in detectable concentrations.
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Chapter 9

Hydrogen complexes with subsitutional

carbon

9.1 Introduction

As-grown samples of silicon contain carbon. If the material has not been irradiated,

this impurity is present at isolated substitutional sites in the lattice [217]. Such

carbon is electronically inactive in silicon, but will readily complex with other atoms

such as hydrogen [218], oxygen [217] or interstitial carbon [219] to form electrically

active defects.

Complexes formed with single hydrogen atoms were detected by DLTS experi-

ments by Endrös et al. [218, 220]. The CH pair was shown to possess a deep donor

level (E3) at Ec − 0.16 eV, there was an initial concern that this was very similar

to the E ′
3 centre at Ec − 0.17 eV [221] (due to HBC), but this was resolved by

double-correlation DLTS [222].

The symmetry of the centre responsible for the E3 donor carbon hydrogen pairs

were measured to be trigonal [223] by uniaxial stress. The stability of the defect

responsible for this level appears to be charge state dependent. In the dark the

centre anneals out at around 275 K with an activation energy of 1.33 eV [220,

224–226]. Based on an analysis of the effects of biasing the Schottky-structure

used for DLTS, it was suggested that the C–H complex dissociates by capturing

an electron, changes its charge state [220, 227], and then decomposes from this

neutral state with an activation energy of 0.5 eV [228, 229]. It has been suggested

that the structure of this complex is a bond centred hydrogen atom between the

substitutional C and a neighbouring Si atom.

A second carbon hydrogen complex, H1, has also been observed, with a hole

trap at Ev + 0.33 eV in p-type silicon [227, 230]. Unusually, this centre does not
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stability (K) 12C H 13C H 12C D 13C D

120–220 1884.6 1884.3(-0.3) 1362.5(-522.1) 1362.3(-522.3)

120–220 595.5 578.3(-17.2) 596.0(0.5) 577.8(-17.7)

120-220 660.5 640.5(-20.0) 660.0(-0.5) 639.8(-20.7)

20–150 – – 1363.3 1363.3(0.0)

Cs
12C 13C 14C

– 607 589(-18) 573(-34)

HBC H+ D+

9–200 1998 1449(-549)

Table 9.1: Observed vibrational modes, cm−1, of carbon-hydrogen related defects,

including vibrational frequencies of substitutional carbon [231, 232], and bond-

centred hydrogen [180].

display the Poole-Frenkel effect in fields of less than 6×105 Vm−1, i.e., an electrical

field does not cause shift in the activation energy of the level, suggesting that H1 is

not an acceptor. In the dark this complex is stable to 100 ◦C, and anneals out with

an activation energy of about 1.7 eV. This complex is insensitive to illumination

or reverse biasing, unlike the E3 centre. Kamiura et al. provisionally ascribed

H1 to an anti-bonding configuration of hydrogen attached near to substitutional

carbon [227].

So far, there has been only one infrared absorption study of CsHi complexes

by Hoffman et al. [233]. After proton (or deuteron) implantation at ∼20 K and

annealing at 180 K, two correlated modes at 596 (595) and 1884 (1363) cm−1 were

observed. These modes are close to those of un-complexed Cs and HBC , suggesting,

in contrast to the DLTS data, that the structure observed does not have a direct

C–H bond. The effective charge of the hydrogen related mode is found to be ∼ 2.2 e

which is close the effective charge of H+
BC which is 1.8 e [126]. In addition a weaker

mode at 660.5 cm−1, which is correlated to the 596 and 1884 cm−1 modes, has also

recently been observed [234]. The C–H modes observed so far, and the temperature

range over which each is present are summarised in table 9.1.

There are four obvious possible structures for CsHi that have been considered
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theoretically by various groups. Two structures are similar to bond-centred hydro-

gen, sited between the substitutional carbon and a nearest neighbouring Si atom,

with a bond from the H to either carbon or alternatively the Si atom, and these are

denoted as CHI
BC and CHIa

BC . The other two are hydrogen anti-bonded to the back

of the Cs–Si structure on either the carbon or the silicon end of the bond, i.e., CHI
AB

and CHII
AB, the H–X bond in these structures may be sufficiently long to place the

H atom at the near-by tetrahedral (Td) site. The sites near to a substitutional

carbon atom are shown schematically in figure 9.1.

Early work was performed on the neutral CH pair at the HF level of theory by

Maric et al. [235, 236], they found that the CHIa
BC and CHI

AB structures were the

most stable, with CHIa
BC being the lowest by 0.05 eV. Both structures gave rise to

defect levels in the gap. The other structures were found to be considerably higher

in energy.

This contrasts strongly with later LDA calculations by Kaneta et al. [237, 238],

which found CHI
BC to be both the ground state structure and also the only stable

bond-centred structure that the hydrogen adopted near Cs. After a combination

of further HF and post-HF cluster calculations, and also DFT supercell simula-

tions [239] it was shown that the ground structure of the complex in the 0 and

+ charge states was sensitive to the effects of electron correlation (which would

naturally be absent from pure HF calculations). In these calculations, the effect of

electron correlation was found to be to stabilise the CHI
BC structure over CHIa

BC in

both the 0 and + charge states. The CHI
AB structure was found to be metastable

in both charge states.

Further LDA calculations were performed by Kaneta et al. [237] to investigate

the stability of the various structures for positive, neutral and negative charge

states. CHI
BC was found to be the most stable structure for all three charge states

(see table 9.2), with binding energy of 1.20 eV in the neutral structure. In the

negative charge state, the structure with H− sited at the tetrahedral site near a Si

neighbouring the Cs was found to be only 0.06 eV higher in energy than the ground

state, suggesting that the H−
BC structure could dissociate via this intermediate. The

two metastable HAB structures were found to be nearly degenerate in energy (0.57

and 0.61 eV for CHII
AB and CHI

AB respectively).
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Structure Kaneta et al. [237]. Leary et al. [240].

+ 0 - + 0 -

CHI
BC 0.00 0.00 0.00 0.00 0.00 0.04

CHI
AB 0.70 0.60 0.30 0.49 0.33 0.00

CHIa
BC Unstable in all calculations

CHII
AB 0.71 0.57 0.06 1.97 1.12 0.79

Table 9.2: Relative energies (eV) for the four CsHi structures in silicon considered

by other authors.

Leary et al. [240] also performed cluster based LDA calculations on the CH pairs

in an 86 atom system. The relative energies of the structures considered are also

summarised in table 9.2. As with the work of Kaneta et al., CHI
BC was found to

be the most stable structure in the neutral and +1 charge states, but HABCs was

found to 0.04 eV lower in energy for the -1 charge state. These calculations found

the nearly degenerate CHI
AB and CHII

AB structures of Kaneta et al. to be split in

energy by 0.75 eV. The binding energy for the neutral complex was calculated to

be 1.01 eV to form CHI
BC from separated Cs + HBC.

9.2 Calculations

The theoretical studies in this work use local density-functional formalism as im-

plemented in the aimpro cluster code [21].

The defects were each inserted into a Si162H103 cluster centered on a Si atom.

The wave-function basis consisted of independent s and p Gaussian orbitals, with

four different exponents sited at each Si or C atom, and three at each H atom of

the dimer. A fixed linear combination of two Gaussian type orbitals was sited on

the terminating H atoms. In addition, a Gaussian function was placed at the center

of each bond in the cluster. The charge density was fitted with five independent

Gaussian functions with different widths on each Si atom, five on each carbon atom,

and four (three) on the central (terminating) H atoms, with two extra Gaussian
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Figure 9.1: Labels of atoms around a substitutional carbon atom in the silicon

lattice. A chain of atoms along [110] are marked to show the unique carbon hydrogen

configurations. CHI
BC is sited between the carbon atom and Si1 (but closer to the

C atom), CHI
AB is anti-bonding on the back of the C atom away from Si1. CHIa

BC

is similar to CHI
BC but displaced towards Si1. CHII

AB is anti-bonding on the back

of Si1 away from the C. CHII
BC lies between Si1 and Si5, CHIIIa

BC lies between Si5 and

Si7, and CHIIIb
BC is between Si5 and Si8.

functions placed at each bond center. All atoms, except the terminating H ones,

were allowed to relax by a conjugate gradient method.

The normal modes of the system were examined using the quasi-harmonic second

derivatives of the energy, which were evaluated for the defects using the method

described in Ref. [21]. The second derivatives were calculated directly for the C and

H atoms, and also neighbouring silicon atoms with the rest of the dynamical matrix

filled using a previously evaluated Musgrave-Pople potential. The effective charges

of selected modes were evaluated by finding the change in the total dipole moment

of the cluster as the atoms were displaced according to the normal coordinates of

each of the modes.

Additionally, several many-body electronic transitions were obtained by apply-

ing the empirical correction method of Resende et al. [34] to the Slater electronic
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transition state [12] for each of the defects. The reference defects chosen for this

method were the 0/+ transition of HBC at Ec − 0.17 e, [221] and in the absence of

a −/0 transition between similar structures of hydrogen, the carbon interstitial at

Ev − 0.1 e [241].

Further calculations have also been performed [242] using Si68H66 clusters, with

a larger basis of 8 wavefunction and charge-density Gaussian functions on every

carbon and silicon atom, with the same basis as used above for the H atoms, and

three bond-centre functions for both basis sets.

9.3 Results

Si161H103CH Si67H66CH

Structure + 0 +

CHI
BC(C3v) 0.00 0.00 0.00

CHI
AB(C3v) 0.44 0.40 –

CHIa
BC(C3v) Unstable

CHII
AB(C3v) 0.43 0.39 –

CHII
BC(C1h) 0.63 1.31 0.20

CHIIIa
BC (C1) 0.87 – 0.20

CHIIIb
BC (C1h) 0.76 – 0.20

Isolated Cs and Hi 0.83 1.56 –

Table 9.3: Relative energies (eV) for the CH defects considered in the Si161H103CH

and Si67H66CH clusters.

The relative structural energies of the structures simulated are presented in

table 9.3. The modes obtained in the large-basis cluster calculations are shown in

table 9.4. The vibrational mode of isolated H+ is found to lie within 150 cm−1 of

experiment in these calculations.

The CHI
BC structure is found to be the most stable in both the neutral and +1
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12C, H 12C, D 13C, H 13C, D

H+ 1852.1 1316.2(-535.9)

CHI+

BC(C3v) 2624.1 1928.1(-696.0) 2616.3(-7.8) 1916.8(-707.3)

1424.7 1049.1(-375.6) 1421.0(-3.7) 1042.8(-381.9)

1413.3 1042.0(-371.3) 1409.4(-3.9) 1035.4(-377.9)

566.1 555.3(-10.8) 554.1(-12.0) 546.2(-19.9)

556.6 548.9(-7.7) 548.9(-7.7) 543.2(-13.4)

555.2 545.9(-9.3) 544.0(-11.2) 537.7(-17.5)

CHII+

BC(C1h) 1795.0 1275.3(-519.7) 1794.9(-0.1) 1275.3(-519.7)

642.6 642.5(-0.1) 623.7(-18.9) 623.5(-19.1)

574.1 571.6(-2.5) 561.8(-12.3) 559.1(-15.0)

558.6 555.4(-3.2) 546.5(-12.1) 542.8(-15.8)

CHIII+a
BC (C1) 1802.3 1282.0(-520.3) 1802.3(0.0) 1282.0(-520.3)

823.2 653.2(-170.0) 823.2(0.0) 634.8(-188.4)

652.9 625.8(-27.1) 633.8(-19.1) 625.0(-27.9)

605.0 605.0(0.0) 588.7(-16.3) 588.7(-16.3)

597.3 597.2(-0.1) 581.0(-16.3) 580.9(-16.4)

CH
III+b
BC (C1h) 1706.8 1214.7(-492.1) 1706.8(0.0) 1214.7(-492.1)

952.5 712.4(-240.1) 952.5(0.0) 712.0(-240.5)

661.2 660.3(-0.9) 641.6(-19.6) 641.0(-20.2)

609.5 609.3(-0.2) 592.7(-16.8) 592.6(-16.9)

597.7 597.6(-0.1) 581.3(-16.4) 581.3(-16.4)

Table 9.4: Local vibrational modes, cm−1, from the cluster calculations with the

larger basis [242] for C-H complexes in Si. Isotopic shifts of the modes are shown

in parenthesis.
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charge states. The vibrational modes (table 9.4) of this structure do not match

those observed, particularly the high frequency stretch and bend modes, which

leads to an increase in the energy of this structure by ∼ 0.1 eV when compared

to the other structures with lower frequency modes, due to the high zero point

energy of the hydrogen related modes. In this cluster calculations, this leads to

this structure being the lowest energy by ∼ 0.1 eV when compared to all of the

other bond-centred structures examined. The question of why this structure is not

observed is resolved by considering the intensity of these hydrogen-related mode

which, as with C–H bonds generally, is weak due to the small effective charge, and

will be further reduced by a factor of three due to the trigonal symmetry [63]. The

large basis cluster calculations find that the square of the effective charge over the

mass of the oscillating mode for the high-frequency stretch mode at 2411 cm−1

is 0.11 e2/a.m.u. (for the smaller basis calculations, the effective charge of this

mode is only 0.025 e2/a.m.u. for this mode, suggesting that the basis used in these

calculations is far from converged for the C atom).

Perhaps surprisingly, the 0/+ electrical level of this structure is found to lie

at Ev + 0.22 e, in close agreement to the H1 DLTS centre. The highest occupied

Kohn-Sham level, as shown in figure 9.3, suggests why this should occur, since this

level is principally localised on the dangling-bond like environment at the silicon

atom. If this assignment of the H1 centre is correct, it naturally explains the lack

of a Poole-Frenkel effect at this centre, since the neutral state of the defect, before

trapping a hole, would be little effected by an applied electrical field.

CHI
AB is found to posses a 0/+ level at the valence band, and a −/0 level at

Ec − 0.33 eV, implying it is always neutral or negative.

The 0/+ level of the CHII
AB centre is found to be well below the valence band,

hence again this centre is only neutral or negative. The −/0 transition of this defect

is found to lie at Ev + 0.27 e (table 9.5).

CHII+

BC is found to posses a set of vibrational modes at 1795.0, 642.6, and

574.1 cm−1 (table 9.4) which agree reasonably well with the observed modes. This

structure gives the closest to experiment in terms of absolute frequencies and iso-

topic shifts. Unlike CHI+

BC , the high frequency mode at ∼1940 cm−1 is found to be

intense, with the square of the effective charge over the mass of the oscillating mode
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Structure transition type stability

CHI
BC Ev + 0.22 0/+ –

CHI
AB Ev 0/+ –

CHII
AB Ev − 0.33 0/+ –

CHII
BC Ec − 0.21 0/+ –

CHIIIa
BC Ec − 0.27 0/+ –

CHIIIb
BC Ec − 0.24 0/+ –

CHI
AB Ec − 0.33 −/0 –

CHII
AB Ev + 0.27 −/0 –

E3 Ec − 0.16 0/+ < 273 K

H1 Ev + 0.33 hole-trap <100 ◦C

Table 9.5: Electronic transitions of several structures compared against the observed

E3 and H1 DLTS lines [218, 230], the thermal stability of the defects is given for

the complex in the dark. The levels are calculated by applying the empirically

corrected transition state method of Resende et al. [34] to the Si162H103 cluster,

with the Ec − 0.17 e transition of interstitial hydrogen chosen as the 0/+ marker,

and in the absence of a H −/0 transition between similar structures, the Ev−0.1 e

transition of Ci [210, 243].

being 1.02 e2/a.m.u. The 0/+ level of this defect is found to lie at Ec−0.21 with the

larger basis calculation, in good agreement with that of E3, but it is noted at this

stage that E3 is observed to be > 50 K more stable than the observed vibrational

complex. The question of why E3 has been suggested to be due to a trigonal centre

(if for a moment this structure is assumed to be responsible for E3), can perhaps

be resolved by the observation that the Kohn-Sham state of the highest level in the

neutral charge state is only weakly perturbed from that of the trigonal bond-centred

hydrogen (see figure 9.3).

CHIII+a
BC is found to possess a hydrogen related stretch-mode at 1802.3 cm−1 which
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9. Hydrogen complexes with subsitutional carbon

A B

x

x

xx

Figure 9.2: Isosurfaces of the highest occupied Kohn-Sham state associated with the

neutral carbon–hydrogen defects (shown as black and white atoms respectively), for

the A) C3v nearest-neighbour (CHI
BC) and B) C1h next nearest-neighbour (CHII

BC)

pairs. The wavefunction shown for structure A is largely associated with a single

silicon atom and the back-bonds of that atom, unlike the wavefunction of structure

B which is similar to that for an isolated bond-centred hydrogen atom, but mildly

perturbed by the nearby carbon atom. The dilated Si–H bond in the nearest-

neighbour pair is shown as a dotted line.

shifts in the deuterated case to 1282.0 cm−1. This defect also possesses three carbon-

related modes at 652.9, 605.0 and 597.3 cm−1, all of which have isotopic shifts similar

to the observed modes at 595.5 and 660.5 cm−1. The 0/+ transition of this centre

is calculated to lie at Ec − 0.27, again similar to E3. As with CHII+

BC , this structure

is found to be ∼0.2 eV higher in energy than CHI+

BC in the cluster calculations.

CH
III+b
BC is found to possess a hydrogen related stretch-mode at 1706.8, with three

additional carbon-related modes at 661.2, 609.5, and 597.7 cm−1. Again the DLTS

level of this centre is similar to E3.

139



9. Hydrogen complexes with subsitutional carbon

9.4 Conclusions

It is suggested on the basis of these calculations that the structures responsible for

the H1 DLTS line is a hydrogen atom bound between a substitutional carbon atom

and one of the neighbouring Si atoms, with the observed transition being of 0/+

character. E3 is seen to be similar in properties to hydrogen bond-centred between

two silicon atoms, which themselves are near to a substiutional carbon atom, but

it has not been possible to unambiguously identify the structure responsible for E3.

The vibrational modes of the H1 structure are shown to be unobserved due to their

weak intensity, while those from the structures with hydrogen between two silicon

atoms match the observed vibrational modes reasonably well in all cases, hence

it is difficult to make unambiguous identification. It is suggested that all three

vibrational modes can be explained by a complex of hydrogen between two silicon

atoms near to a substitutional carbon, with perhaps the most likely candidate being

the next-nearest neighbour site.
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Chapter 10

Conclusions and further work

A general summary of the defects investigated is now presented, in addition to

the specific concluding remarks at the end of each chapter. Possible directions for

further work relevant to these defects is also discussed.

While some progress has been made towards understanding the behaviour of

molecular hydrogen within silicon there are still a large number of unresolved ques-

tions about this system. The calculations presented in this thesis, as with the work

of other groups, give a reasonable agreement between the theoretical vibrational

modes and diffusion barriers and those observed for the molecule, accounting well

for the downward shift in frequency of the stretch mode of the molecule due to the

surrounding lattice. The binding between the molecule and interstitial oxygen is

also simulated reasonably well, leading to close agreement with the observed stabil-

ity of the complex. There are a number of problems with these calculations relating

to the low reorientation energy of the molecule both at the isolated Td site and

bound to oxygen, leading to an inability to suggest definite candidates for the two

complexes between Oi and the molecule and perhaps more troubling to produce

agreement with the experimentally observed behaviour of the isolated molecule in

the lattice.

The cause of such problems in simulating the molecule inside the lattice may

lie in a variety of areas. The first possibility to consider is that the molecule is not

“isolated” within the lattice, but is instead complexed with another defect, and per-

haps simulations of hydrogen molecules near other impurities may shed some light

on the nature of the unknown defect. Alternatively, since the rotational barrier for

the molecule is estimated to be of the order of 0.2 eV, it is possible that the error

in the calculations is simply too large to resolve this, but since a variety of methods

have been applied by different groups all to the same effect is seems likely that this

is not the problem. One common feature of all of the calculations so far is that the
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nuclear positions in the simulations have been treated classically as static parame-

ters to be optimised by methods such as conjugate-gradient. It has been suggested

that the dynamics of the molecule may be partly responsible for the difficulty in

describing the system [244] and at least one classical molecular dynamics simulation

is underway on this system to test this idea. Alternatively, the nuclear motions of

the molecule within the crystal may require a quantum mechanical treatment, and

while simulations methods of this type are perhaps less developed, a number of

algorithms have been proposed for treating such systems, typically at large compu-

tational cost [245–247], but several cheaper methods which could be applied to this

system without much additional effort beyond more conventional DFT simulations

have recently appeared [248, 249].

The calculations on the molecule inside open lattice voids or platelets provides

a general guide to the type of structure which would be responsible for the observed

hydrogen species in a gas-like surroundings within silicon, but since the molecular

environment is similar in both types of defect this does not provide a method of

discrimination between the two types of structure. This coupled with the obser-

vation of a third molecular species [154] in an environment intermediate between

the interstitial and open void cases also leads to the question of whether it is pos-

sible to make unambiguous assignments of structures from the molecular stretch

modes, since it would appear as though almost any open lattice structure will trap

hydrogen molecules, which then posses vibrational frequencies somewhere in the

range between that of a molecule inside a dilated cage site near Oi at ∼3800 cm−1

to the open voids at ∼4150 cm−1, particularly when it is realised that even the

most accurate current calculations can have errors of the order of ∼100 cm−1 in the

calculated stretch frequencies. This suggests that consideration of the vibrational

modes of structures like Si–H which would line the inside of such voids is also needed

for identifications to be made, but since such void-related stretch modes seem to

fall into a range of around 200 cm−1 between about 2038 cm−1 for VH1 [204] and

2222 cm−1 for VH4, it would be difficult to perform such assignments purely from

comparison with calculated modes. It is perhaps only in cases where there are large

differences between the calculated and observed modes, as with the proposed IH3

and IH4 models for the 2166/2190 and 2222 cm−1 lines where one can be confident
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in using theory to make definite statements about observed vibrational modes.

A perhaps similar problem of identification is seen with the assignment of V6

related complexes to some of the bound-exciton centres. While the proposed defects

are certainly stable and have properties which are consistent with those observed,

it is difficult to make a direct connection between theory and experiment, since the

properties which can be easily calculated and those which can be readily measured

do not overlap particularly. Again it is perhaps the vibrational modes of hydrogen

at these centres which could be the strongest link between theory and experiment,

and so it is perhaps by correlating the luminescent lines with other experimental

techniques that this assignment can verified. Notwithstanding the perhaps tenuous

identification of V6, there are a large number of impurities other than hydrogen

that should readily complex with this defect, and simulation of complexes between

impurities such as oxygen or transition metals and V6 appears to be a fruitful area of

future work. This is perhaps of particular interest since as the hydrogen containing

complexes are luminescent centres, this demonstrates that V6 related complexes are

capable of emitting light from silicon.

The suggested new hydrogen dimer discussed in this thesis perhaps raises ques-

tions about the dynamics and reactions of hydrogen at low temperatures in silicon.

If this defect is readily formed at low temperatures in implanted material, before

substantial quantities of VH2 or IH2 as is perhaps the case for H∗
2, then alternative

mechanisms to bring two H+
BC together to form neutral dimers must exist. This

suggests in turn that there should be precursor species to the dimers which have not

yet been identified, though it is difficult to think of credible species which can form

before VH2 but contain two hydrogen atoms. The lack of IH2 at low temperatures

suggests that interstitial related reactions do not have significant impact on the

behaviour of H+
BC , perhaps in accordance with the recent suggestion that the AA19

EPR centre is due to I2+ [250] which would tend not to react with other species of

the same charge.

The carbon-hydrogen complexes considered in this thesis may perhaps benefit

from re-examination at a future date when more computer processing power or faster

algorithms become available. Unambiguous resolution of the structure responsible

for the observed vibrational modes would appear to require use of a larger basis in
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combination with cluster or supercell simulations with a larger number of silicon

host atoms than are presently feasible. The question of the form of the defect

responsible for E3 is also somewhat vexing since its electrical properties are similar

to those of the second and third shell carbon-hydrogen structures considered, but it

has been measured to be trigonal in structure. Perhaps investigation of complexes

containing impurity atoms in addition to carbon and hydrogen may provide a better

candidate, but this will perhaps have to wait until the structure is examined by

other symmetry sensitive techniques like EPR (since the neutral form of the defect

is presumably a spin-half centre). It is possible to be more confident about the

defect responsible for the H1 DLTS centre, and this in turn can perhaps shed some

light on the puzzle of whether there is interstitial hydrogen in diamond. If a similar

situation holds for the C–H bonds in hydrogen containing defects in diamond [251],

then hydrogen in this material will be difficult to observe by IR, but can perhaps

instead be found by methods such as DLTS or EPR.
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5568 (1998), were simulated using 1200 atom LDF calculations.

[6] D. R. Bowler and M. J. Gillan, Computer Phys. Comm. 112(2–3), 103 (1998).

[7] M. Born and J. R. Oppenheimer, Ann. Phys. 84, 457 (1927).

[8] D. R. Hartree, Proc. of the Cambridge Philosophical Soc. 24, 89 (1927).

[9] J. C. Slater, Phys. Rev. 35, 210 (1930).

[10] W. Pauli, Z. Phys. 31, 765 (1925).

[11] T. Koopmans, Physica 1, 104 (1934).

[12] J. C. Slater, The Self-Consistent Field for Molecules and Solids, vol. IV

(McGraw-Hill, New York, 1974).

[13] V. Fock, Z. Phys. 61, 126 (1930).

[14] C. C. J. Roothaan, Rev. Mod. Phys. 23, 69 (1951).

[15] J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571 (1954).

145



Bibliography

[16] R. G. Parr, J. Chem. Phys. 20, 239 (1952).

[17] J. A. Pople, J. Chem. Phys. 43, 129 (1965).

[18] M. J. S. Dewar and W. Thiel, J. of the American Chemical Society 99, 4907

(1977).

[19] T. A. Halgren and W. N. Lipscomb, J. Chem. Phys. 58(4), 1569 (1973).

[20] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College,

Philadelphia, 1976), international ed.

[21] R. Jones and P. R. Briddon, The ab initio cluster method and the dynamics

of defects in semiconductors (Academic Press, Boston, 1998), vol. 51A of

Semiconductors and Semimetals, chap. 6.

[22] V. A. Rassolov, J. A. Pople, and M. A. Ratner, Phys. Rev. B 59, 15625

(1999).
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