

UNIVERSITY OF

The interstitial carbon-oxygen center and its hydrogenation

UND

J. Coutinho ^a, R. Jones ^a, P. R. Briddon ^b, S. Öberg ^c, L. I. Murin ^d, V. P. Markevich ^e, J. L. Lindström ^f

^a School of Physics, University of Exeter, Exeter EX4 4QL, UK
^b Department of Physics, University of Newcastle upon Tyne, Newcastle upon Tyne NE1 7RU, UK
^c Department of Mathematics, Luleå University of Technology, Luleå 5-97187, Sweden
^d Institute of Solid Sate and Semiconductor Physics, Minsk 220072, Belarus
^e Centre for Electronic Materials, UMIST, Sackville Street, Manchester M601QD, UK
^f Department of Physics, University of Lund, S-221 00 Lund, Sweden

Previous stress alignment investigations have suggested a model for C_iO_i where the O-atom maintains its approximate bond-centered location. Local vibrational mode spectroscopy and ab-initio modeling are used to investigate this defect. We find new modes whose oxygen isotopic shifts give further evidence for a previously proposed over-coordination of oxygen. Complexes formed by adding both single (C_iO_iH) and a pair of H atoms $(C_iO_iH_2)$, as well as the addition of a second oxygen atom, are considered theoretically. It is shown that the first is a negative-U defect, while the second is passive. The properties of C_iO_iH and C_iO_2H are strikingly similar to the first two members (D1 and D2) of a family of shallow thermal donors that contain hydrogen.

1. Introduction and motivation

The interstitial carbon-oxygen defect (C_iO_i) results from the interaction between O_i and mobile C_i defects, after *e*-irradiation or long-term annealing of Cz-Si crystals ($I_{Si}+\mathsf{C}_{\mathsf{s}}\to\mathsf{C}_{\mathsf{i}}).$ It has been detected by the major characterization techniques:

- $\bullet \, \mathsf{EPR} \mathsf{G15} \text{ signal from } \mathsf{C_iO_i}^{(+)};$
- PL C-line at 0.7896 eV with several phonon-replicas:
- FTIR 1116, 865, 742, 550 and 529.8 cm⁻¹ bands;
- DLTS Donor level at E. + 0.38 eV:

= 15= 18= 22 [010 [101] Β1 [10] g1 ¹³A₁

Fig. 1. Principal axes of the g-tensor and ¹³C-hyperfine tensor from the G15 EPR signal (CiOi⁽⁺⁾). Stress-energy *B*-tensor principal directions are also shown

- Model shown in Fig. 2a was proposed after stress-alignment measurements
- Theoretical modeling favor the tri-valent model (Fig. 2b), explaining the highest O-related LVM at 742 cm-

Fig. 2. Models for C_iO_i . (a) Di-valent oxygen model, (b) Tri-valent oxygen model. Gray, black and white atoms are Si, C, O. Crystallographic axes and principal directions of the B-tensor are also show

- Hydrogenation of a prominent radiation-induced defect like VO or C_iO_i is thought to give rise to a precursor of the H-related shallow thermal donors [STD(H)N];
- Electron and hole traps $E5(E_c 0.36 \text{ eV})$ and H4($E_v + 0.28 \text{ eV}$) were assigned to C_iO_iH ;
- Oxygen over-coordination is believed to play a key role on thermal donor electrical properties;

Conclusions

- 1. FTIR measurements and calculations support the tri-valent $C_i O_i$ in Fig. 2b (LVMs, B-tensor, E(+/0), spin-density);
- 2. Two new bands (585 and 543 $\mbox{cm}^{-1})$ are assigned to $\mbox{C}_i\mbox{O}_i;$
- 3. C_iO_iH properties strikingly similar to D1 (Negative-U, E(0/+), E(-/0), E(-/+), LVMs, spin-density);
- 4. C₁O₂₁H not bi-stable consistent with assignment to D2:
- 5. This work supports a model of STD(H) containing an interstitial carbon

- \bullet Calculations indicate $\mathsf{B}_1=$ 8.5, $\mathsf{B}_2=$ 2.3 and $\theta_\mathsf{B}=$ 22°, compared
- with $\mathsf{B}_1=$ 8.6, $\mathsf{B}_2=$ 0.2 and $\theta_\mathsf{B}=15^\circ$ from G15; \bullet p-orbital on C-atom with 25% of spin-density, compared with 28.6% for G15;

Fig. 4. Configuration coordinate diagram for CiOiH quoted with calculated ergies for O and R forms. Experimental data relative to D1 (D and H forms) are shown in brackets.

	D1	C _i O _i H
$E_{c} - (-/0)$	0.11	0.10
$E_{c} - (0/+)$	0.043	0.05
$E_{c} - (-/+)$	0.076	0.08
LVM $(D^{(-)}/O^{(-)})$	1025.5	1010
LVM $(H^{(+)}/R^{(+)})$	_	720
D-shift $(D^{(-)}/O^{(-)})$	2.4	2

Tab. 3. Thermodynamic gap levels (eV), oxygen LVMs and isotopic shifts (Dshift) in deuterated material (cm $^{-1}$), for D1 compared with those for C_iO_iH (see Fig. 4).

Fig. 5. Configuration coordinate diagram for CiO2iH quoted with calculated ergies for O and R-forms. Dashed lines are non-equilibrium states

- \bullet Mulliken analysis indicate 0.5%, 0.1% and 0.0% of spin-density on C, H and O atoms;
- Donor electron lies in a strain-induced state, below any state overlapping the oxygen atom;
- $\bullet\ C_iO_iH$ is a negative-U defect, which accounts well for D1;
- $C_iO_{2i}H$ has only a shallow donor level D2 [STD(H)2]?;
- C_iO_iH₂ is electrically inert;

