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Abstract

The results of density functional theory calculations performed to model the

properties of boron related defects in silicon are presented. The interaction

of boron with self-interstitials that may be produced via irradiation or ion

implantation, is considered in detail as is the interaction of these boron-

interstitial complexes with common impurities. The theoretical modelling

described here allows the explanation on the atomic scale of all of the boron-

interstitial clusters observed experimentally to date with the exception of

the recently observed extended boron-interstitial clusters. In most cases

the formation and annihilation mechanisms are also deduced. A study of

biaxially strained silicon reveals the important role that the change to the

Fermi-energy with strain has on the stability of defects in such material.

Throughout this thesis a strong emphasis is placed on the cooperation of

theory and experiment.
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Introduction

Silicon was discovered in Sweden in 1824 by Jöns Jacob Berzelius and since then has be-

come one of the most widely studied materials known to man. To control the electrical

properties of silicon the crystal must be doped. Silicon is a group IV element and crys-

tallises into a face centred cubic lattice with a two atom basis set (one atom at each lattice

site (0,0,0) and a second at (1/4,1/4,1/4)). From a simple one electron picture, it can be

understood how replacing some of the silicon atoms by a group V element (forced to be

four-fold coordinated) will result in an excess of free electrons that can act as charge car-

riers making the material n-type. Alternatively a group III element may be used and this

will result in an excess of free holes making the material p-type. The boundary between a

p and n-type region is known as a p-n junction and this is the fundamental building block

of the transistor and indeed any other electronic device. It is therefore critical that the

properties of commonly used dopants in silicon are well understood. By far the most com-

mon p-type dopant is boron and due to interest in interest in the phenomena of transient

enhanced diffusion and boron interstitial cluster formation, discussed below, the properties

of boron in silicon are the main topic of this thesis. Of the n-type dopants phosphorus

and arsenic are common choices. Arsenic is the only n-type dopant discussed here, where

its solubility is considered in a novel form of silicon in chapter 7.

The latest generation of computer chips feature transistors that are just 50 nm in size.

Although silicon can be doped during growth the highly nonuniform doping distribution

required by device manufacturers makes this method of doping impractical. Instead the

highly p and n-type regions are generated by implanting dopants into the silicon. Only

this technique allows accurately controlled doped regions on the nano-meter scale. How-

ever there are some serious problems associated with ion-implantation stemming from the

fact that implantation generates much damage including many self-interstitials and self-

interstitial clusters. The diffusion of substitutional boron requires self-interstitials since

boron diffuses via the kick-out mechanism (Zhu et al., 1996) or according to recent calcu-
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lations by an interstitialcy mechanism (Windl et al., 1999; Hakala et al., 2000; Jeong and

Oshiyama, 2001). Studying electron irradiated silicon at low temperature, Watkins (1975)

observed that the production rate of the boron-interstitial defect from substitutional boron

is comparable to that of the vacancy implying that almost all generated interstitials (that

do not recombine) are trapped by boron. The boron interstitial defect is extremely mobile;

it diffuses with an activation energy of 0.6 eV (Watkins, 1975) and therefore becomes mo-

bile well below room temperature (Tipping and Newman, 1987). The implication of this

is that any process which generates self-interstitials at above room temperature is likely to

lead to the diffusion of substitutional boron. Following ion-implantation when the wafer

is annealed at around 800◦C to remove damage the smaller, less stable self-interstitial

clusters dissociate which leads to a supersaturation of self-interstitials. This excess of self-

interstitials promotes the rapid diffusion of boron known as transient enhanced diffusion

(TED). During TED boron diffuses over distances far greater than that expected for ther-

mal diffusion alone. For example, Stolk et al. (1995b) observed that during a 15 minute,

810◦C anneal of boron doped silicon implanted with silicon, boron diffuses around 200 nm.

For thermal diffusion alone (i.e. in the absence of a supersaturation of self-interstitials)

the boron would have only diffused 3-5 nm. The occurrence of TED within a 50 nm device

would clearly be catastrophic. A second problem associated with TED is that of boron

interstitial cluster (BIC) formation. BICs form in regions of high boron concentration and

since clustered interstitial boron atoms cannot act as shallow acceptors the electrically

active fraction of the implanted dopant is greatly reduced (Cowern et al., 1990).

Many techniques have now been demonstrated to reduce the effect of TED. For example

the use of lower energy ion implants (Agarwal et al., 1997), preamorphising the surface

(Roth et al., 1997), co-implanting boron and fluorine (Downey et al., 1998), using rapid

thermal anneals with high ramp rates (Mannino et al., 2001) or spike anneals. Com-

monly a combination of these methods are used. It is however very much desirable to

understand the interaction of boron with self-interstitials and with other impurities since

parameters such as the binding energies are important input parameters for simulations of

manufacturing techniques. Moreover, as devices sizes continue to decrease rapidly the ac-
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ceptable limits of diffusion and clustering must also decrease quickly and so a fundamental

understanding of the properties of boron in silicon is imperative.

Most of the chapters within this thesis are focused upon understanding the interaction

of boron with self-interstitials (chapters 3 and 4) or with impurities common to silicon

(chapter 5) by means of first principles calculations (described in chapter 1). An important

problem associated with a particular device, the degradation of solar cells due to the

generation of a carrier lifetime degrading defect with illumination, is discussed in chapter 6.

Finally chapter 7 deals with the properties of the dopants boron and arsenic in silicon that

has been subject to a biaxial strain to alter its properties. Throughout this thesis results

of calculations are closely compared to the results of experiment. Such an approach allows

confidence in the modelling as well as giving a greater understanding to what is observed

experimentally. A description of most of the experimental techniques discussed within

this thesis is given in chapter 2 while chapter 1 describes the nature of the calculations

performed.
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Chapter 1
Theoretical Framework

1.1 The many-body problem

Any quantum mechanical system may be described by the Schrödinger equation

ĤΨ = EΨ (1.1)

where E is the energy of the system and the operator H is known as the Hamiltonian. For

the solid state the wavefunction Ψ that describes the many-body problem is a function

of the coordinates of the α nuclei and i electrons, Rα and ri respectively. Note that ri

denotes both the position (ri) and the spin (si) of the i-th electron.

The non-relativistic Hamiltonian used to solve equation 1.1 is

Ĥ = −1

2

N
∑

i

∇2
i−
∑

α

1

2Mα
∇2

α+
1

2

I
∑

i,j=1

i6=j

1

|ri − rj |
−

N,I
∑

i,α=1

Zα

|ri −Rα|
+

1

2

I
∑

α,β=1

α6=β

ZαZβ

|Rα −Rβ |
(1.2)

where Mα and Zα are the mass and charge of the α-th nucleus respectively and N and I

are the number of electrons and nuclei (ions) respectively. Note that all quantities herein

are expressed in terms of atomic units unless stated otherwise. This measurement system
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sets ~, e, m and 4πε0 to unity where ~ is h/2π and h is Planck’s constant, e is the electron

charge, m electron mass and ε0 is the permittivity of vacuum. One unit of length is then

0.529 Å and a unit of energy is 27.211 eV. This Hamiltonian (equation 1.2) is simply,

Ĥ = T̂e + T̂n + V̂e−e + V̂e−n + V̂n−n (1.3)

where T̂n and V̂n−n are the kinetic and potential energy operators of the nuclei, T̂e and V̂e−e

are the kinetic and potential energy operators of the electrons and V̂e−n is the operator

giving the energy due to the interactions between electrons and nuclei.

Solving equation 1.1 using the Hamiltonian given in equation 1.2 is practically impossible

for any system larger than the hydrogen atom and so to make the problem tractable it is

necessary to introduce some approximations.

1.2 The Born-Oppenheimer approximation

Since the mass of an electron is several orders of magnitude less than that of a nucleus

it is reasonable to assume that the electrons react instantaneously to the movement of

the nuclei. Born and Oppenheimer (1925) thus proposed that the electrons’ wavefunction

Ψ(r,R) is modulated by a function χ(R) whose amplitude depends only upon the nuclei.

This gives the total wavefunction,

ΨT (r,R) = χ(R)Ψ(r,R). (1.4)

Using this and the Hamiltonian given in equation 1.2 we may rewrite the Schrödinger

equation as,

Ĥχ(R)Ψ(r,R) = Eeχ(R)Ψ(r,R) + Ψ(r,R)(T̂n + V̂n−n)χ(R)

−
∑

α

1

2Mα
[χ(R)∇2

αΨ(r,R) + 2∇αΨ(r,R) · ∇αχ(R)] (1.5)

where

EeΨ(r,R) = (T̂e + V̂e−e + V̂e−n)Ψ(r,R). (1.6)
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Multiplying equation 1.5 by Ψ∗(r,R) and integrating over r (which means integrating over

r then summing over all spins) gives,

Eχ(R) = (T̂n + V̂n−n +Ee)χ(R) +W (R)χ(R)

−
I
∑

α

1

Mα

∫

Ψ∗(r,R)∇αΨ(r,R)dr · ∇αχ(R) (1.7)

where

W (R) = −
I
∑

α

1

2Mα

∫

Ψ∗(r,R)∇2
αΨ(r,R)dr. (1.8)

The last term in equation 1.7 vanishes when Ψ(r,R) is real signifying a non-degenerate

ground-state and is otherwise a small perturbation. This small perturbation can however

be important, sometimes giving rise to the Jahn-Teller effect (Stoneham, 1975). The term

W (R) (equation 1.8) is an almost always negligible and hence is neglected in equation 1.7.

Neglecting these terms delivers decoupling of the electron and nuclear motions and allows

the electron eigenequation (equation 1.6) to be solved separately. This will be the focus

of much of the remainder of this chapter.

1.3 Hartree-Fock Theory

A useful method for solving equation 1.6 is to consider the many-electron wavefunction

Ψ(r) as a product of N single electron wavefunctions or spin-orbitals ψN (rN ) (Fock, 1930;

Roothaan, 1951; Slater, 1965; Stoneham, 1975). To take the Pauli exclusion principle into

account the product of the single electron functions must be antisymmetric with respect to

the exchange of two particles. A convenient way to express this anti-symmetrised product

of one electron wavefunctions is in the form of a Slater determinant (Slater, 1929),

ΨHF(r) =
1√
N !

det











ψ1(r1) . . . ψN (r1)
...

. . .
...

ψ1(rN ) . . . ψN (rN )











. (1.9)

The determinant is guaranteed to be anti-symmetric since exchanging two of the single

electron spin-orbitals will change Ψ(r) by a factor of −1 while the presence of two identical

spin-orbitals will result in Ψ(r) = 0.
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The expectation value of equation 1.6 when the wavefunction is taken to be ΨHF is,

E =
N
∑

i

Hi +
1

2

N
∑

i,j=1

(Jij −Kij) (1.10)

where

Hi =

∫

ψ∗
i (r)

[

−1

2
∇2

i −
I
∑

α=1

Zα

|ri −Rα|

]

ψi(r)dr (1.11)

Jij =

∫∫

ψ∗
i (r1)ψ

∗
j (r2)

1

|r1 − r2|
ψi(r1)ψj(r2)dr1dr2 (1.12)

Kij =

∫∫

ψ∗
i (r1)ψ

∗
j (r2)

1

|r1 − r2|
ψj(r1)ψi(r2)dr1dr2. (1.13)

From equations 1.2 and 1.3 it can be seen that Hi which is known as the one electron

integral can be expressed

Hi = 〈i|T̂e + V̂e−n|i〉. (1.14)

Similarly Jij and Kij which are known as the Coulomb or Hartree and exchange integrals

respectively can be expressed as

Jij = 〈ij|V̂e−e|ij〉 (1.15)

and

Kij = 〈ij|V̂e−e|ji〉. (1.16)

The four centre, non-local integrals for Jij and Kij describe respectively electron-electron

repulsion and an exchange component which represents spin-correlation effects. Since

Jii = Kii it is not necessary to exclude the situation i = j in the two electron summation

within equation 1.10.

Minimisation of equation 1.10, subject to the orthogonality condition 〈ψi|ψj〉 = δij , gives

the Hartree-Fock equations (Mc Weeney, 1989; Thijssen, 1999),

F̂ψi(r) =

N
∑

j=1

εijψj(r) (1.17)

where F̂ is the Fock operator given by,

F̂ = ĥ+ ĵ − k̂ (1.18)
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with 〈ψi|ĥ|ψi〉 = Hi (see equations 1.11 and 1.14),

ĵf(r1) =

N
∑

k=1

∫

ψ∗
k(r2)ψk(r2)

1

|r1 − r2|
dr2f(r1) (1.19)

and

k̂f(r1) =

N
∑

k=1

∫

ψ∗
k(r2)f(r2)

1

|r1 − r2|
dr2ψk(r1) (1.20)

where f(r) is an arbitrary function. The matrix ε in equation 1.17 is composed of Lagrange

multipliers from the minimisation procedure. The diagonal elements are given by,

εi ≡ εii = 〈ψi|F̂ |ψi〉 = Hi +

N
∑

j=1

(Jij −Kij) (1.21)

which after summation and comparison to equation 1.10 gives,

E =
N
∑

i

εi −
1

2

N
∑

i,j=1

(Jij −Kij). (1.22)

A simplification to the unrestricted open-shell Hartree-Fock method described above can

be made when the number of electrons is even. In this case the N spin-orbitals in equation

1.10 are replaced by N/2 spin-up orbitals and N/2 spin-down orbitals. Equation 1.10 then

become,

E = 2

N/2
∑

i

Hi +

N/2
∑

i,j=1

(2Jij −Kij) (1.23)

whereHi, Jij and Kij are no longer spin dependant and so integrals over r may be replaced

by integrals over r. Note that since summations are now over N/2 instead of N electrons,

matrices are quartered in size. This form of Hartree-Fock theory is known as the restricted

Hartree-Fock method.

Koopmans (1934) demonstrated the physical meaning of the eigenvalues εi. An important

consequence of Koopmans’ theorem is the ability to calculate excited states within the

Hartree-Fock method.

Theorem 1 (Koopmans’ Theory) Assuming that the eigenstates do not vary after re-

moval of one electron from the system, the ionisation energy Im of the m-th electron is

given by Im = −εm.
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A major short-coming of Hartree-Fock theory is that it predicts zero density of states

at the Fermi energy when applied to a homogeneous electron gas. This short-coming

is due to the fact that electron-correlation is not included within the theory (the spin

orbitals do not have a functional dependence upon ri−rj). The Configuration Interaction

(CI) method overcomes this problem by expressing Ψ as a linear combination of Slater

determinants. This leads to a correction to the total energy which is called the correlation

term and in principle the many-electron eigenvalues are reproduced exactly. However, the

computational requirements of the CI method usually make it impractical.

1.4 Variational principle

The wavefunction Ψ that is a solution to the Schrödinger equation with a given Hamilto-

nian may be found computationally via either grid or variational methods. Grid methods

use discretisation to find Ψ while variational methods depend upon the variational prin-

ciple as described here.

An approximation of Ψ is built from a sum of basis functions which form a subspace of

Hilbert space {φ1, ..., φM},

Ψ0 ≈ Ψapp =

M
∑

i

ciφi(r). (1.24)

The expectation value of the total energy is then estimated to be,

E ≈ Eapp =
〈Ψapp|Ĥ|Ψapp〉
〈Ψapp|Ψapp〉

=

∑M
i,j=1 c

∗
i cjHij

∑M
i,j=1 c

∗
i cjSij

(1.25)

where Hij = 〈φi|Ĥ|φj〉 and Sij = 〈φi|φj〉, the Hamiltonian and overlap matrix elements

respectively. For the ground-state the derivative of Eapp with ci should vanish implying

M
∑

j=1

(Hij −EappSij)cj = 0, for i = 1, ..,M . (1.26)

This condition is equivalent to the eigenequation

S−1 · H · c = Eappc (1.27)
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where the matrix H is the Hamiltonian and S is the overlap matrix. The lowest eigenvalue

of equation 1.27 will be greater than or equal to the true ground-state energy E0. Eapp

may be made to converge to E0 by increasing the number of basis functions. This is known

as the Rayleigh-Ritz variational principle (Kemble, 1932; MacDonald, 1933).

Theorem 2 (Variational principle) The energy Eapp computed from an approximate

wavefunction Ψapp is an upper bound to the true ground-state energy E0. Full minimisation

of the functional Eapp with respect to all allowed basis functions gives the true ground-state

Ψ0 and energy E0 = Eapp; that is

E0 = min
Ψ

Eapp(Ψ). (1.28)

The variational principle is applied to Hartree-Fock theory first by expanding the spin-

orbitals into linear combinations of basis functions where the basis functions are usually

atomic orbitals,

ψj(r1) =
M
∑

i

cijφi(r). (1.29)

This is used to construct the Fock equation in matrix form which leads to the generalised

eigenvalue equation,

F · c = ε · S · c (1.30)

known as the Roothaan equation (Roothaan, 1951). Again S is the overlap matrix Sij =

〈φi|φj〉. F is the Fock Matrix given by,

Fij = Hij +
∑

νµ

(

∑

a

cνacµa

)

(2〈φiφj|V̂e−e|φνφµ〉 − 〈φiφν |V̂e−e|φµφj〉 (1.31)

where

Hij = 〈φi|T̂e + V̂e−n|φj〉. (1.32)

After making an initial guess for Ψapp these equations are solved self-consistently until

the changes in Coulomb and Hartree potentials (see equations 1.15 and 1.16) with each

self-consistent cycle become sufficiently small. Thus the variational principle allows the
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ground-state wavefunction and eigenvalues to be found. However, due to the computation-

ally demanding four-centre integrals (equations 1.12 and 1.13) even without the inclusion

of CI Hartree-Fock theory only allows rather small systems to be modelled. To tackle

larger systems further simplifications are required.

1.5 Density Functional Theory

Density Functional Theory (DFT) (Hohenberg and Kohn, 1964; Kohn and Sham, 1965),

which has been extensively reviewed (Lundqvist and March, 1983; Parr and Yang, 1989;

Jones and Gunnarsson, 1989) considers the total energy as a functional of electron charge

density n(r) rather than a composition of single electron wavefunctions as is the case for

Hartree-Fock theory.

Hohenberg and Kohn (1964) demonstrated that the ground-state charge density is uniquely

defined by the external potential and the number of electrons N and since the charge

density is

n(r) = N

∫

|Ψ(r)|2dr (1.33)

it follows that the ground-state wavefunction will be defined also. Note that the charge

density is a function of r only, in contrast to the wavefunction which is dependant upon r

(position and spin).

Theorem 3 (First Hohenberg-Kohn theorem) The external potential is determined,

within a trivial additive constant, by the electron density n(r) (Hohenberg and Kohn, 1964).

The total energy of the system is given by,

E[n] = F [n] +

∫

vext(r)n(r)dr (1.34)

where vext is the external potential experienced by electrons due to, for example, ion-

electron interactions and F is a system-independent functional that accounts for the elec-

tronic kinetic, electron correlation and exchange-correlation energies.
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Theorem 4 (Second Hohenberg-Kohn theorem) For a trial density ñ(r) such that

ñ(r) ≥ 0 and
∫

ñ(r)dr = N (Hohenberg and Kohn, 1964)

E0 ≤ E[ñ]. (1.35)

This theorem is the basis of a variational principle with

E0 = min
ñ
E[ñ] (1.36)

in analogy to equation 1.28.

Despite the huge simplification that comes with using the charge density as the varia-

tional variable no further approximations are made. However the exchange-correlation

contribution to the functional F is still non-local and generally unknown.

1.5.1 Kohn-Sham equations

Under the frame work of DFT the ion-electron system is described by a set of one-electron

Schrödinger equations (Kohn and Sham, 1965),

[

−1

2
∇2 +

∫

n(r′)

|r − r′|dr
′ −

I
∑

α

Zα

|r−Rα|
+
δExc[n]

δn(r)

]

ψλ(r) = ελψλ(r) (1.37)

where the charge density n is obtained by summing up all N occupied spin-orbital states,

n(r) =

N
∑

λ=1

∑

s

|ψλ(r, s)|2. (1.38)

The first three terms of equation 1.37 describe the kinetic energy, Hartree energy and the

external potential due to the nuclei respectively. The fourth term encompasses all remain-

ing many-body contributions to the Hamiltonian in the form of an exchange-correlation

functional. The strength of DFT comes from the fact that there exists a universal Exc

density functional that depends only upon the charge density n(r) allowing the exact

ground-state charge-density and total energy of a system to be obtained.
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The total energy of the many-body system described by the above equations is (Parr and

Yang, 1989)

E[n] =

N
∑

λ=1

ελ − J [n] +Exc[n] −
∫

Vxc[n]n(r)dr (1.39)

where J and Vxc are the Hartree energy and exchange-correlation potentials respectively.

They are given by,

J [n] =
1

2

∫

n(r)n(r′)

|r− r′| drdr
′ (1.40)

and

Vxc[n] =
δExc[n]

δn(r)
. (1.41)

Equations 1.37 and 1.38 above are known as the Kohn-Sham equations. They are solved

self-consistently by employing the variational principle described by equation 1.35. How-

ever, the precise form of the exchange-correlation functional Exc remains unknown and so

one of the standard approximations currently available must be used.

1.5.2 The exchange-correlation functional

A common approximation that attempts to avoid the problem of the unknown exchange-

correlation functional Exc is the local density approximation (LDA) or for systems having

non-zero total spin, the local spin density approximation (LSDA) (Kohn and Sham, 1965;

von Barth and Hedin, 1972; Perdew and Zunger, 1981). The exchange-correlation energy

is assumed local and is usually separated into separate exchange and correlation contri-

butions,

Exc[n↑, n↓] = Ex[n↑, n↓] +Ec[n↑, n↓] (1.42)

using the LSDA notation. The exchange functional of a homogeneous electron gas has an

analytic form (von Barth and Hedin, 1972),

Ex[n↑, n↓] = −3

2

(

3

4π

)1/3
(

n
4/3
↑ + n

4/3
↓

)

. (1.43)

The correlation term is more complicated with perturbation theory yielding one expression,

valid for the high density regime (Perdew and Zunger, 1981) and the Green function Monte
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Carlo method yielding another expression valid for the low density regime (Ceperley, 1978;

Ceperley and Alder, 1980). A parameterised functional form of the exchange functional

is derived by fitting to the numerical results. The most common of these parameterised

functionals are Perdew and Zunger (1981) (PZ), Vosko et al. (1980) (VWN) and Perdew

and Wang (1992) (PW).

In principle a more accurate estimate of the exchange-correlation energy is obtained by

considering a first order expansion of Exc in charge density, thus including terms dependent

upon the charge density gradient ∇n (Perdew, 1991; Perdew et al., 1996a,b). This method

of obtaining Exc is known as the generalised gradient approximation (GGA).

1.6 Pseudopotentials

The chemical properties of an atom are almost entirely dependent upon the atom’s valence

electrons and their interaction with neighbouring atoms while the core states are relatively

independent of the atom’s environment. The core states can then be treated as a screening

or pseudopotential which acts upon the valence electrons. However, such a pseudopotential

will contain terms arising from the interaction of core and valence electrons and hence will

not be transferable to different chemical environments. A transferable ionic potential, V ps
ion

is constructed by subtracting the potential (Coulombic and exchange-correlation) arising

from the valence states from the pseudopotential Vps,

Vps
ion(r) = Vps(r) −

∫

nps(r′)

|r − r′|dr
′ −EXC[nps(r)] (1.44)

where

nps(r) =
∑

λ

|ψps
λ (r)|2 (1.45)

and λ denotes all occupied valence eigenstates of the pseudopotential V ps. Thus nps is the

charge density of the valence states.

In employing the pseudopotential formalism a number of approximations are made. First

a one-electron picture is used to divide the electrons into core and valence states. The
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second assumption, that the core states are independent of the atoms environment, is

known as the frozen core approximation. Finally it is assumed that the valence and

core states do not overlap significantly and hence we may write EXC(ncore + nvalence) =

EXC(ncore) + EXC(nvalence). This is known as the small core approximation. In cases

where the overlap is significant it may be necessary to apply non-linear core corrections

to the pseudopotential (Louie et al., 1982).

The pseudopotential calculation has huge benefits over an all-electron calculation. The

greatest benefit is that the number of basis functions required to fit all states is greatly

reduced allowing larger systems to be considered. A positive side effect of the pseudopo-

tential approach is a reduction in total energy with respect to an all-electron calculation.

This means that numerical errors when comparing the total energy of similar systems are

reduced.

The calculations presented in the proceeding chapters employ mainly Bachelet-Hamann-

Schlüter (BHS) (Bachelet et al., 1982) and Troullier-Martins (TM) (Troullier and Martins,

1991) pseudopotentials although Hartwigsen-Goedecker-Hutter (HGH) (Hartwigsen et al.,

1998) pseudopotentials have also been used on occasion. These pseudopotentials are norm

conserving which means that outside a given radius they exactly replicate the real all-

electron wavefunction.

Detailed information on the pseudopotential method has been given by several authors

(Harrison, 1966; Brust, 1968; Stoneham, 1975; Heine, 1970; Pickett, 1989).

1.7 Boundary conditions

Since DFT is able to deal only with what is essentially a small number of atoms it is

important to consider the boundary conditions at the edge of the atoms being treated.

Two common choices of boundary conditions exist when treating large systems such as

semiconductor crystals which can be considered infinite in respect of the bulk properties.

The cluster method considers a cluster or molecule of atoms. At the boundary of the

cluster, for calculations of a bulk semiconductor, the dangling bonds are terminated by
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hydrogen atoms to avoid any dangling bond or surface effects. However, if the cluster is

not large enough or the defect is not placed at the centre of the cluster, defect-surface

interactions may occur.

The second method avoids defect-surface interactions and is known as the supercell method.

Here rather than terminating the dangling bonds at the boundary, the supercell is repeated

infinitely in all directions and thus each supercell is considered as a unit cell with asso-

ciated Brillouin zone (BZ). Any effects due to the surface are removed since the crystal

is now infinite, but still there are a number of potential problems associated with this

method that must be borne in mind. If we consider a supercell containing a defect, then

what is being modelled is actually an infinite array of the defects separated by a0 where

a0 is the lattice constant of the supercell considered cubic in this simple argument. Hence

if a0 is not large enough then the array of defects will interact with each other via elastic,

Coulombic, dipolar or quadrapolar interactions. It is therefore essential that, whichever

boundary conditions are used, the calculated properties are converged with respect to the

cluster/supercell size. Calculations presented in the proceeding chapters all employ the

supercell method. Supercells of 64 or 216 atoms where tested and found to give converged

results.

1.8 Brillouin zone sampling

When the supercell method is employed the calculation of physical quantities such as the

charge density require integration over the BZ. The integrand function f(k) is periodic

in reciprocal space and has no simple analytic form. Hence to avoid integration over a

dense mesh of points in k-space a number of schemes have been developed for choosing

sets of Nk special k-points from which the average value of f over the BZ may be calcu-

lated (Baldereschi, 1973; Chadi and Cohen, 1973; Monkhorst and Pack, 1976; Pack and

Monkhorst, 1977). The average value f̄ of the integral f over the BZ of volume (2π)3/Ω

is then,

f̄ =
Ω

(2π)3

∫

f(k)dk ≈ 1

Nk

Nk
∑

i

f(ki). (1.46)
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Throughout this thesis the calculations presented have used the sampling scheme of

Monkhorst and Pack (MP) (Monkhorst and Pack, 1976; Pack and Monkhorst, 1977).

The main advantages of this scheme are its simplicity and the fact that convergence is

easily verifiable.

The MP special k-points are a grid of I × J ×K points in reciprocal space given by,

k(i, j, k) = uig1 + ujg2 + ukg3 (1.47)

where g1, g2 and g3 are the reciprocal space unit-vectors and ui, uj and uk are given by,

ui = (2i− I − 1)/2I, (i = 1, . . . I) (1.48)

uj = (2j − J − 1)/2J, (j = 1, . . . J) (1.49)

uk = (2k −K − 1)/2K, (k = 1, . . . K) (1.50)

with I, J and K ≥ 1. Often when I = J = K the sampling scheme is referred to as

MP-I3. Convergence can easily be ensured by increasing the values of I, J and K until

the calculated value or property of interest does not change significantly.

In a supercell with high enough symmetry some of the k-points may be equivalent due

to the symmetry operations associated with that supercell. In this case the redundant

k-points may be removed and the equivalent one that is left will be weighted accordingly.

For the calculation presented in the proceeding chapters a 23 Monkhorst-Pack sampling

scheme was found to offer sufficient for convergence.

1.9 Basis functions

The AIMPRO LSDA DFT code used throughout this thesis employs a real-space Gaussian

type basis set (Jones and Briddon, 1999). One problem with the supercell approach

however is that the requirement of integration over the BZ makes an expansion of the

wavefunction in reciprocal space necessary.
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Bloch basis functions Bki(r) are constructed from Cartesian Gaussian functions φi centred

at the atomic sites Ri with NL lattice vectors Ln,

Bki(r) =
1√
NL

∑

Ln

φi(r−Ri − Ln)eik.Ln (1.51)

where k is a reciprocal space vector within the BZ. The localised orbitals are given by,

φi(r−Ri) = (x−Rix)
l1(y −Riy)

l2(z −Riz)
l3e−α(r−Ri)

2

(1.52)

with li ≥ 0 and where s, p or d-like orbitals correspond to
∑

i li = 0, 1 or 2 respectively.

The Kohn-Sham orbitals ψkλ can then be expressed in terms of the Bki basis functions,

ψkλ =
∑

i

ckλiBki(r) (1.53)

resulting in a charge-density,

n(r) =
∑

i,j,k

bij(k)B∗
ki(r)Bkj(r) (1.54)

with

bij(k) =
∑

λ

fkλ(ckλi)
∗ckλj (1.55)

where fkλ is the occupancy of the kλ state. This is either 2 for a filled state, 0 for an empty

state or 1 for a half-filled state in a spin averaged calculation while for a spin-polarised

calculation the filling of each state is either 1 or 0. If Fermi smearing is used the levels

may be partially occupied, according to the Fermi-function. If the filling is metallic then

fkλ will be independent of k.

Note that the basis functions Bki(r) satisfy Bloch’s theorem since

Bki(r + Ln) = eikLnBki(r). (1.56)

Thus Bki and Bk′j are orthogonal and the Hamiltonian and other translational symmetric

functions have matrix elements diagonal in k-space.
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The basis functions for the same k are not orthogonal and the overlap between them is

S0
ij(k) where

Sg
ij(k) =

∫

B∗
ki(r)e

−igrBkj(r)dr

=
∑

ijn

eik.Ln

∫

φi(r −Ri)e
−igrφj(r −Rj −RL)dr. (1.57)

The Kohn-Sham orbitals are normalised when the coefficients satisfy

∑

ij

ck ∗
λi c

k
λjS

0
ij(k) = 1. (1.58)

The advantage of Gaussian-like functions is that their integrals can be found analytically.

Furthermore, in contrast to another popular choice of basis functions namely plain waves,

they can be made to vanish quickly away from Ri (Jones and Briddon, 1999). However,

localised basis sets can result in over-completeness which may lead to numerical instabili-

ties.

1.10 Reciprocal-space basis

Although the Kohn-Sham orbitals are obtained in terms of a real-space basis set, the

periodic boundary conditions of the supercell method allow the use of reciprocal space.

The Hartree (including the local pseudopotential) and the exchange correlation energies

are more efficiently evaluated in k-space. To do this the charge-density must be Fourier

transformed, the quality of the transformation being dependent upon the grid of g-vectors

used. In practice a uniform grid of g-vectors inside a sphere of radius gcut is chosen. This

defines the cut-off energy as

Ecut =
1

2
g2
cut. (1.59)

A value of Ecut for which the calculated properties of interest are converged must be

selected.
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1.11 Ewald summations

Series like 1/rp with p ≤ 2 converge very slowly as r goes to infinity and so to calculate

Coulombic and dipolar interactions it is necessary to evaluate slowly converging sums. To

solve this problem Ewald (1921) proposed a method that splits the series into fast and

slow converging parts,

∑

L

1

rp
L

=
∑

L

erfc(αrL)

rp
L

+
∑

L

erf(αrL)

rp
L

. (1.60)

Evaluation of the first term is straight forward as erfc(x) converges to zero when x tends

to infinity. The second term which is slow-converging in real space is Fourier transformed

and consequently in reciprocal space, its terms become short-ranged. The parameter α

controls the transition between the real-space and reciprocal space summations. Although

the analytical result does not depend upon the choice of α in practice this is not the case.

This is a consequence of the summations being over only a finite set of lattice vectors. An

extensive treatment of this method has been given by Leeuw et al. (1980). This method

is used in AIMPRO to separate and include the local and non-local contributions of the

pseudopotential.

1.12 Calculation of observables

DFT is a ground-state theory. This is a consequence of the fact that the Kohn-Sham

eigenstates are not electron-wavefunctions but are rather a set of basis functions from which

the charge density is expanded. Hence excited state properties (including unoccupied

electron energy levels) are beyond the reach of DFT. There are however many properties

that DFT can successfully model with the aim of predicting or explaining experimental

observations. This section explains how some of the most important of these properties

are derived and to what observations they may be related.
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1.12.1 Fundamental properties

Local structure - Forces

Once the Kohn-Sham equations have been solved to find the self-consistent charge density

for a given arrangement of atoms it is extremely desirable to know the force acting on

each individual atom. The force on an atom Fα is simply −∇αE and so by displacing

each atom by a small amount and calculating ∆E the force acting on each atom can be

found.

Varying the ion positions changes the charge-density in two ways: a change in bij(k) and

a change in the basis functions Bki.

Thus

∆n =
∑

ijk

bij(k)∆{B∗
ki(r)Bkj(r)} +

∑

ijk

B∗
ki(r)Bkj(r)∆bij(k). (1.61)

The changes to Ee and EXC are

∆Ee =
1

N

∫

(n(r1) − ρ(r1))(∆n(r2) − ∆ρ(r2))

|r1 − r2|
dr1dr2 − ∆Elr (1.62)

and

∆EXC =
1

N

∫

µXC(r)∆ndr. (1.63)
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The Fourier expansion of 1/r and µXC(r) can then be used to deduce

∆Ee = 4πΩ
∑

g′

(n−g − ρ−g)((∆n)g − (∆ρ)g)

g2
(1.64)

(∆n)g =
1

NLΩ

∫

e−ig·r∆n(r)dr

=
1

NLΩ

∑

ijk

{Sg
ij(k)∆bij(k) + bij(k)∆Sg

ij(k)} (1.65)

∆Sg
ij =

∫

e−ig·r∆{B∗
ki(r)Bkj(r)} (1.66)

∆Ee =
1

NL

∑

ijk

V H
ij (k)∆bij(k)

+ 4π
∑

g′

(n−g − ρ−g)

g2
(

1

NL

∑

k

bij(k)∆Sg
ij(k) − Ω(∆ρ)g) (1.67)

(∆ρ)g =
1

NLΩ

∫

e−ig·r∆ρ(r)dr

=
1

Ω

∑

a

∆

∫

e−ig·rZa

(

√

ca/π
)3/2

e−ca|r−Ra−RL|2dr

=
1

Ω

∑

a

Zae
−g2/4ca∆eig·Ra (1.68)

whereas

∆EXC =
1

NL

∑

ijk

V XC
ij (k)∆bij(k) +

1

NL

∑

ijgk

bij(k)µXC
−g ∆Sg

ij(k). (1.69)

The other terms are

1

NL

∑

ijk

{Tij(k) + V nonl
ij (k,k′)}∆bij(k) +

1

NL

∑

ijk

bij(k)∆{Tij(k) + V nonl
ij (k,k′)} + ∆Eion.

(1.70)

Terms in ∆bij(k) are gathered and using the KS equations and normalisation of ckλi
,

1

NL

∑

ijk

{Tij(k) + V nonl
ij (k,k′) + V H

ij (k) + V XC
ij (k)}∆bij(k) = − 1

NL

∑

ijk

beij(k)∆S0
ij(k)

(1.71)

where

beij(k) =
∑

λ

fλk(ckλi)
∗ckλjEλk. (1.72)
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Hence

∆E = − 1

NL

∑

ijk

beij(k)∆S0
ij(k) + ∆Eion

+
1

NL

∑

ijk

bij(k)∆{Tij(k) + V nonl
ij (k,k′)}

+
4π

NL

∑

ijgk′

bij(k)
(n−g − ρ−g)

g2
∆Sg

ij(k)

+
1

NL

∑

g

µXC
−g bij(k)∆Sg

ij(k) − 4πΩ
∑

g′

(n−g − ρ−g)

g2
(∆ρ)g (1.73)

and

∆Tij(k) = ∆

∫

B∗
ki(r)

(

−1

2

)

∇2Bkj(r)dr

=
∑

L

eik·RL∆

∫

φi(r −Ri)

(

−1

2

)

∇2φj(r−Rj −RL)dr. (1.74)

The ∆Eion term is given by

∆Eion =
1

2

∑

baL

∆
ZbZa

|Rb −Ra −RL|
erfc(cacb|Rb −Ra −RL|/(ca + cb)). (1.75)

Once the contributions to ∆E have been summed and the force on each individual atom

is known the atoms can be moved according to the forces. This is done in an iterative

manner until forces and the change in total energy with each iteration are insignificant.

The structure is then said to be relaxed. The AIMPRO code makes use of a conjugate

gradient algorithm which means that the atoms are moved in the direction that includes a

component from the previous forces as well as the current forces. The distance an atom is

moved along this direction is chosen by fitting a cubic or quadratic function to the rate of

change of energy with position. One caveat of such a simple approach to finding the most

stable structure is that although the relaxed structure will be located at a local minima

on the total-energy surface, there is no guarantee that this will be the global minima. To

ensure, as far as is possible, that the relaxed structure is that at the global minima it is

necessary to start the structural optimisation from several different initial configurations.
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Total Energy

One of the most fundamental properties of a system is its total energy ET given previously

in equation 1.39. The total energy is the energy of a supercell or cluster and is often used to

compare the energy of similar systems when this is equivalent to comparing the formation

energies, Ef . In this case a similar system is that containing the same number of atoms

of each species (where a species of atom is defined by a specific pseudopotential) and

the same overall charge. If these conditions are not met then it is necessary to compare

formation energies instead. Since the formation energy takes the charge and the number

of atoms of different species into account via the atomic and electron chemical potentials,

the formation energy is a well defined physical property.

1.12.2 Derived Properties

Formation Energy

The chemical potential µs of a species s is defined as the derivative of the Gibbs free energy

G = E + PV − TS with respect to the number of atoms of that species ns (Reif, 1965;

Flynn, 1972). As well as referring to a species of atom, s could equally well refer to the

electrons to give the electron chemical potential. Under thermodynamic equilibrium µs is

equal over the entire system, regardless of any differences in phase and hence is equivalent

to the free energy per particle. Neglecting the term PV which is small for solid state

reactions and the term −TS (an approximation strictly valid only at low temperature),

the formation energy is given by,

Ef = ET + qµe −
∑

s

nsµs (1.76)

where ET is the total energy of the system, q is the nett positive charge of the system in

terms of the fundamental electron charge (i.e. the system’s charge state), ns is the number

of atoms of species s and µs is the chemical potential corresponding to that species. The

electron chemical potential µe is usually taken to be EF + Ev where EF is the Fermi

energy relative to Ev and Ev is the energy of the highest occupied orbital, usually taken
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from the Kohn-Sham levels. Alternatively Ev can be obtained by comparing ET (q = −1)

to ET (q = 0). To obtain accurate values for Ef it is necessary to correct the energy for

the interaction between charged supercells, not discussed here. Furthermore, due to finite

size effects Ev may differ artificially between different supercells. When comparing the

formation energy of different supercells the back-ground potential should thus be aligned.

The formation energy is a quantity that provides access to a great deal of information. By

taking the chemical potentials into account it is possible to compare supercells of different

size (to check for convergence with respect to cell size) and to compare the stability of

defects containing different numbers of each species (useful for the calculation of binding

energies, discussed below). Comparing the formation energy of a given defect in different

charge states gives the electrical levels (the stable charge state as a function of Fermi-

level). The formation energy can also be used to calculate the solubility of a defect as

discussed in chapter 7.

Binding Energies

When a defect can be considered to be formed by two or more primary defects it is often

useful to know what the cohesive energy is between the constituents. One way to calculate

the cohesive or binding energy EB of a complex C formed by two constituents A and B,

is to compare the formation energy of the complex EC
f to the formation energies of the

constituents,

EB = EA
f +EB

f −EC
f (1.77)

where EA
f and EB

f are the formation energies of the two constituents that make up the

complex C.

An alternate way to calculate the binding energy is to construct a series of supercells in

which the constituents A and B are first close together (in the form of the complex C)

and then at various larger separations. Comparing the energy of these supercells gives the

energy as a function of separation of A and B. If the energy has reached an asymptotic

limit for the largest separation then the binding energy is given by the difference in energy
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between the supercell containing separated A and B and the supercell containing C. This

method is often more accurate than the formation energy method, especially when the

supercells are all equally charged as is often the case, since to first order the strain and

quadrupole interactions between neighbouring cells will be equal for each separation and

hence cancel out.

Migration Energy

In principle calculating the migration energy of an atom or complex is rather simple.

Within AIMPRO there are two methods commonly used, Method 2 and Method 4. Both

methods simply provide a way to perform a series of constrained relaxations that will

transform the initial structure to the final structure. If the constraints are chosen carefully

the transformation should occur via the lowest energy route.

The constraint used by Method 4 is just the vector v describing the direction in which

the atom should move. The user then provides a set of distances along this vector that

the atom is to move. After moving each step the force on the diffusing atom is modified

so that it has zero component along the vector v (i.e. Fatom · v = 0) and the structure is

relaxed according to the modified forces.

Method 2 uses a different constraint. Consider three atoms labelled 1, 2 and 3. The

constraint in this case is defined as C = R2
12 − R2

13, where R12 is the distance between

atoms 1 and 2 and R13 is the distance between atoms 1 and 3. If when going from initial

to final configuration R12 increases while R13 instead decreases then the constraint C can

be increased in steps to take the structure from its initial to its final configuration. The

structure is relaxed (subject to the constraint C) at each step along the migration path.

Both Method 2 and Method 4 give the information required to plot a diffusion barrier: a

plot of formation or total energy against configuration. The height of the barrier is the

migration energy. It is important to choose constraints carefully to ensure that the system

is not over constrained and of course it is necessary to have enough steps between initial

and final configuration for the migration energy to be accurate. In analogy to the global
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minima problem faced during relaxation, a number of different paths must be studied to

ensure that the path with the lowest barrier has been found. A structural reorientation

can be treated in exactly the same way as a migration process.

Thermal stability

Many experiments are able to observe the temperature at which a defect disappears and

thus it is desirable to be able to estimate the thermal stability of a defect. Assuming

that the complex anneals by dissociation and not by reacting with another species that

becomes mobile at the annealing temperature making a simple estimate of the thermal

stability is rather simple. The rate at which a complex dissociates is given by,

R = ν exp

(−EA

kT

)

(1.78)

where ν is the attempt frequency, k is Boltzmann’s constant and T is the temperature. EA

is the activation energy for the defect to dissociate. This is expected to be approximately

the sum of the binding energy of the complex and the migration energy of the species

that will diffuse away. The calculation of both of these energies is described above. The

attempt frequency is usually taken to be the Debye frequency. This is the characteristic

maximum vibration frequency of the atoms in the crystal, given by (Hill, 1986)

νD =

(

3

4π

N

V

)1/3

vs (1.79)

where N/V is the number of atoms per unit volume in the crystal and vs is the speed of

sound in the material. For silicon the Debye frequency is around 1013 s−1.

The temperature at which a complex anneals can be estimated by solving equation 1.78

for T .

Electrical levels

Calculating the formation energy of charged defects is described above. The resulting

formation energy is a function of electron chemical-potential or equivalently Fermi-level.
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Therefore, the formation energy of a defect or defect complex can be calculated as a

function of EF for different charge states and for a given value of EF one of the charge

states will be lowest in energy and hence most stable. The value of EF for which two

charge states are equal in energy corresponds to an occupancy level. In other words the

value of EF for which Ef (q) = Ef (q + 1) corresponds to the (q/q + 1) level of the defect.

When EF is greater than this critical value the defect will be in the charge state q and

when EF is below this level the defect will be in the charge state (q+1). This method for

calculating electrical levels is referred to as the Formation Energy Method.

Although the Formation Energy Method often reproduces the observed levels of defects

and it is satisfying since it is entirely ab initio, it is often found that the technique known

as the Marker Method is able to calculate levels with a greater degree of accuracy. The

Marker Method calculates levels by solving,

Ed(q) −Ed(q + 1) +Ed(q/q + 1) = Em(q) −Em(q + 1) +Em(q/q + 1) (1.80)

where Ed(q) and Ed(q + 1) are the energies of the defect of interest in the q and (q + 1)

charge states and Ed(q/q+1) is the position of the (q/q+1) level of the defect. Em(q) and

Em(q + 1) are the energies of a marker defect in the specified charge states. The marker

defect should ideally be a defect having similar electrical properties to the defect of interest

and must have an (q/q + 1) level at a position Em(q/q + 1) that is known empirically.

Using the empirical value of Em(q/q+1) and the calculated Em(q), Em(q+1) and Ed(q),

Ed(q + 1) equation 1.80 is solved for the defect level Ed(q/q + 1). The basic principle

of this method is that the difference in ionisation energy and corresponding occupancy

level is similar for similar defects. The Marker Method is the method used throughout

this thesis and, as a rule of thumb, the error associated with calculated levels is around

0.2 eV. Even this relatively large error is remarkable given the ground-state nature and

the large underestimation of the band-gap by DFT. The Marker Method is thought to be

more reliable due to the cancellation of errors arising from strain and charge interactions

between supercells. Calculated electrical levels are invaluable tools for the identification

of electrically active defects observed for example, by DLTS (section 2.2).
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Vibrational modes

The vibrational modes of a crystal or defect are given by the system’s dynamical matrix

D (Born and Huang, 1954) by solving the eigenvalue problem

D · U = ω2U (1.81)

where the 3N eigenvalues ω2 are the square frequencies associated with the 3N normal

modes U. Each normal mode is a 3N dimensional vector describing the motion of all N

atoms for that mode. The 3N × 3N dynamical matrix D has elements,

Dab(i, j) =
1

√

MiMj

∂2E

∂uia∂ujb
(1.82)

where a and b are any of the three Cartesian coordinates and uia and ujb are the displace-

ments of atoms having mass Mi and Mj respectively, in those directions.

To calculate the second derivative of the energy the supercell is first relaxed so that all

forces are effectively zero. Then atom i is moved a small amount ε (∼ 0.025 a.u.) along

the Cartesian direction a. The charge density of this new configuration must then be

calculated and from the new self-consistent charge density the new forces must be derived.

The forces will no longer be zero since the structure has been perturbed. We label the

component of the new force on atom j acting in the b Cartesian direction f+
bj(a, i). Atom

i is then moved the same distance in the opposite direction −εa which gives rise to a force

f−bj(a, i). The second derivative of the energy is then to second order in ε,

∂2E

∂uia∂ujb
=
f+

bj(a, i) − f−bj(a, i)

2ε
. (1.83)

It is important to note that this method of obtaining the energy second derivatives includes

some anharmonic contributions, in contrast to the infinitesimal derivative. For this reason

the frequencies obtained by the method described here are sometimes referred to as quasi-

harmonic frequencies (Jones et al., 1994).

In practice due to the time consuming nature of the procedure, usually only the defect

atoms and their nearest neighbours will be treated in the way described above. The
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energy second derivative of the bulk-like atoms further from the defect are obtained from

an empirical potential such as that proposed by Musgrave and Pople (1962). The potential

for atom i is

Vi =
1

4

∑

j

ki
r(∆rij)

2 +
r20
2

∑

j>k

k
(i)
θ (∆θjik)

2 + r0
∑

k>j

k
(i)
rθ (∆rij + ∆rik)∆θjik

+
∑

k>j

k(i)
rr ∆rij∆rik + r20

∑

l>k>j

k
(i)
θθ ∆θjik∆θkil (1.84)

where ∆rij is the change in the length of the i-j bond and ∆θjik is the change in angle

between the i-j and i-k bonds. The sums are over the nearest neighbour atoms to i.

The coefficients ki are fitted so that experimental properties of the species of atom i are

reproduced.

The vibration modes of a defect can be calculated with great accuracy and compared to the

results of infra-red (section 2.3) or photoluminescence (section 2.4) experiments possibly

providing confirmation of a defect structure. Since the frequencies of vibrational modes

are highly sensitive to defect structure, an agreement between calculated and observed

modes is a strong indication that the modelled and observed structures are very similar.

Mulliken bond populations

Mulliken analysis is a valuable tool in the analysis of the detailed nature of a Kohn-Sham

level. This is especially useful when the Kohn-Sham level corresponds to a defect’s band-

gap level because in this case the calculated properties can be compared to those obtained

from Electron Paramagnetic Resonance (EPR) experiments (section 2.5).

The Mulliken bond population is a measure of the contribution to a Kohn-Sham level λ

coming from the basis function ψi. This is given by (Pople and Beverage, 1970),

pλ(i) =
1

NL

∑

j,k

ckλiS
k
ij(c

k
λj)

∗ (1.85)

where Sk
ij are the overlap matrix elements given by,

Sk
ij =

∫

B∗
kie

−ik·rBkjdr (1.86)
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where
∑

i pλ(i) = 1 and as in the previous equations, k are the special k-points (section

1.8). If a state λ has a strong contribution from the orbital ψi then the coefficients

ckλi will be large and hence the bond-population pλ(i) will also be large. By comparing

contributions to pλ(i) coming from s, p and d-like basis functions it is possible to obtain

the hybridisation of the state. Both the hybridisation and the bond-population can be

compared to the results of EPR experiments.

1.13 Summary

This chapter has described the method used to calculate the properties of defects namely

their structure and total energy and the properties that may be derived from these. Despite

the approximations and simplifications that are necessary to allow systems of appreciable

size to be treated, experimentally observable properties of defects can be calculated with

remarkable accuracy. It is also noteworthy that with the exception of the local vibra-

tional modes (and the Marker Method for calculating electrical levels), all experimental

observables are calculated entirely from first principles. Even in the calculation of local

vibrational modes the only empirical input is the mass of the atoms (if a Musgrave-Pople

potential is not used). Where theory really comes into its own is in the explanation of

experimental results and so in the next chapter many of the relevant experimental tech-

niques will be described with the remainder of this thesis being devoted to the explanation

of results obtained from them.
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Chapter 2
Experimental Techniques

2.1 Introduction

As described in the previous chapter, density functional theory is capable of calculating a

large number of experimental observables. These include defect structures and hence sym-

metries, electrical energy levels and local vibrational modes to name but a few. Comparing

the calculated properties of a defect to experimental observations allows the assignment

of a precise structure to an observed defect on the atomic and electronic scale. Such an

assignment and the knowledge that comes with it has many benefits, the greatest being

the possibility of avoiding “bad” defects by for example, defect engineering. This may

involve deliberately creating certain “good” defects at the expense of the bad defects that

need to be avoided. The focus of this chapter is the experimental methods most commonly

relied upon to ascertain information on an observed defect. The observables that these

experiments measure provide the knowledge required to begin the modelling process.
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2.2 Deep Level Transient Spectroscopy

Deep level transient spectroscopy (DLTS) is a highly sensitive method for the study of

deep levels. The technique has been reviewed in several places. For a complete review

of DLTS and deep levels see Mooney (1999, and references therein). There are many

extensions to the DLTS technique such as Laplace DLTS (Dobaczewski et al., 1994) but

these will not be discussed here. Instead an overview of the techniques will be given to

enable the reader to understand results discussed in proceeding chapters.

2.2.1 Deep levels

Impurities or intrinsic defects in semiconductors usually have the effect of introducing

levels in the semiconductor band-gap. The levels comes from the fact that a defect will

capture and emit electrons and holes at different rates depending upon background doping

and temperature, two things that define the Fermi-level (EF ). Thus the charge state of

a defect depends upon EF and the defect level is the energy at which the stable charge

state of the defect would change if EF were swept across the band-gap.

Defect levels located far from the band edges are known as deep levels. Since a large

activation energy is required to ionise a deep level, it must be that the trapped electrons

or holes are held by a strong potential, localising their wavefunction in the vicinity of the

defect. The localisation of the trapped carriers wavefunction in real space means that

in k-space the wavefunction will be highly delocalised and hence able to couple strongly

with a wide variety of phonons. This means that deep levels often act as non-radiative

recombination centres.

The capture rates of electrons (equation 2.1) and holes (equation 2.2) at a defect are given

respectively by

cn = σn〈vn〉n (2.1)

cp = σp〈vp〉p (2.2)
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Figure 2.1: A p+n Schottky barrier diode showing the associated band bending. Above the band

structure is a plot of the electric field caused by the band bending on the same x-axis. The n-type

region has x > 0 while x < 0 is p+-type.

where σn and σp are the electron and hole capture cross sections respectively and n and

p are the electron and hole concentrations respectively. The thermal velocities (or mean

Fermi-velocities) of electrons and holes are 〈vn〉 and 〈vp〉 respectively. For electrons the

thermal velocity is given by,
3

2
kT =

1

2
m∗

n〈v2
n〉 (2.3)

with

〈vn〉 ≈
√

〈v2
n〉 (2.4)

where k is the Boltzmann’s constant, T temperature and m∗
n the effective electron mass.

The hole thermal velocity is given by analogous equations.

A defect with an electron-capture rate greater than its hole-capture rate is known as an

electron trap. Conversely a defect with cp > cn is a hole trap. A defect will act as a

recombination centre if both cn and cp are large.
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2.2.2 Schottky diodes

DLTS experiments probe the space charge region of a Schottky diode or p-n junction. The

inherent band bending at the junction has two effects. Due to the constant position of

EF , as the bands bend the Fermi-level effectively shifts across the band-gap. Impurities

within the space charge region will then become ionised. The second effect of the band

bending is the introduction of an electric field. These two points are illustrated in figure

2.1.

An important property of a Schottky diode is that the width of the space charge region,

W , can be varied by applying an external voltage. The width is given by,

W =

√

2ε(Vbi + V )

qN
(2.5)

where Vbi is the built in voltage of the junction as shown in figure 2.1, ε is the permittivity

of the depleted semiconductor, q is the charge of an electron, N is the density of ionised

impurities in the space charge region and V is the applied reverse bias. Since the electric

field in the space charge region sweeps away any free carriers in around 10−12-10−10 seconds

a Schottky diode is effectively a variable width insulator. The capacitance of such a device

is given by

C =
εA

W
(2.6)

where A is the area of the junction. Since W is dependent upon the density of ionised

impurities in the space charge region (equation 2.5), measuring the capacitance of the

device provides information on the carrier traps within the depletion region. Specifically,

a change in the concentration of carriers trapped at deep levels within the depletion region,

caused by the thermal emission of carriers to the appropriate band edge, can be studied

by monitoring the change in capacitance with time at a constant voltage.

2.2.3 The filling and emptying of traps

The thermal emission rate of carriers from a trap to the appropriate band edge is defined

by a Boltzmann distribution. For electrons, emission to the conduction band occurs at a
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rate,

en = An exp(−∆E/kT ) (2.7)

where ∆E is the Gibbs free energy required for the emission of the electron from the trap

level (ET ) to the conduction band (Ec). ∆E is given by

∆E = Ec −ET = ∆H − T∆S (2.8)

where ∆H and ∆S are the change in enthalpy and entropy resulting from the emission of

the carrier.

The pre-exponential factor An is given by

An =
σn〈vn〉Nc

g
(2.9)

where Nc is the effective density of states of the conduction band and g is the degeneracy

of the defect level.

Hence

en =
σn〈vn〉Nc

g
exp(∆S/k) exp(−∆H/kT ). (2.10)

Since 〈vn〉 ∝ T 1/2 and Nc ∝ T 3/2, if ln(en/T
2) is plotted against 1/T the gradient will

give ∆H and the y-axis intercept provides information on σn. Any graph, such as this,

where lnx is plotted against 1/T is known as an Arrhenius plot. Since σn is typically

temperature dependent the value of σn derived from an Arrhenius plot will often differ

from that found by a more direct measurement. The Arrhenius plot is often referred to as

the signature of a deep level since it should be entirely independent of experimental setup.

Clearly similar equations to those above may be derived for the emission of a trapped hole

to the valence band.

To measure the transient thermal emission of carriers from the deep levels the traps must

first be filled. This is accomplished by a filling pulse which narrows the width of the

depletion region, allowing carriers to enter and be trapped at deep levels. After the pulse

the depletion region returns to its original width as traps are thermally ionised at a rate
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Figure 2.2: Diagram a shows the depletion region under steady-state reverse bias when all traps

are empty. During the voltage pulse the size of the depletion region (W ) is reduced and traps

are filled as shown in diagram b. After the pulse, W returns to its steady-state value as the traps

thermally empty as shown in diagram c. Carriers are removed by the electric field within the

depletion region. Note that for clarity band bending (see figure 2.1) has not been shown in this

figure.
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Figure 2.3: The different capacitance transients of minority and majority carriers. The filling

pulse is shown above on the same time scale.

given by equation 2.7 returning the system to equilibrium. This is shown schematically in

figure 2.2. The electric field within the space charge region means that ejected carriers are

quickly swept away and re-trapping can be neglected. The thermal emission of carriers

from deep levels results in the capacitance transient, the direction of which reveals whether

the trap is a minority or majority carrier trap as shown in figure 2.3.

The Poole Frenkel effect

The Poole Frenkel effect is a manifestation of the fact that the emission of a negative

carrier to leave a positive trap (or vice versa) will be assisted by the electric field within the

depletion region (see figure 2.1), enhancing the thermal emission (Hartke, 1968). This is

observable as a dependence of ∆H upon field strength and equivalently V . The observation

of a Poole Frenkel effect gives valuable information on the nature of the trap: It implies

that the trap is neutral when occupied and charged when empty (i.e. a (0/+) like electron

trap or a (−/0) like hole trap).
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Figure 2.4: The double boxcar technique for analysing capacitance transients, introduced by

Lang. The rate window is defined by t1 and t2, the times at which the capacitance is measured to

give ∆C, plotted on the right hand side.

2.2.4 The double boxcar technique

The DLTS technique was pioneered by Lang who introduced the concept of using rate

windows (Lang, 1974), turning the analysis of capacitance transients into a powerful spec-

troscopic technique. The technique involves repeatedly pulsing the diode to produce a

series of capacitance transients at different temperatures. The value of C is measured at

two specific times, t1 and t2 which define the rate window. If we consider a pulse at t = 0

then C(t1) is the capacitance after a time t1 and C(t2) the capacitance after a time t2.

The value of interest is ∆C = C(t1)−C(t2)
1. Scanning over temperature varies the time

constant of the thermal emission of carriers and hence at some temperature the thermal

emission rate and the instrument rate window will produce a maximum in ∆C. This is

shown schematically in figure 2.4. This set-up is called a dual gated signal averager, more

1Note that the capacitance transient is expected to be exponential since it depends upon the thermal

emission of carriers from a single level at a given temperature. Hence C(t) can be defined by a measurement

of C at just two points in time.
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commonly known as the double boxcar technique. The dependence of the emission rate

upon temperature is required to produce an Arrhenius plot. This dependence can be found

by varying the rate window, which shifts the DLTS peak to a different temperature and

hence, in a standard DLTS experiment, a series of scans is required to find the signature

of a given deep level.

2.3 Infra-red Spectroscopy

2.3.1 The origin of vibrational modes

A point defect placed in an otherwise perfect crystal will break the translational symmetry

and hence modify the material’s modes of vibrations. It is possible that these modified

modes will still lie within the band of lattice modes and hence the vibrational energy

will be transmitted throughout the crystal. Alternatively the modified modes may be

above the maximum lattice frequency ωmax (also known as the Debye frequency which for

silicon coincides with the Raman frequency) or within the gap in frequencies of the lattice

optical and acoustic modes if this gap exists in the given material. Both of these types

of modified modes will be highly localised spatially at the defect. A third alternative is

that the modified modes are located at a frequency where the phonon density of states

is a minimum giving what is know as a pseudo-localised mode or in band resonance. In

silicon there is no gap between the acoustic and optical bands but there is a minimum in

the density of states in the region of 250 cm−1. Hence gap modes will not exist but in

band resonances may be present in addition to true localised modes. These modes may

be observed via the interaction of applied infra-red radiation with the dipole moment of

the defect. This technique is called infra-red spectroscopy and good reviews on the topic

have been given by Newman (1973) and Stavola (1999) among others.
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2.3.2 The removal of free carriers

Free carriers will be present in a semiconductor at a finite temperature. It is crucial

that their concentration is kept low enough that the infra-red radiation is absorbed at

defects rather than by the free carriers. A successful technique for reducing free carrier

absorption is that of counter doping. In the case of the acceptor, co-doping with a donor

or vice versa will greatly reduce the number of free carriers. Alternatively an electron or

neutron irradiation may be performed to create lattice damage which produces deep levels

where remaining free carriers will be trapped (Smith and Angress, 1963). It is important

to remember in these cases that the impurity of interest may interact with the co-dopant

and/or radiation damage (Newman and Smith, 1967; Newman, 1973).

2.3.3 Local vibrational modes

Impurity atoms having a mass less than that of the host crystal atoms are likely to ex-

hibit local vibrational modes, i.e. modes with angular frequency greater than ωmax. By

considering a simple one-dimensional linear chain it can be shown that the angular fre-

quency of the mode is proportional to 1/
√
m′ where m′ is the mass of the light impurity

(Newman, 1973), a finding that holds true for a three-dimensional crystal. An extension

of the simplistic one-dimensional linear chain to three-dimensions has been performed by

several authors (Dawber and Elliot, 1963a,b; Elliot and Pfeuty, 1967) and is reviewed by

Newman (1973). Only the results will be summarised here. One important result of this

analysis is that integrated absorption due to an impurity of mass m′ in a host crystal

where the atoms have mass m (m′ < m) can be shown to be given by,

∫

α(ω)dω =
2π2Dη2

nc
|χ(0)|2 (2.11)

where D is the concentration of impurities of mass m′, c is the velocity of light in vacuum,

n is the refractive index of the crystal and η is the apparent electric charge of the impurity.

In equation 2.11 the integrated absorption can be considered as the absorption due to an

atom of mass m′ vibrating with frequency ω in a fixed potential well, reduced by a factor
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m′|χ(0)|2 which reflects the non-zero amplitude of the vibration on neighbouring atoms.

|χ(0)|2 is given by,

|χ(0)|2 =
1

m

(

ε2z′2
∫

ν(µ)

(z′ − µ)2
dµ− ε

)−1

(2.12)

where ε is the mass defect (m−m′)/m, z′ is ω2
L (ωL is the angular frequency of the local

mode), ν(µ) is the density of unperturbed states and µ is the electric dipole moment

induced by the oscillation.

By considering the effect of a small displacement of the atoms from their equilibrium

position Q on the dipole moment, the dipole moment may be written as,

µ = µe +

(

dµ

dQ

)

e

Q+

(

d2µ

dQ2

)

e

Q2

2
+ .... (2.13)

The probability of an optical transition from a quantum state i to j is given by 〈i|µ|j〉.
For a static moment there will be no coupling to vibrational states and the dipole moment

will contain only a rotational component µe. The strength of the fundamental vibrational

transitions will be proportional to [(dµ/dQ)e]
2 implying that the magnitude but not the

sign of (dµ/dQ)e may be determined experimentally. The quantity (dµ/dQ)e is the same

as the apparent charge η appearing in equation 2.11. The strength of the second harmonic

transitions is proportion to [(d2µ/dQ2)e]
2 with higher order harmonics given by the higher

order terms of equation 2.13.

2.3.4 Symmetry determination

A light, substitutional impurity having cubic symmetry will give rise to a triply degenerate

local vibrational mode due to the degeneracy of the x, y and z directions. If the symmetry

is lowered, the equivalence of these directions is removed and hence the degeneracy of the

states is reduced. For example, if the symmetry is lowered to tetragonal or trigonal

the triply degenerate state will split into a doublet and a singlet. If the symmetry is

further lowered, for orthorhombic symmetry or lower, the states will be split into three

non-degenerate states.

Axial symmetries cannot be determined within the harmonic approximation as all give

rise to two fundamental modes. However, anharmonic terms allow the admixing of wave-
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functions which permits transitions between the ground and higher excited states. The

number of allowed fundamental, second harmonic and higher harmonic transitions depends

upon the point group of the oscillator and hence the distinction between different axial

symmetries is possible.

2.3.5 Isotope effects

Isotope effects are observed strongly by infra-red spectroscopy since the frequency of a

local mode depends upon the atoms mass, as described in section 2.3.3. By studying

material that is isotopically enriched, from the observed shift in a local mode with isotope

it is often possible to demonstrate the presence of a species in the defect to which that

mode belongs. Further benefits of isotope studies are discussed in section 2.4.5 but also

apply to infra-red spectroscopy. The power of infra-red spectroscopy in collaboration with

isotopic studies is demonstrated nicely in section 4.2.

2.4 Photoluminescence Spectroscopy

2.4.1 Optical absorption and emission

Photoluminescence (PL) is an extremely sensitive technique which probes the excited

states of defects in semiconductors, often allowing unambiguous determination of the

atomic species and giving information on the defect structure. Before discussing pho-

toluminescence in any detail it is useful to review the processes of optical absorption and

emission. For a complete review of optical techniques and photoluminescence the reader

should see Davies (1999).

For absorption, light is passed through a crystal and transmitted light is examined spec-

troscopically. A dark line in the transmitted spectrum has a frequency that corresponds

to the energy of an optical transition between two electronic states within the crystal.

The process of optical emission is essentially the same apart from that the light is emitted

at the given energy rather than absorbed. However emission is complicated by processes
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where some of the energy may be emitted non-radiatively, for example in the form of

phonons.

If we consider the simple case where no light is externally or internally reflected, the

intensity of transmitted light will be given by,

It = I0 exp(−µt) (2.14)

where I0 is the intensity of the incident light, t the sample thickness and µ the absorption

coefficient.

It can be shown, by considering the detailed balance of absorption and luminescence

processes, that the concentration of absorbing centres N is given by,

N =
gf

gi

q

π2

E2τ

~3c2
n2

(n2 + 2)2

∫

µ(E)dE (2.15)

where gi and gf are the degeneracies of the initial and final electronic states respectively,

E is the energy of the transmitted light and τ the radiative lifetime of the transition. An

important implication of this equation is that

N ∝
∫

µ(E)dE. (2.16)

Thus absorption can give the relative number of defects although the absolute number

will usually be unknown.

2.4.2 Photoluminescence

Above band-gap photoluminescence

Crystals typically have a high absorption coefficient for above band-gap light and hence

the energy is deposited close to the surface, typically within a few micrometres. Since this

energy is larger than the crystal’s band-gap the deposited energy creates electron hole pairs

(excitons). In Si the binding energy of the electron and hole is small (∼ 14.3 ± 0.5 meV

(Shaklee and Nahory, 1970)) making it probable that many of the excitons will become
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ionised rather than immediately recombining. Furthermore, since Si has an indirect band-

gap, electrons and holes have different wave-vectors and so their recombination requires

the participation of a phonon which reduces the probability of recombination occurring.

Thus excitons in Si can have a considerable lifetime (∼ 60 µs Merle et al. (1978)) giving

them time to diffuse to defect centres where they may be trapped. Trapping at defects

reduces the lifetime of excitons via a few possible mechanisms, but the most simple comes

from the fact that a localisation of the trapped electron and hole in real space implies

a delocalisation of electron and hole in k-space making recombination possible without

the necessity of a phonon. The recombination energy will place the centre in an excited

electronic state and the centre may then relax to its ground-state via the emission of a

photon of specific energy; thus luminescence characteristic of the centre is observed.

It is important to note that since the input energy may be captured by a variety of different

types of defect centres the amount of energy dedicated to the excitation of the optical

centre of interest is unknown. The implication of this is that the luminescence intensity

of a centre in different samples is generally not directly proportional to its concentration.

This is in contrast to absorption where the energy is directly absorbed by the optical centre

at its characteristic frequency. Furthermore the luminescence intensity may be reduced

by de-excitation via non-radiative processes.

Below band-gap photoluminescence

A perfect crystal will not absorb below band-gap photons; however, such photons may be

absorbed by defects directly. Since there is no intermediate process between absorption of

the photon and excitation of the centre the absorption as a function of the polarisation of

incident light may be studied. This is discussed in more detail in section 2.4.6.
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Figure 2.5: A configuration coordinate diagram showing the ground and excited states of a PL

transition. The zero phonon line has energy hν0.

2.4.3 The photoluminescence spectrum

Zero-phonon line

The zero phonon line is the main signature of a defect in photoluminescence and corre-

sponds to the purely electrical transition with no phonon involvement. The zero phonon

energy is shown schematically in figure 2.5 and is discussed in more detail below.

2.4.4 Local vibrational modes

The energy of an electronic state, E, that is sufficiently separated in energy not to interact

with other electron states, varies in a linear way with applied strain e for small strains,

that is ∆E = Ae. The position of the atoms is labelled Q where Q = 0 corresponds to

the equilibrium positions of the atoms in their electronic ground state. Now if the system

is excited to a state at energy E0 the total energy can be minimised by moving the atoms
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from Q = 0 to Q = −a0e where a0 is the inter-atomic spacing. This lowers the total

energy by ∆E = −Ae = aQ where a = A/a0, shown in figure 2.5. The amount by which

the energy can be lowered is constrained by the elastic energy, kQ2 where k is a constant

in this simple model. The energy of the excited state is then given by,

Ve = E0 + kQ2 − aQ = E0 + k(Q− a/2k)2 − a2/4k. (2.17)

It is now seen that the excitation leads to simple harmonic motion of the atoms around

an equilibrium point at Q0 = a/2k = a/mω2 where m is the mass of the vibrational

mode. Equation 2.17 shows that different excited states will have vibrational modes cen-

tred at different equilibrium positions. This is known as electron-phonon coupling. Note

that anharmonicity and vibronic coupling (the process of vibrational modes causing the

interaction of electronic states) will modify equation 2.17 and have been neglected in this

simple discussion.

According to the Born-Oppenheimer approximation, the wavefunction of a quantum state

ψ, can be separated into an electronic and vibrational part, φ and χ respectively. Hence

we can write the ground and excited states of a system as,

ψg,n = φg(r)χn(Q), (2.18)

ψe,N = φe(r)χN (Q−Q0) (2.19)

where the subscripts g and e denote ground and excited states and n and N are their

respective quantum numbers. The probability of an electric-dipole transition between

states is given by,

Ie,N,g,n =

∫∫

ψ∗
e,Nrψg,ndrdQ

=

∫

φ∗e(r)rφg(r)dr

∫

χN (Q−Q0)χn(Q)dQ

= C

∫

χ∗
N (Q−Q0)χn(Q)dQ (2.20)

where we have considered the electronic contribution as a constant C. From the orthogo-

nality of states of different energies, in the case where Q0 = 0 (i.e. the equilibrium atomic

CHAPTER 2. EXPERIMENTAL TECHNIQUES



2.4. PHOTOLUMINESCENCE SPECTROSCOPY 67

positions are unchanged by the excitation),

∫

χ∗
n(Q)χN (Q)dQ = δN,n (2.21)

where δN,n is the Kronecker delta.

If we now consider absorption at low temperature so that n = 0 the squared overlap

integral is,
∣

∣

∣

∣

∫

χ∗
N (Q−Q0)χ0(Q)dQ

∣

∣

∣

∣

2

=
SN exp(−S)

N !
(2.22)

where S is the known as the Huang-Rhys factor which has the physical significance of

being the relaxation energy, a2/2mω2 in units of ~ω.

It can be seen in figure 2.5 that the zero phonon line (the transition from n to N) cor-

responds to an energy hν0 = E0 − a2/2mω2. From equation 2.22 the intensity of this

transition is I0 = It exp(−S) where It is the total intensity of the absorption band. Simi-

larly the intensity of the one-phonon sideband which occurs ~ω higher in energy (n = 0,

N = 1) is I1 = ItS exp(−S) from equation 2.22.

2.4.5 Isotope effects

Isotopes play a key role in the identification of defects using photoluminescence. It is often

possible to correlate the relative intensities of a series of lines with the abundances (natural

or artificially enriched) of stable isotopes of a given atomic species. Thus the possible

presence of that species within the optical centre can be demonstrated. Furthermore the

number of components to the splitting of the spectral lines, when more than one isotope of

a species is present, reveals the lower limit to the number of atoms of that species within

the centre and may reveal whether they are at equivalent or inequivalent sites.

2.4.6 Selection rules

The probability of a dipole transition from a state ψ1 to ψ2 is given by,

P = 〈ψ1|r|ψ2〉 (2.23)
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where r is the direction of the electric field of the exciting light. For example, for the

simple case of excitation from an s state to a p state by light of electric field polarised in

the x direction, 〈s|x|px〉 6= 0 whereas 〈s|x|py〉 = 0 and 〈s|x|pz〉 = 0. It is important to

note that group theory can state when the probability of a transition is zero but it cannot

give the magnitude of a non-zero probability which may be so small that it is effectively

zero.

These selection rules may lead to a case where a centre will absorb photons with an electric

field component only along a specific crystallographic direction. In this situation centres

may be excited with polarised light and the polarisation of the luminescence analysed. Let

us consider a defect which absorbs light only with an electric field polarised in 〈100〉. Then

the light having electric field along [100] will be absorbed only by centres aligned along

that direction. Assuming that there is enough direct absorption at the centres and that

they luminesce by the emission of a single photon so that the polarisation is conserved,

the intensity of the luminescence will vary as cos2 θ where θ is the angle between the [100]

axis and the electric field of the emitted light.

2.4.7 Symmetry determination

Photoluminescence in conjunction with the application of uniaxial stress to a material can

provide a large amount of reliable information on the symmetry of the optical centre of

interest. The stress applied to a cubic crystal can be defined by six elements of the stress

tensor sij where i and j run over the cubic axis directions x, y and z. Applying a stress

to the crystal along a 〈100〉 direction results in a sxx type stress and applying stress in a

〈111〉 direction gives shear sxy type stresses.

For small stresses the ground and excited electron states will not interact with other

electronic states. If such a stress is applied in a direction which reduces the symmetry of

the centre the energy level for the transition will split by an energy proportional to the

stress (for non-interacting electronic states). Hence the symmetry group of the centre may

be determined but since there is a requirement for the stress to be applied in equal and
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opposite directions (for the crystal to be static), centres with inversion symmetry cannot

be separated from those without. This means from stress perturbations alone it may be

possible to determine that a defect has trigonal symmetry but it will not be possible to

determine whether the point group is, for example, C3v or D3d. The differentiation of

point groups with and without inversion symmetry may be made using an electric field

in addition to the stress. A good discussion of this technique has been given by Davies

(1999)

2.5 Electron Paramagnetic Resonance

Electron Paramagnetic Resonance or EPR is an extremely powerful tool in the study of

defects in semiconductors due to the rich information it is able to provide, even more so

when the extended form of EPR known as Electron Nuclear Double Resonance (ENDOR)

is applied. EPR gives not only the electrical properties of a defect but also much informa-

tion on the defect structure, chemical composition and even the electron wave function.

The main limit to EPR is that it relies on the interaction of the defect with a magnetic

field and hence the defect being studied must be paramagnetic. Since the main defects of

interest in semiconductors are those that are electrically active it is often the case that in

at least one of a defects stable charge states it will have an unpaired electron and hence be

paramagnetic and so in principle visible to EPR and ENDOR. A good review of the EPR

and ENDOR techniques as well as examples of their application can be found in Watkins

(1998, and reference therein).

2.5.1 Experimental Setup

EPR studies the transitions between Zeeman levels induced at a defect by an external

field. These transitions usually lie within the microwave region of the electromagnetic

spectrum and so the sample is placed within a microwave cavity where there is an intense

and constant microwave field. A variable magnetic field is then applied to the sample.

When the magnitude of the magnetic field |B|, is such that a Zeeman transition coincides
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with the energy of the fixed microwave radiation, a resonance will occur. This resonance

is detected either by a decrease in the quality factor Q of the cavity (absorption) or by a

small shift in the cavity’s resonant frequency (dispersion).

2.5.2 The g-tensor

The energy of the Zeeman interaction is given by the Hamiltonian,

Ĥ = −µ.B (2.24)

where µ is the electronic magnetic dipole moment of the defect, induced by electron spin

S and electron orbital angular momentum L. That dipole moment µ is given by,

µ = −gsµBS− gLµBL (2.25)

where µB is the Bohr magneton (e~/2mc), gs = 2.0023 and gL = 1.

In semiconductors and solids in general, L is often suppressed and hence µ predominantly

originates from S with the additional spin-orbit term λL.S which can be considered as

being effectively due to the spin alone. Hence µ may be written as

µ = −µBS.g (2.26)

where g is the symmetric tensor g = 2.0023 + ∆g. The small orbital component of the

dipole moment due to the spin-orbit interaction has been introduced via the term ∆g.

The Hamiltonian then becomes,

Ĥ = µBS.g.B (2.27)

and the energy levels are split due to the Zeeman effect, giving levels shifted by

E(M) = gµBBM (2.28)

where M is the azimuthal spin quantum number which takes the values −S ≤ M ≤ +S

giving (2S + 1) equally spaced levels. From equation 2.28 it is seen that for a defect with

S = 1/2 a resonance will occur when B = hν0/gµB . This is shown schematically in figure

2.6.
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M = +1/2

M = −1/2

S=1/2 I=1/2

gµBB = hν0

A/gµB

B = hν0/gµB

m=+1/2

m=+1/2

m=−1/2

m=−1/2

Figure 2.6: The allowed EPR transitions for a system with electron spin S = 1/2 (left) and with

nuclear spin I = 1/2 (right). The curves show the resonance as a function of magnetic field while

the lines above show the transitions between levels that have been split due to the Zeeman effect.

For ENDOR there are also transitions allowed for ∆M = 0, ∆m = 1.

The g-tensor is the principal quantity studied by EPR and its angular dependence is given

by,

g =

(

∑

i

g2
i n

2
i

)
1

2

(2.29)

where gi are the principle values of g and ni are the directional cosines of B with respect

to the principle axes of the g-tensor (i = 1, 2, 3). Thus by varying the magnetic field

orientation the angular dependence of g may be determined. The resulting splitting of

levels as the magnetic field is directed away from directions of high crystal symmetry

provides information on the symmetry of the defect. EPR spectra characteristic of several

common defect point group symmetries are shown in figure 2.7 for a cubic crystal.

The electronic structure of the defect can be determined from ∆g using second order

perturbation theory which gives,

∆g = −2λ
∑

n

〈0|L|n〉〈n|L|0〉
En −E0

(2.30)

where n denotes the excited states.
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Td D2d
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Figure 2.7: The characteristic angular dependencies of EPR signals for some common point group

symmetries in a cubic semiconductor.

2.5.3 Hyperfine Interaction

So far within this section the only magnetic field considered has been the applied magnetic

field Bapp. There is however, likely to be an additional magnetic field experienced by the

paramagnetic electron (Bloc) due to the magnetic moment induced by the nuclear spins

(I) of nearby atomic nuclei. Hence strictly we should write,

B = Bapp + Bloc. (2.31)

This will introduce an additional term in the Hamiltonian given in equation 2.27 giving,

Ĥ = µBS.g.B +
∑

j

S.Aj .Ij (2.32)

where the sum is over the nearby nuclei. The tensor Aj is the magnitude and angular

dependence of the nuclear dipole for each nucleus.

The (2Ij + 1) allowed energy levels are found by first order perturbation theory to lie at,

E(M,mj) ' (gµBB +
∑

j

Ajmj)M (2.33)
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where mj is the nuclear azimuthal quantum number. The condition for EPR resonance is

now ∆M = ±1 and ∆mj = 0 and hence a resonance will occur when

B =
1

gµB
(hν −

∑

j

Ajmj). (2.34)

The corresponding transitions are shown on figure 2.6.

2.5.4 Wavefunction analysis

Further information on the electron wavefunction can be inferred from the angular depen-

dence of Aj . In analogy to equation 2.29 Aj can be expressed as,

Aj =

(

∑

α

A2
jαn

2
jα

) 1

2

(2.35)

where Ajα and njα are the principle values of Ajα and the directional cosines with respect

to g.B respectively for each axis α and each nucleus j. By substituting terms for the

electronic and nuclear dipole moments and adding a Fermi contact term it is possible to

write A as a function of the electron wavefunction, ψ, at the nucleus (r = 0),

Aij = ggNµBµN

{〈

3xixj

r5
− δij
r3

〉

+
8π

3
|ψ(0)|2δij

}

. (2.36)

Often the wavefunction is considered as a linear combination of atomic orbitals,

ψ =
∑

j

ηjψj (2.37)

where the sum is over each atomic site j and η2
j represents the fraction of the charge

density localised at that site. Then for each site,

ψj = αj(ψs)j + βj(ψp)j + . . . (2.38)

where (ψs)j and (ψp)j are the s and p components of ψ at atomic site j and α2
j and β2

j

give the fraction of ψ forming the s or p orbital. The value of η2
j is given by the hyperfine

interaction at site j while α2
j and β2

j are given by the isotropic and anisotropic components

of the hyperfine interaction respectively.
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2.5.5 Fine structure terms

When S > 1/2 higher order fine structure may appear. This gives rise to an additional

term within the Hamiltonian of the form

S.D.S (2.39)

which originates from the spin-spin and spin-orbit interactions between electrons.

In the case where D � gµBB a term in M 2 is added to equation 2.33 which now becomes,

E(M,mj) ' (gµBB +
∑

j

Ajmj)M +
3

2
M2

∑

γ

Dγn
2
γ (2.40)

where Dα are the principle values of D while nα are the directional cosines of the principle

axes with respect to g.B. The condition for resonance now becomes,

B(M →M − 1) =
1

gµB
(hν0 −

∑

α

A2
αn

2
α − 3

2
(2M − 1)

∑

γ

D2
γn

2
γ). (2.41)

2.5.6 ENDOR

Electron nuclear double resonance spectroscopy is a relatively simple extension to the EPR

technique. The experimental setup is as described in section 2.5.1 but with the addition

of a coil either wrapped around or placed within the cavity. Once an EPR resonance is

found as described above, the magnetic field B is held constant and a radio frequency is

induced by the coil. The radio frequency is used to induce a resonance with the nuclei of

atomic species close to the defect. Thus resolution of hyperfine interactions (described in

section 2.5.3) is greatly increased.

The added resolution has several advantages but perhaps the most significant is that the

nuclear interaction with the external field may be studied. This often makes it possible to

unambiguously identify the chemical species of atoms at the defect.
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Figure 2.8: A schematic diagram of a dynamic SIMS experimental setup where the primary ion

beam is rastered over the sample surface to create a flat bottomed crater of well controlled depth.

The crater sizes produced in SIMS range from around 5 × 5 µm to around 500× 500 µm.

2.6 Secondary Ion Mass Spectrometry

Secondary Ion Mass Spectrometry (SIMS) is a sensitive characterisation technique, es-

pecially useful for analysing dopant depth profiles. The basic principles of the technique

presented here have been discussed in more detail by Clegg (1990) as well as Benninghoven

et al. (1987).

2.6.1 Experimental setup

The basic principle of SIMS is rather simple. The sample of interest is bombarded with

ions having energies of 1-20 keV. Upon collision with the sample, these primary ions will

sputter secondary ions from the surface. The secondary ions are then extracted to a

mass spectrometer which determines their mass to charge ratio. The experiment is shown

schematically in figure 2.8. Since the surface will be sputtered away as a function of time it

may be possible to use the evolution of the mass peak of an element of interest to evaluate

the depth profile of that element. In order to ensure that the surface is reduced in a well

controlled manner, the ion beam is usually rastered over the surface. Furthermore, to

prevent errors due to the counting of particles sputtered from the crater edge, electronic

or optical gating is employed. This either physically restricts the flow of these ions into

CHAPTER 2. EXPERIMENTAL TECHNIQUES



2.6. SECONDARY ION MASS SPECTROMETRY 76

the mass spectrometer or electronically removes their signal ensuring that only secondary

ions from the flat crater centre are included in the SIMS profile.

2.6.2 Projectile-target interaction

Collision cascades and intermixing

The processes by which primary ions interact with the sample and secondary ions are

produced are more complicated than they may first seem and hence deserve further dis-

cussion. The deposition of the projectiles energy within the target can be described by

linear cascade theory (Sigmund, 1969) where the incident particle undergoes a series of

binary collisions with atoms within the target. The target atoms, which initially are at

rest, receive large amounts of recoil energy and these atoms then undergo their own binary

collisions resulting in a collision cascade continuing until the energy imparted by each col-

lision becomes less that the atomic displacement energy (∼ 10 eV). If a collision cascade

intersects the sample surface and the recoiling particle (which may be an atom or a group

of atoms) has been given enough energy to overcome the surface binding energy it will be

sputtered from the sample. Sputtered particles typically have energies of a few eV and

originate from within the first two or three atomic layers from the surface.

This complicated interaction of projectile and target has several consequences, the main

one being that atoms within the sample will generally be moved deeper into the target

by the collisions. If the SIMS analysis is being performed to study the depth profile of a

given impurity, that impurity will appear to have been present deeper within the sample

that it actually was. In other words the depth profile of the impurity will be broadened.

This effect is known as intermixing and can be minimised by lowering the beam energy

and increasing the bombardment angle with respect to the surface normal. A second

consequence of the projectile target interaction is that a majority of the primary ions will

remain in the target, changing the composition of the sample surface. Crystal orientation

plays an important role in these phenomena since the penetration depth of implanted ions

is drastically increased by channelling when the ions are implanted into a crystal along a
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low-index crystallographic axis.

Secondary ion formation

The process by which sputtered particles acquire charge is complex and only qualitative

trends shall be discussed here. It is known that an electronegative element in the surface

region of the sample will increase the fraction of particles sputtered in the form of pos-

itively charged ions. Conversely the presence of an electropositive species in the surface

region increases the fraction sputtered in the negative charge state. This effect is likely

to be due to the strong dependence of a sample’s work function on the concentration of

electronegative or electropositive species in the near surface region (Williams and Evans,

1978). It is for precisely this reason that highly electronegative oxygen and electropositive

caesium are the species most often used as primary ions.

2.6.3 Depth profiling

As mentioned in section 2.6.1, SIMS is a powerful tool for investigating the depth profiles

of dopants or impurities. This is done by converting the raw SIMS output, counts of an

atomic species i as a function of time, into the concentration ci of element i as a function

of depth z. The count rate for a species i is given by,

Ii = żβiηiANci (2.42)

where ż is the sample erosion rate, βi is the fractional amount of i sputtered in the form

of an ion, ηi is the number of sputtered ions originating from A, the analysis or gated

area and N is the atomic density of the sample. The value of ż is obtained empirically.

After the original sample surface has been sputtered away (when z >∼ 10 nm) the rate of

change of crater depth with time (t) is practically constant. Hence ż = z/t. The product

βiηi is known as the useful ion yield. βi cannot be calculated and it is difficult to measure

ηi; hence a reference sample, with known ci is used to determine the products value. Since

A, N and Ii are known the concentration of i can be obtained from equation 2.42 and the
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raw SIMS data can then be converted into ci as a function of z. This has been proved an

invaluable technique in the study of the transient enhanced diffusion of boron by authors

such as Pelaz et al. (1999) and Mannino et al. (2000).

2.7 Injection dependent lifetime spectroscopy

A critical characteristic of solar cell material is the carrier lifetime. The carrier lifetime

is likely to be reduced from that of perfect bulk silicon due to the trapping of carriers at

defects and/or impurities. A reduction in carrier lifetime results in a serious reduction in

efficiency of the solar cell since a reduction in carrier lifetime implies that fewer carriers can

reach the external circuit. One such lifetime degrading defect is discussed in more detail in

chapter 6. A very valuable technique in the study of solar cells is Injection Dependent Life-

time Spectroscopy, reviewed below. A good discussion of this technique has been provided

by Macdonald and coworkers (Macdonald and Cuevas, 1999; Macdonald et al., 2001) while

the more fundamental examination of carrier lifetimes which forms the foundations the

above discussions is provided by Hornbeck and Haynes (1955). A good discussion on the

Quasi-Steady-State Photo-Conductance (QSSPC) technique, summarised below (Section

2.7.1), has been given by Sinton and Cuevas (1996).

2.7.1 Quasi-steady-state photoconductance

There are several available techniques for the measurement of effective carrier lifetimes in

semiconductors, most of which are based on the measurement of photoconductance. One

common technique is to study the decay of the photoconductance induced by a flash of

light where the duration of the flash is short with respect to the effective carrier lifetime

(Hornbeck and Haynes, 1955). The effective lifetime may be inferred from the decay tran-

sient. However, the measurement of very low lifetimes is made difficult by complications

arising from surface recombination transients and minority carrier spreading.

Quasi-steady-state photoconductance avoids these problems by applying a light pulse that

is long with respect to the effective carrier lifetime and measuring the photoconductance
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Figure 2.9: The trapping model of Hornbeck and Haynes (1955) for a p-type semiconductor.

Recombination is considered to occur at a single deep level. A second, shallow level is able to trap

carriers which may later be released.

under the quasi-steady-state illumination. The photoconductance may be measured via a

number of methods, many of which have the advantage of being contactless. For example,

the photoconductance may be measured by microwave reflectance or via a coil in a bridge

circuit that is inductively coupled to the wafer conductivity (Sinton and Cuevas, 1996).

Sample preparation may need to include the getter-removal of metallic impurities (which

are strong recombination centres). To avoid surface recombination the surface is usually

etched and subsequently passivated (e.g. by SiN deposition).

2.7.2 Determination of the effective carrier lifetime

The trapping model originally implemented by Hornbeck and Haynes (1955) in the study

of photoconductance decay transients can be adapted to the quasi-steady-state regime

(Macdonald and Cuevas, 1999). The model for the case of p-type material described here,

is shown in figure 2.9. Recombination occurs at a deep recombination level at a rate 1/τr.

The effect of illumination is to free electrons from the shallow level at a rate 1/τg where,

under steady-state conditions, τr and τg are equal. The shallow traps are filled at a rate

1/τt and the mean time spent by a carrier in the trap is τg. The density of normally empty

shallow traps is Nt which is dependent upon the Fermi-level EF and temperature T . Note

that in the limit where EF ∼ Ev and the shallow trap is close to the conduction band, Nt

is simply the total trap density.
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Consider the regime where the excess carrier concentration is much greater than Nt which

can be realised by intense illumination. Since the number of excess electrons is much larger

than Nt, regardless of the number of electrons in traps, the excess electron density ∆n

will be approximately equal to the excess hole density ∆p. Recombination will occur at a

rate proportional to the photogeneration rate, reflecting the bulk lifetime of the material.

An alternative regime is that where the excess carrier concentration is closer to or less

than Nt, realised by less intense illumination. In this case the density of trapped electrons

nt, will be large. To maintain charge neutrality ∆p = ∆n + nt must always hold which

implies that if the density of trapped electrons is large ∆p will also become large resulting

in an increased photoconductivity. The excess conductivity is given by,

∆σ = q∆n(µn + µp) + qntµp (2.43)

where µn and µp are the electron and hole mobilities. It can now be seen that the term

Injection Dependent Lifetime Spectroscopy follows from the dependence of ∆n upon illu-

mination intensity.

Hornbeck and Haynes (1955) described the trapping process in p-type material by the

following equations,

d∆n

dt
= ge −

∆n

τr
+
nt

τg
− ∆n(1 − nt/Nt)

τt
(2.44)

dnt

dt
= −nt

τg
+

∆n(1 − nt/Nt)

τt
(2.45)

where ge is the photogeneration rate of electron-hole pairs. Since steady-state conditions

mean that the left hand sides of equations 2.44 and 2.45 must equal zero,

∆n = geτr (2.46)

which in turn implies that

nt =
Nt∆n

∆n+Ntτt/τg
(2.47)

although in general QSSPC actually obtains ∆neff = geτeff rather than ∆n given by

equation 2.46. It is important to note that ∆n is always equal to that expected in the
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absence of traps for a given ge. Trapping increases the number of excess holes which leads

to the excess conductivity described by equation 2.43.

From the measured excess conductivity (equation 2.43) and the photogeneration rate which

is generally known, it is possible to derive

τeff =
∆σ

ge(µn + µp)
(2.48)

where it has been assumed that ∆n = ∆p.

2.7.3 Determination of electrical levels

By fitting experimental data to the trapping model described above (specifically equations

2.43,2.46,2.47,2.48), the values of τr, τt/τg and Nt may be derived. Hornbeck and Haynes

(1955) have shown that the energy level ET of the trap is given by,

Ec −ET = kT ln

(

Ncτg
Ntτt

)

(2.49)

where kT has its usual meaning and Nc is the effective density of states of the conduction

band edge. It is important to note that if there is more than one trap the calculated level

will be a weighted average of all those present.

2.7.4 Determination of capture cross sections

The use of QSSPC in the determination of another important fundamental property of a

carrier trap, namely the capture cross section, has been described by Schmidt and Cuevas

(1999) and later by Macdonald et al. (2001). Since the injection-level dependence of the

effective carrier lifetime is highly sensitive to the resistivity of the sample being stud-

ied, fitting Shockley-Read-Hall (SRH) recombination curves to many samples of different

dopant concentration allows unique and accurate values of the electron and hole capture

cross sections, σn and σp to be obtained. This method is claimed to be able to determine

capture cross sections more accurately than by extrapolation of a DLTS Arrhenius plot

(section 2.2)2.

2Note that although capture cross sections obtained by extrapolation of a DLTS Arrhenius plot may

have relatively large errors, changing the filling pulse in a DLTS experiment can give values of the capture
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Shockley-Read-Hall statistics

Shockley-Read-Hall statistics (Shockley and Read Jr., 1952; Hall, 1952) are used to fit

plots of excess carrier concentration ∆n against the effective carrier lifetime τeff . These

plots are known as recombination curves. The SRH carrier lifetime is given by,

1

τSRH
=

NA + ∆n

τp0(n1 + ∆n) + τn0(NA + p1 + ∆n)
(2.50)

where NA is the dopant density and it is assumed that ∆n = ∆p as in section 2.7.2. We

will define n1 and p1 later (equations 2.53 and 2.54). The electron and hole lifetimes are

τn0 and τp0 respectively. These are given by,

τn0 = 1/
(

(vth)nσnNSRH

)

(2.51)

and

τp0 = 1/
(

(vth)pσpNSRH

)

(2.52)

where (vth)n and (vth)p are the respective carrier’s thermal velocity. Equations 2.51 and

2.52 thus define the electron and hole capture cross sections, σn and σp. The electron and

hole densities when the Fermi-level is coincident with the recombination centre level are

n1 = Nc exp

(

ET −Ec

kT

)

(2.53)

and

p1 = Nv exp

(

Ec −Egap −ET

kT

)

(2.54)

respectively, where Ec is the energy level of the conduction band, Egap is the band-gap

and ET is the energy level of the trap. Nc and Nv are the effective densities of states

of the conduction band and valence band edges respectively and again kT has its usual

meaning.

The assumption that ∆n = ∆p and the application of the standard SRH statistics de-

scribed above is valid when trapping effects are insignificant and while the recombination

centre density is much less than the injected carrier density (NSRH � ∆n).

cross sections with an accuracy comparable to the method described above.
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It is possible to simplify equation 2.50 for low or high injection conditions (∆n� NA and

∆n � NA respectively). Since for a deep level n1 and p1 are likely to be very much less

than NA, if ∆n� NA, equation 2.50 will become,

1

τSRH
=

1

τn0
(2.55)

while if ∆n� NA it becomes
1

τSRH
=

1

τp0
. (2.56)

Fitting Shockley-Read-Hall curves

The measured effective lifetime τeff is plotted against the excess carrier concentration ∆n

for samples of various NA. This data is then fitted with curves obtained from the above

equations. By adjusting parameters to give a good fit to all curves, unique values of σn

and σp can be found.

2.8 Summary

The preceding sections of this chapter have outlined the basic principles behind the exper-

imental techniques most relevant to the rest of the work herein. Of course there are many

other useful techniques not discussed here. Even the techniques that are discussed here

have many extensions and refinements that have not all been mentioned. Its is important

to note that many ideas and techniques are transferable. For example the application of

stress to determine symmetry, discussed in the section on PL (section 2.4) can also be used

by DLTS (section 2.2) and EPR (section 2.5). Furthermore the method of determining

activation energies from an Arrhenius plot described in section 2.2 can be used to deter-

mine the activation energy of any reaction (e.g. defect dissociation or migration) and not

just for the activation energy for the removal of a carrier from a deep level.

Several techniques have been described that are capable of providing, for example the

position of an electrical level or the frequency of a local vibrational mode of a defect.
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The fact that many techniques attempt to measure the same property in different ways is

rather useful for two main reasons. It gives confidence to the results, but also the additional

information obtained by each alternative technique complements the information available

previously. Similarly this is the main strength and most important use of theory: to model

the properties observed experimentally thus confirming or disproving a given model. Hence

the strong collaboration of theory and experiment is extremely valuable, as it is hoped

will be made clear during the proceeding chapters. The proceeding chapters all follow a

format similar to this: A review of previous (mainly experimental) work will be given,

followed by a presentation of the calculations preformed by this author on that subject,

followed by the conclusions that can be drawn in the light of the theoretical investigation.
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Chapter 3
Substitutional and Interstitial Boron

3.1 Introduction

The fundamental elements of any semiconductor device are p-n junctions: adjoining n

and p-type regions. Since boron is a group III element, substitutional boron acts as a

shallow acceptor in silicon. Boron is the acceptor most commonly used in silicon device

manufacture today and so an understanding of its properties is critical. As discussed in

the Introduction, due to the relentless reduction in junction size, extremely small and

extremely highly boron doped regions are being demanded. Small, highly doped regions

are achieved by ion-implantation. Boron ions or complexes containing boron (e.g. BF2)

are fired into the crystal. Such an approach has the advantage of providing the ability

to dope crystals at concentrations greater than the dopants solid solubility limit as well

as offering the ability to accurately choose the doped region. However, as the ions enter

the crystal, although most of their energy is dissipated via interactions with electrons,

some of the ions will collide with host nuclei and displace them. Following implantation

there will therefore be much damage in the crystal and a large fraction of implanted

atoms will not be located at substitutional sites as required for boron to act as a shallow
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11B 10B shift

B− Td

T2 626 (11Bs 623) 650 (10Bs 646) 24 (23)

BI+ C3v

A1 697 (11R 730) 726 (10R 757) 29 (27)

Table 3.1: A comparison of the calculated and observed local vibrational modes of substitutional

boron and the boron interstitial defect. Experimental data are in parenthesis and were obtained

by infrared spectroscopy (Bean et al., 1972; Tipping and Newman, 1987). All modes are given in

wavenumbers (cm−1). The symmetry of the calculated modes and defects are also given. For an

explanation of these symmetries the reader is referred to Tinkham (1964).

acceptor. Therefore, to activate the boron (to make it substitutional) and to remove

damage to the host crystal, the material must be annealed. This can have the side effect

of triggering transient-enhanced diffusion, recently reviewed by Jain et al. (2002), during

which the implanted boron may diffuse over large distances in a very short time, placing

a limit on the minimum length scales of devices. Furthermore, in the regions with the

highest dopant concentration boron-interstitial clusters (BICs) may be formed. These

BICs though immobile, are likely to be effectively electrically inactive (Stolk et al., 1995a;

Pelaz et al., 1997; Cowern et al., 1990) therefore reducing the effectiveness of the doping.

Before considering BICs it is instructive to study substitutional and interstitial boron,

both of which have been investigated experimentally for many years.

3.2 Substitutional boron

The acceptor level of substitutional boron Bs is around 0.045 eV above the valence band

(Morin and Maita, 1954). In material counter-doped with either arsenic or phosphorus,

using infra-red spectroscopy the local vibrational modes of Bs at 646 and 623 cm−1 for

10Bs and 11Bs respectively have been observed (Smith and Angress, 1963; Angress et al.,

1965; Balkanski and Nazarewicz, 1966; Bean et al., 1972).
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a)

b) c) d)

Figure 3.1: The structures of substitutional boron and the boron interstitial defect. Structure b

is substitutional boron. The boron interstitial defect in the C3v and C1h configurations, referred

to as BsSiTi and BX
i , are represented by structures c and d respectively. Also shown is a piece of

equivalent bulk material to aid the reader (structure a). Small black balls represent boron, large

grey balls represent substitutional silicon atoms and small white atoms represent interstitial silicon

atoms.
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Figure 3.2: The band-structure of substitutional boron. In the neutral charge state the solid

lines represent filled levels, the dotted lines represent empty levels and the dashed line is a half

occupied level. The dashed line represents the acceptor level of boron. In this and all following

band-structures the labels X , Γ, K and L correspond to the k-points having coordinates (1/2 0 0),

(0 0 0), (1/2 1/2 0) and (1/2 1/2 1/2) respectively in the Brillouin zone of the conventional unit

supercell.
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11B 10B shift Mixed isotope mode

B2−
2 D3d (C3v)

A1g (A1) 635 664 29 650

Eg (E) 602 627 25 617

Eu (E) 551 (P1 553) 568 (P3 570) 17 (17) 558 (P2 560)

Table 3.2: The calculated and observed (Newman and Smith, 1967) local vibrational modes of

the substitutional boron pair. Observed modes are given in parenthesis. All modes are given in

wavenumbers (cm−1). The symmetries of the calculated structures and modes are also given.

The structure of substitutional boron, shown in figure 3.1, involves an inward relaxation

of the surrounding silicon atoms due to the smaller radius of the boron atom. The shal-

low acceptor level of boron is shown as a dashed line in the calculated band-structure

presented in figure 3.2. Using the marker method with bulk silicon as the marker, the

calculated (−/0) level is placed at Ev + 0.2 eV. This is in reasonable agreement with the

experimentally observed position with the disagreement indicative of the size of the possi-

ble errors associated with the calculation of defect levels using DFT. However it is worth

noting that bulk silicon is not a particularly good marker in this case since the (−/0) level

of bulk silicon can be considered to be the conduction band and hence the position and

furthermore the character of the marker’s (−/0) level is significantly different from that

of substitutional boron. The calculated local vibration modes of Bs are presented in table

3.1 and show excellent agreement with experiment. The fact that the local vibrational

modes of Bs agree so well with experiment while the calculated position of the acceptor

level is in disagreement with experiment by around 0.2 eV highlights both the accuracy

with which DFT is able to calculate LVMs and the relatively large errors present in the

calculation of electrical levels.
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Figure 3.3: The calculated formation energy of the substitutional boron pair, relative to iso-

lated substitutional boron, as a function of separation. A separation of 1 corresponds to nearest

neighbour BsBs, a separation of 2 corresponds to next nearest neighbour BsBs and so on. The

formation energy of isolated substitutional boron has been set to zero. The plot shows that two

substitutional boron atoms in a nearest neighbour configuration is unstable with respect to two

isolated substitutional boron atoms by 0.37 eV.
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3.3 Substitutional Boron Pairs

As well as isolated substitutional boron, local vibrational modes have been observed and

assigned to pairs of substitutional boron atoms (Newman and Smith, 1967). As shown in

table 3.2 the calculated local vibrational modes of a nearest neighbour substitutional boron

pair agree well with the observed modes which are labelled the P lines. It is interesting to

note that this nearest-neighbour substitutional boron pair is metastable with respect to

two isolated substitutional boron atoms. This is clearly seen when the formation energy

of B2 is plotted as a function of distance between the two boron atoms (figure 3.3). The

energy clearly tends toward the formation energy of isolated substitutional boron as the

pair are separated. Hence the assignment of the nearest neighbour substitutional boron

pair to the P centre provides evidence for the existence of metastable defects in silicon.

In this case it is believed that the nearest neighbour substitutional boron pair is grown in

or formed by some reaction and that the barrier for the boron atoms to move apart is too

large for a more stable arrangement to be achieved (Tipping and Newman, 1987).

3.4 The Boron Interstitial Defect

Electron irradiation induces lattice damage in the form of vacancy-interstitial (Frenkel)

pairs. If boron and phosphorus co-doped material is electron irradiated at low temperature

new vibrational modes labelled the R lines are observed at 757 and 730 cm−1 for 10B and

11B respectively. These lines have been assigned to interstitial boron Bi, formed when

self-interstitials react with Bs (Tipping and Newman, 1987). The vacancies generated by

the irradiation are trapped by the counter dopant creating E centres. The R lines are

stable up to 230 K.

The Si-G28 EPR (and ENDOR) centre is also observed following low temperature electron

irradiation of boron doped silicon and has also been assigned to Bi (Watkins, 1975).

The production rate of Bi is similar to that of the single vacancy implying a remarkably

efficient capturing of the irradiation-induced self-interstitials by Bs. Near band-gap light
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is required to observe the Si-G28 spectrum implying that the paramagnetic charge state

that is visible to EPR (neutral in this case) is metastable. An analysis of the hyperfine

interactions estimates that ∼ 33% of the wavefunction lies in a p-orbital of the single boron

atom while two nearby silicon atoms have ∼ 17% each, accounting for a total of ∼ 67%

of the wavefunction. The angular dependece of the EPR spectrum is not fully resolved

but the symmetry is observed to be C1h, lower than that of the more typical tetrahedral

(Td) or hexagonal (D3d) interstitial sites. Biaxial stress experiments demonstrate that an

electron or hole capture process induces a change in the centre’s structure from one of low

monoclinic to trigonal symmetry. The Si-G28 centre anneals with an activation energy of

0.60 ± 0.05 eV. The prefactor for the annealing rate is a factor of 106 smaller than the

prefactor for reorientation obtained from the biaxial stress study. Hence Watkins (1975)

proposed that Bi anneals by diffusing with a migration energy of 0.6 eV until, after making

∼ 106 single jumps, it is trapped by some other defect.

The fact that Bi is observed by EPR in neither n nor p-type material in the absence of

illumination implies that Bi has both a donor and acceptor level allowing it to be non-

paramagnetic in its stable charge state in both n and p-type material. Since the Si-G28

EPR centre has not been observed in n-type silicon, only the donor (0/+) level could be

located by EPR which placed it around Ec−0.15 eV. Later DLTS placed the donor (0/+)

level at Ec − 0.13 eV. The acceptor (−/0) level was also observed by DLTS experiments

(Watkins and Troxell, 1980; Troxell and Watkins, 1980) and placed at Ec − 0.45 eV later

corrected by Harris et al. (1987) who showed that a better estimate of the level position

was Ec − 0.37 eV. Thus Bi is a negative-U system, meaning that when either an electron

is trapped at the positive defect or a hole is trapped at the negative one, a second charge

carrier will be spontaneously trapped changing the charge state directly from +1 to −1 or

vice versa. The structural reorientation associated with the change in charge state lowers

the total energy by more than enough to compensate for the Coulombic repulsion between

the pair of electrons or holes. Negative-U was a phenomenon first proposed by Anderson

(1975) to explain the failure to detect paramagnetism for intrinsic defects in chalcogenide

glasses.
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In agreement with other theoretical studies (Hakala et al., 2000; Jeong and Oshiyama,

2001), the present work finds that the most stable configuration formed when a self in-

terstitial is trapped by substitutional boron in the positive and neutral charge state has

C3v symmetry and is essentially substitutional boron with a self interstitial trapped at an

adjacent tetrahedral interstitial site. In the negative charge state the C3v symmetry is

broken forming a complex similar to a [110] split-interstitial (a complex where a dumbbell

of two atoms, aligned along [110], replaces a single host atom). This configuration has

C1h symmetry and is, according to theory, metastable in the neutral charge state being

0.18 eV higher in energy than the C3v form. The C3v and C1h configurations are labelled

BsSiTi and BX
i respectively and are shown in figure 3.1. Given that for the case of BsSiTi

the boron atom is not interstitial and for BX
i it is not well defined whether the boron is

interstitial or not, interstitial boron is a rather misleading name for this complex. Hence,

from this point it will be referred to as the boron interstitial defect or just BI where BnIm

is a complex formed between n boron atoms and m interstitial atoms of either species.

The latter notation conveniently removes the requirement of defining which atoms are and

which are not interstitial, a task that is often non-trivial and unnecessary. Note that in

agreement with the EPR data (Watkins, 1975) the symmetry of the positively charged

defect is trigonal. However, theory finds that the symmetry of the most stable form in

the neutral charge state is also trigonal, the C1h form, as observed by EPR, is found to be

metastable. Nevertheless, this already provides evidence that the structures shown in fig-

ure 3.1 are indeed the correct form of the boron interstitial defect. The donor and acceptor

levels of BI, calculated using bulk silicon as a marker, are Ec − 0.05 and Ec − 0.33 eV, in

good agreement with EPR and DLTS and reproducing the observed negative-U . Boron

located at the more usual tetrahedral or hexagonal interstitial site, BT
i or BH

i respectively,

is significantly less stable than BsSiTi . In p-type material the position of the electrical

levels of BsSiTi , BT
i and BH

i dictates that they will all be positively charged and in this

charge state both BT
i and BH

i are around 1.0 eV less stable than BsSiTi .

Further evidence that the correct structure of BI is that shown in figure 3.1 comes from

a comparison of the observed and calculated local vibrational modes. The position of the
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EPR DFT

Atom α2
j β2

j η2
j α2

j β2
j η2

j

B 0.03 0.97 0.33 0.005 0.99 0.17

Si1 0.14 0.86 0.15 0.01 0.77 0.08

Si2 0.02 0.98 0.19 0.05 0.83 0.11

Table 3.3: The calculated and observed (Watkins, 1975) wavefunction parameters for the boron

interstitial defect. α2
j is the s-like fraction, β2

j the p-like fraction and η2
j is the total fraction of the

paramagnetic electron localised on the given atom.

donor and acceptor level of BI implies that in the compensated material in which local

vibrational modes were measured, the boron interstitial defect will be positively charged.

Hence the local vibrational modes were calculated for BsSiT+
i , the stable form of BI under

such conditions. The calculated and observed modes are again given in table 3.1 and agree

well. A comparison of the calculated and observed shift in wavenumber with boron isotope

shows an agreement to within 2 cm−1.

Finally, a comparison of the calculated wavefunction parameters for the form of BI that

corresponds to the observed paramagnetic state, BX
i to those measured by Watkins (1975)

for the boron interstitial defect, reveals several similar trends, shown in table 3.3. Although

the quantitative agreement is not superb it is clear that a significant fraction, around 36%,

of the paramagnetic electron of BX
i lies on the boron and just two other silicon atoms,

in agreement with the EPR study. Furthermore, in all cases the wavefunctions is largely

accommodated in a p-orbital. Thus a study of the nature of the wavefunction of BX
i

provides the final piece of evidence that BI is none other than BX
i and BsSiTi shown in

figure 3.1.

3.5 Summary

Self-interstitials are produced by irradiation or ion-implantation and the reaction of self-

interstitials with substitutional boron generates boron interstitial defects (BI). It has been
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demonstrated above that the generation of BI is not a kick-out mechanism but is rather a

pairing between a self-interstitial and substitutional boron atom. BI has been shown to be

a negative-U centre which in the positive charge state has the form of substitutional boron

next to a tetrahedral self-interstitial. In the negative charge state the defects symmetry

is reduced. BI becomes mobile below room temperature as evidenced by the annealing

of the R lines at 230 K. It is likely that when BI becomes mobile it will be trapped at

other centres to generate larger, more stable complexes. The complexes formed in the

high-boron concentration regime are the topic of the next chapter, while chapter 5 will

deal with the complexes formed when the boron concentration is comparable to that of

other impurities common to silicon.
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Chapter 4
Boron Interstitial Clusters

4.1 Introduction

There is much interest in the stable, electrically inactive boron interstitial clusters (BICs)

formed during transient enhanced diffusion (TED) (Stolk et al., 1995a; Pelaz et al., 1997;

Cowern et al., 1990). At present rather little is known about them since they are too

small to be resolved by transmission electron microscopy (TEM), are electrically inert and

hence not observable by electrical measurements such as DLTS and at present there is no

information on local vibrational modes of these clusters of which there are likely to be

many different forms. One way to gain an insight into the nature of these clusters is to

employ theory but since the experimental knowledge of these clusters is sparse, attempting

to model the clusters stable at the temperatures associated with TED is difficult with no

means of gauging success. This is especially apparent when it is realised that some BICs

may exist in metastable forms, just like the nearest neighbour substitutional pair discussed

in section 3.3. Here, the small clusters formed when BI anneals have been studied since

in this case there are experimental observations of the defects formed. It is hoped that by

developing an understanding of the evolution of boron in implanted or irradiated material
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Figure 4.1: The normalised integrated absorption of the 730 cm−1 R line, 903 cm−1 S line and

733 cm−1 Q line for various anneal temperatures. This figure is reproduced with kind permission

from Tipping and Newman (1987).

this approach will provide a clearer insight into the properties of the BICs observed during

TED.

4.2 The S and Q centres

Isochronal anneals in association with infrared absorption measurements (Tipping and

Newman, 1987) reveal much of what is known about small BICs. As described in the

previous chapter, local vibrational modes assigned to BI are observed in compensated,

boron doped silicon that has been irradiated with electrons at low temperature. It is

critical that the electron irradiation is performed at low temperature since the R lines

(assigned to BI) begin to anneal at 200 K and are removed completely by a 10 minute

anneal at 250 K. This disappearance of the R lines coincides with the growth of set of lines

labelled the S lines. The defect responsible for these lines, the S centre, is stable only

within a narrow temperature window, annealing at 270 K. A new set of lines labelled the Q

lines then appear. The centre responsible for these lines is stable to 220 ◦C. The Q centre

CHAPTER 4. BORON INTERSTITIAL CLUSTERS



4.2. THE S AND Q CENTRES 98

can also be formed directly by the same dose of room temperature irradiation (Laithwaite

et al., 1975). Figure 4.1 shows the variation of the normalised integrated absorption of the

R, S and Q lines with annealing temperature, clearly demonstrating the evolution from

the R centre to the Q centre via the S centre.

The frequencies of the S and Q lines are shown in table 4.1. Five local vibrational modes

have been correlated with the S centre. Tipping and Newman (1987) reasoned that the

S centre could be assigned to a boron pair having axial symmetry. The lines S1, S2 and

S3 would then be the non-degenerate modes, parallel to the symmetry axis, while the

lines S4, S5 and S6 would be the doubly degenerate modes perpendicular to the axis.

Note that S6 is an unobserved line predicted by Tipping and Newman (1987) to lie at

624 cm−1. If it were present it would be masked by the much stronger absorption due to

11Bs. Thus, infra-red spectroscopy suggests that the S lines originate from a complex of

two boron atoms having axial symmetry. The Q centre on the other hand gives rise to

only one local mode per isotope. Bean et al. (1972) assigned these modes to interstitial

boron. In material compensated with phosphorus the E centre (PV) is observed. Since

Bi is expected to react with PV to generate Bs-Ps complexes and no formation of Bs-Ps

was observed during irradiation once compensation had been achieved, Bean et al. (1972)

reasoned that Bi must be immobile at 300 K and since it is immobile, clusters of interstitial

boron must be unable to form. Furthermore, since BV is known to be unstable at 300 K

(Watkins, 1976) and almost all of the vacancies generated by the irradiation are thought

to be contained in E centres, the most likely possibility is that the Q lines are due to Bi.

However, as discussed in chapter 3, Tipping and Newman (1987) later assigned the R lines

to interstitial boron and since the S centre has been assigned to a pair of boron atoms

they concluded that the Q centre, formed when the S centre anneals, must be a complex

of three or more interstitial boron atoms.

When BI becomes mobile it is likely that, in the absence of other impurities it will be

trapped by either substitutional boron or by a vacancy. In the infrared experiment de-

scribed above the vacancies are trapped in the form of stable E centres so it is probable

that the anneal of BI will result in its trapping by Bs and the formation of B2I (BsBi using
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11B 10B shift Mixed isotope mode

B2I
S D3d (C3v)

A2u (A1) 919 (S1 903) 946 (S3 928) 27 (25) 934 (S2 917)

A1g (A1) 702 736 34 718

Eu (E) 611 (S4 599) 634 23 628 (S5 603)

Eg (E) 595 616 21 600

B2I
Q D2d (C2v)

A1 (A1) 1132 1186 54 1159

E (B1) 756 (11Q 733) 785 (10Q 760) 29 (27) 785, 756

B2I
Y
3 C1h (C1)

A′ (A) 1043 1093 50 1068

A′′ (A) 808 841 33 836

A′ (A) 801 (I2 843) 832 (I2 882) 31 (39) 804

A′′ (A) 580 591 11 584

A′ (A) 578 581 2 580

A′ (A) 563 567 5 565

A′ (A) 552 556 3 554

A′′ (A) 232 (I2 242) 234 (I2 242) 2 (< 1) 233

Table 4.1: The local vibrational modes of small boron interstitial clusters as calculated in this

work, observed modes being given in parenthesis. All modes are given in wavenumbers (cm−1).

The S and Q centres observed by IR spectroscopy (Newman and Smith, 1967; Laithwaite et al.,

1975; Tipping and Newman, 1987) are assigned to a metastable and stable form of B2I respectively.

The vibrational modes of the I2 centre, observed by PL (Thonke et al., 1984) are assigned to a

metastable form of B2I3. Symmetries of defects and modes are given for the isotopically pure

defects with mixed isotope symmetries in parenthesis.
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a) b) c)

d) e) f)

Figure 4.2: The structures of interstitial and boron interstitial clusters as calculated in this work

with the exception of structure d which was calculated by Jones et al. (2002). B2I
S (structure b)

is assigned to the S centre, B2I
Q (structure c) to the Q centre, IW3 (structure d) to the W or I1

centre and B2I
Y
3 (structure e) is assigned to the Y or I2 centre. B2I

6r
3 is the more stable form

of B2I3 but it has not been observed in any experiment. Small black balls represent boron, large

grey balls represent substitutional silicon atoms and small white atoms represent interstitial silicon

atoms.
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more conventional notation). Of the different configurations of B2I studied it was found

that B2I
Q shown in figure 4.2 is the most stable, in agreement with previous theoretical

investigations (Tarnow, 1992; Zhu et al., 1996; Liu et al., 2000). B2I
Q consists of two

boron atoms sharing a single lattice site in a split interstitial configuration aligned along

[100] with D2d symmetry. IR-active local modes with E-symmetry occur at 756 cm−1

(11B-11B) and 785 cm−1 (10B-10B) and within 30 cm−1 of the Q lines, shown in table

4.1. The displacements of the boron atoms in the E mode are along 〈110〉 directions and

perpendicular to the boron-boron bond. Changing the mass of one of the boron atoms

has negligible effect on the frequency of the second boron atom and for 10B-11B the two

E modes occur within 0.01 cm−1 of the isotopically pure ones. The position of these

modes and their isotopic shifts are in very good agreement with the Q lines at 733 cm−1

(11B) and 760 cm−1 (10B) which are formed after BI has annealed. It is seen that the

absence of mixed modes does not require there to be only one boron atom in the defect.

The boron-boron bond length of 1.54 Å implies a displacement of boron from its lattice

site of 0.77 Å along 〈100〉, which is consistent with the channelling studies of Smulders

et al. (1990). These studies were carried out with low temperature (35 K) proton irra-

diations and showed that substantially more Bs atoms are displaced from substitutional

sites following a 300 K anneal, consistent with the formation of B2I
Q. B2I

Q is electrically

inactive as expected from simple one electron arguments (all bonds are fully satisfied and

close to the ideal bond-angle). The binding energy of B−
s and B+

i in B2I
Q is 1.3 eV and

if it is assumed that the defect dissociates at a rate ν exp(−(W + EB)/kT ) where ν is

the Debye frequency and W is the migration barrier of BI+, known to be 0.6 eV (Troxell

and Watkins, 1980), then B2I
Q would dissociate at around 400◦C. Its disappearance at

220◦C is in accordance with the suggestion of Bean et al. (1972) that B2I traps a divacancy

that becomes mobile at this temperature. The resulting B2V complex breaks up forming

substitutional boron and resulting in a partial recovery to the electrical activity of boron

observed at this temperature (Bean et al., 1972).

The assignment of B2I
Q to the Q centre suggests that the S centre, which is stable only over

the narrow temperature range illustrated by figure 4.1, is likely to be some intermediate
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centre formed during the conversion of BI to B2I
Q. Indeed calculations suggest that this

is the case. It is found that the local vibrational modes of a complex labelled B2I
S, shown

in figure 4.2 correspond closely to the modes of the S centre. The calculated and observed

modes are shown for comparison in table 4.1. The calculated (observed) modes of A2u

symmetry lie at 919 (903) and 946 (928) cm−1 for 11B-11B and 10B-10B respectively and

shift to 934 (917) cm−1 for 11B-10B. Eu modes lie at 611 (599) and 634 (-) cm−1 for 11B-11B

and 10B-10B respectively and shift to 628 (603) cm−1 for 11B-10B. The unattributed Eu

mode, calculated to lie at 634 cm−1 would probably be masked by absorption of 11Bs

and is in agreement with the line S6 predicted by Tipping and Newman (1987) to lie at

624 cm−1. The S defect is 0.4 eV less stable than B2I
Q and hence is a second example of

a metastable species that has been frozen in, in this case during the capture of BI by Bs.

The assignment of the S lines to a metastable defect complements that of the metastable

boron substitutional pair discussed in section 3.3. This work finds that B2I
S is electrically

active with a (−/0) level placed at Ec − 0.2 eV when bulk silicon is used as a marker. In

the negative charge state its symmetry drops to C2 or C1h when the Si interstitial moves

out of the bond centre. B2I
S is similar in structure to the neutral di-carbon interstitial

centre (Song et al., 1990; Leary et al., 1998).

4.3 The I2 centre

To our knowledge, only one other point-like defect thought to be composed of purely

boron and self-interstitial atoms has been observed experimentally. It is known as the

I2 or Y centre. The I2 centre has a zero phonon line at 1.080 eV and is observed by

photoluminescence in irradiated p-type material that has been annealed at around 350 ◦C

(Thonke et al., 1984; Sauer and Weber, 1983; Terashima et al., 1997). The I2 line is

composed of four peaks and from the observed isotopic shift of the zero phonon line it has

been deduced that I2 possess two optically equivalent boron atoms. The centre is found

to have a local mode satellite shifted from the zero phonon line by −30.2 meV (labelled

L1) (Thonke et al., 1984; Sauer and Weber, 1983). Later a second local mode satellite
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shifted from the zero phonon line by 104.6 meV (11B) and 109.4 meV (10B) was observed

(labelled L2) (Thonke et al., 1984). L1 is reported to display only a small isotope effect

(10B 30.18 meV and 11B 30.04 meV). These modes are given in units of wavenumbers

in table 4.1. It is noted in the later work that a slight shift between the deconvoluted

positions of the modes of the fourfold structure for the natural isotopic abundances of

boron and those observed in the isotopically pure cases implies that the two boron are

only very nearly equivalent. Zeeman measurements indicate trigonal symmetry although

uniaxial stress measurements reveal the true symmetry to be C1h (Thonke et al., 1983).

The I2 centre is stable to around 400 ◦C (Sauer and Weber, 1983) or 500 ◦C (Terashima

et al., 1997). Along with I2 an intrinsic centre labelled I1 (or W ) is observed (Thonke

et al., 1984; Sauer and Weber, 1983; Terashima et al., 1997). The trigonal I1 defect has

a zero phonon line at 1.0182 eV and is believed to be composed of three self-interstitials,

shown in figure 4.2 (Jones et al., 2002; Estreicher et al., 2001).

In irradiated or implanted material annealed to high temperature, if there are sufficient

self-interstitials present that B2I
Q is not removed by the divacancy as described above,

it is possible that B2I
Q may trap a di-interstitial which is considerable more mobile than

the single self-interstitial (Estreicher et al., 2001; Eberlein et al., 2001). Thus the likely

result of further annealing of B2I
Q is the formation of a B2I3 complex. In agreement with

Liu et al. (2000) the most stable form of B2I3 is found to be a configuration constructed

by arranging three split-interstitials (two B-Si and one Si-Si dumbbells) in a triangle so

as to form a six member ring lying approximately in a (23̄3̄) plane. Here we call this

complex, which is shown in shown in figure 4.2, B2I
6r
3 . B2I

6r
3 has C1 symmetry but a

similar configuration having the same C1h symmetry as I2 can be easily constructed and

is only marginally higher in energy (∼ 0.05 eV in the relevant positive charge state).

However, both forms of B2I
6r
3 give rise to a mid-gap donor level and are thus likely to act

as nonradiative recombination centres and certainly not shallow exciton traps as expected

for I2 which has a zero phonon line energy slightly smaller than the silicon band-gap.

A complex that may be linked to the I2 PL centre is a metastable configuration of B2I3

similar in form to the structure of I1. We call this complex B2I
Y
3 and it is shown in
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figure 4.2. The I1 centre (IW3 ) consists of three bond-centred self-interstitials placed in a

[11̄0] chain and can be modified to form B2I
Y
3 by replacing the self-interstitial at each end

of the chain with a boron atom. This reaction can be written IW
3 + 2Bs → B2I

Y
3 and is

exothermic, releasing ∼ 3 eV. B2I
Y
3 is 0.7 eV higher in energy than B2I

6r
3 but it is possible

that like I1, it is formed through the aggregation of interstitials and like I1 once formed

cannot dissociate below about 500◦C (Estreicher et al., 2001).

The local vibrational modes of B2I
Y
3 have been calculated in both 96 and 216 atom su-

percells. The true local modes were found to be fully converged in the smaller cell but

it was found that an in-band resonance around 230 cm−1 became more localised as the

supercell size was increased. Local vibrational modes having A′-symmetry lie at 801 cm−1

(11B-11B) and 832 cm−1 (10B-10B) as shown in table 4.1. These are within 50 cm−1 of the

phonon-replica modes of I2 observed at ∼ 843 cm−1 and 882 cm−1 which probably possess

A′-symmetry (Thonke et al., 1984). The calculated A′′ mode around 800 cm−1 however,

is in slightly better agreement with experiment. A low frequency resonant mode with

a high degree of localisation on the boron atoms and their silicon neighbours is present

at 232 cm−1 (11B-11B) and 234 cm−1 (10B-10B) where there is a minimum in the bulk

phonon density of states. These are in agreement with the phonon replica of I2 observed

at ∼ 242 cm−1 with an isotopic shift ∼ 1 cm−1. These modes transform as A′′-symmetry

and there is no selection rule excluding their participation in a one-phonon replica.

A Kohn-Sham band-structure of B2I
Y
3 is presented in figure 4.3. The band-structure

demonstrates the lack of deep levels associated with B2I
Y
3 . Only shallow levels are present,

close to both the valence and conduction bands. If an exciton were trapped at such shallow

levels its recombination would result in a zero phonon line with an energy slightly smaller

than the band-gap, as is the case for I2. Thus the electronic structure, along with the

symmetry and vibrational modes, suggests that B2I
Y
3 is a strong candidate for the defect

responsible for the I2 PL centre. It is a peculiar feature of the I2 luminescence that Zeeman

studies indicate a trigonal centre in contrast with uniaxial stress measurements. We note

that, like the I1 line, B2I
Y
3 is compressive along [111]. A Zeeman splitting, exhibiting

trigonal symmetry due to the strain field, might then arise from a weakly bound carrier
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Figure 4.3: The calculated Kohn-Sham band-structure of B2I
Y
3 in a 96 atom supercell. Dotted

lines indicate levels which are empty while solid lines indicate levels which are filled in the neutral

charge state. Note the shallow level present at each band edge indicated by heavy lines.

Coulombically trapped to the ionised centre.

4.4 Summary

In the previous chapter BI, formed when a self-interstitial is trapped by substitutional

boron, was discussed. Above it has been shown that when BI becomes mobile at 230 K it

is trapped by Bs forming a [100] boron-boron split interstitial that has been labelled B2I
Q

after its correlation with the Q lines. It has been shown that B2I
Q is not formed directly

from this reaction. Instead a complex that has been labelled B2I
S, after its assignment

to the S lines, is formed. This metastable defect is then converted into B2I
Q via a small

energy barrier. B2I
Q is likely to be destroyed by reaction with a divacancy which becomes

mobile at around 220◦C. However, in interstitial-rich regions it is possible that B2I
Q reacts

with a highly mobile di-self-interstitial to form a metastable defect labelled B2I
Y
3 which

can be assigned to the I2 PL centre. This centre is then stable to around 500◦C. Above
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this temperature there is, to our knowledge, no experimental evidence to facilitate the

further development of this proposed reaction path. Recent evidence has however shown

that boron may eventually form extended defects that are large enough to be observable

by TEM (Cristiano et al., 2003). So far the possibility of the interaction of boron with

common impurities found in silicon has been neglected. This important aspect to the

reaction paths of boron in silicon will be addressed in the next chapter.
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Chapter 5
Boron-impurity complexes

5.1 Introduction

As discussed previously, the properties of the boron related defects formed following ion-

implantation or irradiation and subsequent annealing are of great interest. It is hoped

that understanding the reactions undertaken by boron will increase the ability to control

Transient-Enhanced Diffusion (TED) and facilitate the pursuit of smaller device scales.

Chapter 3 discussed substitutional boron and the boron interstitial defect and chapter 4

considered the complexes of boron and self-interstitials formed when BI anneals. In this

chapter the role played by impurities common to silicon is discussed.

Oxygen is found in Czochralski (Cz) grown silicon in concentrations of around 1017 cm−3

or higher and in concentrations around two orders of magnitude smaller in float-zone FZ

silicon. The large amount found in Cz silicon is due to incorporation of oxygen from the

silica crucible used during wafer growth. Oxygen is a desirable impurity since the interac-

tion of oxygen with dislocations greatly increases the energy required for the dislocations

to move. Thus dislocation locking by oxygen makes a silicon wafer much harder and more
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resistant to warpage. Furthermore, oxygen precipitates getter transition metals which are

highly undesirable impurities. The concentration of carbon in silicon is usually around

1015-1016 cm−3 and it is incorporated during growth by a number of methods including

from gaseous contaminants and from contact with hot graphitic growth equipment. As

for oxygen, the incorporation of carbon has some positive effects. Substitutional carbon

traps self-interstitials, reducing the supersaturation of self-interstitials and thus retarding

the diffusion of boron (for example Rücker et al. (1998)). Hence carbon has a positive role

to play in the reduction of TED. Hydrogen is used in many sample preparation processes

such as etching and is thus easily and often introduced. The hydrogen concentration de-

pends very much upon the previous treatment of the wafer but it is almost always present.

It is the interaction with boron in the presence of self-interstitials that is discussed below

for these three impurities, oxygen, carbon and hydrogen.

5.2 Oxygen

In Cz silicon the annealing of BI coincides with the growth of a new level at Ec − 0.23 eV

observed by Troxell and Watkins (1980). Centres with near identical growth and anneal

temperatures as well as energy levels have been observed at Ec−0.27 eV and Ec−0.26 eV

by Mooney et al. (1977) and Drevinsky et al. (1988) respectively. Due to their similarities

these levels are assumed to be one and the same and so to avoid confusion, from this point

on, the level of interest will somewhat arbitrarily be referred to as Ec − 0.23 eV though

there is no evidence that this estimate of activation energy is any more accurate than that

of Mooney et al. (1977) or Drevinsky et al. (1988). Boron’s involvement in the centre is

confirmed by its effect on the introduction rate. Mooney et al. (1977) observed that the

level’s introduction rate seemed to be proportional to [B]
1

2 .1 Drevinsky et al. (1988) found

that for low boron concentrations the introduction rate is directly proportional to [B] and

for high concentrations it decays as [B]−2. The observation that the introduction rate is

directly proportional to [O] (Drevinsky et al., 1988) points to a complex of boron and a

1Here and throughout the notation [X] represents the concentration of X.
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a) b) c)

d) e)

Figure 5.1: The calculated structures of the boron-impurity complexes assigned to the experi-

mentally observed levels. (a) a piece of bulk Si to aid the reader, (b) BiOi, (c) BiCs, (d) BiBsH

in the neutral and negative charge state, (e) BiBsH in the positive charge state. Large grey balls

represent Si, small grey are H, small black are B, small white are O and the larger white ones are

C.
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single oxygen atom as a candidate for this centre.

Since the defect responsible for the Ec − 0.23 eV level is formed as BI anneals and since it

is likely to contain just one oxygen atom BiOi is a probable candidate. The most stable

form of BiOi is shown in figure 5.1. The structure is similar to that proposed for CiOi

(Coutinho et al., 2002) but in this case the oxygen atom is less strongly bound. The

binding energy EB of oxygen with BI is 0.6 eV while the binding energy of oxygen with

Ci is 1.7 eV according to the calculations of Coutinho et al. (2002). The activation energy

for dissociation of BiOi is approximately W + EB = 1.2 eV when the migration energy

W of BI measured by Troxell and Watkins (1980) (0.6 eV) is used. This is in excellent

agreement with the value of 1.20 ± 0.05 eV measured by Mooney et al. (1977).

The single donor (0/+) level of BiOi is, using interstitial carbon as a marker, calculated

to lie around Ec − 0.35 eV, near to the observed level. The second donor (+/ + +) level

is calculated to lie close to (possibly even below) the valence band top when the sulphur

substitutional pair, which is a double donor is used as a marker defect. Calculations find

no acceptor (−/0) level in the band-gap. Thus the level observed at Ec − 0.23 eV can

be assigned to the single donor level of BiOi and not the double donor as suggested by

Mooney et al. (1977) on the grounds of it having a large electron capture cross section

(σn = 3 × 10−13 cm2) before electron capture and a small hole capture cross section

(σp ∼ 10−20 cm2) after the electron capture. Mooney et al. (1977) point out that these

capture cross sections suggest that the defect was positively charged before and after

electron capture and hence the level must be a second donor (+/ + +) level. There is

however experimental evidence in support of the single donor activity of BiOi. The loss

of carriers in electron and proton-irradiated Cz p-type silicon can be correlated with the

growth in concentration of BiOi and the other dominant radiation induced defects in that

temperature range (V2 and CiOi) (Yamaguchi et al., 1999). To obtain good agreement

between carrier and defect concentration it must be assumed that BiOi possesses a single

and not double donor level. In conclusion BiOi is formed when BI becomes mobile at

230 K and diffuses to Oi
2 with an activation energy of 0.6 eV and a pre-exponential

2Interstitial oxygen has a migration energy of 2.5 eV and hence is immobile at 230 K (Mikkelsen, 1986)
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factor of 5 × 107 s−1 as measured by Troxell and Watkins (1980). BiOi then gives rise to

a single donor (0/+) level around Ec − 0.23 eV.

5.3 Carbon

At 150-200◦C in Cz silicon the Ec − 0.23 eV level disappears and a new level appears at

around Ev +0.29 eV (Mooney et al., 1977; Kimerling et al., 1989). The defect responsible

for this new level is formed with an activation energy and pre-exponential factor identical

to that of the decay of the Ec−0.23 eV level (Mooney et al., 1977). The production rate of

the new defect formed is independent of [O] but directly proportional to [C] and inversely

proportional to [B] (Kimerling et al., 1989).

If the Ec − 0.23 eV level is indeed BiOi then the evidence above suggests that when BiOi

dissociates at ∼ 150◦C, BI diffuses to and is trapped by substitutional carbon generating

BiCs with a level at Ev +0.29 eV. However there are some difficulties in this interpretation

(Yarykin et al., 2004). In FZ silicon, one anticipates that, due to the lower oxygen concen-

tration, BiCs could form at room temperature when BI or Ci becomes mobile. However,

experiments show that in carbon-rich FZ silicon the Ev +0.29 eV level is not formed until

about 120◦C (Drevinsky et al., 1988; Monakhov et al., 1997). One explanation for this

observation could be the preferential formation of a metastable precursor BiC
∗
s which is

converted into BiCs via a barrier that can be surmounted only when the material is an-

nealed to 120◦C and which has so far evaded detection in DLTS studies. Such a metastable

precursor may also explain how the concentration of BiCs can be several times that of

BiOi (Yarykin et al., 2004; Drevinsky et al., 1988). The unexpected dependence of the

production rate of BiCs upon boron concentration is perhaps not surprising given that for

high boron concentration B2I
Q (BiBs) is likely to be formed instead of BiCs.

The ground-state structure of BiCs is shown in figure 5.1 and is very similar to that of the

BiBs defect (B2I
Q) discussed in section 4.2. Note that BiCs can equivalently be described

as CiBs. The complex has a single donor (0/+) level calculated, using interstitial carbon

as a marker, to lie around Ev + 0.26 eV, very close to the observed level. Calculations
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also predict an acceptor (−/0) level around Ec − 0.3 eV using the same marker. The

complex could dissociate either by the release of Ci leaving Bs or by the release of BI

leaving Cs. The former mechanisms is more likely as a self-interstitial is calculated to be

∼0.7 eV more tightly bound to Cs than to Bs. The dissociation temperature is then given

by (W +EB)/k ln ν with W , the migration energy of Ci ∼ 0.80 eV (Watkins and Brower,

1976) and EB , the binding energy of Ci and Bs ∼ 1.2 eV. This temperature, around 400◦C,

is in very good agreement with the temperature of close to 400◦C at which Mooney et al.

(1977) and Drevinsky et al. (1988) observe the Ev +0.29 eV level to disappear. The weight

of evidence therefore points to the assignment of the Ev + 0.29 eV level to BiCs which is

formed when BiOi dissociates and BI is trapped at Cs.

5.4 Hydrogen

In this section the effect of hydrogen on the evolution of boron interstitial clusters is

discussed. A level observed at ∼ Ev + 0.51 eV and labelled H3 (or Hα1) is observed in

boron doped Cz or FZ silicon that has been either room temperature electron-irradiated

and then hydrogenated (Feklisova et al., 2001) or room temperature electron irradiated

after hydrogenation (Yarykin et al., 2001) and in room temperature α-irradiated boron

doped epitaxially grown Si (which contains much grown in hydrogen) (Mamor et al.,

1998) and in proton-irradiated boron doped FZ silicon (Mamor et al., 2001). The level

is not observed in material that has been made p-type by aluminium, instead of boron

doping (Feklisova et al., 2001). Hence the link to both hydrogen and boron is clear.

The H3 complex forms so efficiently that its concentration can exceed that of all other

DLTS centres present with levels in the lower half of the gap (Feklisova et al., 2001). In

hydrogenated FZ (or epi) boron doped Si, the level is observed in as-irradiated samples. In

Cz silicon however, the sample must be annealed to a temperature in the range 170-370◦C

subsequent to the irradiation, then cooled and hydrogenated at room temperature in order

to produce H3.

The fact that Cz silicon and only Cz silicon (which has high oxygen concentration) requires
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annealing at above 170◦C strongly suggests that the precursor ofH3 (unhydrogenatedH3)

is a complex other than BiOi. In fact no level that can be assigned to the H3 precur-

sor has been detected by DLTS. The requirement of a room temperature irradiation or

implantation to form H3 implies the involvement of an irradiation-induced defect that is

stable at room temperature. This suggests two likely candidates for the H3 centre: BiBsH

and BiCsH (Yarykin et al., 2004). An assignment of H3 to BiH, one of the candidates

put forward by Volpi et al. (2004), is ruled out based on the fact that H3 can be formed

by a room temperature irradiation followed by hydrogenation implying that the unhydro-

genated precursor to H3 must be stable at room temperature which BI clearly is not.

The assignment of the Ev + 0.29 eV level to BiCs makes the assignment of the H3 level

to BiCsH unlikely, mainly due to the fact that no levels of the H3 precursor have been

detected. It is possible that an undetected metastable precursor of BiCs, (BiC
∗
s) could

lead to H3, but it would then be necessary to argue that not all BiC
∗
s is converted to the

stable form BiCs on heating. Moreover, the most stable structure of BiCsH is the same as

that of BiCs, shown in figure 5.1 but with a hydrogen atom (not shown) attached to the C

atom. This leaves carbon four-fold coordinated and B three-fold coordinated and leads to

an electrically inactive defect. Hence, BiCsH can not be assigned to the H3 centre which

has a level near mid-gap.

BiBs (B2I
Q) on the other-hand is a much stronger candidate for the H3 precursor since it

is known to be formed by the electron irradiation of boron-doped Si. BiBs is electrically

inactive and hence invisible to DLTS. Furthermore, BiBs is not expected to form in as-

irradiated Cz silicon since BI formed by the irradiation would be trapped by oxygen

giving BiOi instead. The H3 precursor (BiBs) could then be formed only by annealing at

a temperature high enough to dissociate BiOi but not so high as to destroy BiBs which is

removed when V2 becomes mobile (Bean et al. (1972) and section 4.2). Hence BiBs is an

appealing candidate for the H3 precursor. If BiBs is hydrogenated it forms the structure

shown in figure 5.1. In the positive charge state the symmetry changes from C1h to C3v.

BiBsH has both a donor and acceptor level calculated to lie close together and around

Ev +0.5 eV when bulk silicon is used as a marker. It is believed to be a negative-U system
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as the charge driven bistability hints. Due to the generation mechanism and stability of

its precursor and the position of its electrical levels, it is BiBsH that is assigned to the H3

centre. BiBsH is predicted to dissociate into BiBs and Hi around 430◦C assuming that

the migration energy of hydrogen WHi
is 0.2 eV (Van de Walle et al., 1988).

Potential problems with the assignment of BiBsH to H3 have been identified by Yarykin

et al. (2004). The introduction rate of H3 is expected to be quadratic with boron concen-

tration if the assignment of H3 to BiBsH is correct. For [B]∼ 1015 cm−3 the introduction

rate is observed to be linear and not quadratic and appears to saturate at around 1016

cm−3 (Yarykin et al., 2004). However, it is now believed (Yarykin, 2004) that the intro-

duction rate of H3 was limited by the amount of hydrogen present in the material and

not by the boron concentration as believed previously. Hence the measurement of the

introduction rate as a function of boron concentration must be repeated in material with

a greater concentration of hydrogen.

It is concluded that BiBs is the precursor to H3 and that the complex may be activated

by the trapping of a single hydrogen atom giving rise to the H3 centre with donor and

acceptor levels around mid-gap. An alternative formation mechanism for H3 occurs when

the material is hydrogenated prior to irradiation. In this case BI, produced by the irra-

diation, is trapped by BsH possibly forming a metastable BiBsH
∗ defect (MH3 observed

by Yarykin et al. (2001)) which evolves into BiBsH at around 150◦C. If BiBsH were to

trap a second hydrogen, it would once again become passive although this does not appear

to occur even for long hydrogenation times (Yarykin et al., 2004). Again it now appears

likely that the lack of observed passivation is simply due to the fact that the hydrogen

concentration was overestimated (Yarykin, 2004). An alternative explanation is that since

the reaction VOH + H → VOH2
3 is about 0.9 eV more exothermic than the reaction

BiBsH + H → BiBsH2, VOH2 is preferentially formed. However, the former explanation

is more appealing since it is also able to explain the linear introduction rate of H3 with

boron concentration mentioned above.

3The binding energy of H to VOH had been calculated by Coutinho et al. (2000).
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5.5 Summary

In chapter 4 it was shown that the boron interstitial defect (BI), generated by implantation

or irradiation, is trapped by substitutional boron when it becomes mobile at around 230 K.

The resulting BiBs (B2I) complex is electrically inactive. BiBs (B2I) can be formed directly

by room temperature implantation or irradiation. Here it has been demonstrated that in

the presence of hydrogen BiBs becomes electrically active with donor and acceptor level

around Ev +0.51 eV and it is predicted to be stable up to ∼ 400◦C. An alternative reaction

path occurs in Cz material or material with lower boron concentration. In this material

BI is trapped in large concentrations by oxygen forming BiOi and giving rise to a single

donor (0/+) level at around Ec − 0.23 eV. BiOi anneals by dissociation between 150 and

200◦C and subsequently BiCs is formed. BiCs has a donor (0/+) level at Ev + 0.29 and

like BiBsH is stable until 400◦C when it dissociates.

Having understood the reactions leading to the most dominant, electrically active, inter-

stitial defects in p-type silicon up to 400◦C, the focus will now be turned to a complex of

boron and oxygen that is believed to exist in in solar cells, in far lower concentrations than

BiOi does in irradiated material, yet it causes a drastic degradation of solar cell efficiency.

This complex is the focus of the next chapter.

CHAPTER 5. BORON-IMPURITY COMPLEXES



Chapter 6
Degradation of boron doped

Czochralski silicon solar cells

6.1 Introduction

There are many social and economic pressures on the development of cheap, renewable

energy sources. On Earth we receive just over 1 × 103 Wm−2 from the Sun1 and so solar

power is a promising source of energy. Solar cells are one important device available for

harnessing this energy, not only on Earth but also for example on satellites where a portable

and renewable source of electricity is hugely desirable. Henry (1980) has shown that in

principle it is possible to create a single band-gap solar cell with an external quantum

efficiency of 31% for an illumination intensity of 1 sun. The efficiency of a single band-gap

solar cell is largly limited by the fact that photons with energy less than the band-gap are

transmitted through the semiconductor while those with energy greater than the band-gap

generate excitons where the electron is far above the conduction band bottom, Ec and the

1This quantity of energy defines the value of 1 sun.
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hole is far below the valence band top, Ev. Energy possessed by the exciton in excess of

the band-gap energy is quickly lost as the electron and hole fall to Ec and Ev respectively.

It is desirable to manufacture solar cells from semiconductors used in devices, none more

so than silicon. For a solar cell having the band-gap of silicon the maximum theoretical

efficiency is around 29% (Henry, 1980). To date the highest efficiency achieved by a n+-

p silicon solar cell is 24.7% (Zhao et al., 1998). This was achieved in mono-crystalline

FZ material. But FZ material, though containing far less oxygen than Cz material (the

importance of this will become apparent in the next section) is relatively expensive, a fact

which has spurred interest in Cz silicon solar cells. In Cz material there are around two

orders of magnitude more oxygen (∼ 1017 cm−3 or larger) and the maximum efficiencies

achieved are rather less than FZ material at around 19-20% (Bothe, 2004). Despite the

significantly lower efficiency, Cz solar cells play an important role due to their lower cost

and are preferred to FZ solar cells when the size of solar cell required, which is inversely

proportional to cell’s efficiency, is less of an issue.

A major problem faced by n+-p Cz solar cells is that of light-induced degradation. The

external efficiency of the solar cell reduces during operation due to the light-induced gen-

eration of defects. These defects act as recombination centres, trapping minority and

majority carriers (electrons and holes respectively in the solar cells of interest here where

the active region is p-type). For early Cz solar cells the degradation was found to be due to

the light induced dissociation of FeiBs pairs (Reiss et al., 1996). FeiBs has a donor (0/+)

level at Ev + 0.10 eV (Feichtinger, 1979) and an acceptor level at around Ec − 0.29 eV

(Lemke, 1981; Brotherton et al., 1985). After illumination, dissociated Fei gives rise to a

donor (0/+) level at Ev + 0.38 eV (Feichtinger et al., 1978). Fei acts as a much stronger

recombination than FeiBs resulting in a decrease in minority carrier lifetime with illumi-

nation. Even an iron concentration as low as 1011cm−3 can result in degradation (Reiss

et al., 1996) and so it is absolutely critical that iron contamination is avoided.

Even in the absence of iron, degradation is observed in Cz solar cells. The external effi-

ciency is reduced by about one tenth following illumination (Fischer and Pschunder, 1973;

Knobloch et al., 1996) or minority carrier injection (Knobloch et al., 1996). This degrada-
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tion has been attributed to carrier recombination at a boron-oxygen centre (Schmidt et al.,

1997; Schmidt and Cuevas, 1999; Schmidt and Bothe, 2004) and it is this boron-oxygen

defect that is the concern of this chapter.

6.2 The boron oxygen complex

Minority carrier lifetime spectroscopic studies have shown that the concentration of this

recombination centre is directly proportional to boron concentration (Glunz et al., 1998;

Schmidt and Cuevas, 1999; Schmidt and Bothe, 2004) and to [O]2 (Schmidt et al., 2002;

Schmidt and Bothe, 2004), suggesting a complex of a single boron atom with a pair of

oxygen atoms. This dependence is contrary to earlier results which found a stronger oxygen

dependence (Glunz et al., 1998) but the quadratic dependence upon oxygen concentration

has now been confirmed (Rein et al., 2003).

Hydrogen may be introduced during processing steps such as etching. By measuring the

passivation of substitutional boron by hydrogen, as a function of distance from the crystal

surface it has been shown that etching introduces hydrogen only to a depth ∼ 10 µm

(Weber et al., 2003). Since the lifetime degradation has been shown to be due to a

bulk property of the material (Schmidt and Cuevas, 1999), the involvement of hydrogen

introduced by such processing can probably be excluded.

The generation of the defect involves two processes (Bothe et al., 2004): a fast process

which will not be discussed here and a slower process activated by an energy E gen
A =

0.37 eV (Schmidt et al., 2002; Bothe et al., 2004). For the slower process, its generation

rate per centre is proportional to [B]2 (Rein et al., 2001; Bothe et al., 2003) and to the

light intensity up to a critical value of just 10−2 suns after which the generation rate

saturates (Schmidt and Bothe, 2004). The defect anneals out in the dark at ∼ 200◦C with

an activation energy of Eann
A = 1.3 eV (Rein et al., 2001; Bothe et al., 2003; Schmidt and

Bothe, 2004).

Schmidt et al. (Schmidt et al., 2002; Bothe et al., 2004; Schmidt and Bothe, 2004) have

put forward a model where interstitial oxygen pairs O2i, already present in the material,
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a) b) c)

Figure 6.1: The structure of the two most stable forms of BsO2i. Large grey balls represent

silicon, small white are oxygen and small black are boron. The square form of BsO2i, BsO
sq
2i

(structure b above) is the most stable form in the single positive charge state and is metastable in

the neutral charge state. The staggered form, BsO
st
2i (structure c above) is the most stable form in

the neutral charge state. An equivalent piece of perfect bulk silicon is shown (structure a above)

to aid the reader. The arrows indicate the Si atoms on which the largest fraction of the donor

state wavefunction resides.

are converted to some fast diffusing form they call O?
2i. Egen

A then corresponds to the

diffusion barrier of O?
2i which migrates quickly through the material until it is trapped by

Bs forming the recombination centre BsO2i. The centre has so far evaded detection by

DLTS, possibly indicating that it is present only in a very low concentration, but injection-

level dependent carrier lifetime measurements place the level at which the minority carrier

trapping occurs at between Ev +0.35 and Ec−0.45 eV(Schmidt and Cuevas, 1999). Using

advanced lifetime spectroscopy the level was pinned down to Ec − 0.41 eV (Rein and

Glunz, 2003). Although absolute carrier capture cross sections have not been determined,

the ratio of electron capture cross section to hole capture cross section (σn/σp) has been

determined by Rein and Glunz (2003) to be 9.3 implying that the centre is an efficient

electron trap.

The present theoretical work indicates that the most stable complex formed when sub-

stitutional boron has trapped an oxygen pair is that shown in figure 6.1. The complex

exhibits a charge driven bistability. In the positive charge state the oxygen atoms are over-

coordinated as indeed found for other oxygen defects like CiOi (Coutinho et al., 2002),

BiOi (section 5.2) and thermal donors (for example Chadi (1996); Pesola et al. (2000);
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Coutinho et al. (2001)). This square configuration is labelled BsO
sq
2i . In the neutral or

negative charge state the oxygen atoms are two fold coordinated and this staggered con-

figuration is labelled BsO
st
2i. BsO

sq
2i is 0.4 eV more stable in the single positive charge

state while in the neutral charge state it is metastable to BsO
st
2i by 0.4 eV. In the negative

charge state BsO
sq
2i is unstable.

The thermodynamic acceptor (−/0) level is placed around Ev +0.3 eV and corresponds to

the BsO
st
2i configuration that is the ground-state in both the neutral and negative charge

states. The thermodynamic donor (0/+) level corresponds to the reaction

BsO
+sq
2i + e− → BsO

0st
2i (6.1)

and is placed in the lower half of the band-gap around Ev +0.4 eV. However, this reaction

can be considered to proceed via two steps. First

BsO
+sq
2i + e− → BsO

0sq
2i (6.2)

and then

BsO
0sq
2i → BsO

0st
2i . (6.3)

The rate for the reverse of reaction 6.2 (i.e. BsO
0sq
2i capturing a hole to return to BsO

+sq
2i )

is τhc where

τhc = p〈vh〉σp. (6.4)

The hole capture cross section, σp is estimated to be 1 × 10−15 cm2. The mean thermal

velocity of holes is given by
3

2
kT =

1

2
m∗

p〈v2
p〉 (6.5)

where m∗
p/m0 has been assumed to be 0.16. The hole concentration p is the sum of the

doping generated holes pdope and the illumination generated holes pill. The p-type doping

concentration is estimated to be 1× 1015 cm−3 giving pdope. The additional p-type doping

due to illumination is given by pill = Gthl where G = I/(dEeh). The hole lifetime thl is

estimated to be 1×10−7 s, the illumination intensity I is taken to be 1000 Wm−2 (1 sun),

d the illumination attenuation distance is taken to be 1 × 10−4 cm and Eeh is the energy

to create an ionised electron-hole pair in silicon, approximately 3.6 eV.
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Figure 6.2: The time taken for BsO
0sq
2i to capture a hole (1/τhc) and the time taken for BsO

0sq
2i

to be converted to the stable form in the neutral charge state, BsO
0st
2i (1/τsq→st). Note that at

room temperature hole capture will take place long before BsO2i is able to reconfigure.

Reaction 6.3 will proceed at a rate τsq→st where,

τsq→st = ν exp

(−EA

kT

)

. (6.6)

The activation energy for reaction 6.3, EA in the above equation, is calculated to be

0.78 eV.

Using the estimated values given above, at room temperature equations 6.4 and 6.6 predict

that the reverse of reaction 6.2 will occur 8 orders of magnitude more quickly than reaction

6.3. The values of 1/τhc and 1/τsq→st are plotted in figure 6.2 as a function of temperature.

This calculation indicates that the relevant donor (0/+) level at around room temperature

in the solar cells is that corresponding to reaction 6.2 and not the thermodynamic donor

level which corresponds to reaction 6.1. This is calculated, using interstitial carbon as a

marker, to lie in the upper part of the band-gap around Ec − 0.3 eV in good agreement

with the level observed by Rein and Glunz (2003). The donor level can be clearly seen

if the Kohn-Sham bandstructure of BsO
sq
2i is plotted (figure 6.3). Note that the fact that

the complex is positively charged in p-type material means that it should act as a strong
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Figure 6.3: The Kohn-Sham band-structure of BsO
sq
2i calculated in a 64 atom supercell. Dotted

lines represent conduction band levels, solid lines indicate valence band levels and the dashed line

represents the donor (0/+) level.

electron trap, consistent with the observed ratio of capture cross sections. Thus the boron

oxygen complex BsO
sq
2i is found to have very similar properties to the lifetime degrading

defect observed in Cz silicon.

A Mulliken analysis and a study of the wavefunction of the highest partially filled level of

neutral BsO
sq
2i have been performed. This level which corresponds to the donor (0/+) level

is localised mainly on the silicon atoms indicated by arrows in figure 6.1 and is largely

p-orbital like in character.

6.3 The formation mechanism of the boron oxygen complex

Having demonstrated that BsO2i has many properties in common with the observed life-

time degrading defect, in order to add weight to a possible assignment it is necessary to

understand how BsO2i may be formed and destroyed. This involves understanding the

physical significance of the activation energies Egen
A = 0.37 eV and Eann

A = 1.3 eV discussed
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a) b) c)

Figure 6.4: The structures of the oxygen pair. The stable form of the pair in the neutral and

single positive charge states is labelled Ost
2i (structure b above). Osq

2i (structure c above) is the

stable form of the pair in the double positive charge state. A piece of equivalent bulk material

(structure c) is also shown. As before, grey balls represent Si and small white ones represent O.

in the previous section. In order to understand the formation and annealing of BsO2i and

to test the model of Schmidt et al. (Schmidt et al., 2002; Bothe et al., 2004; Schmidt and

Bothe, 2004), the oxygen pair, the mobile constituent in the formation of BsO2i, has been

studied. Interstitial Oi has a migration energy of 2.5 eV (Mikkelsen, 1986) and thus is

immobile at room temperature. However, oxygen is bound together in the form of pairs

(O2i) by EB ∼ 0.3 eV (Murin et al., 1998) which it is likely are formed and frozen into

the wafers during heat treatments to remove thermal donors. The pair has been observed

by infrared absorption and its concentration is found to depend upon [Oi]
2 (Murin et al.,

1998) which would in turn lead to the quadratic dependence upon oxygen concentration

for the concentration of lifetime degrading complexes, observed experimentally (Schmidt

et al., 2002; Schmidt and Bothe, 2004; Rein et al., 2003). For this reason the properties

and in particular the migration energy of O2i was investigated.

In the neutral and single positive charge state the staggered form of the pair, shown in

figure 6.4, is the more stable by ∼ 1.3 and ∼ 0.6 eV respectively. In the double positive

charge state the stability is reversed and the square form, also shown in figure 6.4, is more

stable by ∼ 0.9 eV. The pair diffuses by cycling between the square and staggered form

with the addition of a 180◦ precession of the oxygen atoms around their bond centres. This

precession costs significantly less that the reconfiguration from staggered to square forms

and does not contribute to the migration barrier. A configuration coordinate diagram is
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Figure 6.5: A configuration coordinate diagram for the oxygen pair. Arrows show the proposed

thermally assisted Bourgoin diffusion mechanism with a thermal barrier of 0.3 eV. O++sq
2i at A first

captures a photo-generated or injected electron and, after overcoming a 0.2 eV barrier, changes

its configuration to O+st
2i . It then traps a hole becoming O++st

2i , and executes a diffusion jump to

O++sq
2i at B after overcoming a thermal barrier of 0.3 eV.

presented in figure 6.5 showing the migration barrier in each charge state. In the neutral

charge state pairs are calculated to diffuse with an energy of about 1.3 eV in agreement

with previous calculations by Coutinho et al. (2000) and Lee et al. (2001). The saddle

point for the migration is close to the square configuration, Osq
2i shown in figure 6.4. In

the single positive charge state the migration path is similar but the migration energy is

reduced to 0.57 eV. In the double positive charge state, where the relative stabilities of the

square and staggered forms are reversed, the migration energy is 0.86 eV which is again

smaller than for the neutral pair.

The square configuration of the pair has a filled level high in the band-gap, shown in figure

6.6, which is empty for O++
2i and suggests that the pair can be a bistable defect. The first

and second donor levels of the pair are calculated to lie at about Ec−1.0 eV and Ec−0.6 eV

respectively when the sulphur substitutional pair is used as a marker. Since the first donor

level lies below the second, the defect has negative-U , consistent with a charge-driven

bistability, with the occupancy (0/ + +) level lying at ∼ Ev + 0.4 eV. In p-type Si, with
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Figure 6.6: The Kohn-Sham bandstructure of Osq
2i . When the Fermi-level lies below the heavy

solid line and above 0 eV, Osq
2i is in the double positive charge state.
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Figure 6.7: The Kohn-Sham bandstructure of Ost
2i. In the neutral charge state solid lines are filled

levels and dotted lines represent unoccupied levels. It is suggested that the highest occupied level

(shown as a heavy line) may be a donor (0/+) level of O2i.
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the Fermi level below this level, the pair would therefore be present as O++sq
2i . However,

if the first donor level, which corresponds to the reaction O+st
2i + e− → O0st

2i , lay very close

to or beneath the valence-band top, a possible interpretation of the bandstructure of Ost
2i

(figure 6.7), then hole capture would be less efficient and only a fraction of the pairs would

be found in the double positive charge state.

If the pair is indeed stable in the double positive charge state in p-type material then the

diffusion mechanism described by the arrows in figure 6.5 is possible. The pair, present in

its stable O++sq
2i form, can trap a minority carrier electron, generated by the illumination

or alternatively by the application of a forward bias, thus becoming O+sq
2i . It may then

surmount the small 0.2 eV barrier to the stable configuration in the positive charge state,

O+st
2i . From here the pair can capture a majority carrier hole becoming O++st

2i . To become

O++sq
2i at a new site the pair then only has to overcome a 0.3 eV barrier. Hence the migra-

tion energy for the pair in p-type material, under minority carrier injection is calculated

to be just 0.3 eV, rather close to the observed activation energy for the formation of the

lifetime degrading defect of 0.37 eV. Furthermore such a diffusion mechanism should result

in a linear dependence of the production rate of BsO2i with illumination as observed for

the lifetime degrading defect.

The proposed pair migration mechanism is summarised by,

O++sq
2i + e− → O+sq

2i (6.7)

O+sq
2i

0.2 eV→ O+st
2i (6.8)

O+st
2i + h+ → O++st

2i (6.9)

O++st
2i

0.3 eV→ O++sq
2i . (6.10)

The rate that each of each of these reactions, and those reaction competing with them,

have been estimated as described in section 6.2 for reactions 6.2 and 6.3. The product of

reaction 6.7 will be removed by both electron and hole capture,

O+sq
2i + h+ → O++sq

2i (6.11)

O+sq
2i + e+ → O0sq

2i . (6.12)
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These reactions occur 3 and 2 orders of magnitude more slowly than reaction 6.8 respec-

tively and hence O++sq
2i can quickly be converted to O+st

2i . The second part of the diffusion

mechanism (reactions 6.9 and 6.10) is now considered. The rate of the reaction,

O++st
2i + e− → O+st

2i (6.13)

is an order of magnitude greater than that of reaction 6.10 and hence will often occur before

the 0.3 eV barrier can be overcome to result in O++sq
2i at a new site. This bottle neck

suggests that the pre-exponential term defining the reaction rate is small. The prefactor

though not explicitly stated in the literature, can be estimated from the Arrhenius plot

presented by Hashigami et al. (2003) and is indeed found to be small (∼ 2.65 × 103 s−1)

(Palmer, 2004).

Mobile oxygen pairs will be trapped both by oxygen atoms forming O++
3i and by B−

s

forming BsO
+
2i. The capture radius in the latter process will be considerably enhanced by

the Coulomb attraction between B−
s and O++

2i . The binding energy between B−
s and O++

2i

has been estimated from the change in energy when B−
s and O++

2i are separated in a large

144 atom supercell. Moving B−
s away from O++sq

2i by either one or two steps along the

〈110〉 chain of bonds results in an increase of energy of 0.38 eV in each case. Hence B−
s is

bound to O++
2i by an energy of around 0.38 eV.

If the model proposed here is correct, the production rate of lifetime degrading centres

should be proportional to the concentration of the double positively charged pair given by

[O++
2i ] = A exp

(

−EO2i

f (++)

kT

)

(6.14)

where EO2i

f (++) is the formation energy of O++sq
2i , given by equation 1.76. From equation

1.76 and the fact that the position of a band-gap (q/q + 1) level, E(q/q + 1) is defined

by the point at which the formation energy of the defect is equal for charge states q and

(q + 1), it is clear that for the donor (0/+) level of the oxygen pair,

EO2i

f (0) = EO2i

f (+) (6.15)

EO2i

T (0) = EO2i

T (+) +EF (6.16)

⇒ E(0/+) = EO2i

T (0) −EO2i

T (+) (6.17)
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where EO2i

T (0) and EO2i

T (+) are the total energy of O0st
2i and O+st

2i respectively and EF is

the Fermi-energy. Similarly

E(+/+ +) = EO2i

T (+) −EO2i

T (++) (6.18)

hence

E(0/ + +) =
E(0/+) +E(+/ + +)

2
(6.19)

=
EO2i

T (0) −EO2i

T (++)

2
. (6.20)

Using the definition of formation energy Ef (equation 1.76), equation 6.14 can be written

[O++
2i ] ∝ exp

(

−[EO2i

T (++) + 2EF ]

kT

)

. (6.21)

Substituting in the value of EO2i

T (++) from equation 6.20

[O++
2i ] ∝ exp

(

−[EO2i

T (0) − 2E(0/ + +) + 2EF ]

kT

)

(6.22)

and since

[O0
2i] = A exp

(

−EO2i

f (0)

kT

)

(6.23)

∝ exp

(

−EO2i

T (0)

kT

)

(6.24)

the concentration of O++sq
2i is given by,

[O++
2i ] ∝ [O0

2i] exp

(

2E(0/ + +) − 2EF ]

kT

)

. (6.25)

Finally, using the fact that EF = kT ln(Nv/[B]) where Nv is the effective density of states

of the valence band (Sze, 1981a) it is seen that

[O++
2i ] ∝ [B]2

N2
v

[O0
2i] exp

(

2E(0/ + +)]

kT

)

(6.26)

and the generation rate is proportional to [B]2 as observed by Rein et al. (2001).
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The BsO
+
2i defect would anneal out in the dark, in the absence of excess minority carriers,

with an activation energy, EA ≈ EB +Em where EB is the binding energy of O++
2i to B−

s

and Em is the migration energy of O++
2i . Even in the presence of minority carriers it is

predicted that should the complex become BsO
0
2i, since the rate for hole capture is over an

order of magnitude faster than dissociation, the complex will trap a majority carrier hole

before it is able to dissociate. Therefore regardless of whether or not minority carriers are

present, the defect will dissociate in the positive charge state with an activation energy

∼ 1.2 eV. The predicted activation for dissociation of BsO2i is in good agreement with

the observed value of 1.3 eV.

An important alternative formation process that has not yet been discussed here is that of

recombination-enhanced defect migration, a process considered in detail (though not for

the oxygen pair) by Weeks et al. (1975). This process makes use of the energy released

when an electron-hole pair recombine non-radiatively. For the case of the pair, the energy

released by the recombination in addition to the 0.37 eV provided thermally (E gen
A ) would

provide the energy required for the diffusion of the oxygen pair. If the pair is assumed

electrically inert, a reasonable assumption given the bandstructure of O st
2i (figure 6.7), then

the recombination energy in addition to the thermal energy sum to the migration barrier of

neutral O2i (see figure 6.5). However it is difficult to understand how an electrically inert

defect can subsequently trap an electron and hole to produce a recombination event which

must occur close by if the energy is to be used for migration. If the pair is electrically

active however it is possible that the recombination occurs at the double donor (+/+ +)

level, releasing around 1 eV (see figure 6.6), some of which may be dissipated by phonons

while the remainder, plus the 0.37 eV thermal energy, allow the pair to overcome the

0.86 eV migration barrier in that charge state. This interesting mechanism clearly must

be investigated in greater detail.
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6.4 Summary and final remarks

It is proposed that the oxygen pair may diffuse with a low prefactor and low activation en-

ergy of ∼ 0.37 eV in p-type material during illumination or minority carrier injection. The

highly mobile pair is trapped by substitutional boron giving rise to a complex possessing

a donor (0/+) level around Ec − 0.4 eV at which electrons and holes are efficiently and

successively trapped. The defect thus leads to a reduction in the carrier lifetimes resulting

in a reduction in solar cell efficiency.

Having a model for the complex responsible for the lifetime degradation of Czochralski

silicon allows an understanding of preventative measures to be developed. One possible

method for reducing the formation of the complex is to use Cz silicon with an increased

carbon concentration. The trapping of oxygen at carbon should lead to a reduction in

the formation of BsO2i, though the effectiveness of this technique is yet to be confirmed.

Degradation can be avoided by using a p-type dopant other than boron. It has been

demonstrated that gallium doped solar cells do not exhibit degradation (Schmidt, 2004,

and references therein). A preliminary investigation of the GasO2i complex reveals that

the staggered form is unstable due to the larger size of the dopant. The stable square form

has no levels deep within the gap and does not act as a carrier trap. A similar result has

been found for aluminium. Thus, if economically viable, doping with gallium or aluminium

rather than boron is a possible solution to the problem of degradation.
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Chapter 7
The solubility of boron and arsenic

in biaxially strained silicon

7.1 Introduction

A reduction in device size requires an increase in doping concentration and a reduction

in dopant diffusivity. Applying a strain to the host material can alter both the diffusivity

and the solubility of impurities. Strained silicon is typically grown epitaxially on to SiGe

which has a larger lattice constant and hence the lattice constant of silicon in the growth

plane is expanded to match that of the SiGe. There is much interest in the use of SiGe

with strained Si layers for devices since the reduction in symmetry of the silicon crystal

results in an increased electron mobility. Hence developing an understanding of the effect

of biaxial strain on the solubility and diffusivity of dopants in these systems is of great

importance.

It has been demonstrated that biaxial strain introduced by growing Si epitaxially on SiGe

can reduce the diffusivity of boron (Cowern et al., 1994; Rajendran and Schoenmaker,
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2001; Zangenberg et al., 2003). For arsenic the effect of biaxial strain on diffusion is, to

the knowledge of the author, yet to be investigated. While little is known about the effect

of strain on the diffusion of dopants even less is known about the effect of strain upon their

solubilities. The effect of biaxial strain on the solubility of both the acceptor boron and

donor arsenic has not been studied experimentally but the change in equilibrium solubility

of boron with biaxial strain has been studied theoretically by Sadigh et al. (2002). Using

local density functional theory Sadigh et al. (2002) predicted that the equilibrium solubility

of boron should be enhanced by ∼ 150% for a −1% biaxial strain at 1000◦C (the convention

that tensile strains are positive and compressive ones negative has been adopted). Sadigh

et al. (2002) showed that this enhancement is due to two effects. The variation of the

Fermi-energy with strain alters the stability of charged centres with respect to a neutral

precipitate and the strain-induced change in lattice constant leads to increased stability

and hence equilibrium concentration, of dopants that tend to induce a change in lattice

constant of similar sense in unstrained material. As shall be confirmed in this chapter,

both of these effects enhance the solubility of boron in compressively strained material

but it is the Fermi-energy’s variation with strain that dominates. The change in solubility

with strain is calculated for both boron and arsenic following the method described by

Sadigh et al. (2002, and references therein) for the case of boron. This method is described

below.

7.2 Method

Inserting an impurity into an unstrained, perfect crystal leads to changes in lattice con-

stant. The lattice parameter change is linear in dopant concentration and for a boron

concentration of 4 × 1020 cm−3 corresponds to a strain of −0.002 (Cardona and Chris-

tensen, 1987a,b). For arsenic, the change of lattice parameter with doping is very much

smaller (Cardona and Christensen, 1987a,b). Since the biaxial strain that results from

growing silicon on some lattice-mismatched material such as SiGe is typically much larger

than this, the calculated lattice parameter of pure bulk silicon is used as the reference
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Figure 7.1: The variation of relaxed [001] lattice constant with biaxial-strain. Data points are the

calculated values while the line is a plot of the equation εrel = −2(C12/C11)εapp given by elasticity

theory. The calculation was performed in supercells of 64 atoms.

lattice constant. In the present work the unstrained lattice constant of bulk silicon a0, is

calculated to be 5.39 Å which can be compared with an experimental value of 5.43 Å.

To represent the biaxial strain resulting from epitaxial growth on a lattice-mismatched

material, a strain εapp is imposed upon the [100] and [010] lattice constants, a[100] and

a[010], of a supercell. The [001] lattice constant a[001] is then allowed to relax so as to

minimise the total energy of the bulk supercell. The impurity atom is then placed in

this relaxed supercell and the atomic positions are relaxed for fixed lattice vectors. Re-

relaxing the [001] cell parameter has negligible effect on the [001] cell parameter (< 0.1%)

and total-energy of the system (< 0.5 meV). Figure 7.1 shows the calculated relaxed [001]

lattice parameter as a function of biaxial strain εapp = ε[100] = ε[010]. The strain along

[001] is εrel = ε[001] = (a[001] − a0)/a0 and its variation is in excellent agreement with

the expression derived from elasticity theory εrel = −2(C12/C11)εapp shown by the line in

figure 7.1, where Cij are components of the elastic stiffness tensor and C12 and C11 are

the experimental elastic constants 6.39× 1010 and 16.57× 1010 N m−2 respectively (Hirth
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and Lothe, 1968).

The Gibbs free energy of a system is G = E − TS where E is the enthalpy, T is the

temperature and S is the entropy1. The solubility limit of a substitutional impurity Xs is

defined as the concentration of X for which the Gibbs free energy of a system containing

dissolved impurities is equal to the Gibbs free energy of a system where the impurity

atoms have formed precipitates. This concentration is found by minimising the Gibbs free

energy with respect to the number of substitutional impurities. It can then be shown that

the solubility limit of Xs is given by,

[Xs] = A exp

(−Ef

kT

)

(7.1)

where k is Boltzmann’s constant and Ef is the formation energy, or enthalpy of formation,

given by equation 1.76 discussed previously. The chemical potential of both boron and

arsenic, µB and µAs are related to the energy of a dopant atom in its precipitate and

are assumed to be independent of strain since it is likely that the structure and hence

energy of a dopant atom within the precipitate would not depend upon the precise lattice

constant of the bulk material. On the other hand, the chemical potential of silicon, µSi

varies with strain and is taken to be the total-energy per atom of an n atom supercell of

biaxially strained pure silicon relaxed in the [001] direction (µSi(εapp) = ESi
T (εapp)/n). The

pre-exponential factor A contains terms which arise from the entropy of the system. The

entropy depends upon the disorder arising from the number of possible sites available for

the substitutional dopant (the entropy of mixing) and the additional disorder introduced

by atomic vibrations (vibrational entropy). The entropy of mixing is taken to be constant

since the change in density of substitutional sites is negligible for the small strains con-

sidered here. However, the change in vibrational entropy may not be negligible at finite

temperature since the vibrational modes of Xs may be strongly affected by strain. Here

it has been assumed that A is not a function of strain and therefore the results presented

in this chapter are only strictly valid at T = 0 K when entropy does not contribute to the

Gibbs free energy.

1The term +PV where P is pressure and V is volume will be neglected here since its contribution to

the change in entropy is small for solid state reactions.
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The Fermi-energy at high temperature is given by (Sze, 1981b),

EF (εapp) = Emid(εapp) ± kT
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 (7.2)

where Emid is the energy mid-way between the valence-band maximum and conduction-

band minimum in bulk silicon subject to biaxial strain εapp. The second term in equation

7.2 is positive for donors and negative for acceptors. The value of Emid is obtained

from a Kohn-Sham band-structure which gives a gap of 0.50 eV for unstrained material.

The effect of quasi-particle corrections on the change in band-gap with strain has been

considered by Sadigh et al. (2002) where it is shown to be negligible. This implies that the

infamous underestimate of the band-gap within local density functional theory is effectively

independent of strain. Hence DFT is able to accurately reproduce the change in band-gap

with strain despite the large error in its absolute magnitude. The density of intrinsic

carriers, ni(εapp) in equation 7.2, is given by (Sze, 1981b),

ni(T, εapp) =
√

NvNc exp

(

−Egap(εapp)

2kT

)

(7.3)

where Nv and Nc are the effective densities of states in the valence and conduction bands

respectively and Egap is the size of the silicon (Kohn-Sham) band-gap for the given strain.

It is stressed that it is the change in band-gap with strain and not the absolute value of

Egap that is important to this problem as will be explained below. Nv and Nc have been

taken to be constant with strain and temperature. The variation of the product of Nv and

Nc with strain and temperature has been considered by Sadigh et al. (2002) and is found

to make no significant differences to the results.

Of interest here is the enhancement to the equilibrium solubility limit with strain and

for this the chemical potential of the dopant as well as Nv and Nc are not required, nor

are the absolute values of Emid or Egap. The enhancement to the equilibrium solubility

limit is defined as ([Xs](εapp) − [Xs](0)) /[Xs](0). This quantity can be more accurately

calculated than the absolute value since many terms which are not easily calculated are

cancelled.
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Figure 7.2: The dependence upon biaxial strain of valence band maximum, conduction band

minimum and mid-gap energy. Crosses joined by a solid line show the valence-band maximum,

crosses joined by a dashed line show the conduction-band minimum and crosses joined by a dotted

line show the mid-gap energy level (Emid) calculated using a 64 atom supercell. Using a 216 atom

supercell the valence-band maximum, conduction-band minimum and Emid have values shown by

empty diamonds, triangles and squares respectively. Note the independence of these energies with

supercell size.
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Figure 7.3: ni(εapp)/ni(0) calculated using 64 and 216 atom supercells for two different tempera-

tures. The crosses joined by a solid line and the pluses joined by a dashed line are values calculated

using 64 atom supercells for T = 800 K and T = 1200 K respectively. Empty and filled triangles

are the values calculated in 216 atom supercells for T = 800 K and T = 1200 K respectively

demonstrating the convergence with respect to cell size.
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Figure 7.4: The variation in size of the Kohn-Sham band-gap of silicon with biaxial strain. The

solid line with crosses shows values calculated using 64 atom supercells while triangles show the

values calculated using 216 atom supercells.

7.3 The variation in Fermi-energy with biaxial strain

Emid(εapp) is plotted in figure 7.2 and shows an almost linear decreases with biaxial strain

εapp. Since the Fermi-energy is approximately equal to Emid (equation 7.2) this result

implies that if all other terms are constant, a positively charged donor’s solubility will be

enhanced by tensile strain while a negatively charged acceptor’s solubility will be enhanced

by compressive strain. The enhancement to the equilibrium solubility is also proportional

to
√

ni(εapp)/ni(0). The dependence of ni(εapp)/ni(0) upon strain is shown in figure 7.3

for two different temperatures. The number of intrinsic carriers is increased for both

negative and positive strains due to the narrowing of the band-gap with strain of either

sense (figure 7.4). Thus a study of biaxially strained, pure silicon alone predicts that the

change in Fermi-energy with strain will enhance the solubility of positively charged defects

under tensile strain and negatively charged defects under compressive strain. The effect

of biaxial strain upon the total energy of substitutional boron and arsenic is considered

next.
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εapp bulk B As

-0.01 2.324 2.050 2.387

-0.005 2.329 2.055 2.391

0 2.333 2.059 2.396

0.005 2.338 2.064 2.401

0.01 2.343 2.069 2.406

Table 7.1: The impurity’s bond lengths dependence upon biaxial strain. For comparison the bond

lengths in equivalently strained bulk silicon are also shown. The unit of length is the Angström.

Note that all four bond lengths are equal and the strain is accommodated by a change in bond

angle.

7.4 Substitutional boron

A single substitutional boron atom in a 64 atom silicon supercell results in an equilib-

rium (unstrained) lattice constant a0(B) of 5.36 Å. The four silicon-boron bonds have

lengths of 2.047 Å. The variation of lattice parameter is expected to be linear with boron

concentration to first order. This can be written,

(a0(B) − a0)/a0 = β[B] (7.4)

where for boron β, which describes the expansion to the lattice caused by the impurity, is

calculated to be −5.99 × 10−24 cm3 in good agreement with the value −5.2 × 10−24 cm3

found experimentally (Cardona and Christensen, 1987a,b).

For the case of biaxial strain, the calculated differences between the four silicon-boron

bond lengths are found to be negligible with the strain accommodated by an adjustment

in bond angles. The silicon-boron bond length is shown in table 7.1 for different strains

along with the equivalent distances in bulk material for comparison.

The variation of the formation energy of substitutional boron with strain has two main

components: the variation in total-energy and the variation in Fermi-energy. In section

7.3 the Fermi-energy was shown to increase with compressive strain. Hence for negatively
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Figure 7.5: The variation of formation energy and total energy of substitutional boron with biaxial

strain. Pluses joined by a dashed line and crosses joined by a solid line show values calculated

using 64 atom supercells for the total energy and formation energy respectively. Empty triangles

and filled triangles show the values of the total energy and formation energy respectively calculated

with 216 atom supercells to demonstrate convergence.
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Figure 7.6: The enhancement to the equilibrium solubility of boron with biaxial strain for two

different temperatures (triangles correspond to 800 K and diamonds correspond to 1200 K). To

illustrate the influence of the change in Fermi-energy the enhancement is shown for a Fermi-energy

set to be constant with strain (dashed lines and empty symbols) and for the value of EF calculated

as a function of strain (solid lines and filled symbols).
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charged boron the effect of compressive strain on the Fermi-energy reduces the formation

energy of the substitutional acceptor. Figure 7.5 shows the variation in total energy and

formation energy as a function of strain, both of which are set to zero for unstrained

material. This figure illustrates two points. The solubility of boron would be enhanced

by compressive strain due to the change in total-energy with strain alone. Including

contributions to the change in formation energy from the change in Fermi-energy with

strain greatly increases this trend. This is seen in figure 7.6 which shows the enhancement

to the equilibrium solubility limit for two different temperatures for the case where the

Fermi-energy is fixed (so the variation in stability comes entirely from the change in total-

energy) and the case where the Fermi-energy varies with strain. This clearly illustrates

that the change in Fermi-energy with strain increases the predicted equilibrium solubility

limit by an order of magnitude.

7.5 Substitutional arsenic

A single neutral arsenic atom in a 216 atom unstrained silicon supercell results in a relaxed

lattice parameter a0(As) of 5.388 Å. This gives a β value of −0.06 × 10−24 cm3 in good

agreement with the small negative value −0.1×10−24 cm3 found experimentally (Cardona

and Christensen, 1987a; Cargill, III et al., 1988). Using a smaller 64 atom supercell

it is found that the lattice constant is identical to that of bulk material (i.e. β = 0).

Details of the arsenic-silicon bond lengths have been studied by Koteski et al. (2003)

using Extended X-ray Absorption Fine Structure spectroscopy (EXAFS). It is reported

that, relative to the equivalent distance in pure silicon, the distance between the arsenic

atom and its first nearest neighbour is ∼ 3% larger, decreasing to 0.78% larger and 0.62%

larger for the second and third nearest neighbours and presumably becoming negative

at larger distances to result in the measured overall reduction in lattice constant. Our

calculations agree well with this EXAFS data as shown in table 7.2 and we predict that

the distance between arsenic and its ∼ 8th nearest-neighbour is indeed shorter than the

distance between equivalent crystal sites in bulk silicon.
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EXAFS DFT

NN bulk Si:As % increase bulk Si:As % increase

1 2.351 2.43 3.36 2.333 2.397 2.71

2 3.840 3.87 0.78 3.810 3.822 0.32

3 4.502 4.53 0.62 4.468 4.479 0.25

4 5.389 5.397 0.15

5 5.872 5.875 0.05

6 6.600 6.602 0.04

7 7.000 7.003 0.05

8 7.620 7.619 -0.02

Table 7.2: A comparison of the change in first, second and third nearest neighbour (NN) distances

between Si and Si:As. EXAFS (Koteski et al., 2003) and the present calculations agree that there

is a dilation around the As atoms which drops off sharply and in fact leads to a smaller lattice

constant than bulk Si. The theoretical values were calculated using volume relaxed, 216 atom

supercells. Lengths are given in Angströms.
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Figure 7.7: The variation of formation energy and total energy of substitutional arsenic with

biaxial strain. Pluses joined by a dashed line and crosses joined by a solid line show values

calculated using 64 atom supercells for the total energy and formation energy respectively. Empty

triangles and filled triangles show the values of the total energy and formation energy respectively

calculated with 216 atom supercells to demonstrate convergence.
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Figure 7.8: The enhancement to the equilibrium solubility of arsenic with strain for two different

temperatures (triangles correspond to 800 K and diamonds correspond to 1200 K). To illustrate

the influence of the change in Fermi-energy the enhancement is shown for a Fermi-energy set to

be constant with strain (dashed lines and empty symbols) and for the value of EF calculated as a

function of strain (solid lines and filled symbols).
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The arsenic-silicon bond-lengths in biaxially strained material are given in table 7.1. The

calculated change in formation energy due to the change in total-energy and the com-

bination of the change in total-energy and change in Fermi-energy with strain is shown

for arsenic in figure 7.7. The enhancement to the equilibrium solubility limit is shown in

figure 7.8. The effect of the Fermi-energy is far more critical for arsenic. When the strain

dependence of the Fermi-energy is neglected the solubility of arsenic increases for tensile

strains, despite the fact that the arsenic atom has a larger atomic radius than a silicon

atom. This is due to the fact that arsenic actually leads to a reduction in the overall silicon

lattice constant as discussed above and hence compressive strain leads to a reduction in

the total-energy of the substitutional donor. It is the change in Fermi-energy with strain

that results in an increase in solubility of arsenic with tensile strain.

7.6 Summary

This work shows that the Fermi-energy is decreased by tensile biaxial strain such as that

imposed on a silicon epilayer grown on SiGe. This has the effect of reducing the formation

energy of positively charged impurities and increasing the formation energy of negatively

charged ones. Hence the stability and therefore solubility of ionised donors will be in-

creased by tensile strain while the opposite is true for ionised acceptors. The total energy

of a substitutional impurity is also dependent upon biaxial strain. Arsenic highlights that

fact that the atomic size is not a good parameter in the determination of the variation in

total energy with biaxial strain. Instead it is necessary to consider whether, in unstrained

material, doping with that particular element will increase or decrease the lattice constant

resulting in a positive and negative value of β respectively. Species with a positive value

of β will have a lower total energy and hence greater stability in material subject to a

tensile biaxial strain while the opposite is true of impurities with a negative β value.

In agreement with Sadigh et al. (2002) the solubility of boron is greatly enhanced by

compressive strain and is reduced by tensile strain. This enhancement is due to both the

negative β value and the fact that the dopant is negatively charged. The enhancement to
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the solubility of boron is largely due to the Fermi-energy effect. The solubility of arsenic

is increased by tensile biaxial strains and reduced by compressive strains and hence the

solubility of arsenic is expected to be enhanced in silicon grown on SiGe. The small

negative value of β for arsenic tends to increase its solubility in compressively strained

material but this is more that compensated by a strong increase in solubility due to the

Fermi-energy effect for tensile strains. The net result is a small but significant enhancement

to the equilibrium solubility limit of arsenic under positive biaxial strain. For both arsenic

and boron the contribution to the solubility enhancement from the change in Fermi-energy

with strain is by far the most important. Once again it is stressed that vibrational entropy,

which may play an important role in determining the solubility of boron and arsenic as

a function of strain has been neglected and therefore these conclusions are only strictly

valid for a temperature of 0 K.
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Chapter 8
Concluding remarks

The present theoretical modelling of the interaction of substitutional boron with self-

interstitials and the close comparison of these calculations to experiment demonstrates

the surprising structure of the boron interstitial defect. Rather than the boron atom

being located at an interstitial site, it is found that it remains more or less substitutional

next to a self-interstitial. Boron located at an interstitial site (what is normally meant

by interstitial boron) is a metastable form of this defect. The boron interstitial defect is

denoted BI since it is formed from a single boron atom with one interstitial atom (of either

species). BI has been demonstrated to be a negative-U defect and as is typical of centres

possessing negative-U , its structure depends upon its charge state. BI is formed extremely

efficiently by the trapping of self-interstitials at substitutional boron but it becomes mobile

at around 230 K and is trapped at other impurities or by other boron interstitial defects

to form boron interstitial clusters.

A comparison of the local modes observed following the disappearance of the LVMs as-

signed to BI has allowed a far greater understanding of the clustering process undertaken

by boron to be developed. A stable complex that is formed by room temperature when BI
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is trapped by substitutional boron is a boron-boron 〈100〉 split interstitial labelled B2I
Q.

This electrically inactive complex is probably removed by reaction with divacancies at

around 220◦C.

For lower boron concentrations the evolution of boron is modified by its more probable

interaction with the common impurities oxygen and carbon. In such material, when BI

becomes mobile it is trapped by interstitial oxygen giving rise to BiOi which has a level

observed by DLTS at around Ec − 0.23 eV. Here it has been argued that this level is a

single donor (0/+) and not a double donor (+/ + +) level as inferred from the capture

cross-sections. The calculated binding energy of BI to interstitial oxygen suggests that the

complex dissociates at around 150◦C. At this temperature a level is observed by DLTS

at Ev + 0.29 eV, which calculations presented here support, is due to the trapping of

dissociated BI at Cs forming BiCs. This complex is stable until around 400◦C.

Hydrogen is introduced during wafer processing steps such as etching and its interaction

with interstitial boron has been considered. The reaction of hydrogen with boron and

interstitial boron generates a complex BiBsH which is identical to B2I
Q apart from the

fact that a hydrogen atom is bound to one of the boron atoms. This complex can be

formed in a number of ways, in fact by any method that introduces hydrogen, boron and

self-interstitials to the material, highlighting the stability of the complex and hinting at

the importance of B2I
Q.

Within this thesis the problem of solar cell degradation has been addressed. The reduction

in carrier lifetime caused by the light-induced dissociation of the iron-boron pair has been

well understood for a relatively long time. On the other-hand the degradation due to

the boron-oxygen complex is still rather mysterious. The model proposed by Schmidt et

al. (Schmidt et al., 2002; Bothe et al., 2004; Schmidt and Bothe, 2004) has in part been

confirmed by the calculations presented here where BsO2i has been shown to have many

properties in common with the observed lifetime degrading defect. A mechanism for the

formation of this defect via the slower of the two mechanisms observed experimentally has

been proposed.

Biaxially strained silicon has been shown to have some rather interesting properties with
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regards to the stability of point defects. The Fermi-level in such material, at high tempera-

ture, is located approximately mid-way between the valence-band top and conduction-band

bottom. This energy level was shown to increase with compressive strain and decrease

with tensile strain. This results in the increased stability and hence increased solubility

limit of acceptors in compressively strained material and the increased stability and hence

increased solubility limit of donors in material under tensile strain.

Despite the number of experimental observations that have been successfully explained

through the modelling described here, a number of questions remain unanswered and a

number of further questions have been raised providing plenty of scope for future work. As

mentioned in chapter 5, BiCs is expected to be formed by room temperature irradiation

of FZ, boron-doped silicon since BI will be trapped directly by carbon rather than oxygen

as is the case in Cz material. Instead BiCs does not form until the material has been

annealed at 120◦C. It was suggested in chapter 5 that this trend may be an indication of

a metastable complex of boron and carbon that is not converted into BiCs until 120◦C.

Preliminary calculation suggest that there may be such a barrier in the formation of

BiCs but the formation mechanism of BiCs demands further study if this trend is to be

understood.

Many questions remain unanswered when it comes to the complex responsible for the

degradation of Cz solar cells. Although there is strong evidence that BsO2i is the defect

responsible for the degradation, the formation process must be considered in greater de-

tail. Of the fast and slow formation processes relatively little is known about the faster

mechanism although this is currently being addressed by experiment. The recombination

enhanced diffusion process must be carefully considered as an alternative explanation of

the slow formation process and as a candidate for the fast formation process. If recombina-

tion enhanced diffusion is unable to explain the fast process then perhaps a recombination

enhanced reconfiguration of BsO2i from an inactive to active form can. Again this must

be considered in detail and in the light of forthcoming experimental results. Using gal-

lium or aluminium as the p-type dopant has been suggested as a possible route to the

avoidance of lifetime degrading defects in Cz silicon solar cells. Calculations imply that
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the interaction of gallium and aluminium with the oxygen pair will not result in a lifetime

degrading complex but for the case of gallium these calculations are preliminary and need

to be performed in greater detail. There is a possibility for theory to play a role in the

discovery of other methods that allow the formation of BsO2i to be avoided.

Having developed an understanding of the role of Fermi-energy and total-energy in the

stability of defects in biaxially strained material, the contribution of vibrational entropy

to their stability must now be studied. The study could then be extended to include

the diffusion process of boron in such material. Understanding the effect of strain upon

the diffusion of boron may lead to methods of suppressing the diffusion of boron in such

material. Given the current trend for the use of silicon layers biaxially strained by growth

on SiGe in high performance devices, such knowledge would be of great importance and

benefit.

Of all unanswered questions, one of the most relevant relates to the BICs that have so

far evaded detection by both macroscopic measurements (e.g. TEM) and optical and

electronic measurements (e.g. PL, EPR). Very little is known about the BICs that are

stable at the temperatures as high as those during TED. Very recently however, very large

BICs have been observed in the form of boron-interstitial platelets. These platelets are so

large that they can be observed via TEM (Cristiano et al., 2003). The high stability of

B2I
Q is echoed by its formation in hydrogenated material and even by the high stability of

the structurally similar complex BiCs and here it is suggested that an aggregation of B2I
Q

may be responsible for these very large BICs. This is clearly a matter to be investigated.

Once these large BICs are understood it will also perhaps be possible to extrapolate from

B2I
Q to the platelet like BICs providing for the first time an experimentally grounded

model for intermediately sized clusters.

Throughout this thesis the value of theory and experiment working hand-in-hand and

guiding each other has been demonstrated. The true potential of each is only achieved

with the aid of the other. This point I leave as my final conclusion.
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Jones R, Goss J, Ewels C, and Öberg S, Phys. Rev. B 50, 8378 (1994).

Jones R O and Gunnarsson O, Rev. Mod. Phys. 61, 689 (1989).

Kemble, Rev. Mod. Phys. 1, 206 (1932).

Kimerling L C, Asom M T, Benton J L, Drevinsky P J, and Caefer C E, Mater. Sci. Forum

38-41, 141 (1989).

Knobloch J, Glunz S W, Biro D, Warta W, Schäffer E, and Wettling W, in Proc. 25th

IEEE Photovolt. Spec. Conf., p. 405 (IEEE, New York, 1996).

Kohn W and Sham L J, Phys. Rev. 140, A1133 (1965).

Koopmans T, Physica 1, 104 (1934).

Koteski V, Ivanovic N, Haas H, Holub-Krappe E, and Mahnke H E, Nucl. Instrum. Meth-

ods B 200, 60 (2003).

Laithwaite K, Newman R C, and Totterdell D H, J. Phys. C 8, 236 (1975).

Lang D V, J. Appl. Phys. 45, 3023 (1974).
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