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Abstract

Following a brief and selective history of elasticity, the genera theory of the rble of relative
sublattice displacements on the elasticity of single-crystallinematerial is elaborated in Chapter 1.
Thisinvolves the definition of (a) rotationally-invariant inner displacements and (b) the internal
strain tensor sthat rel atethoseinner displacementsto theexternal strain. Thetotal el astic constants
of such materials can then be decomposed into partial and internal parts, the former free of, and
thelatter involving, theinner displacement(s). Six familiesof inner elastic constants are needed to
characterize the internal parts of the second- and third-order constants. The relation of the second-
order inner elastic constants to the longwave coupling constants of lattice dynamicsis shown, and
anew form of secular equation for the frequencies and eigenvectors of the optic modes at the zone
centreisgiven. In Chapter 2 the point-group symmetry implicationsfor theinner el astic constants
are explored in detail .

Chapter 3 is an interlude in which the measurement of the internal strain in cubic diamond is
described.

In Chapters4 and 5 the general formalism is applied to cubic and hexagonal diamond and to
hexagonal and rhombohedral graphite. Space-group symmetry implications are described in
detail and the formalism is extended to cover effective constants, pressure derivatives, elastic
compliancesand compressibilities. Theallotropesare treated individualyin terms of the K eating
model in the following four Chapters. Cubic diamond is treated in Chapter 6 in terms of the
originad model. A shortcoming of the model—non-transferability of its parameters to aternative
descriptions of unit cell geometry—is overcome by redefining both the Keating strain and the
Keating parameters. The modified Keating modé is then extended rigorously and successfully
to a non-cubic material, hexagonal graphite, for the first time in Chapter 7. Chapter 8 presents a
completely plausibleaccount of the el asticity and zone-centre optic modesin hexagonal diamond by
transferring the modified parameters from cubic diamond. The little that is known experimentally,
the bulk modulus and three Raman frequencies, is predicted exactly. Chapter 9 extends Keating to
the rhombohedral form of graphite using transferred parameters and provides a detailed picture of
its transformation to cubic diamond. In Chapter 10 the relation of bond-order potentials to the
Keating model is explored.

An Appendix contains a generalised method of homogeneous defor mation, developed to
relate the computational ly-friendlyinfinitesimal strain approach to thethermodynamically-rigorous
finite strain formalism, and the associated computational protocols needed to determine all elastic
and inner elastic constants, and hence all derived quantities, of the all otropes discussed.
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The writing-up has had to compete with my parald pursuit of an MA in Creative Writing,
during which | wrote the following poem * about my dawning awareness of symmetry:

My Tray

When | was six a student came
to take Miss Seeds's class
and turned her room
into the Pedlar’s Caravan.
We'd all to bring from home
card, paper, crayons, glueor string
to make the different sorts of thing
the pedlar’'d sell.
For me

some cardboard froma pad of forms
(my father’s time-sheets) and coloured,
gummy sguares.

| snip
into the cornersof the card
and bend the edges up to make a frame.
| cut some pieces, pink and chocolate,
red, green and blue, squares, diamonds,
and stick them on. Each pieceto left
isbalanced on theright, in colour
and in shape. And pieces up by pieces down.
Turnitright round and it still looks the same.

Itismy tray!

Others made plates and cups
and knives and forks, yet those | don’t
recall.

But bright as yesterday
| see my desk, the texture of the tray,
and, above all, its awesome symmetry.

1The Pedlar’s Caravan, in line 4, was a popular children’s poem by the writer William Brighty Rands



Chapter 1

Elasticity

1.1 Alittlehistory

This thesis inhabits the region where easticity and crystallography overlap. These two grand
schemes began, amost simultaneously, in the second half of the 17th century, in a magnificent era
that saw the birth of modern science.

Elasticity has grown from the very first law to be formulated in what is now called solid-state
physics. Robert Hooke, who has been described as ‘ Europe’s last Renaissance man and England’s
Leonardo’ [9], originally published hislaw as a L atin anagram

cediinnoopsssttuu

in A description of Helioscopes and some other Instruments [22, p.32] in 1676. This playful
17th century conceit was a popular way of simultaneously announcing a discovery, establishing
priority and intellectually challenging on€e's peers. The solution was published two years later in
De potentia Restitutiva, or of Spring Explaining the Power of Springing Bodies[23, p.5]:

Ut Pondus sic Tensio
Astheweight, so the (ex)tension.

A few years|ater, when there was a better appreciation of the nature of weight and the significance
of the force within the spring, the more familiar form of the law appeared:

Ut Tensiosic Vis
Asthe (ex)tension, so the force.

In 1669 Niels Steensen, a Dane known as Nicolaus Steno, published a dissertation which
included a detailed study of sections cut from various samples of quartz. Thislaid the groundwork
for what, nearly a century later, came to be caled the Law of Constancy of Angle and is now
seen as a fundamental law of crystallography. Another such, the Law of Rational Indices, was
given by Haily in 1784. We owe to Hally theideathat minute, identical building blocks, molécules
intégrantes, underlie the macroscopic forms of crystals. Yet some credit is surely due to Hooke



11 A little history 14

also: in his hugely influentia study of the microscopic world Micrographia, publishedin 1665, he
clearly intimates the close-packing of spheres when he writes

There was not any regular Figure, which | have hitherto met withall, of [Metals,
Mineras, Precious Stones, Salts and Earths] that | could not with the composition of
bullets or globules, and one or two other bodies, imitate, even almost by shaking them
together.

The painstaking observation of the morphology of countless specimens by mineral ogists and
chemists led to the redlization that al crystals could be divided between seven distinct crystal
systems on the basis of the shape of their molécules intégrantes, or unit cells. Then Bravais,
amongst others, showed in 1848 that there were just 14 space lattices into which the unit cells
could be packed. The development of the theory of finite groups confirmed earlier speculation that
crystals could be assigned to just 32 classes, each of which possessed a distinctive point group
formed from the identity and some of the symmetry elements of inversion, rotation and reflection.

Thefirst half of the 19th century saw important conceptual advancesin elasticity: the notions
of stress and strain replaced force and extension; and different elastic moduli were associated with
linear, torsional and bulk strains. Three of the French giants of mathematical physics—Navier[32],
Cauchy [8] and Poisson[34]—each derived, independently, general equations governing the equi-
librium and motion of elastic bodies. The resulting classical theory of elasticity was based on the
assumption that bodies were homogeneous and isotropic, the movements of particles within them
were very small, and the relation between stress and strain was linear.

The initial development of the theory was driven by the desire to understand the properties
of the agher, the medium proposed by Fresnel to support the propagation of light. It was the
practical aspect, however, that was seized on by the developers of machines and the designers of
buildings: the understanding of the effects of |oad and vibration on material bodies, the bending and
twisting of rods, the flexure of plates and the stability of beams. Already the notionsof the elastic
limit and of the yield point were showing up the limitations of the linear theory. St. Venant[37]
and Kirchhoff [25] began to study the implications of large strains and laid the foundations of the
non-linear theory of elasticity.

In the same period both Mayer and Joul e presented their results on the mechanica equivaent
of heat and Helmholtz asserted that the principle of the conservation of energy had universa
validity and was applicable to all natural phenomena. Thermodynamics was thereby born and
elastic behaviour fell clearly within its scope. Whilst crystallographers were developing a deep
understanding of symmetry throughtheir studiesof crystalswith exotic optical properties, engineers
and physicists were focused on isotropic material, metals and aloys, and hardly needed anything
more sophisticated than the simple moduli and Poisson’s ratio. Wood was an exception: it was an
important material and clearly had different elastic propertiesin different directions. It was termed
alotropic and different moduli were assigned along the grain and across the grain in an idealized
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model, anticipating the correct description of uniaxial material.

The last five years of the 19th century and the first five of the 20th were a miraculous decade
in which X-rays, radioactivity and the electron were discovered, and the foundations of quantum
mechanics and special relativity were laid. The subsequent application of X-ray diffraction,
the establishment of the nuclear atom and the development of wave mechanics brought about a
revolution in understanding the structure of solids. Max Born was a prime mover inthisarea. As
early as 1915 he had produced a study entitled Dynamik der Kristalgitter followed in 1923 by the
influential Atomtheoriedesfesten Zustandes. Techniquesof summation were devel oped to compute
the contribution of Coulomb interactionsto the cohesive energy of ionic crystals (Madelung 1918).
For non-ionic crystals, where there was no clear-cut potential function, an inductive method was
employed by Lennard-Jones (1924). Initialy seeking the form of the molecular force field of
argon atoms to account for the observed viscosity and isotherms of the gaseous phase he was able
to propose a number of models that fitted the data but was unable to discriminate between them.
He then appealed to lattice parameter and compressibility measurements on solid argon and used
functions of the form F'(r) = A_/r® — A /r™ to achieve discrimination. This occurred when »
and m were 15 and 5, i.e. the exponentsin what is now called the Lennard-Jones potentia were 14
and 4. Much later, in a tribute to the memory of van der Waals (Lennard-Jones 1937), he settled
on 6 for the attractive term, consonant with the theory of the van der Waalsinteraction, and arange
from 9 to 12 for the repulsive term, dependent on the molecul e involved.

Such potentials, with their simple analytical forms, and similar ones involving terms like
A exp(—r/p), became the functions of choice in awide variety of studies of both perfect crystals
and crystalswith defects. In particular Born, with various co-workers, published numerous papers
on the stability of crystalsover a period that extended to 1954 when, with Kun Huang, he published
his masterpiece on the thermodynamics of lattices: the Dynamical Theory of Crystal Lattices.

In his Preface Born rebukes crystallographers for their profligate use of the letters of the
alphabet: the Miller indices h, k, [ for example use three where a single subscripted letter would
suffice. The antidote of courseisto usetensor notation wherever possible. The great scopefor this
was amost immediately illustrated in Nye's Physical Properties of Crystals: their Representation
by Tensorsand Matriceswhich appeared firstin 1957 and thenin 1985 with correctionsand updated
material.

Neither Born and Huang nor Nye however venture into the realm of higher-order elasticity, an
area opened up experimentally by Bridgman's work on the compressibility of media up to high
pressure (10° atmospheres) and theoretically by Murnaghan in his 1951 book Finite Defor mation of
an Elastic Solid. Slightly flawed definitionsin the latter were made thermodynamically consistent
by Brugger (1964). For many years second-order elastic constants (SOECs) had been deduced
from the speeds of longitudinal and transverse el astic wavesin different crystal directions. In 1965
Brugger published [6] an exhaustive account of how the third-order elastic constants (TOECS)
determine the (small) changes of such speeds under stressfor all crystal classes and [7] protocols
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for experiments to determine full sets of TOECs for all crystal classes. Around this time there
was a burst of activity to measure TOECs. The time was ripe for several reasons: high-quality
single crystals of many materials were becoming available; advancesin electronics alowed small
changes in the speeds of dastic waves through crystals to be measured accurately; and techniques
for applying uniaxial stresses to crystal samples could be added to those for applying hydrostatic
pressure, thereby generating the number of distinct elastic wave modes needed.

It was at this point that | entered the field, choosing first to work on the theory of the TOECs
of noble metals[10]. Later, after involvement with metals that crystallized in the close-packed
hexagonal structure and which therefore involved internal strain[11, 12, 13, 14, 15, 16], | became
more interested in the formal theory [17, 18]. Now read on.

1.2 Inner easticity

| introduced the term inner elasticity as thetitle of [17] to emphasize that the paper concerned the
specific area of elasticity that dealt with the response to deformation of crystals whose structures
contained atoms at sites lacking inversion symmetry. This approach features the specification of
sublattice displacement, inner displacement, internal strain tensors, partial eastic constants
and inner elastic constants. Certain of the inner elastic constants define the frequencies of optic
modes at the zone centre. These may be combined with components of the internal strain tensor to
givethe specific contributionsto the total elastic constantsthat are dueto the inner displacements.

The earliest worksin this area were published between 1954 and 1972 by Born and Huang[3],
Srinivasan[36], Keating[24], Barron, Gibbons and Munn[1] and Fuller and Naimon[20]. A
massive review of developmentsin lattice theory was presented in 1967 by Ludwig[28]. Because
these different works lacked an agreed nomenclature, and sometimes suffered from an extremely
opaque notation, their most important ideaswere frequently ignored in situationswherethey should
have been invoked: Ludwig, in particular, writesin his Introduction that he has used a different
notation from Anglo-American papers because ‘there is no uniformity in different languages, and
we think [our notation] is the most consistent and unique one'. This curious logic has resulted
in pages where the equations feature symbols bearing two columns of four labels! | addressed
this problem in [17] by proposing nomenclature ! that was close to that of macroscopic elasticity,
by introducing a rational notation and by treating the subject with complete generality. The
remainder of this chapter gives a condensed summary of that paper with some improvements in
presentation that have arisen as a result of applying the formalism in subsequent years. | eschew
thermodynamic intricacies, ignore external electric and magnetic fields and concentrate on non-

1The nomenclature and notation were first proposed in a post-graduate lecture course on Higher-order Elasticity that
| gave in 1972/3 in the Department of the Structural Properties of Materials at the Technical University of Denmark.
Amongst those present wasmy colleague John Martin whofirst exposedthe formalism publicly in hisstudy of many-body
forces in non-primitive crystals[30], publishedin 1975.
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piezoelectric crystals. Strains are assumed to be applied isothermally so that the relevant energy
function is the Helmholtz free energy.

As| was, at that time (1976/7), unaware of any treatment of symmetry relevant to the tensors
with which | was concerned | covered the topic myself in [18], which is summarized in Chapter 2.
Subsequently | learnt of Thurston’s article on waves in solids[38] where the effect of symmetry
on ahost of materia coefficients (elastic, dielectric, piezoelectric, electro-optic etc.) is considered
and the results of a number of authors are collated. These results can be related to mine and are,
with one or two exceptions, completely equivalent to them. The differences are indicated later in
the appropriate place.

1.3 Macroscopic strain

There are two approaches to the definition of macroscopic elastic strain, both involving the notion
of homogeneous deformation. The latter is specified by a deformation gradient matrix H whose
effect isto transform any vector i, in the material into i* where

7= HF, (1.1)

Thefirst approach, historically, isthrough theinfinitesimal strain matrix ¢ = H — I, where I isthe
unit 3 x 3 matrix, and the second, exploited first by Borninworksreferred to earlier, isviathefinite,
or Lagrangian, strain matrix 1, given by 2n + I = [T H, where thetilde denotes transposition. The
two forms continue to coexist because strains in the first case are more computationally-friendly
when contributions to the energy are not simple analytical functions of interatomic distances or
atomic volume whilst strains in the second case are rotationally-invariant and therefore rigorous
thermodynamically.

Complex treatments of elasticity, via total energy calculationsfor example, or modelsin which
many-body terms are introduced to represent bond order, are not easily handled analytically and
usually require the energy to be calculated for a sufficiently large set of deformations and the
results processed by numerical differentiation. Such calculations are most readily handled through
infinitesimal approach and the resulting Fuchs constants[19] converted subsequently to Brugger
constants[5], their finite strain counterparts. This procedure, whichis particularly intricate for the
inner elastic constants, has been completely generalized and underlies all the calculations in the
thesis. Itisdetailed extensively in Appendix A and augmented by afull exposition of computational
procedures of sufficient scope to enable all constantsto be computed.

It is the finite strain approach, however, that is followed from aformal point of view. Asy is
symmetric the usual Voigt contraction of suffixes has been implemented: the strain represented by
n; where I runsfrom 1to 6.
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Figure 1.1: Schematic of occurrence of sublattice displacement

1.4 Microscopic strain

1.4.1 Occurrence and description of sublattice displacement

If each lattice point in a crystal structure is associated with a basis of » distinguishable material
units(atoms, ions, etc.) then thecrystal can be considered as n interpenetrating identical sublattices
Ly, L,, ..., L _. All sites on a given sublattice have the same symmetry but different sublattices
may have different symmetries. The group of point operations that embodies the symmetry of the
environment of siteson L _ will be denoted by . Compatibility with translational periodicity
constrains ¢ to be one of the 32 point groups normally encountered in crystal classification.
The occurrence of sublattice displacement isillustrated in Fig. 1.1. This shows schematically the
effect of ahomogeneous deformation, represented by the matrix /', on two sublattices . and L g
Fig. 1.1(a) isthesituation before deformation. Fig. 1.1(b) showsthe effect of /' when both | and
G 5 contain theinversion. The crucial role of theinversionis easily appreciated: if it is presentin
G, then the equivalence of the vectors “and —7 with respect to any siteon L, preventsthe atom at
such asitefrom being preferentially displaced asymmetrically with respect to the environment. The
same argument applies to the atoms on L g Since the atoms on L are part of the environment of
thoseon L s and conversdly, itisanecessary condition for the occurrence of sublatti ce displacement
that at least one of &, and & ; should lack theinversion. Fig. 1.1(c) showsthe situation when both
L, and L ; suffer sublattice displacements.
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In the infinitesimal approach atomic positionsare given by
Fe=Hrd +u” 1.2

wherea runsfrom 1ton, with@® = Owhen ' containstheinversion. Inthefinitestrainapproach
rotational invarianceis obtained by redefining the sublattice displacement as &> = Hi® whence

7= Hig + H 1. (1.3)
The @< are not al independent because homogeneous deformation does not shift the centre of
mass. Thus> "7 m*w /Y 7 m® =0, where m® isthe mass of the atoms on sublattice ..

1.4.2 Inner displacement

Interatomic vectors, rather than individua atomic position vectors, are the entities most intimately
involved in easticity calculations:

7P — 7= H(Fy — 7e) + H P — @), (1.4)

The relative sublattice displacements implied are then used to define rotationally-invariant inner
displacement through
C=w’ —we=H®@"’ - @), (1.5)

where )\, the interlatticeindex, is methodically related to the ordered pair o, 3, where 3 > «, by
A=a+3(3—a-1)@2n-B+a). (1.6)

This prescription can be visualized in the following tableau which illustrates the case when n = 6
and locates ¢ at the intersection of the sloping linesthat run from a particular & and & ”.

Table 1.1:

Sublattice displacement

u—)»l 152 153 u—)*4 u—)*S u—)*G
¢t ¢? ¢® ¢* ¢®
¢° ¢’ ¢® ¢°
510 511 512
513 514
515

Inner displacement
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It is readily seen that n — 1 of the (* at most, those with A < n — 1, are independent. All
the C* with A > n can be expressed as sums of consecutive independent ones: for example, in the

tableau above,

W= 55 52 = (% — @2) + (0% — 33) + (55 — %) = C2+ 3+ 74 (L.7)

It will prove useful later if this independent set is defined via(* = A and the (n — 1) x n
rectangular matrix

[ —1

: (1.8)
1

1 1

In certain crystal structures some sublattices, say n, of them, possessinversion symmetry. Two
casesarise: if n, = 1thentherewill still be n(n — 1) /2 non-zero ¢ of which n — 1 areindependent
(essentially it makes no differenceto the earlier tableau if w8 = 0); if n, > 2thereare m(m — 1)/2
non-zero valuesof ¢, some repeated, of whichm — 1= n — n; areindependent. Thisrather tricky
result isillustrated for then = 6 casewith n, = 2

Table 1.2:
Sublattice displacement
@t w2 w3 il w>=0 w8=0
I ;2 ;3 & 5=0
76 77 8 79 _ 74
¢ ¢ ¢ ¢"=¢
;1o n (1= (8
4?13 514 =n
4?15 - 513

Inner displacement

1.4.3 Internal strain tensors

Since the inner displacement isthe crystal response to homogeneous deformation, the components
of eachindependentinner displacement vector can be expressed asaTaylor seriesinthecomponents
of thefinite strain:

P 140
G EAN TS A e (1.9
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where there is no constant term sinceCZ.A =0Owhenp=0andm —1=n-1ifn, =0,1and
m —1=n—n,if n;, > 2. Thecoefficients A, and A7, arethe components of theinternal strain
tensors.

Further discussion of internal strain tensorsis deferred to Sec. 1.5.4 where their relationship to
theinner elastic constantsis set out.

15 Energy and elastic constants

An individua contribution to the free energy per unit initial volume of a strained crystal can be
expressed as a Taylor seriesin the components of » and ¢ asfollows:

poF (¢ m) = poF(0,0) + P, + D¢
A
+3C2mpmy + DN, + SE G (1.10)
1,0 1) A 1A A 1 o py )\ v
+5C Ty 3D Con g + ?Eiﬁ(ci C]an( + eFZ;;Z & CJHCk’

where F'(0, 0) is the free energy per unit mass in the unstrained state. Summation over repeated
indices is understood, Greek superscriptsrun from1tom — 1wherem —1=n — 1lifn, =0,1
orm—1=n—n ifn > 2 If m =2thesuperscriptsare al unity and may thus be omitted for
clarity. Lower case Roman subscriptsrun from 1 to 3, upper case from 1 to 6.

1.5.1 Partial elastic constants

The coefficients C?, C? , and C? ) ae contributions to the partial elastic constants which are
themselves the contributionsto the total elastic constants ', €', ; and €', ;- that are independent

of inner displacement.

1.5.2 Inner eastic constants

The tensors characterized by the components D, D, D3\, ., Ef]“ Ef]j;X

elastic constants. These are al defined in the same way, that is as derivatives of the energy with
respect to strain parameters, thus for example

and ng” are the inner

DY, = po(02F/9¢m ), (1.12)

wherethederivativeisevaluated at equilibrium. Thesedefinitionsare anal ogousto those of Brugger
for the total elastic constants[5].

The notation for the inner elastic constants is based on the following considerations: (i) the
Cartesian and Voigt subscripts are separated from the interlattice indices as they are different kinds
of label; (ii) the subscript sequence is a useful label when the results of symmetry analysis are
tabulated, asin the following Chapter; (iii) the sequence C', D, E and I’ for thetensorswith 0, 1, 2
and 3 inner displacement components permits different tensor types to be distinguished when the
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subscripts are numerical. Although thisis a redundant indication when superscripts are present it
comes into its own when they are absent, which commonly happenswhen m = 2.

The DjJ elements express the strength of the coupling between internal and external strain
and the Ef]“ closely related to lattice-dynamical coupling constants, determine the frequencies,
and sometimes the eigenvectors, of the optic modes at the zone centre. The remaining third-order
constants, D2, ., Ej/}x and ng” , areinvolved in the strain-dependence of various parameters that
would be constant in the harmonic approximation.

15.3 External equilibrium of the unstressed crystal

When al contributions« to the free energy have been included in Eg. (1.10) equilibrium conditions
require that the sums of the first-order terms should be zero: ¢, = >~ _(C?9)_ = 0and D} =
Za(Dj)a = 0. The tota free energy is then a minimum with respect to al possible small
deformations. If these are homogeneous then all the principal minors of €', ; are greater than
zero[3, ch.3]. These conditions guarantee the vanishing of external stress and a positive definite
vauefor the elastic energy.

The total free energy must also be a minimum with respect to arbitrary spontaneous inner
displacements. From (1.10) it can be seen that the term in E%“C}Cf must be positive definite.
If thisis so there exists a similarity transformation that will diagonalize E** and render al the
diagona elements positive. The matrix £** will therefore be non-singular and will possess an
inverse B** given by

BM = (M) (det M) (1.12)

where the tilde denotes transposition, the dagger indi cates the formation of the adjugate matrix and
det indicates the determinant.

154 Internal equilibrium of the stressed crystal

The application of astressto acrystal producesafinite strain and a minimization of the free energy
by inner displacement. Stability of equilibrium against small changes in the components of inner
displacement requires that

oF _
2
Po (%) > 0 (1.14)
g n

and

(1.15)

O%F
o (5c2)
v n

, (82F)
ol =z
84}“ .

N 0*r
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The inequalities specialized to the case of vanishing n give
B >0 (1.16)

and
BB > (BN (1.17)

Using (1.9) and (1.10) it is seen that (1.13) becomes

A
D} + nI(D;\I+EijMA;I)
A A A Apy vl —
+ gDy, + EAY (B AY + ECSAY) + FOAY AL =00 (118)

Sincethisistruefor al 7 thefirst term and the coefficients of », and 7, must be separately zero:

D=0 (1.19)
A A _
D+ EFAY =0 (1.20)
and
A A A A A vo_
D+ Eij“A;IJ + (EiﬁA;J + EijfL]A;I) + sz A;IAM =0. (1.21)

Equation (1.20) may be solved for the internal strain tensor by using the inverse defined in (1.12),
giving

AN ==B)'DY,. (1.22)
Equation (1.21) isformally just as easy to solve despiteits apparent complexity. All that isrequired
is the definition of a composite tensor

N A N N A y
Gipy = Dipy + (B AL + ELGAN) + FV AR AL (1.23)

from which the solution
N A
Ay = =B Gl (1.24)

follows.

155 Composition of thetotal elastic constants

Individual contributions to the total elastic constants are obtained from (1.10) by taking total
derivatives with respect to the components of 1. The usual Brugger definition of the nth-order
elastic constant may then be generalized to

D"F
= S 1.2
CIJ.. Po (Dn[DnJ")o ( 5)
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where
ac
b = i+ CZiA summedover A=12....m-1
Dy, dnp - Oy 9¢
0
= Lo+ )L 1.26
an, (A + Alypnp )84‘? (1.26)

using (1.9). The contributionto a particular elastic constant is then the sum of terms depending on
the different orders of internal strain. Thusto the second order

C, = CY+C7
C; = C%+ct +C% (1.27)
CIJK = C?JK + CllJK + C?JK
where the first-order internal strain contributionsare
ct = Ay}
Cl = ANDY +EY ALY+ AN (D7) + BN AL — AL AL B (1.28)
CllJK = (A;\ID;\JK + A;\JD;\IK + A;\Ix"DiAIJ)
HAGAL B + A Al iy + A Al B + AL AL AL B
and the second-order contributionsare
C3, = Ay,D; (1.29)
C?JI\ = A;\IJ(D;\I\" + Ei/\jMA;I\") + A;\II\"(DZ'AJ + Ei/\jMA;J) + A;\JK(D;\I + Ei/\jMA;I)‘

The symmetrized expressions guarantee the equality of total elastic constants that differ only in
the order of their subscripts. Considerable simplification followsthe application of the equilibrium
conditions, (1.19) and (1.20). First it can beseenthat C2, = C2,,. = 0 and that the second-order
internal strain has no effect on the elasticity below the fourth order. This conclusion was reached
by Srinivasan in [36] using a central force model and a mixture of infinitesimal and finite strain
parameters. Thederivation hereinvolvesno assumptionsand holdsrigorously. Final resultsfor the

composition of the total elastic constantsare

_ A0 _
¢, = ¢; =0
_ 0 A A
Cry = CIJ_AHA;JEZ']‘M (2.30)
_ 0 A A A A PUFEOY
Crx = Crx Y AGD 0 + ALy Dl + A Dy )

A AH A A Al AR A AL A DY Y Apy
+(AiIAjJEin + AiIAjKEijJ + AiJAjKEijI) + AiIAjJAkKP;'jk
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1.6 Compliances and compressibilities

M easurements of | attice parameter and volume change under pressure by means of X-ray or neutron

diffraction may be used to extract elasticity information from crystals too small to subject to more

conventional techniques, such asultrasonics. Theprimary quantitiesobtai ned are compressibilities.
The compatibility of Hooke's law extended to terms quadratic in the strain

0 =Cryng* 30 RN (1.31)
withitsinverse form

=S50 % 351 K09K (1.32)
defines implicitly both second- and third-order elastic compliances. The second-order ones are

given by standard matrix inversion whilst the third-order ones are given by [2, 21]

Stk = =51p5505krCPor- (1.33)

Under hydrostatic pressure o ;
whence

—pd,;, where 6, = 1if J =1, 2 or 3 and zero otherwise,

_ 1 2
Ny = =PSSO0+ 505K 0,0k

—kp+ 3K p? (1.34)

implicitly defining harmonic and anharmonic linear compressibilities.

1.7 Computational simplification and sublatticetensors

In practical computationitiseasy toimposeasinglesublatti cedisplacement and eval uatethe conse-
guences. But asingle such displacement automatically activates a number of inner displacements,
as aglance at the illustrative tableaux presented earlier will show, and there is no way to specify
asingleinner displacement. It istherefore computationally simpler to introduce sets of sublattice
tensorsd, e and f that relate to sublattice displacement in the same way that inner elastic constants
relate to inner displacement:

di = po (0F/0w),
diy = po(0°F/0w]dny),
&y = po(0°F /0w on,0my)
e? = p aZF/awfawf)o (1.35)

)

i K

K3

(
B = pg (83F/3w?8wf8771")0
(

af — 3 o g
= pe (0% /0wt oulou])
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where the Greek superscriptstake valuesfrom 1ton — 7.
The sublattice tensors are related to the inner elastic constants via chain rule differentiation

0 G\ 0 _ =~ 0
= ? — =N\ — 1.
dw? (Gw?) ¢ ¢ (1.36)

K3

with the operator

where A is the transpose of the matrix defined in (1.8).
Theinner eastic constants are then given in terms of sublatticetensors by

A
D) = =)

p=1
Aop
EM = )N e (1.37)
p=1 ¢g=1
A o v
F/\p,u — _ZZ qur
p=1 ¢g=1 r=1

for al valid subscript sequencesi, i.J or iJK ond and D; al ij orijK one and £/, and al ij%k on
fand F.

Asthen — n_ sublattice displacements i are not independent it follows from application of
(1.36) that

> & =0
p=1
er=Y el =0 (1.38)
p=1 p=1
=0

n—nl. n—nl. n—nl.
PR D I D
p=1 p=1 p=1

for any valuesof «, 3 or v. Theresultsare true a fortiori for double or triple summations.
Itiseasily seenthat as A\, ;1 and v increase the number of terms on theright of (1.37) escalates.

Smaller numbers can be retrieved by combining (1.37) and (1.38) to give alternative, equivaent,

definitions. For example, combining the summationsinvolving A in corresponding tensors gives

D) = +if d’.

p=A+1

B = - Zi Z (1.39)
p=A+l ¢=1

P = o+ Z ZZf

p=A+1l¢=1 r=1
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where the signson theright are the opposite of thosein (1.37). If thelimits on a second superscript
are modified the sign will be reversed again, and so on.

1.8 Latticedynamical connection

1.8.1 Inner elagtic constantsand longwave coupling constants

Certain of the inner elastic constants are related to parameters that occur in conventiona lattice
dynamics and may be discovered by going to the longwavelimit. Thisisequivalent to considering
the motion of rigid sublattices.

Thevariablesare the displacements # © of al n sublatticesfrom their equilibrium positionsand
the potential energy per unit initial volume may be written

V=V, + P u + 1¢aﬁuauﬁ + Cl)laﬁjuauﬁuz +--- a,B,v=212,...,n (140)

where @ = (0V/0u?), etc., the derivatives being taken at equilibrium. Thefirst step towardsthe
desired comparison is a change from sublattice variable @ @ to interlattice variables. Thisis done
by defining n — 1 interlattice displacements z* by analogy with the first layer of the scheme in
Tablel.2, but with all displacements non-zero:

7A = gA_gA A=12...n—1 (1.41)

An additional variable is required to produce an invertible transformation between the two ap-
proaches. Thisis provided by 2™, the displacement of the centre of mass:

1= PP /M (1.42)

where m” isthe mass of an atom on sublattice p and M = Z;zl mP isthemass of theentire basis.
The inverse of the coordinate transformation is then

u; = sziA a,A=12....n (1.43)
where
(=1 pp—=1 oo p ;=1 17
gy pp—=1 o op ;-1 1
Q= : : : : : (1.44)
1y gy op, -1 1
Ly gy oo op_, 1l

isann % n matrix inwhich 1, = (Y5, me) /M.
The corresponding differential operator applied to the potentia energy density V' gives

ov M 8V

o =0 (1.45)
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Because the vibrational energy of a crystal is small compared to its potentia energy, the crystal
potential energy density, V', isagood first approximation to the free energy per unit initial volume,
pol” (Walace 1972, p.60). The displacements 72 (apart from ") may also be identified with
the {* in the absence of finite strain (i.e. H = I) so that if (1.45) is evaluated at equilibrium the
following result is obtained:

D} =@ e (1.46)
and, by extension,
E} = QM olf (1.47)
and
ngu — @Aa@w@w@;ﬁw (1.48)

where A, ¢ and v runfrom 1ton — 1 and o, 5 and v from 1 to n.

As shown earlier all the D? vanish as a result of equilibrium conditions, hence all the ®2 in
(1.46) are zero, as would be expected from purely lattice dynamical considerations.

The motion of the centre of mass does not contribute to the potential energy of the crystal so
the remaining constants, implied by the addition of " to the set of variables, al vanish. Thus,
sinceQ™ = 1fordl a,

Dr=> @r=0 (1.49)

B =QM (Z q>;;ﬁ) =0 (1.50)

B

Fyin = Q@ (Z "’%ﬁ’?) =0, (151)
Y
corresponding to standard results on the coupling constants.

1.8.2 Thesecular equation and optic mode frequencies

The kinetic energy per unit initial volume may be written
1 ozﬁ o ﬁ
T= SP U (1.52)

where p°” is adiagonal density matrix in which p® isthat part of the equilibrium crystal density
due to the atoms on sublattice « [30]. The Lagrangian per unit initial volume in the harmonic
approximation is obtained by subtracting from 7" the quadratic termsin V. Standard procedures
may then be used to obtain the 3n equations

o7 — w25 | ull = 0. (1.53)

If the left-hand sideis premultiplied by ) and & is replaced by ()= the equations become



1.9 Rationale 29

B} — WK =0 (1.54)
where K = Qp() isanew density matrix (no longer diagonal) and p is adiagona n x n matrix
given by i i
Hq
Ho = [
p=po| : : : : . (1.55)
M1 = Hyo2
L. . . 1—p
These equations have a non-trivial solution only for those values of w? that satisfy the secular

equation
| B — WP KM | = 0, (1.56)

Inthis3n x 3n determinant w2 no longer occurs along only the main diagonal. There are however
three rows and three columns, corresponding to A = n and ¢ = n which contain zeroes except
where they intersect on the main diagonal where the element —w?K ™" (i.e. — powz) occurs. These
triply degenerate roots, w = 0, correspond to the acoustic modes at the zone centre and may be
removed from the determinant leaving a3(n — 1) x 3(n — 1) secular equation whose eigenvalues
correspond to the longwave limit of the 3(n. — 1) optic mode frequencies.
If n > 2 then to each value of w? there corresponds an eigenvector given by
EM = Q2R (1.57)

g~

If n = 2 the eigenvectors are indeterminate.

1.9 Rationale

This Chapter has been concerned with dressing up some old ideasin new clothing. Vocabulary and
notation, closely related to that of ordinary elasticity, has been introduced in an effort to make the
unity of the subject more readily apparent.

Elastic constant measurements alone revea nothing of the ‘inner’ aspects of the material.
Fortunately there are various experimental techniques which reveal valuable information. Firstly
theinelastic scattering of X-raysand neutrons, infra-red and Raman spectroscopy, can all beused for
the determination of optic mode frequenciesin thelongwavelimit. Secondly the strain dependence
of the intensity of the elastic scattering of X-rays or neutrons from single crystals can be used
to determine components of the internal strain tensor. After publishing the papers that form the
basis of this and Chapter 2 | led a group specidizing in this technique and produced results for
a number of group IV elements and 111-V compounds. These are mentioned briefly in Chapter 3
where the method, with specific reference to cubic diamond, is described. Thirdly, accessto some
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of the third-order inner elastic constants is possible in principle through the strain dependence of
the above phenomena. It isdoubtful if any of the techniquesare yet sufficiently accurate to provide
meaningful results, however.
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Chapter 2

Symmetry of inner elastic constants

A space group is an infinite, spatially periodic, arrangement of symmetry elements having the
property that the operation of any particular element carries all the remaining el ementsinto similar
elements. At least one complete sample of the arrangement is contained within a limited region
of space, a unit cell, and points within this region can be specified by coordinates with respect to
some conventionally located reference axes. Every space group has a unique spectrum of sets of
equivaent points (Wyckoff sets) of varying degrees of symmetry. A complete description of all
space groupsis given in the encyclopaalic International Tables of Crystallography, Volume A, [8].
Conventions for the settings of Cartesian axes with respect to the symmetry elements are given in
Standardson Piezoelectric Crystals, [11], awork that is far more genera than its title suggests.

A crystal structure belongsto a particular space group if entire Wyckoff sets are populated by
atoms or ions of the same species. The connection between this description and that in terms of
interpenetrating sublatticesis simple: every sublattice correspondsto a distinct point in one of the
occupied sets. By investigating the effect of symmetry operations on individual points the effect
on the sublatticesis revealed.

Perfect crystals belong to one of 230 space groups, of which 73 are symmorphic and 157
are non-symmorphic. A space group is said to be symmorphic if, apart from the translations,
the generating symmetry operations leave one common point fixed. Thus only the point-group
operations are permitted: rotations, reflections, inversions and roto-inversions: together with the
identity these form agroup of order ¢

F={A®)}, (2.1)

where the A®) are 3 x 3 orthogonal matrices (¢ in al). Non-symmorphic space groups are those
that possess the space operations of screw axes and/or glide planes. Their symmetry operationsare
represented by augmented 4 x 4 partitioned matrices which form agroup

= ={ ] @2

wheretisa3 x 1 column vector representing a fractional translation. These operatorsact on4 x 1

AW

0 1

column vectors [, /1] in which ordinary lattice vectors 7, supply the first three elements.
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2.1 Point-group symmetry analysis

As far as material tensors are concerned screw axes and glide planes are invisible. Symmetry
properties are determined by the directions of the axes, not by the precise position of their origin.
In principle the non-zero components of a tensor of rank » and any relations between them are
obtained by invoking the tensor transformation law for every symmetry operator A®):

T = aa®al) T (2.3)

ijk.. zp ]q qr..

Wheretheagz) etc. aretheelementsof A). Thetransformation law appliesto tensorsin uncontracted
form. It can bemodified provided careistaken. In practicealarge number of vani shing components
in the orthorhombic, tetragonal and cubic classes can be inferred by direct inspection. In particular,
if one of the A®) istheinversion then

T =(D)'T, (24)

and tensors of odd rank vanish. Thus, as expected, the d, D, f and I tensors are restricted to the
21 non-centrosymmetric point groups. By their nature thetensorse and E are also limited to these
groups even though in general tensors of even rank can be defined for al 32 point groups. The
rhombohedral and hexagonal classesare rather |abour-intensiveand, again, require care. Symmetry
analysisand direct inspection methods are fully described in[10] where complete results are given
for the SOECs. These apply equally to the partial elastic constants introduced in the previous
Chapter. Corresponding results for TOECs (and thus for partial TOECs also) are givenin[2].

The analysis applies to each distinct sublattice tensor and inner elastic constant and has been
carried out with the results displayed in the following six Tables. With one exception the results
relate to the standard settings of axes set out in[11] and[12]. The exception relates to the point
group 6m2 where it was recommended that the Oz, axis be set paralel to a twofold axis. As|
showed in[4], this violates two principles that underlie the recommendations: in fact the Oz, axis
should be set perpendicular to amirror plane m, arotation of the axes through 30° about Oz 5.

The maximum number of independent components that may be possessed by a tensor of a
particular form for a particular point group may be found by group-theoretical methods. The
numbers found here agree in al cases with the expectations listed in TableVIII(a) in[1, ch.7] if
the tensors d2, d;, d<;,., e, e/} and £ are identified with Properties number 2, 5, 11, 4,
9 and 6 respectively for the cases where «, 5 and v are al different. If two or more sublattice
indices are equal commutative relations may reduce the number still further. Table2.7 displaysthis
information.

The Tablesin the compilation of [13] can be compared with the ones presented here after some
minor adjustments, such as symmetrizing the fifth-order polar tensors for comparison with my
Table2.3. Strangely Thurston’s footnote to his Table 16.5 states that a -30° rotation of axes about
Oz 4 isrequired for the point groups 3, 32 and 3m aswell as 6m2in order to conform tothe standards
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Table 2.1: Non-zero components of the tensors d2 and D;}

Point group 1

1 1,2,3
m 1,3

2 2
mm2, 4,4mm, 3,3m, 6,6mm 3
222, 4,42m, 422, 23,43m,432, 32, 6,6m2 622  none

Table 2.2: Non-zero components of the tensors d?,, D7, and A2,

Point group iJ

1 All 18 possible pairs

m 11, 12, 13, 15, 24, 26, 31, 32, 33, 35
2 14, 16, 21, 22, 23, 25, 34, 36
mm?2 15, 24, 31, 32, 33

222 14, 25, 36

4 14=-25, 15=24, 31=32, 33
4 14=25, 15=—24, 31=—32, 36
Amm 15=24, 31=32, 33

42m 14=25, 36

422 14=—25

23,43m 14=25=36

432 None

3 Sets A, B, Cand D (see below)
3m SetsCand D

32 Sets A and B

6 SetsBand C

6 SetsA and D

6mm Set C

6m2 SetD

622 SetB

Set A 11=—12=-26

SetB 14=—25

SetC 15=24, 31=32, 33

Set D 16=21=—22
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Table 2.3: Non-zero components of the tensors d ., D2, and A2, .. Only components with
J < K areshownasdy, - = dS}. ; etc.

Point group WJK

1 All 63 possibletriplets

m Sets A(2), B(1) and B(3) (see below)
2 Sets A(1), A(3) and B(2)
mm2 115, 125, 135, 146, 214, 224, 234, 256,
311, 312, 313, 322, 323, 333, 344, 355, 366
222 114, 124, 134, 156, 215, 225, 235, 246,
316, 326, 336, 345
4 Sets C(—) and D(+), 312, 333, 366
4 Sets C(+) and D(-), 336, 345
4mm Set D(+), 312, 333, 366
42m Set C(+), 336, 345
422 Set C(—)
23 SetsE, Fand G
43m SetsE, F and G with F=G
432 Sets F and G with F=—G
3 SetsH, |, Jand K 6 SetsJand K
3m Sets| and K 6 SetsH and |
32 SetsH and J 6mm SetK
6m2  Setl
622  SetJ
Set A(p) pl4, p16, p24, p26, p34, p36, p45, psS6
Set B(Q) gl1, 912, 913, g15, g22, 923, 925, q33, 35, g44, 946, 955, 66
Set C(+) 114=4225, 124=+215, 134=+235, 156=+246, 316=1326
Set D(+) 115=4224, 125=+214, 135=+234, 146=+256, 311=4322, 313=+323, 344=+355
Set E 114=225=336, 156=246=345
SetF 124=235=316
Set G 134=215=326
Set H 111=1{(216)+3(226)}, 112=166=3{ 226216}, 122=1{3(216)+(226)},
113=—123=—236, 144=—155=245, 315=—325=—2346
Set | 211=3{(116)+3(126)}, 212=266=3{ 116126}, 222=— 3{3(116)+(126)},
213=—223=136, 244=—255=—145, 314=—2324=356
Set J 114=—225, 124=—215, 134=—235, 156=—246=—3{114—124}
Set K 115=224, 125=214, 135=234, 146=256=3{115- 125},

311=322=312 + 2(366), 313=323, 344=355, 333
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Table 2.4: Non-zero components of thetensors e/ and 17,

Point group ij

1 All 9 possible pairs
m, 2 11, 22, 33,13, 31
mm2, 222 11, 22, 33

4,4, 3, 6,6 11=22,33, 12=—21

A, 42m, 422, 32,3m, 6mm,6m2,622 11=22,33
23, 43m, 432 11=22=33

Table 2.5: Non-zero components of the tensors e/} and 2.}

i K

Point group K
1 All 54 possibletriplets
m, 2 SetsA(L), A(2), A(3), A(5), B(4) and B(6) (see below)
mm2, 222 111, 112, 113, 221, 222, 223, 331, 332, 333, 126, 135, 216, 234, 315, 324
4,4 SetsC and D
Amm, 42m, 422 Set C
23 SetsE, F, G, H, |
432, 43m SetsE, F, G, H, | with F=G and H=I
3 Sets J, K, L and M
32,3m SetsJand L
6,6 Sets Jand K
6mm, 6m2, 622 SetJ
Set A(P) 11P, 13P, 22P, 31P, 33P
Set B(Q) 12Q, 21Q, 23Q, 32Q
SetC 111=222, 112=221, 113=223, 126=216, 234=315, 331=332, 333
Set D 116=—226, 121=—212, 122=—211, 123=—213, 134=—235, 314=—325
SetE 111=222=333
SetF 112=223=331
Set G 113=221=332
Set H 126=234=315
Set | 135=216=324
Set J 111=222, 112=221, 126=216=1{111-112},
113=223, 135=234, 315=324, 331=332, 333
Set K 121=—212, 122=—211, 116=—226=1{122—121},
123=-213, 134=—235, 314=—325
Set L 114=125=215=—224, 136=231=—232, 316=321=—322
Set M —115=124=214=225,131=—132=—236, 311=—312=—326
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Table 2.6: Non-zero components of the tensors £, and 1"

Point group ijk
1 All 27 possibletriplets
m Sets A(1), A(3) and B(2) (see below)
2 Sets A(2), B(1) and B(3)
mm2 113,131, 223, 232, 311, 322, 333
222 123,132, 213, 231, 312, 321
4 Sets C(+) and D(—), 333
4 Sets C(—) and D(+)
dmm Set C(+), 333
42m Set D(+)
422 Set D(-)
23 SetsEand F
43m Sets E and F with E=F
432 SetsE and Fwith E=—F
3 SetsG, H, l andJ
3m SetsH and |
32 SetsGand J
Setsl and J
6 Sets G and H
6mm Set |
6m2 Set H
622 SetJ
Set A(p) pll, p13, p22, p31, p33
Set B(q) gl2, 921, g23, g32
Set C(4) 113=+223, 131=+232, 311=14322
Set D(£4) 123=+213, 132=+231, 312=1+321
SetE 123=231=312
SetF 132=213=321
Set G —111=122=212=221
SetH 112=121=211=-222
Setl 113=223, 131=232, 311=322, 333
SetJ 123=-231, 132=-231, 312=-321

ijk
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in[11]. This is incorrect—it restores and compounds the inconsistency that | exposed in[4].
Consistency requires that the non-zero components of a tensor in class 6m2 be a subset of those
of the same tensor in class 3m, from which 6m2 is derived by the addition of further symmetry
elements. Similar arguments relate 6mm to 3m and 622 to 32. The net conclusion is that the
resultsfor the point groups 3 and 6m2 are correctly given but that two sets of non-zero components
should be exchanged between 32 and 3, namely sets| and H in Table2.3. Thurston’s resultsfor
a third-rank polar tensor in his Table16.3 is marred only by the 6m2 problem-the matrix should
have its upper and middle rows interchanged.

Table 2.7: Total number of independent elements for each tensor by crystal class.

Point  df 7y A7y efjﬁ efﬁ( T Sx[jw
group D} AN, DY ANg Dl Ez'AjM 2 ZAJLILX ngy
1 3 18 63 9 54 27
m 2 10 34 5 28 14
2 1 8 29 5 28 13
mm2 1 5 17 3 15 7
222 0 3 12 3 15 6
4 1 4 15 3 14 7
4 0 4 14 3 14 6
dmm 1 3 10 2 8 4
42m 0 2 7 2 8 3
422 0 1 5 2 8 3
23 0 1 4 1 5 2
43m 0 1 3 1 3 1
432 0 0 1 1 3 1
3 1 6 21 3 18 9
3m 1 4 13 2 10 5
32 0 2 8 2 10 4

1 4 11 3 12 7
6 0 2 10 3 12 2
6mm 1 3 8 2 7 4
6m2 0 1 5 2 7 1
622 0 1 3 2 7 3

In Appendix B are listed the transformation matrices that convert tensor components from the
standard settingsin the above Tables to the variant settings most commonly encountered.
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2.2 Transformation of sublatticeindices

So far the structure of the tensors has been elucidated in a macroscopic spirit—i.e. without regard
for the effect of space group operationson the sublatticeindices or interlatticeindices. When these
microscopic considerations are taken into account they lead, if » > 2, to further simplification.
For this purpose the sublattice indices 1 to n are alotted to the different atoms in the basis. This
procedureisarbitrary but can at least be made methodical by numbering al the atomsin aparticular
Wyckoff set sequentialy and, if appropriate, by taking the least populated Wyckoff sets first. As
an illustration here are the assignments for the hexagona allotropes of diamond and graphite. In
both cases the space group is 6, /mmc and the hexagonal unit cell is defined by the three vectors
d, =a[l,0,0],d, = a[—%, @, 0] and @y = ¢[0, 0, 1], where a and ¢ are the lattice parameters.

Table 2.8: Assignment of sublatticeindicesto the atomic sitesin the hexagonal
allotropes. The colon separates the non-equivaent pairsin hG.

Structure  Wyckoff Site Atomic coordinates at sublattice number
sets Ssymmetry 1 2 3 4
ot 3 (32 (39  GEi-9 Giito)
hG d: b 6m2 (323 (211 . (009 (001

There is in group theory a theorem[9] which asserts that every finite group is isomorphic
with a suitable group of permutations®. In the present context the group of point operations that
transform the various atoms into one another is precisely matched by the group of permutations of
the associated sublatticeindices. The following Table, brought forward from Chapter 4, illustrates
thisfor the hexagonal allotropes. The space group is of order 24 and for hexagona diamond there

Table 2.9: Permutations of sublattice indices corresponding to spacegroup symmetry operations
for the hexagonal structures. ¢ isthe fractional translation column vector [0/0/1].

Symmetry operationsin Subgroup Permutations

space group P6;/mmc withrow 1 hD hG
{10} {37|0} {37|0} {m[O} {m/|O} {m"|0}  R3m (D)@ D)2 : )4
{il0y  {3]0} {37]0} {20} {2|0} {2"]0}  P3ml (1234  (129:(34)
{2,113 {671} {6710} {cli} {10} {"li}  PByme  (14)(23)  (12):(34)
{m [t} {670} {67[i} {2,|{} {2)} {2,)i}  P6m2 (1324 O :)@

YInfact | discovered this for myself and excitedly reported it to the number theorist Bob Odoni over the snooker table
onelunchtime. | had rather mixed feelings on being told that Cayley (1854) had preceded me by more than a century!
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is a single Wyckoff set of 4 atoms. The identity and 5 other operations do not permute the
indices. Thisisrepresented by enclosing each index singly in parentheses. A coset of 6 operations
interchanges sublattices 1 and 2 and, simultaneously, 3 and 4. Two further cosets behave similarly.
The hexagonal graphite structure has two Wyckoff sets of 2 atoms. The identity and 11 other
elements produce no permutation whil st the coset of 12 elements permuteseach pair. The sequence
of indiceswithin parenthesesis termed acycle.

2.3 Transformation of interlatticeindices

To avoid unnecessary complexity it will be assumed from here on that no sublattice sites possess
inversion symmetry.

In a structure formed from » sublattices there are n(n — 1)/2 interlattice indices relating the
sublatticesin pairs of which n — 1 at most are needed to label independent tensors. Thisconclusion,
from Chapter 1, can only be arrived at in the general case by detailed analysis. The simplest way
to approach theissueisto usetriangular tableaux again, rather than the complicated mesh of semi-
circlesused in[5]. A scheme for theindiceswhen n = 4 is set out in Table2.10. In the upper left
tabl eau the assignmentsfollow the prescription of the definition of inner displacement in Chapter 1.
The other three tableaux illustrate the effect of the permutations shown, and correspond to the
symmetry operationsof Table2.9: the pair on theleft representing hG and all four representing hD.
Certain of theindicesare shown barred indicating the polar character of theindex assignment: thus
¢4 which is defined as @3 — @ initialy is equivalent to @2 — «# via the permutation (14)(23),
i.e.to —(5. Thiscan be written as (® in the spirit of crystallographic practice.

Table 2.10: Allocation of interlattice indices and the effect on them of the permutations indicated

hD and hG hD
DEE)4) (14)(23)
1 2 3 4 4 3 2 1
1 2 3 3 2 1
4 5 5 4
6 6
(12)(34) (13)(24)
2 1 4 3 3 4 1 2
1 6 3 3 6 1
5 4 4 5

2 2
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2.3.1 Indicesconnecting sublatticesin distinct Wyckoff sets

Pairs of sublattice indices taken one from each of two Wyckoff sets u and v giveriseto n,n,_
interlattice indices.

The effect of a symmetry operation on an interlattice index A is completely determined by the
simultaneous permutations of the sublatticeindices u, and v, Consider first the case where « and
v are distinct (athough they may be of the same type). Denoting the space group and its order
by I' and ~ respectively it can readily be seen that a subgroup U, of I', of order v/n_, exists that
leaves u, invariant. The elements of this subgroup are those whose equiva ent permutations contain
u, in cycles of unit order, i.e. (u;). The remaining elements of I can be grouped into »,, — 1
cosetsU,;, also of v /n, elements, that transform u, into ;. The elements of these cosets are those
whose permutations contain cycles in which . is followed immediately by u; (including cycles
that commence with u; and end with »,). Similarly I" can be decomposed into a subgroup Voo of
order v /n,, that leaves v invariantandn, — 1cosetsV, that transformv intov, .

The two sublatticeindices u, and v, and their associated interlattice index A are left invariant
by asubgroup G* of I', of order ¢ ,» consisting of those elements common to .. and V,: thus

A —
¢ =U,nv, (2.5)

and
1< g, <min(y/n,,v/n,) (2.6)
since G certainly contains the identity but no more elements than are present in the smaller
subgroup. G iscalled the stabilizer of \.
The non-zero components of tensors carrying asingle index A and any relations between them
are given by considering the set of equations, one for each element in G, of the form

72, =aPaWdl). 1) (2.7)

ijk.. ip g r pqr..

where the ag? etc. are elements of the point operationin " . This procedure defines ., n, tensors
of agiven kind. Except in the simplest structures many of these tensors are interdependent, being
related by those elements of I that change the interlatticeindices. Let A’ be the index that relates
the sublattices u; and v, Then X istransformed into A’ by the elements that are common to the
cosets U, and V, : if this set isdenoted by H**' then

HM =U..nV (2.8)

with the provisothat ;7 = 7 and ¢ = p are not taken together. If thisisnot an empty set the the tensor
withindex )\’ istotally determined by that withindex A according to

TV =) 1 (2.9)

igk.. wp iq pgr..
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where the agj) etc. are elements of any one point operation in 7. If the set is empty the two
tensors are independent.

To determine the precise number, p_ , of independent tensors of a given kind it is necessary
to decompose the set of interlattice indicesinto mutually exclusive subsets, each subset containing
a complete collection of related indices. The number of these subsets is the number sought. A
particular subset containing A is called the orbit of A under I" and is denoted by O*. If the number
of elementsin O is o, theit can be shown that

0, = 7/gA (2.10)

[7, p.63]. A preliminary look at the boundsof p_ isinstructive. The boundson g, givenin (2.6)
can be inserted into (2.10) to give

max(n ,n,) <o, <. (2.11)

Now ) o, =n,n,_,soupper andlower boundsonp,  will be obtained by assuming orbitsof equal
size, each containing either the upper or the lower bound of o,. Thisyields

n,.n,/v <Py, <min(n,,n,). (2.12)

Two definite conclusions may be drawn from (2.12): (i) if the set v is a genera set (i.e. hasas
many elements as the order of the group) then» =~ andp,  =n_and (i) if the set u consistsof
asinglemember thenp = lirrespectiveof n .

The exact vaue of p ~can be determined using a matrix representation of the permutations.
Let P (T,) beann, x n, matrix with unitsin positions (¢, j) if I'_ carries u, into u; and zeroes
elsewhere. The character x (I,) of the matrix is given by

X, (M)=trP () (2.13)
and a theorem of Frobenius and Burnside states that the number of orbits of «_ isgiven by
1
7, == > x, () (2.14)
v FSeF

The permutations of a second Wyckoff set v can be represented in a similar way in terms of the
n, x n, matrices P (I" ).

These two representations of I' may be used to create a third by forming the tensor product of
P (F))and P (). Thisdefinesann, n x n n matrix of which aspecific element is given by

Ty = B ) (P, (), (2.15)
This new representation reveals the behaviour of the ordered pair (u,, vj) under the operation I,
and thus the behaviour of the interlattice index A corresponding to that pair. The number of orbits
of A isgiven by (2.14):

1
Poy == X)) (2.16)
v Fser
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It followsfrom (2.15), by setting j = 7 and ¢ = p and then summing over : and p, that

trP, (F)=trP (T )trP()) (2.17)
so that, by (2.13),
N (M) = x, (M), (T)) (2.18)
and finally, by (2.16)
Pyy = : D X, (). (2.19)
FSeF

If the set « and v are both of the same kind, say u, then (2.19) becomes

1
P == D XA (2.20)
v Fser

2.3.2 Indices connecting sublattices within a single Wyckoff set

With some modification the above arguments can be used for the case where the interlatticeindices
relate to sublattice indices from the same Wyckoff set. Firstly there are no indices relating a
sublattice to itself, so the ni intersections obtained by setting vV,=U, in (2.5) are reduced by
n,, sincethen casesinwhichp =i must be excluded. Secondly, because of the polar nature of
the definition of inner displacement briefly noted in Section2.3, theremaining »_(n,, — 1) fal into
two equal groups—the set {A} and the set {X}. Tensors labelled with an odd number of indices
arerelated by

= _TA

Y
T ijk..

Gn (2.21)
and clearly only one member of each A pair is required, reducing the number of interlattice
indiceston (n, —1)/2.

Analogousto (2.5) the stabilizers of A and )\ are given by
A =c=U,nU, (2.22)

with
1<g,=95<7/n, (2.23)

and thetensors carrying asingleinterlatticeindex havethe form derived by applying (2.7) as before.

A systematic set of ), al positive integers, is implicit in the definition of inner displacement.
This does not however eliminate the set of A from the problem because al symmetry operations
not containedin U, transform some Asinto As. Thisis eas ly shown by looking at the permutation
corresponding to such a symmetry operation. It contains at least one cycle of length greater than
unity and in this cycle there isalargest sublatticeindex, say ¢. Supposethat / is flanked by = and
y S0 the cycle containsthe sequence (..z¢y..). The symmetry operation will convert the interlattice
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index related to = and ¢, which will be of A-typebecause z < ¢, into that related to £ and y, which
will be of X—typesinceﬁ > y. Equation (2.8) now givesriseto two possibilities:

HY =™ =U nU (2.24)
L7 raq
in caseswherei < p, j < g and the simultaneous equalities: = 7 and p = ¢ arerejected and
HY =g =U. U (2.25)
L7 raq

in caseswherei < p and j > ¢. Corresponding to the non-empty sets of (2.25) the transformation
(2.9) relating Tzé'k to7), . canbemodified by (2.21) to give

TV = DD 1 (2.26)

ijk.. g pqr..”

Thus a transformation from X to ' is equivaent to one from A to A’ combined with a change of
sign.

All the orbits of A certainly contain both barred and unbarred indices so it follows that the
number, p, , of independent interlatticeindices can be obtained from (2.12) by settingn = n  and
removing unity from both bounds, one orbit disappearing because no sublatticeis displaced relative
toitself. Thus

(n2/y)-1<p, <n, -1 (2.27)

Two definite conclusions may be drawn from (2.27): (i) that p, = v — 1if u isagenera set and
(i) that p, = 1if n, = 2. The exact expression followsfrom theresults (2.14) and (2.20) using the
meatrix representation of permutations:

Py =P — 0, = = ST v, (). (2.2
Fser

2.4 In conclusion

Generd resultsin the manner of thosefor point group symmetry are not possiblefor the interlattice
indices. Even with the same space group and the same number of atomsin the basis the outcomes
for two different crystals can be very different.

Thus, referring to hG in Table2.9, it can be seen that x ,(I,) = x,(I,) = 2for thesix ' _inrow
1 and thesix inrow 4. Sincey = 24 (2.19) revedsasingle orbit of p,, = 2 elements (A = 2 or 6
and A =4 or 5), and (2.28) reveas two orbitsof p, = p, = 1 element each (A = 1) and (A = 3).

Theresultsfor hD are Xf(rs) =4 forjustthesix I'_inrow 1, and there is asingle orbit with
Py =3dements(A=1or3, A=2o0r6and A =4 or5).
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Chapter 3

Experimental interlude: theinternal strain parameter of cubic
diamond

3.1 Introduction

Inner displacement ceased to be an abstruse theoretical concept when Kleinman delivered a paper
entitled Covalent bonding in semiconductors to the 1962 Conference on Semiconductors held
appropriately, but before my time, at Exeter. He drew attention to some problemsrelating to energy
band calculations and covalency in silicon under uniaxial stress in the [111] direction[11]. The
central atom in each tetrahedral group may participate in bond-bending with minimal stretching,
bond-stretching with minimal bending or in something in between. Since the central atom moves
along the body-diagonal of the cube to an extent not controlled by macroscopic easticity he
suggested that the displacement be measured by looking at the X-ray structure factor of the 200
reflection under stress. For astrain ¢ = 0.003 he predicted I, ~ 0.04¢,- where0 < (- < 1, an
easily measurable structure factor. (- has ever since been known as the Kleinman internal strain
parameter. Experimental work was quickly undertaken and results announced for germanium[18]
and silicon[19]. Additional analysiswas provided in[20]. No further work was published for ten
years when two paperson GaAsappeared [12, 13]. What seemed areasonableresult | realized later,
after developing a detailed theory for zincblende-structure material, to be totally unreliable[1].

It wasin 1980 that | set up the group! that made, asfar as| know, all but one of the subsequent
internal strain parameter measurements so far published: Si[2, 4], Ge[3, 4], GaAs[5], cD[6]
and InSb[7]. The exception was the Si measurement of d’Amour et al.[9] which appeared
simultaneously with ours. All these materials had either the diamond or the zincblende structure:
simple high-symmetry structures with only two atoms in the basis and a single internal strain
tensor with one independent component. All the measurements were difficult and it was due to
my obsession with sublattice displacement that they were undertaken. Si and Ge were certainly
the easiest because large, high-qudity single crystals could be obtained. GaAs and InSb were

My co-workersfor some or all of the time were Brian Sheldon and Roy Meads at Exeter, Leif Gerward and Birger
Selsmark at the Technical University of Denmark and Janus Staun Olsen of the @rsted Institute, Copenhagen University
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more difficult because they were brittler and thus less able to sustain sufficiently large stress. The
problem with cD was its very small X-ray form factor (a neutron diffraction method would have
been much better) and an internal strain predicted to be about six times smaller than Si or Ge:
neverthel ess we succeeded.

In fact cD isthe only one of the alotropes under discussion whose internal strain tensor could
have been determined. The following account illustrates the principles of how it was done but
without including the more mundane theoretical and experimental details.

3.2 Inner displacement dueto uniaxial stress

At the level of experiment the distinction between the infinitesimal and the finite strain approaches
vanishes. Equation (1.9) can thus be shorn of superscriptsand higher-order termsto give

5.= A e, (31

Hooke'slaw inits simplest manifestationis

€7 =9 K0k (3.2
whence
0, = A Sk Ok (33
Theformsof 4 and S for cD are
000 4, 0 0
A=l 0O00O0 0 A, 0 (3.4
00O 0 0 A,
and -~ -
Sy Sy S, 0 0 0
S, 5S4 S, 0 0 O
= S, S Sy 0 0 O (35)
o o0 o5, 0 O
o 0o o 0S5, O

0O 0 0 0 05,

The components of a stress of magnitude o parallel to the unit vector ¢ = (4,0, (5] aregiven by
o = L0, (3.6)
where 75 isthe Voigt contraction of K and where ¢ is positive for atensile stress and negative for
acompressive one. Combining (3.4), (3.5) and (3.6) converts (3.3) into
0y lols
Oy | = ApSwuo | Ll |- (3.7)
O 6ty
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Thisequation is deceptively simpleand itsinterpretationisnot intuitive. If the stressaxisisparallel
to a4 axis then two of the ¢, are zero and § = 0. If just one of the ¢, is zero then 5. = 0 and
the inner displacement is perpendicular to the stress axis and maximizes if the non-zero direction
cosines are each of magnitude 1/v/2. If none of the ¢, is zero then 5.0 = 34,,5,,0(,(,(, which
is maximized simultaneously with |§| if the magnitudes of the (. are each 1/+/3. These different
situationsare illustrated in the following Figure.

@ (b)

Figure 3.1: Theinner displacement of the central atomin thetetrahedral cluster induced by uniaxial
stresses along different axes. (a) o || [001], § = 0; (b) & || [110], & || [001]; (¢) & || [114], 4 || [114].

Thedisplacement of atoms on subl attice 2 rel ative to those on sublattice 1 due to the application
of uniaxia stressisthus given by
u, =€ R +0, (3.8)

where R isthe vector from an atom on 1 to an atom on 2.

3.3 Changein structurefactor duetoinner displacement

The interna strain parameters are obtained from intensity measurements of X-ray reflections.
Because the crystal is under stress the appropriate diffraction theory is the ‘kinematic’ theory in
which reflection intensity is proportional to the square of the structure factor.

The X-ray structure factor for Bragg diffraction from planes whose reflection vector is H is

Fy = fl1+exp(2rif.R)], (3.9)

where R = (a/4)[111] isthe position vector of the second carbon atom in the basis relative to the
first and f isthe atomic scattering factor of acarbon atom.

In the conventional cubic description the components (i, &, ¢) in H = (1/a)(h, k, €) must be al
odd or al even and the sgquare of the structure factor becomes

|Fyy|3=32f%(1+cosey), (3.10)

where

¢y =2rH.R=S(h+k+1) (3.11)

s
2
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and the subscript zero denotes the unstrained crystal.

If the crystal is strained /2 undergoes a change due to the macroscopic deformation and an
additiona change dueto inner displacement. Thefirst of these effectively cancel swith the covariant
deformation of # and (3.10) is replaced by

[Pyl = 32f%[1+ coslgyy + )], (312)
where
by (0, 0) =27 .5 = %AMSMU(MZK3 + klyly +00,0,). (3.13)
The effect of inner displacement on the square of the structure factor is presented, to lowest order,
in Table3.1.

Table 3.1: Effect of stress on structure factor

Reflection type  Unstressed Stressed

h+k+( \Fy/8f15 | Fy/8f12 — |Fy/8f15 A/,
4n 1 —y2/4 —2/4
4n+1 3 /2 Yy

4n +2 0 V2 /4

4n +3 3 V)2 Uy

It can be seen that the alowed reflections show varying behaviour: the fractiona intensity
changesare linear in ¢, for the (4n + 1)- and (4n + 3)-typereflections but are oppositein direction.
For the 4n-typethefractional changeisquadraticin ¢, and probably very difficult to detect. Two
kindsof (4n +2)-typereflection may be distinguished: if each of /, k and ¢ isof theform (4n +2) the
reflection is forbidden if the atoms are spherically symmetric and vibrate harmonically, otherwise
it isweak. Such is the case for the 222 reflection in cD where tetrahedral symmetry induces
asphericity and appreciable anharmonicity is present. If only oneof i, k or £ is (4n + 2)-type and
the others are 4n-type, then space group symmetry forbids the reflection strictly. The 002 and 006
reflections are in this category. If stressis applied suitably these reflections are weskly induced
with an intensity that varies quadratically with ¢,

In anutshell the internal strain parameter is obtained from the stress-dependence of the inten-
sities, I, and I, of aweak reflection and a strong reflection. For ¢D the 006 and 008 reflections
were used and the parameter obtained from

Ao —— a1, (3.14)

K7 44\/1—5* do
where a multiplier involving temperature factors, X-ray polarization, mass attenuation coefficient
and other configuration-dependent parameters is needed to produce equality and I is a limiting

high-stressvalue.
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3.4 X-ray methods

The original experiments[18, 19, 9] on Si and Ge used characteristic K | radiation from conven-
tiona X-ray tubes. Thisis the angle-dispersive method and requires sample rotation between the
measurements of the two reflections. There is thus the danger that the two reflections are actually
from slightly different regions of the crystal and therefore sample different conditions of crystal
quality. This particular problem is avoided if the energy-dispersive method is used. The full
Bremsstrahlung distribution from the tube is used and the crystal reflects those energies in the
beam that satisfy the Bragg law for the working angle selected. Diffracted beams are collected by
a solid-state detector and the constituent photons sorted by energy into a multi-channel analyzer.
Typically a 40 keV range of photons will be divided with near-perfect linearity between 2048
channels. Thus a series of harmonics may be obtained together: the 002r reflections at photon
energies I/ given by
he
b = o, 8n0

All my group’s measurements were made thisway except for cD. The very small atomic scattering

(3.15)

factor of carbon and the anticipated small interna strain made it desirable to use synchrotron
radiation. Experiments were carried out on Station 9.1 of the Synchrotron Radiation Source at
Daresbury and on the Energy-Di spersive Scattering Station at HASY LAB-DESY in Hamburg. The
details that follow relate to the latter source.

3.5 Experimental details

A series of horizontal and vertical dlits limit the cross-section of the horizontally-polarized syn-
chrotron radiation (SR) to a 100 x 100 um? square.
SR

MCA

Figure 3.2: The layout of the componentsin the determination of the internal strain parameter of
cD.
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An ionization chamber (1C) is used to monitor the incident beam intensity and the diffracted
radiationiscollected by a solid-state detector (SSD) linked to amulti-channel analyzer (MCA). The
sample (C) isheld between the anvils (A) of the pressin the configuration of Figure3.1(b), turned
so that the stress axi s[1I0] isvertical and the 0 02n reflection vectorsare horizontal. Transmission
geometry was used so that errors due to surface distortion were minimized if not eliminated. The
function of the mirror (M) is explained bel ow.

351 Sample

Thiswas atype IIA diamond cuboid with approximate dimensions 2 x 1 x 3 mm? corresponding
to the [001], [110] and [lIO] directions. A type IlA diamond has an exceptionaly low nitrogen
content compared to 98% of natural diamonds which contain up to 0.3% nitrogen.

3.5.2 Uniaxial press

Stressing a sample of the hardest substance known requires special measures. Our press consisted
of amaraged steel frame holding a hydraulic cell and a pair of anvils made of a sintered material
based on tungsten carbide. The sample was gripped over its (1I0) faces with zirconium shims to
accommodate any residual surface irregularity. The highest stress attained in the experiment was
6.2 GPa.

3.5.3 Workingangle

With white X-rays the beam can beincident at any angle § and the crystal will diffract the energies
that satisfy the Bragg equation. Careful choice of angle is required, however, in order to avoid
multiple diffraction that could otherwise totally confuse and invalidate the measurement. This
phenomenon was first described by Renninger[17], who called it Unweganregung or ‘detour
radiation’, and much later developed by me and my coworkers[8] in relation to energy-dispersive
X-ray methods and the 222 reflection in Si. Briefly if the indices of three reflections ﬁi =
(1/a)(h,, k,, () satisfy

(hy, kg, 0) + (hy, iy, £,) = (K, () (3.16)

thenif / and either H, or 1, bothlieonthe Ewald spherethe (/,, H,)-pair cooperateto simulatea
H reflection. If thelatter isweak and the components of the pair are medium or strong theintensity
of thewesk reflectionwill be swamped if the scattering planesfor / andthe(f,, f1.,)-pair coincide.
Rotation of the crystal about /7 brings this condition into and out of being. By determining the
scattering plane orientations for all potentially damaging pairs, (113, 113), (113, 113), (131, 135)
etc., we discover optimum Bragg anglesfor observing an unadulterated 006 reflection. The onewe
chose was # = 34.4°, an angle that allows the stress axis to be set normal to the scattering plane
with a comfortable tolerance of £5°.
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3.5.4 Beam-tailoring by total external reflection

The high intensity of the synchrotron beam and the limited maximum count-rate achievable by a
solid-state detector makesit desirable to cut out as much of the beam as possible, |eaving just those
energies required for the 006 and 008 reflections and maximizing the proportion of the diffracted
beam dueto the 006 reflection. Thissituationisclosely approached by exploitingthetotal reflection
of X-rayswhich occurs at very small glancing angles and isdue to the X-ray refractiveindex being
just less than unity. A gold-plated mirror, M in Fig. 3.2, is used to intercept the synchrotron beam
and eliminate photons whaose energies exceed 30 keV. The reflected component is then diffracted,
in transmission geometry, by the sample and only the 004, 006 and 008 reflections are collected.
Furthermore the beam intensity at 18.6 keV, where the 006 occurs, is considerably greater thanitis
at 24.8 keV, where the 008 occurs, thereby strongly enhancing the diffracted intensity of the weaker
reflection.

3.6 Reault

We found
A, =-0111+ 0.018A and ¢, =0.125+ 0.020 (3.17)

which agreed nicely with the later, and more sophisticated, calculations in a series of studies.
Musgrave found ¢, = 0.268 using a simple valence-force-field model [15]; Keating’s original
model [10] gave ¢, = 0.21; Lawadz used €lastic constants and the Raman frequency to predict
¢y = 0.23[14] and Weber obtained ¢, = 0.12 using his bond-charge model [21]. Nielsen’s
calculationsof ¢,- = 0.108 (and ¢, = 0.093) using an ab initio pseudopotential are discussed | ater,
in Chapter 6.
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Chapter 4

Inner elastic constants, internal strain tensors, zone-centre optic mode
frequenciesand their pressure dependence

Carbon is particularly rich in the number of its allotropes: besides the common forms of diamond
and graphite there is a hexagonal form (lonsdaleite) of the former, a rhombohedral form of the
latter and the fullerenes, of which C, is the most famous example. A number of hypothetical
metastable forms have also been proposed: graphyne, a layer structure in which benzene rings
are arranged in 6-fold coordination, by Baughman et al.[1]; H6, a three-dimensional network of
sp?-bonded carbon atoms capable of continuous transformation to cD without bond-breaking, by
Tamor and Hass[15]; and a group of other purely sp?-bonded structures, such as R6 (space group
R?_)m), consisting of 8-membered rings in chair conformation; BCT8, 8-membered boat-shaped
rings (14, md); and SC24, a simple-cubic structure with 6-membered rings (Pn?_am) by Jungnickel
et al.[8] in the quest to devel op a nitrogen-dopable, and thus n-type, material.

Thisand the next Chapter contain afull description of the elasticity, through third order, of two
diamond and two graphite allotropesof carbon. They pavetheway for detailed individual studiesin
the four subsequent Chapters. To be fully comprehensiveit is necessary to look at as many related
properties as possible: not solely macroscopic €l astic constants, but optic-mode frequencies, their
stress- and/or pressure-dependence, and internal strain. In other words it is necessary to focus on
mi croscopi ¢ aspects—the consequences of the relative movements of subl attices—that were given
detailed treatment in the first two Chapters.

A full symmetry analysis of the sublatticetensors and inner elastic constantsis given, for each
structure, in Sec.4.1. The results for cubic diamond (cD), some of which have been published
before[4, 11], are given here in two versions: in standard form and in a non-conventional form,
obtained by transformation of axes, which will facilitate comparison with rhombohedral graphite
(rG) and with intermediate structures along the possi bl e solid-statetransformation path from rG to
cD[6, 9], astreated in Chapter 9.

Generd expressions for the linear and quadratic internal strain tensors are given in Sec. 4.2.
The independent components of the linear tensors are presented for all four allotropes. Those of
the quadratic tensor are given only for ¢cD and hG.
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Thefreguencies of optic modes at the zone centre and their eigenvectors are treated in Sec. 4.3
via a secular equation that relates to the optic modes alone. Explicit solutions for each allotrope
are given. The variation of frequency with strain can be followed if the secular equation for the
strained crystal can be obtained. Thisis possiblein terms of effective inner elastic constants that
are defined in a way similar to that used for the macroscopic elastic constants. Results are listed
for each alotropein Sec. 4.4. Finaly expressions for the pressure-dependence of the optic mode
frequencies have been deduced and presented in Sec. 4.5.

41 Symmetry

The essential geometry of the structures—the space groups, primitive unit cell vectors, atomic
coordinates and the allocation of sublatticeindices—is summarised in Table4.1.

Table 4.1: Essential geometry and the assignment of sublattice indices to the atomic sites in the
various structures. In cD « is the lattice parameter of the cubic céll; in rG « and ¢ are the lattice
parameters of the non-primitivetriple hexagonal cell and p = ¢/a isthe axial ratio.

| cD rG hD hG |

Space group Fd3m R3m P6,/mmc

Unit i, 3%[0,1,1]  £[3,v3 2] a[1,0,0]

cell a, 311,01 £[-3v3 2] a[-3,2,0]

vectors 63 %[17 17 0] %[07 _\/§7 P] a[07 07 P]

Wyckoff sites a c f d:b

Site symmetry 43m 3m 3m 6m2

Subl attice 1 —(% % % —(u w w) (% % z) (% % %):

indices 2 (% % % (u w w) (% % 1-2) (% % 711):
3 1212 (003
4 ($ii+2) (0%

To make comparison easy the four structures are shown in Fig.4.1 in relation to hexagonal
cells: triple cellsfor cD and rG (with u = %) and primitive ones for hD (with z = &) and hG.

Although the inner elastic constants are free of redundancy, a certain arbitrariness has been
introduced: arelabelling of the sublatticeswill lead to a shuffling of values of the components of
the tensors. For thisreason it is much simpler to treat the symmetry of the sublattice tensors d, ¢
and f and subseguently to deducethat of theinner elastic constants D, E and I'. The simpler part
has already been done. The forms of the individual tensors of the d*, e and f*5" families, their
non-zero components and any interdependencies, have been extracted from Tables 2.1 through2.6
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in Chapter 2 at the appropriate point group and are presented in Tables 4.2 and 4.3. Some additional
simplification follows from the commutative nature of differentiation: e = ¢ when a = 3,

o = Jo i Mi i affy
iy = dfy ; and several similar relationsfor £,

s 3

o=

(©
Figure 4.1: Unit cells of four carbon allotropes. In (a) a triple hexagonal cell is used for cD to
facilitate comparison with hD in (b). In (c) atriplecell isused similarly for rG to contrast its layer
structure (ABCA) with that of hG (ABA) in (d). In hG the distinction between non-equivaent pairs
of atoms is made by colour. sp® or sp? bonds have been emphasised.

Table 4.2: The symmetry of the individual sublatticetensorsin cD: the non-zero components and
their interrelationships. «, (3 and ~ take the values 1 or 2.

& — & — (o4
d14 - dzs - d36
0P = 0B = 2f faﬁw = poby - pafy — pafy — paly _ pafy
11 22 33 123 132 213 231 312 321
a = jJa = Ja aff — af _ af
dy4 = dos = d3gg €111 ~ €222 ~ €333
O = Jo = Jou = Jo = Ja = Ja af _ aff _ af _ aff _ aff _ af
dipq = digy = d315 = d335 = d316 = d3ps €112 = €173 = €201 = €23 = €331 = €33,
o = Ja = Jo aff _ af _ af _ af _ aff _ of
disg = d3ag = d3ys €126 — €135 — €216 ~ €234 ~ €315 ~ €324
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Table 4.3: The symmetry of the individual sublattice tensors in rG, hD and hG: the non-zero

components of each and their interrelationships. «, 5 and v takethevalues1or 2inrG; 1, 2, 3or

4in hD and hG.
hG (left column), rG and hD (both columns)
6m?2 6mm
[0}
dj
X — X — (o4 & — (o4
16 = d3; = —d3, 15 = d3y
& — (o4
d3 =dg,
(o4
d3s
06 = —2 (dgy, +3d3,,) d3ye = d3
116 2 \%11 222 115 224
a =1 o o o = Ja
126 ~ 4 (3d211 + dzzz) d125 - d214
o = Ja = o a - Jo
digs = d313 = —dyg i35 = dozy
a = a = Ja a = jJa =1(jo o
digs = —d3gy = d3ss dige = dge =35 (d115 — d125>
a = Jo =1 a a a = Ja = Ja o
d212 - dzee -2 <d116 - d126> d311 - d322 - d312 + 2d366
fo — o = Jo a - Jo
314 = —d3p = d3sg d313 = d3pg
[0}
d3ss
[0} —_— [0}
34y = dsg
afy _ pafy — pafy _ _ pafy faﬁw = foby
112 121 211 222 113 223
faﬁw — roBy
131 232
faﬁw — roBy
311 322
afy
_ Ja33
6m2, 6mm, part of 3m . .. ...rest of 3m
aff — af
€11 — €2
aff
€33
afl _ «
€111 ~ €222
af — af
€112 = €221
af — af
€113 =~ €223
af — aff _ 1 af af aff — af _ af _ af
€126 = €216 — 2 (6111 - 6112) €114 ~— €125 = €215 = — €214
af — af aff — aff _ aff
€135 = €234 €136 — €231 ~ — €232
af — af afl — af _ af
€315 = €324 €316 — €321 — — €32
af — af
€331 ~ €332
af
€333
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4.1.1 Cubicdiamond and rhombohedral graphite

A major simplification occurs for structures in which the basis comprises two atoms only, so that
n = 2. Then A, p and v take only the value 1 and the superscripts on D, F and F' become
redundant. It also follows that the summations in (1.37) disappear, leaving only single terms on
the right involving p = ¢ = r = 1 and giving the simplest possible genera set of independent
components:

D. = —d&*
T.. T..
- 1
i~ %l (4.1)
- _
ijk ijk

A full collection of specific independent components is shown in Table 4.4 and the complete
collection of al non-zero components is obtained by collating the entries in this Table with those
in Tables 4.2 and 4.3. The aternative description of the inner elasticity of cD that will facilitate
comparison with the intermediate structures aong the cD to rG transformation path is produced by
arotation of axes. The matrix

4.2)

|
S S S
S S Sl
Shsh ©

transforms the usual ¢D coordinate system (0z,, Oz, and Oz 5 along [100], [010] and [001] respec-
tively) to onein which 0z/, lies along [110], 0z, along [112] and Oz, along [111]. Tensorsin the
new system are related to those in the old by the transformation law [13]

T, =a.a. a T (4.3

ijk... ip jq kr " T pgr..

The tensors that are in contracted form must first be uncontracted, then transformed, then re-
contracted. These results have been added to Table 4.4. Rotation of axes cannot increase the
actual number of independent components of any tensor. The apparent increase conceal s nUMerous
relations between the members of the modified set.

4.1.2 Hexagonal diamond and hexagonal graphite

The space group symmetry of hD and hG was briefly introduced in the previous Chapter. Both
alotropes belong to the space group P6,/mme, (0. 194 in the International Tables for Crystal-
lography [7]), which is non-symmorphic, indicating the presence of screw and glide symmetry
elements. The 24 symmetry elements are represented by augmented 4 x 4 partitioned matrices

—

R, i

Rt} =
{&,]t} 0 1

(4.4)
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where the 2, are 3 x 3 point symmetry operations and fisa3 x 1 column vector representing
the fractiona translation associated with i.. Half the operations have £ =[0/0/0] and half have

£=[0/0/3].

Table 4.4: Independent components of the inner elastic constants: ¢D in columns 1 and 4, and rG
incolumns2 and 5. For columns 3 and 6 cD isreferred to aquasi-rhombohedral system (02 aong
[110], 0z, along[112] and Oz, along [111]): linear combinations of elements from columns 1 or 4
are equivalent to theelementsin columns 2 or 5. Thefull setsof non-zero components are obtai ned
by reading columns 1 and 4, and 2 and 5, in conjunction with the relationsin Tables 4.2 and 4.3.

‘ cD rG quasi-rD cD rG quasi-rD
Dy =0
Dl4 DlG \/%D 14 F123 F112 %F123
D15 - % Dl4 Fll3 - % F123
Dy _%Du I3 %F123
D %D 14
Ell Ell Ell
Ly By
Dll4 DllG %(Dllll— + D124 + 2D156) Elll Elll %(Elll + E112 + 2E126)
D124 D126 3_\1/6(_D114 + 7D124 - 2D156) E112 E112 %(Elll + 5E112 - 2E126)
D156 Dl36 3_\2/6(2D114 + D124 - 2D156) E126 Ell3 %(Elll + 2E112 - 2E126)
Dos 3%/6(_1) 114+ Do+ Dise) Brps  §(B1q — Eigp* 4E 1)
Dayy 3_\1/§(D 114 = D1og + 2D 50) Ergs  3(Eyq — B+ Egg)
Dys — 2_\1/§ (D114 + Doy + 2D 159) By 3(Eygy + 2B, — 2By
Dis 6_\1/§(_5D 114 = D1og + 2D 50) By 3(Eygy + 28,1, + A )
D35 3_\1/§ (D114 — 4D 154+ 2D159) Eag 3_\1/5 (Eypy — Eyyp — 2E15)
Dy — %D 124 Eysg 3_\1/§(E 111~ Erip — 2E15)
Dyp = 3_\2/§ (2Dy114+ D154y — 2D159)
D3 3_\1/§(D 114 2D 54— 4D 50)
Diss 3;\4/§ (D114 +2D14+ 2D 159)
Dy 3_13(_2D114 +2D 54— Dyge)

The position coordinates and the indices assigned to the sublattices are shown in Table 4.1. In
Table 4.5 are shown the permutations of the sublattice indices induced by the 24 operations of the
space group.
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Table4.5: Permutations of sublatticeindices corresponding to spacegroup symmetry operationsfor
the hexagonal structures. ¢ isthefractional translation column vector [0/0/1]. The colon separates
the non-equivalent pairsin hG.

Symmetry operationsin Subgroup Permutations

space group P6;/mmc withrow 1 hD hG
{110} {370} {3710} {m|0} {m'|0} {m"0}  R3m (DA D)3 : )4
{10} {37|0} {3710} {210} {2]0} {2"]0}  P3ml (12)(34) (12) : (34)
{2,113 {67} {6710} {cli} {1} {"li}  PBgme  (14)(23) (12) : (34)
{m [T} {6710} {617} {2,1) {2)7} {2,)f)  Pém2 (1324  (1(2):(3(4)

The latter divide into four subsets of six operations. Those in the first row form a subgroup
of point symmetry 3m and leave the sublattice indices in hD unchanged. Those in the first and
fourth rows together form a subgroup of point symmetry 6m2 and leave the hG indices unchanged.
This determines the fundamental form of the individual sublattice tensors and indicates that those
in hD will have more non-zero components than those in hG. The two structures therefore require
individual treatment.

4121 Hexagonal diamond

The componentsof thed and f tensorsin hD are divided conveniently into mutually exclusive 62
and 6mm sets, as shown in Table4.3. The operations in rows 1 and 2 of the Table4.5 together
constitute the subgroup P3m1. Because half the operations interchange the sublattice indices
1 « 2 and 3 & 4 simultaneously the point group 3m determines the non-zero elements of sum
tensorssuch as d} + df Since 3m is centrosymmetric all elements of sum tensors bearing an odd
number of superscriptsvanish. Thus

di +d? =0
43 +dt 0.

The operationsin rows 1 and 3 similarly comprise the subgroup P6;m.c, with row 3 operations
producing theinterchanges 1 <+ 4 and 2 «+ 3. The point group 6mm now determines the non-zero
elements of sum tensors such as d} + di . Finally operationsin rows 1 and 4 together constitute
the subgroup P6m2, with row 4 operations producing the interchanges 1 «+ 3and 2 «+ 4. The
point group 6m2 now determines the non-zero elements of sum tensorssuch as di + df Thusthe
following deductions can be made:
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d +d® =—(d? +d}) #0 6m2 elements
=0 6mm elements
dt +d4 =—(2 +d3) #0  6mm elements
=0 6m2 eements.

In summary
d; = -d =+d} =5d},

with the upper(lower) signs applicable to 6m2(6mm) eements. In conjunction with (1.37) or
(1.39) and (1.38) these give independent, zero and dependent components as follows

Dt = 4
D? =0 (4.5)
D} = =Dl

with the same interpretation of signs.
Similarly it ispossibleto use the above arguments to generate sixteen relationsthat are satisfied
by the f tensors:

11 _ 22 _ 333 _ 444
R S b s
12 _ 21 34 _ 443
R S A U
144 _ 233 _ 322 _ 411
A S T U

Equations(1.37), (1.38) and (1.39) arethen invoked many timesto establish apreliminary maximum
number of independent components (13) and a minimum number of dependent components (also
13)

A p v
Apy r
YT 5 3 DY PR
p=1 ¢=1 r=1
FZ2 =0 (4.6)
Fpto= £ERMT 0 w> 22,

reading Auv as a 3-digit number and with the same interpretation of + as before. Thereisonly a
singleindependent subl atticetensor component in the 6m2 set, which may betakenas f55". Asthe
three subscripts are equal the commutative property of differentiation impliesthat all components
with permuted superscriptsare equal. Thisproperty carries over to theinner elastic constants ng”
and reduces the number of independent constantsto three and renders six more zero. For the 6mm

set the component fq4' gives the same result. The remaining three independent components each
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permit the interchange of a different pair of superscripts. The net result is that six Fffg” may be
chosen as independent and the remaining £ and F3/4” components related to them. All these
results are embodied in Table 4.6.

All the components of the second-order e tensors and most of those of the third order belong
in common to 3m, 3m, 6m2 and 6mm symmetry, the remainder to 3m and 3m only. The
difference between these setsliesin the effect of the symmetry operationson the signs of individual
components: in the main set the (uncontracted) subscript sequences have the form iz, 744, 7ij7 or
1717 and the components do not change sign under any operation; in the residual set the sequences
areiijk, ijik, iji1 or i7kk (one 3 and an odd number of 2s, in fact) and the components change
sign under operationsin rows 3 and 4 of Table 4.5. In the main set attention therefore focuses on
difference tensors, such as e}]} - efﬁ, whose signs are reversed by operationsin rows 2, 3 and 4 of
the Table. Thisshowsthat al such difference tensors are null and thus that

el = 622 = :I:ess = :I:e44
2]. 2]. 2]. 2].
612 = 621 = :|:€34 = :I:e43
2]. 2]. 2]. 2].
el = 2 = 43l = 4e#
2]. 2]. 2]. 2].
14 _ 23 _ 32 _ 41
€5 — &5 = j:eij. = j:eij.

where the plus signs are taken throughout. The residua set of third-order terms gives rise to the
minus signs viathe nullification of sum tensors, such as e} + ¢ and 2 + ¢, by the operations
of rows3and 4in Table 4.5.

Theinner elastic constantsfollow from (1.37) or (1.39) and (1.38). Independent and dependent
constants for the main set are

1 = U
17. 17.

Elz = ell + 612
1] 17. 17.
13 _ 14

Eij. = &
2 _ 12

Eij. - ZEZ']‘. (4.7)
17. 17. 17. 17.

31 _ 13

Eij. - Eij.
33 _ 1

Eij - Eij.

and for theresidual set are

E? = EX=EZ=F2=E?=0 (4.8)

This concludesthe anaysisfor hD.
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Table 4.6: Interrelation of components of the inner elastic constants of hD. Theleft-hand elements
in column 1 and the lower part of column 2, associated with the subscript sequence in column 2
if any, may be taken as an independent set. The full sets of non-zero components are obtained by
reading columns 1 and 2 in conjunctionwith the appropriaterelationsin Table 4.3. All components

2 2 222
Dey, Dy and F5° are zero.
1 3
D3 - _D3
1 -3
D16 - D16
D}, =-D% iJ =15,31,33
EX=F3® i4=11,33
1 —nl —n3 -—n3 N g g
DY =Dk, =D3%,. =D3 iJ K =116, 126,136, 145, 314
D} =Dy, =-D3 . =-D3, iJ K = 115,125, 135,311, 312, 313,333,344
B = EX ijK =111,112, 113,126, 135, 315, 331, 333
12 — 21 — 122 _— 123 — 1732 "
Ein “ MK T EEZ']‘K - Ein - Ein
13 — 31 "
Ez’jK - Ez’jK
11 — 33 e
El =-E3 ijK = 114,136,316
BB = —E% ij K = 136,316
£ = 1

112 — 7121 — 15122 — 15211 — 77212 — 15221
F112_F112_F112_F112_F112_F112

— 123 — 132 — 1213 — 17231 — 17312 — 17321
=Fy5 =P = 10y = Fip = I = 1
— 17223 — 7232 — 1233 — 7322 — 1323 — 7332
=5 =P = 10y = P = I = 19
113 — 7131 — 77133 — 17311 — 1313 — 77331
F5 = Py = Fipp = 195 = Fig; = I,
111 — 333
Fig = —Figs
112 — p122 — 212 — 232 — 322 — 332
Fhag =Fg = F —Fii3 = I = - I3

113 113 —
Fig =i
R = s
FE= = -rits i
R e -ri = s o
r e
r=-r

112 — 17121 — 17122 — 317211 — 1212 — 37221
F333 _F333 _F333 _F333 _F333 _F333
— 223 — 232 — 233 — 322 — 323 — 332
- _F333 - _F333 - _F333 - _F333 - _F333 - _F333
113 — 47131 — 133 — 1311 — 313 — 331
F333 _F333 __F333 _F333 __F333 __F333
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4.1.2.2 Hexagonal graphite

The arguments for hG are largely a repeat of those above but with outcomes that differ because
the basis consists of two non-equivaent pairs rather than a single quartet. All the individual d, ¢
and f tensors have 6m2 symmetry. Operationsin rows 1 to 4 combined constitute P6,/mmc and
all elements of sum tensors, such as d} + df vanish as the associated point group 6/mmm is
centrosymmetric. Thus

T
Bt = 0

with no further interrelations. Thus, using (1.37) and (1.38),

Dt = 4t
D? =0 (4.9)
D} =

giving two independent inner elastic constants where hD had one.
For the f tensorsthere are sixteen pairs of relations:

11— 222 £33 = _gam
ik ik ik ik
12 - _ 221 f334 = a3
ik ik ik ik
144 _ ;233 32 =
ik ik ik ik "

In conjunctionwith (1.37), (1.38) and (1.39) it isfound that the independent and zero elements are

11 _ 111
Fjg = ~Jijx

12 _ 111 112
Eie = —Ue * s

113 _ 114

bk = ik

123 _ 114 124
e = e + ik (4.10)
133 _ _ gl44

ijk ijk

223 _ 144 | (244

L it

333 _ o pa44

ik = Flijk

F?2 = 0,

w7

The numerous dependent elements, related by permutation of superscripts for the reason given
above for hD, are displayed in Table 4.7.

Theanaysisof thee and I tensorsfollowsthat of the main group in hD though with a slightly
different outcome:

Fo= 1
17. 17.
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Elz = ell + 612
7. 7. 7.
EB = _4
7. 7.
EZ = 2K (4.12)
2] 7. 7. 17.
o= M
7. 7.
E® = 644:.

Table 4.7: Interrelation of components of the inner elastic constants of hG. The left-hand elements
in column 1, associated with the subscript sequence in column 2 if any, may be taken as an
independent set. The full sets of non-zero components are obtained by reading columnsland 2in

o . . . 5 12 -~
conjunction with the appropriate relationsin Table 4.3. All components D7, D7, - and P are
zero.
1
Dig
3
Die
El it = 11,33

12 — 721 — 11022 — 7923 — 1732
Eii _Eii _iEii _Eii _Eii
13 — 31
Eii _Eii

112 112 112

333
L 112

112

33
ES
1 —pl
Dk = Diky
3 -3
Dy = Diky
11
Bk
12 _ g2l _ 1722 _ 1723 _ 32
Ein - Ein = ZEin - Ein = F;
13 — 131
Ein ~ ik
33
i K
111
Fiis
112 _ 121 — 7122 _ 15211 _ 212 — 221
Flig = Fip = Fiiy =y = Fip = F
113 — 131 — 5311
Fiiy = Fiiy = Fipp
123 — 1132 — 1213 — 1231 — 1312 — 1321
Fiiy = Fip =Py =y = Fip = F
133 — 15313 — 7331
Fiyy = Fip = Fipp

223 = 232 = (322 = (238 = 323 — 1332

iJ K =116, 126, 136, 145, 212, 314
iJ K =116, 126, 136, 145, 212, 314

ij K =111, 112, 113, 126, 135, 315, 331, 333

i K

112 112

112

112

112 112
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4.2 |Internal strain tensors

The symmetry of these tensors is the same as that of the D* tensors and the elements that are
non-zero for the structures under discussion can be read from Tables 4.4, 4.6 or 4.7 as appropriate
(except that the condition AZ.ZJ = 0 does not aways apply, as shown below). In principle these
tensors may be determined experimentally by analysing x-ray diffraction from stressed single
crystals. In practice the measurements are either difficult because the effect is very small, asin
cD [5], or impossible because a sufficiently large single crystal cannot be obtained, asin hG, rG
and hD. Theoretically their values may be obtained from the internal equilibrium conditions given
in equations (1.22) and (1.24) in Chapter 1.

Only the independent linear tensor components are given for rG and hD in the following lists.

421 Cubicdiamond
Equation (1.22) yields asingle linear component given by
Ap=-Dy /By (4.12)

and (1.24) gives three quadratic components

Ay = —Gra/Ey
Ay = —G/Ey (4.13)
Ajgg = —Gige/Eyy

in which
Gua = Dyt ApEy
Giog = DipgtAypEy, (4.14)
_ 2
G156 =D 156 + 2A14E 126 + (A14) F 123°
4.2.2 Rhombohedral graphite

The four independent linear tensor components are

A = —Dig/Ey
Aig = —Dyg/Ey (4.15)
Az = —Dgy/Eg
Agg = —Dgg/Egs
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4.2.3 Hexagonal diamond
The solutions of (1.22) for hD, invoking the dependenciesto be found in Table 4.6, lead to

1 _ 3 _ 1 11 12 13
A16 - A16 - _D16/(E11 - E11 + E11

1 _ 3 _ 1 11 13
AlS - _A15 - _D15/(E11 — b (4.16)
1 _ 3 _ 1 11 13
Ay = —A3 = —D31/(E33 — B33
1 _ 3 _ 1 11 13
Agg = —Ay= _D33/(E33 — B33

with A2, = — (AL, + A3)) giving
2 _ 1
iy = i, @17
2 2 _ 42 _
Als Az = Az =0.

4.2.4 Hexagonal graphite

The independence of D! and D? leads to similarly independent A* and A2 given by

33 11yl 13 17512\ 3
(Ell B §E11)D16 B (Ell B §E11)D16

AL = (4.18)
©(Ef - 3ER? - (i - 3R - 35
and (Ell _ lElz)DS _ (E13 _ lElZ)Dl
3 - 11 27117716 11 27117716 (419)

(B - SERP - (El - JERER - JER)
Asfor hD, the solutionsof (1.22) for hG, invoking the dependencies to be found in Table 4.7, lead
to
Az = —%(A}J +A3). (4.20)
The inner displacement is confined to the basal plane.
For the quadratic internal strain the solutions of (1.24) are

33 1712y 1 13 1712\ +3
1 — (En — ?Eii )GiJK — (En — ?Eii )GiJK

1= (4.22)
TER - EP? - (B - SER(EE - 3E)
and 11 1p12y,3 13 112y, 1
43 = (B — 3E0)G e — (B — 3E)G 5 ‘ (4.22)
EC(BR - B2 - (B - SEPD(EF - 3ED)
Five pairs of solutions, with A2, = —3(A}, - + A3,,.), correspond to the following composite
expressions, in which summation over repeated superscriptsisimplied,
N A A
Giss = Disgt EiizAsg
N A
G145 =D 145
A - A A Ay v
Gou = Dy +2E31A) — Fip AleAls (4.23)
A — A A Apv v
Gy = Doy — 2E11“1A56 — Iy ATGA16

A — A Ap gt
G(314 - D314+E315A16'
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4.3 The zone-centreoptic modes

The relationship of the £# tensorsto the more familiar coupling constants ®# was demonstrated
in Chapter 1
B = Qo Qi (4.24)

and shown to lead to a secular equation relating to optic modes alone:
B — WP KMS, | =0 (4.25)

where K = QA pB P+ The matrices (@ and p defined in (1.44) and (1.55) are much simplified
because all atomsin thebasis of any alotropeare equal. Thisleadstop, =k/nand p = (py/n)I,,
where I isthen x n unit matrix.

In general to each value of w? there corresponds an eigenvector given by

EM = Q2R (4.26)

LY
For cD and rG it is indeterminate whilst for hD and hG it is Z, a triad of relative sublattice
displacement vectors 72 7 = [71, 72, 3].
Where relevant the mode frequencies have been labeled with subscripts R or I to indicate
Raman or infra-red activity.

4.3.1 Cubicdiamond and rhombohedral graphite

For both ¢D and rG @ is the column vector [—%/%] and K reduces to the scalar p,/4. As I/ is
diagonal the secular equation for optic modes reduces to

| By — 3pg?® =0
for cD, giving the triply-degenerate frequency
5 _ 4
wh(Ty,) = p—En. (4.27)
0

The eigenvectors are indeterminate: aset suchas 7 =[1,0,0], Z=[0,1,0] and z =[0, 0, 1] could
be chosen to represent an LO mode and two TO modes in the limit & — 0 along one of the cubic
axes. For rG the equation reduces to

| By — 2pg%? [Egy — 4pg?| =0
giving a doubly-degenerate frequency

4
wh(E) = IO—E11 (4.28)
0
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with eigenvectors z = [cos#, sing, 0] with arbitrary § and anon-degenerate one
wh(Ay) = iE33 (4.29)
Po
whose eigenvector is Z = [0, 0, 1]. Thisand two values of ¢ differing by = /2 will then represent an
L O mode and two TO modesinthelimit & — 0along theuniqueaxisor any direction perpendicul ar
toit. All other directions see a mixing of longitudinal and transverse character.

4.3.2 Hexagonal diamond

Whenn =4 () and K are given by

-3 -2 -1
111 -2 -1
Q:_
41 1 2 -1
1 2 3
and
3 2 1
- _ Po
=12 4 2
TS
1 2 3

The resulting secular equationis a product of three 3 x 3 subdeterminants
8,1 18,] |5 =0

where the matrix A, is

11 3 2 12 1 2 13 1 2
B — q5pgw E:2— gpow B2 — $5pow

k23 k23 k23

A =| F12_ %powz Z(Eiliz — %powz) F2_ %powz

13_ 1, 2 12 1. .2 33_ 3, .2
LB = fgpow i — gpow B — 15P0@
and symmetry imposesA, = A,. Each of the subdeterminants factorizesinto alinear and quadratic
part: the repeated determinant has the roots

8

2 _
w (EZu) - _E::LL:%
Po
8
wh(Ey) = p—(Ellll ~- B3 (4.30)
0
8
2 _ 11 12 13
wR(EZg) = p_(Ell — Ly + By

resulting in three degenerate pairs of frequencies. The third determinant has the same form and
gives

8
<'“)Z(Blu) = _ES%S%
Po
8
2 _ 1 13
WB(Ay) = —(Bx - B3 (4.31)
Po
8
) = (- pE e
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for the remaining frequencies.

The ith components of the * for a specific mode are the solutions of |A¢[Z¢17 zf, zf] | = 0when

w?in A, has been replaced by its eigenvalue. The results for the above modes are

Z(E,,)
2(E,)
2(E,,)
Z(By,)
Z(A,,)

2(B,,)

[[0, 0, 0], [cosf, sind, ], [0, 0, O]]

1 1 o 1
[% cosé, 7 sing, 0], [—% cosé, —

[[0,0,01,[0,0, 1], [0,0,0]
10,0,41,10,0,0],[0,0,

1

V3

=
_[07 07 %]7 [07 07 _%]7 [07 07 %]} .

1 o 1 1 o
cosé, —zsme,O], [0, 0, 0],[—ﬁcose, ——=sing, 0]

V2
sing, 0], [% cos¥, is sing, 0]
(4.32)

Vibrational patterns corresponding to these eigenvectors are shown in Fig. 4.2.

Figure4.2: A representative set of vibration patternsfor hD. x and o indicate motionsinto and out

of the page.
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4.3.3 Hexagonal graphite

Thehexagonal alotropeshaveidentical complements of Efi“ componentsand thusthe same secular
equation. The only difference arises from the dependency £ = £33 that holds for hD but not
for hG. Thisis responsible for the slightly more complicated expressions that follow. The three
degenerate pairs of frequencies are given by

8
wi(Elu) - _EZ:LLf
Po
4
hllp) = o |V - B el (4.33)
0
4
2 _ 11 12 33
wR(EZgl) - ,0_ [Ell — Ly + By — EH
0

where
(P12 = (B2 - 255 + (PH - £

and the three non-degenerate frequencies by

8
wi(AZu) = _ES%S%
Po
4
A = A[eBo By 439
0
4
2 — 11 12 33 i
wr(By) = — {Ess — Byt By - Ess}

where
t\2 _ 12 13,2 1 332
(F33)” = (B33 — 2E3)" + (Ey3 — Eg)”

Theeigenvectorsfor the /;, and A, modes have the same form astheir hD counterparts. The
remainder are slightly less constrained: the parameters « and b are, in every case, arbitrary.

Z(E,,) = [[0,0,0],[cost,sing, 0], [0,0,0]

Z(E,,) = [[acosd, asing, 0], [5(b — a)cosd, 3(b — a)sing, 0], [—bcosh, —bsing, O]]
Z(E,,) = [[acos6, asing, 0], [—3(a +b) cosd, —3(a +b) sing, 0], [b cosh, bsing, 0]
Z(A,,) = [[0,0,0],[0,0,1],[0,0,0]] (4.35)
Z(By,) = [[0,0,4],[0,0,5(b — a)], [0, 0, —b]]

Z(By,;) = [[0,0,4],[0,0,—3(a +b)],[0,0,0]] .

Vibrational patterns corresponding to these eigenvectors are shownin Fig. 4.3.
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Figure 4.3: A representative set of vibration patternsfor hG. x and o indicate motionsinto and out
of the page.

The present approach has been checked against the traditional lattice dynamical treatment of
hG by Maradudin[10]. After allowing for a different labelling of sublattices agreement istotal.

4.4 Effectiveinner eastic constants

When an initialy-strained crystal is further deformed its energy can be expressed in two ways:
either in terms of the additional deformation and effective elastic constants or in terms of the
overal deformation and the e astic constants of the crysta in the unstrained state. The procedure
is described fully, in the context of the macroscopic elastic constants, by Wallace in [16, Sec. 8]
and is readily extended to cover the microscopic constants.

The effective E tensors, denoted by Efj“ may be used in the secular equation (with the
appropriate density p) to obtain the optic mode frequencies in stressed crystals. Strains can
be chosen to introduce off-diagona elements and remove degeneracies. Phonon deformation
parameters, which characterise the strain dependence of the frequency [3, 14], are easily derived
from the E tensors below. It will be seen that these expressions can be very lengthy. The results
for the simplest case, that of hydrostatic pressure, are presented in Sec. 4.5.



44 Effectiveinner elastic constants 73
44.1 Cubicdiamond
Ey = Ey(1+ny =y — 1) + Eyyyiy + By, + 175)
LE22 = By = ng+ny—ng) + Eyyyny + By +5)
Egy = Eyy(1= 1y = ny+ 1)+ Eyyyig + By +17p)
LE12 = (B * B+ Aulips)ne (4.36)
LE13 = (Bt B+ Aplipa)ns
_23 = (Bt Epgt Aplin)n,
4.4.2 Rhombohedral graphite
LE11 = EyQHng —ny—ng) + Eyggmy + Eypny + Eqggiig + Eyyang
11041600 = 1) + Fpy3(Agy (g +715) + Aggns)
Eyp = Ey = Eyng+ Engns + Eyglie + FrypAyeng
Eyg = 5(Ey * Eagis + Eygglls + Figelig + FiizAsgn
g = Eyg(L= 1y + 1y = )+ Eygyiip + Eyyony + Eyyaiig — Eyyny
—F115A16(0, = 11p) + Fy5(Agy (7 + 1) + Aggri) (4.37)
Eyy = 3(Eyy + Eggng + Eyggny + Eyag(ng +1,) + FrygAyelny — )
Ey = 3(Eyy+ Eggiis + Eaiglls + Paglle * FryaAsgllg
LE32 = (B + Eg)ing + Egigig + Egye(ny + 1) + FryaAsg(ng — )
gy = Eag(L— 1y — 11y * 115) + Figgy (g + 1) + Fggiiy + Faga(Agy (1 + 1) + Aggny):
4.4.3 Hexagonal diamond
B = By L+ —ny — ng) + Exfym + Exfon, + Effang + Eyfan,
HFNG Aoy — np) + Fify (A (g + 1) + Algng)
By = Byt = Eyfne+ Eyfans + Eysng + Fily Ajgng
By = 3B+ Ex)ng + Erjgng + Eyleii + iy Al
Eyy = E{(L—ny+ny—ng)+ Exfin, + Exfom + Eqfns — Evfan,
—F fléyAlie(nl — 1)+ F fl%y (Az1(ny + 1) + Azgng) (4.38)
By = 3(Eyf + Ex{)ng + Enfgny + Evle(ny + 1) + Pt Afs(n; = 1)
E_S/’\f = %(Eff + E:?:?)ns + E:?ﬁsﬁs + ngGUG + FsAﬁyAlie%
By = 3B+ Ex{)ng + Eaton, + Exfe(ny + 1) + Faft Afs(n; — 1)
Eg:? = E:?:f(l — =ty t E:?:?l(??l +p) + E:?;sns

Auy v v
+ 33" (Agy (g + m,) + Agna).
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444 Hexagonal graphite

= VN A A A v g

B = B +n —my— ng) + Effym + Epion, + Eqysng + Fify Alg(n — 1)
s W= VPR A v g

By = By = Ell“% + E12MG776 +Ii; Al

D\ _ A A A

Eyg = (B + Eay )5 + E13875 (4.39)
ey WA A A A v g

Ey' = E(X—mny+n,—ng)+ Effyn, + Eiiony + Eqisng — Fiis Alg(n — 1)
Bl = (g + Egfn, + Eylen,

oA — Al Ap Apt

By = 3(Eyf + Egg)ng + Eygns

i _ A A A

By = (B + Egf)n, + Exlen,

A _ A A
Egy = Egf(L—ny— np+ng) + Eghiny + 1) + Egyia.
45 The pressure dependence of the optic mode frequencies

Under hydrostatic pressure n, = 1 = 15 = 0,9, =1, = 3 = —kp forcD and n; =1, = —k_p,
ng = —k_p in the remaining three cases, where k, k_ and k_ are linear compressibilities. These
strains are inserted into the effective constants above, the effective constants into the appropriate
eigenval ue equations (again with the appropriate density, whichis also pressure-dependent) and the
latter differentiated with respect to p. No degeneracies are lifted by hydrostatic pressure.

Some composite constants are defined below in order to shorten the lengths of some of the
expressionsin hG and hD.

451 Cubicdiamond
df(Ty) 4k

—— (2B, +E. . +2F...). (4.40)
dp Po ( 11 111 112)

45.2 Rhombohedral graphite

dwd(£)) 4
R
dp Tt Po (k,REyy + By + Eypp + 2F113A45) +k (Eyjg + FiygAg))
dwh(4,,) 4
de o/ - _ ,0_ (2ka(E331 + F333A31) + kc(2E33 + Fgpa + F333A33)) ) (4.41)
0

45.3 Hexagonal diamond

The composite constants are
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aay 11y 12y 13y
g = I3 —Fg + 13
bbby 11y 13y
g = Iz — I

and the pressure derivativesare

dwz(EZu) — E k 2E12+ E12 + E12 + 2F121/A1/ + L E12 + FlZyAy
dp = —— (k2B + Eqp + B 113 Any) + k(B + Fify Ag))
dw?(E,,) 8
R 1 aa aa aa aar v aa aar v
dp == _P_o (k,(REL] + 7y + Bify + 2F5 Ag) + k (Eifs + Fijy As))  (442)
dw?(E, ) 8
R\V72 bb bb bb bby v bb bby v
“dp . - p_o (ka(ZEn + Byt Bt 2F 5 Ag) Hk (Bt Fiog Ass))
and
dw?(B, ) 8
B B e ) @EE P P D)
dw? (A, ) 8
g T T (R FEAL) +h QPG Bt P AY)) (449
0
dw?(B,,) 8
— = (20, (¢ PR A+ QIR g+ ALFR))
p Po

454 Hexagonal graphite

The composite constant is
Ee =gl pl24 g3

and the pressure derivativesare

dw?(E 8
e R R RGN
P
dwd (F,,,) 4 dE]
R\72g42 — cc 1 cc cc cc 11
TR o T (B + EL) + Eee + B )+ ke, + ——11 (4.44)
dp Po a 11 11 111 112 ¢ 113 dp
dw? () 4 dE]
RV72g1 — cc 1 cc cc cc 11
SR A o D (S — EL) B B kB, — — 1
dp 0 a 11 11 111 112 ¢ 113 dp
where
dE_ Il — Ellf — 2E11f 12 13 12 13 12 13
d - t (ka (Elll - 2Elll + EllZ - 2E112) + kc(Ell3 - 2Ell3 )
P Eiq
33
+E::LL::LL_ 11 (k‘ (Ell _ E33 +E11 _ E33)+k (Ell _E33 )
ET aV 111 111 112 112 c\"113 113

11
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and
dw?(A 8
dwil4,,) —— (2k, E2 +k (2EZ+ E2))
dp Po
A2 (B, ,) 4 dE}
R\WP142 ce cc y ot ce 33
TRYLY o % (o B 4k (2B + Bl + B + B (4.45)
b o a'”331 7 Mo 33" 33 333 dp
A2 (B, ,) 4 dE}
R 191 _ ce cc T cc 33
Rl = D2k B k(B — EL) + EL) -
b o a'”331 7 Mo 33 33 333 dp
where
dit Fl2 _ opi3
=B = T (g (B - 2B + k(B - 263)
dp L
Ell _ E33
33 33 11 33 11 33
+T <2ka(E331 - E331) + kc(E333 - E333 ) :
33
46 Summary

Thedifferent microscopic tensorsthat arisein connection with theelasticity and with thefrequencies
and eigenvectors of the zone-centre optic modes in four carbon alotropes have been analysed in
detail. Expressionsfor the internal strain tensor components have also been derived and may be
seen to relate to the frequencies of the Raman-active modes. Thisillustrates a general symmetry
requirement, first given by Miller and Axe, in[12], that only Raman-active modes contributeto the
internal strain part of the elastic constants. These results are carried forward to the next Chapter
where the macroscopic el asticity of the four allotropesis subjected to similar detailed treatment.

Finally the effective inner elastic constants under arbitrary strain have been determined and
used to obtain the pressure derivatives of the optic mode frequencies.
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Chapter 5

Total elastic constants, compressibilitiesand pressure derivatives

5.1 Anatomy of the macroscopic constants

Thetreatment of crystal equilibrium presented in Chapter 1 leadsto expressionsfor thetotal elastic
constantsin terms of partia and inner elastic constants, and internal strain tensors.

Apart from cD, treated in[2], there has been no previous analysis of the composition of the
elastic constants of any of the other alotropes, al of which have arich complement of inner elastic
constants.

Some constants may be selected as independent and these constitute the set that must be
evaluated in order to get a full description of the elasticity. They are presented for hD and hG in
Tableb.1, and for ¢cD and rG in Table5.2. Also shown in the latter are the elastic constants of cD
transformed to a quasi-rhombohedral system of axes, aform suitable for consideringthe cD torG
solid-state transition.

Table 5.1: The symmetry of the eastic constants of hD and hG. The odd columns contain the
components of each constant that have been selected as independent and the even columns contain
the relationshi ps between them and the remaining non—zero components ones.

¢y G=0 Crp Crp=Ch1 — Crge— 30
Cy Crg Cip =0y — 2056 = 205
Crag Cop=Ch11 +Cge = Cs
Cp Cp=0ChH Cazz Cra3= Cryz — 205
Cp Cp=0C; Cra Cpg=Clhyg
Ciz Cg=Ch Coss Cog3=Chgg
Cyz Ces=13(C1y— Cpy) Caaa Cis5=Cous
Cay Cies Cos5 = Clraa
Coss Cass = Caug
Cass  Cass = 3 (Caaa = Craa)
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Table 5.2: Top: The symmetry of the elastic constants of cD. Odd columns show the components
selected as independent, even columns the rel ati onshi ps between them and the remaining non—zero
components. Bottom: The symmetry of the elastic constants of rG. First two columns as for ¢cD.
The third column shows the el astic constants of quasi-rD in terms of those of cD.

cD

¢ =03=0 Crp Copp=Cs=C1yy
Crp O =0 = U3 = Uy = U3 =y

Cp Cp=C5=0Cy Cis

Cp Cp=Ch=0) Cra Coss=Cs6=Cray

Cp Cos=Ca=Cyy Clss Clres = = Cogp = Cq = Cgs5 = C'iss
Cse

rG quasi-rD

¢, =0 ¢y

Cy ¢y

Cu Cp=0y (€ +Cp+2C,,)/2

Cio 66 = (C11 — C'1)/2 (€11 +5C, —2C,,)/6

Ciz Cp=0C (€ +2C, —20,,)/3

Cas (€ +2C, +4C,,)/3

Cap Css=Cyy (C1—Cp+C)/3

1 Co—Cg=-Cy (Cpy— Cpp—20,,)/3v2

Crp = Cr11 — Crge = 3006
Clp = Ch1y — 2055 = 2050
Copp = Ch11 + Crge = Cogs
Crog=Cr13 = 203

111 + 361112 + 120155) /4
111 + 4C(112 + 0123 + 20144 40155) /6
Clll 361112 + 20123 80456) / 9
+ 661112 + 20123 + 120144 + 240155 + 160456) / 9

R
[
w R

=
w
w

333 111

144 0223 = 0113 111 + 36(112 4C(123 + 9C(144 o 36(155 o 20456) / 18
0233 = 0133 Clll 112 + 0144 + 0155 + 20456) / 6

344

166 0255 = 0144 Clll 112 + 4C(144 + 40155 + 80456) / 12

266 0355 = 0344 Clll + 36(112 4C(123 o 120144 + 366’155 o 80456) / 36

Clll 123 + 120144 o 80456) / 18
Clll + 0112 0123 o 4C(144 o 40155) / 6\/2

Cse = (Coas— Clras) /2
Cppg = —(Cya+2C)

w
D
[e2)

QOO0 000000000 O
I IS

(¢
(¢
(
(¢
(¢
(
0155 = 0244 (Clll 123 o 361144 + 60155 o 20456) / 9
(
(
(
(
(
(

124 Clse = (Cya T 3C1p0)/2 Cin 30112 + 20 53 — 8C,55) /18V2
130 Cose = (Clria = C120)/2 Ciyg = Crgg — 6C155+4C 15) /9V2
Casa Copa=—Cas=—Cl — (Cpy1 = 3C14p+ 20 53+ 3C1 4 — 3C 55 — 2C.56) /9V2
Case =Croa

455 — _0444
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The find expressions for ', ; and C, ;- as sums of partial and inner elastic constants were
givenin Chapter 1. They are recapitulated here with extra definitions that simplify the presentation

for the individual allotropes:

- 0 A A
CIJ - CIJ - AHA;JEZ']'M
— 0
= O, -4, (5.1
and
— 0 A A A A A A
CIJK - CIJK + AiIDiJK + AiJDiIK + AiKDiIJ

A AR ppAp A BoppAp
+AiIAjJEin + AzIA jKEijI
A Al pv Apy
+AiIAjJAkKP;'jk
— 0
- CIJK+AIJK'

1 Ap A
jI(EijJ + AZJA

(5.2)

Theexpressionsfor thenon-zero componentsA, ; andA, .- for thedifferent allotropesare obtained

1JK
by taking appropriate sets of independent non-zero inner elastic constantsand internal strain tensor
components from Tables4.4, 4.6 and 4.7 in Chapter 1.

The considerabl e differences between the two hexagonal alotropesis a direct consequence of
the different site symmetries in the two structures: the two distinct pairs of equivalent sitesin hG

each have 6m2 symmetry whereas the four equivalent sitesin hD have the lower 3 symmetry.

5.1.1 Cubicdiamond

At the second order
D, = (A)?Ey, (5.3)

and at the third

2
A144 - 2A14D114 + (A14) Elll
A155 2A14D 124 + (A14)2E 112 (54)
2 3
A456 - 3AlllD 156 + 3(A14) L 126 + (A14) L 123

5.1.2 Rhombohedral graphite

At the second order

By = (Ag)Egy+ (4,0°Ey,

Dy, = (Agy)’Eg— (A1) By

B3 = Ayl (5.5
Dy = (Ag)°Eng

By = (A)°Ey

By = ApAglyy
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At the third order
By = 3AgDyyy +345 Dy
+3(A40)* Eyyy + 641645 Bygo + 3(Ag)* Egyy
—(A16)°Fipp + 3(A1e) AgsFyg + (Ag)* Figg
B3 = 2A15D 36+ AggDgyy + 245 Dyyg
H(A46)* Bygg + 2416455 F 136+ 245 Ay Eggy
H(A30) Bagg + (A36) AggFhga + (A31) Ay Fgg
Digg = 24330315+ Agi Dagy + (Ag)* Eggy + 2431 Ay Fgy + Ay (A35)* P
Dy = 3AggDagy+3(Agg)* Eiggy + (A33) Fgg
Diy = —AgeDigs+ 24150155+ Agy Dy + 245 155+ (A15)°Enyy
—Age(A15) Frpp + Agy(A19)*Fipg
Doy, = AsgDigs+2A15D 105+ Ag Dy + 245 Ags B + (A1) By
+A16(A19)* Frp *+ Agy(A15) Fig
Dy = 24150155+ AggDigy + 2AguA 1680515+ (A1) Bypa + Agg(A15)*Fry3 - (5.6)
Digg = —A1g(Dyyy +2D ) + 5A5(Dgy; — D)
(A1) (2B, — Eypp) + 243 AgsF 4
HAge) Fryp *+ Agy (A16) Fig
Dogs = Agg(Dy1y+ Do) + 5A3(Dagy — Dyy)
— (A1) (Eyqy = 2E135) + 245 AgsF 45
—(A1)° Fipp + Agy (A1) Fipg
Dagg = 24150136+ 5A535(Dagy — Dyy)
H(A19)*Eyg + 2A455416F 136 + Agg(A16) Fig
By = 2416015+ AysDyyy
F2A16A 158015 + 245 A 15F 5
—(A1g)? AggFiyp *+ 241641545 Fyyg
Bpy = —AggDips+ AsgDop + Agy Dy
+Ay6A15(Epyy = Bipp) + (A36)°A1sFiny
Bigyy = AygDigs+ AgDigg+ AggDyyy
+A16A15(E11g + Figs) ¥ AggAishise + AjgA 15453t 15
Bpag = —3A1D1us — (A15)3F 112
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5.1.3 Hexagonal diamond

In Chapter 4 it was useful to define some composite constantsin order to simplify expressions for
the pressure derivatives of the optic mode frequencies. A similar need arises here. The composite
constants are

B = EN-EZ+ES

Ebb — Ell _ El3
[ 7. 7.
11la _— 111 112 113

F112 = F112 o 3]?112 + 3]?112
160 111 113 121 123 131 221

F113 = F113 _F113 _2F113 +2]?113 +2]?113 +F113
lee 111 131 113

F113 = F113 o 2F113 o F113

At the second order

By = 2(A§1)2Egg + Z(Aie)zEff
A, = 2(A§1)2Egg - Z(Aie)zEff
D, = 2A3ALED (5.7)
Dy = 2Ag)lEg
A, = 2(AL)ER.
At the third order
Dy = 6ALDg, + 643 D3y, +6(AT)*Effy + 124,645 By
+6(A3) Fagy — 2A30) Fiip +6(A16) Ag s + 2(A5)° (Fygz — 3F333
Dyyg = AALGDIge+ 2435075, + 445 D31g + 2(A1e) By + 4416 A 5 o + 445 Ags B,
+2(A3))° Fygy + 2A19)° A33Fins + 2A3)° A3s(Faz3 — 3F333
Digg = AAgzDys+ 243 Dagy+ 2(A35) Egyy + 443 Ay Ery + 25 (A30) (Fagy — kg3
Dayzg = 6A33D30+ 6(Age)* Egy + 2(Age) (P — 3P 533
Digy = —2A35D 15+ AA 15D s+ 245 Dy + AA5 A g + 2(AT)° (5.8)
—2A35(A1e)*(Fliz — Fiiz) + 2A3 (A1) Fiis
Doy = 241Dy +4A15D s+ 245 Dy + 445 ATgFigs + 2(A3)°Fy)y
+2A55(A19)°(Fiiy — Fliz) + 243 (A1) Fiis
Day = AALGDIgs+ 2433073, + 4A5 AT Eais + 2(A15)° By + 2A55(A1)° Fifg
Digg = —2A%5(Dgyy +2D35) + Ay (Dgyy — Do) + 2(A10)* (2B — B,
+4A5 AT6F T3 + 2 AL Fiiy +243)(A19)Fiis
Doy = 2A36(2D5y; + Digy) + Agy(D3yy — Digp) — Z(Aie)z( 11— 215,

1 41 pbb 113 -11a 1, 41 \2 o1bb
+4A3 AgE 35 — 2A1) Fiiy +2A3(A15) Fip3

— 1 1 1 1 1 11\2 rraa 1 1 bb 1 1 \2 n1bb
Dyge = AAgD1ze+ Agy(D3yy — Dipp) + 2(Agg) By + AA33A 6 E 36 + 2A35(A15) 13
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5.1.4 Hexagonal graphite

The following composite constants are useful :

le  _ 11 112
E11. = E11. - §E11.

3k — 33 17012
E11 = E11. - §E11.

lece _—_ 1112 123 133
F112 = ZF112 - F112 + F112

At the second order, after using 22 = 21712 = 22 and A2, = — 3(A], + A3,) (see Chapter 4), we
obtain

Dy = (AREqf + (A3 ES;
AL - 69
By, = By
At the third order
Dy = 3ALDgy, + 34303, +3(A7e)°Eqf, + 3(Afe) By, + 6AAT(ELS, — 3B,
~(A10°(Figy — $F15) — 3(ALPPARFTS — 3A1(A%)* Fiis — (A30°(FS — §F s
Dpyg = 2A5aD 1+ 243 D35 + (A1) Eifs + (A3 Efa + 2A36A3(E13; — 5E1%
Dy = —ADigs— AieDfA,s
Dy = —Dyyy (5.10)
Digg = —Age(Dygy +2D5,) - Aie(D S11+2D3,) + (A}G)Z(ZE 111~ Ei1)
HAT) (BT — Fipp) + 2436A3RE) — Fij, — Eify + 351
A1) (Fiiy — $F113) + (A%)°(FT — SFED) + §(ALeV AP TS +3A16(A3)* Fifs
Dogs = A1e(2Dgyy + Dpg) + A3e(2D3y, + D) + (A19)*(2E35, — Eny)
HA (2B, — By + 2A3,A5(2E1, — By — Eip+ 31
~(A19°(Figp — P13 — (A3 (F5 — SFTD) — (AT° AL FTS — 3AL(A%)*Fis
Dy = DBiig

5.2 Compliances and compressibilities

M easurements of | attice parameter and volume change under pressure by means of X-ray or neutron
diffraction may be used to extract elasticity information from crystals too small to subject to more
conventional techniques, such as ultrasonics. The primary quantitiesobtai ned are the harmonic and
anharmonic linear compressibilities, &, and K, defined implicitly in the extended form of Hooke's
law (inwhich ¢, = 1if J =1, 2 or 3 and is zero otherwise):

_ 1 2
ny = —pSps0; a5 0,0k
—kp+ 3K p% (5.11)
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The compliances, S, ; and .S have the same patterns of independent components as the
Cryand

are dightly different: each occurrence of a subscript 4, 5 or 6 must be associated with afactor of 2

1JK?
and can thusberead from Tables5.1 and 5.2. Therelations of dependence however

(see[4]), thusfor instance
Co22= Cr1a * Cre6 — Cgg
has the anal ogue
S22 = 9111+ 45166 — 45266
5.2.1 Cubicdiamond
When 5, =5, = n, we have (dropping subscripts)

k=5, +25, (5.12)

and
K =5, %655+ 5, (5.13)

On setting 21, = 2, = 2, = Aa?/ag we obtain
Dajay= —kp+ %(K — k?)p? (5.14)

for the change in lattice parameter.
The exact expression for the volume V' of afinitely strained crysta is

174 2
(—) = det(I +2n) (5.15)
Yo
and leads to volume change given by
AV—V = —3kp + 3(K +k?)p. (5.16)
0

5.2.2 Hexagonal diamond, hexagonal graphite and rhombohedral graphite

For the axial allotropes, in which 27, = 27, = Aa?/a and 2, = Ac?/ 3, there are two compress-
sibilitiesof each kind:

k, = S;+Spt+55
ko= 25+ 54 (5.17)
K, = 5137251512513+ 55, 72513+ 553

K, = 2513%25)3+ 4533 S35
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The lattice parameters change as

Dajay, = —kp+ %(Ka - ks)pz
Acfcy = —kp+ %(Kc - kf)pz (5.18)
and the volume as AV
=kt SUK + 4k k_— k2)p? (5.19)
0

where k, =2k +k, and K =2K +K_.

5.3 Effectiveedastic constantsand their pressure derivatives

Ultrasonic vel ocity measurements made on an initially-stressed crysta yield effective elastic con-
stants. When such a crystal is further deformed its energy can be expressed either in terms of the
additiona deformation and the effective elastic constants or in terms of the overall deformation
and the elastic constants of the crystal in the unstrained state. The procedure is described fully for
arbitrary strain in [6, Sec. 8]. The expressions so obtained are differentiated to give the pressure
derivatives of the second-order constants.

5.3.1 Cubicdiamond

The effective constants are

I
|

1 = Cp@+3n —ny—ng) + Ciyyny + Cpap(n, +113)
12 = Cp+n+n,—ng) +Cpplng +mp) +Chagng (5.20)
Cap = Cg(X=mnytmytmg) + Cpygny + Cusg(ng * 1)

Differentiation of the above, after setting n; = 5, = 5, = —kp, gives the following pressure

derivatives:
—C1y = k(Cyy +Cpyy +201))
_012 = k(C’12 +20, % 0123) (5.21)
—Clhy = k(Cpy+Cryy+20g).

5.3.2 Hexagonal diamond and hexagonal graphite

For both alotropes the effective constantsare

Ca(X+3ny — 1y — ) + Cpyymy + Cppomy + Cpyanig

[y
[N

ISINS]

Cp(X+my + 15 —m3) + Cryony + Crppiy + Cpgtig
13 = 013(1 + M= + 773) + 0113771 + 0123772 + 0133773 (5.22)
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633 Ca3(X =y = 1y +3m3) + Ciga(ng 1) + Cggany
Caa

Cag(L =y +my+m3) + Crggng + Coggny + Cagga-

Differentiation, after setting n, = 1, = —k_p and n; = —k_p, then gives the following pressure
derivatives:

—Cy = k0, + Oy +Chp) +E(=Cy +Clyp)

—Clp = k20 +Cpp+ Crp) +k (—Cpp + Clhpg)

—Cly = k(Cpuz+Crpg) +k(CratCg) (5.23)
—Cq = 2k, (~Cgg+ g9 + £ (3C35+ Cygy)

Ol = B Chaa Coud +E(Cog* Co).

It was not possible, using the above procedure, to reproduce the expressionsfor the effective elastic
constants of hexagonal crystals under isotropic pressure givenin [5].

5.3.3 Rhombohedral graphite

The effective constants are

611 = Cp(@+3ny = ny = 1g) + Chyymy + iy + Crygig + Crygny

612 = Cp(+my+my = 1g) + Cogng + Crypiy + Crogiy + Crpgiy + Crpgliy

613 = Cpg(I+my = mp+1g) + Cogng + Crygiy + Crpgiiy + Cragis + Ciggny - (5:24)
Cag = Cagl= 1y — 1+ 3ng) + Cligg(ny +1,) + Caggiy + Clygy

544 = Cp(I =g+ +15) = Cognig + Crgainy + Coggiy + Caggy + Caaglly

_ 1
a = Cp@+n) +3(Cp+ Cr)ng + Crygny + Crpgny + Cragtig + Cragny

[y

As 7, = 0 under hydrostatic pressure their pressure derivatives are simply the same as those of hD
and hG augmented by
—C1 =k (Crg+ Cryp+ Crpp) +k Cgy (5.25)

54 Summary

Starting with the generd resultsin Chapter 1 the composition of the second- and third-order elastic
constants of the four carbon allotropes in terms of their inner elastic constants and internal strain
tensors has been presented. Certain properties derived from these constants, such as compliances,
compressibilitiesand the pressure derivatives, are closely rel ated to parameters that can be obtained
directly by X-ray or neutron diffraction or from ultrasonic vel ocity measurements. These have aso
been exposed explicitly.
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Chapter 6

Cubic diamond: optimization of an anhar monic Keating model and
Its subsequent modification

6.1 Introduction

Over the years anumber of val ence-force-field approaches have been devel oped and/or used to treat
dasticity[9, 10, 11, 13, 16, 24], latticedynamics[14, 23] and piezo-Raman spectroscopy[1, 3, 4, §]
in covalently bonded materials. These range from Keating's origina 2-parameter model [10]
dealing with harmonic properties to the massive 21-term database of Vanderbilt et al.[24] that
handles harmonic, third-order and fourth-order anharmonic properties of silicon.

In the desire to achieve a good description of both harmonic and third-order anharmonic
properties of cubic diamond with the smallest number of parameters | have chosen to develop and
optimize the origina Keating model [10, 11] by including only such further interactions as were
strictly necessary.

Most of the formal aspects of the éasticity of cD have been covered in Chapters4 and 5.
The key results are summarised in Sec. 6.2, together with an elegant representation of the com-
pliances. Sec. 6.3 extends the previous results concerning the optic mode frequency to cover the
uniaxial stress-dependence of the frequencies (phonon deformation potentials) so that a wealth of
experimental data[1, 3, 4, 8] can be considered.

Previous applications of the Keating model are reviewed in Sec. 6.4 and the method is extended
toincludedl three nearest-neighbour 3-body interactions at the second order. The optimization of
the four parameters of itsharmonic part is carried out. It is shown that the bond-bending parameter
obtained this way always containsimplicitly a 4-body contribution that cannot be separated from
the normal 3-body contribution by consideration of elasticity done. Separation is achieved by
fitting phonon frequencies at the X and L pointsof the Brillouin zone.

Additionally six anharmonic terms have been considered at thethird order [1, 11]. Inan exact fit
of theseto experimental valuesof thethree pressure derivatives of the second-order el astic constants
and of the three phonon deformation potential sthat describe the stress dependencies of the Raman
frequency [1, 8] it was found that one parameter was insignificant. For the optimized anharmonic
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potential the other five force constantswere fitted by |east squares with admost no changein values.
The full array of results is summarized in Sec.6.5. Finally in Sec. 6.6 the éasticity of cD is
expressed relative to rhombohedral axes. When compared with the standard cubic approach this
reveals the drawback to the Keating model: namely that the parameters depend on some unit cell
dimension. The situation is avoided by redefining the strain so that all parameters at the second
and third order have the dimension of energy. The modified parameters have the virtue that they
are then transferabl e between structures.

6.2 Elastic constants, compliancesand pressure derivatives

Thetotal elastic constants are given by

Cn = Ch
Cp = Ch (6.2)
Cp = 024 - (A14)2E11
at the second order and by
Cip = Cin
Cuy = Chp
Cis = Cin (6.2)
Crag = Clp*+ 241,01, + (A1) Eryy
Ciss = Chos*2414D150+ (A1) Erp
Cpsg = 0256 +3A414D 56+ 3(A14)2E 126t (A14)3F 123
at the third, where
A= —=Dy/Ey (6.3)

istheinterna strain parameter.

Second-order compliances S, ; enter the general expressionsfor the effective elastic constants
that are needed in the anharmonic parametrization. They are obtained from the stiffnesses €', ,
through the following relations, [18]

k=S,+25, = 1/(Cyy+2C,,)
k,=S,-5, = 1/(Cy—Cp) (6.4)
k, =S, = 1/C,,

n

The abbreviations k, k, and k,, serve to simplify the following expressions for the third-order
compliances[5], which take a particularly neat form as a result of the high symmetry of cD:

- _ 3
K =51y +651),+25,3 = —k7(Cpyy +6C 1, +2C )
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3
Slll o 35112 + 25123 _k/ (Clll o 36(112 + 20123)

Si11— S = _kk/z (Ci11 — Cro9) (6.5)
Siaat 2S5 = —kk3A(Cpu+ 205
S1aa— S1ss = —kk(Cras— Crs9)

Sass = —kyCuse:

where i and K are the harmonic and anharmonic linear compressibilitiesrespectively.
The hydrostatic pressure derivatives of the elastic constants are given by

Ch = —h(Cy +Cpyy +20)
Clp = —k(Cpp+ 201+ ) (6.6)
Chp = —k(Cpy+ Crgy+ 205,
and
, 1 &
B = —z- §(C111 +6C 1, + 20 ,,), (6.7)

where the bulk modulus B = (C'}, +2C',,) = 1/3k.

6.3 The zone-centreoptical modes

The general approach to optic mode frequencies givenin Chapter 4 led to the following expressions
for the triply-degenerate Raman frequency

2, )= 2 p -y (6.8)
Woll o, _po 117 5,1 .
and its pressure derivative
AT, | 4
( d - =T <2E11 T Byt 2E112) (6.9)
p 0 Po

where p, istheequilibriumdensity, m isthe mass of a carbon atom and & the linear compressibility.

6.3.1 The secular equation under stress

The effectiveinner elastic constants, /7, for arbitrary strain are given by (4.37).
The secular equation for the optical modes under astress o is

— p 2| _
EZ.], e 0 (6.10)
in which
L0 = 14 po. (6.11)
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The phonon deformation potentias that describe the stress-dependence of the mode frequencies
depend on the stress derivatives of both EZ.], and p.
Under hydrostatic pressure p the effective constants are

Ey=Eyp= E_33 = FE,(1+pk) — pk(Fyqy +2F,5,) (6.12)

and the eigenvalues remain triply degenerate with
2 _4~
(.UH - ;Ell' (613)

For auniaxial stress o in the direction ¢ the stress components are given by o ;= aﬁiﬁj, where
770 7, €@ now be used to eliminate 7,
from the effective inner elastic constantsin favour of UEZ.E], and derivatives with respect to stress

J isthe conventional contraction of ;. Hooke'slaw, , = S
found. Three situations are relevant to the work described here:

6.3.1.1 o along[001]

Thisisatetragonal deformation and the effective E tensor now has two different diagonal compo-
nents:

by By = Ep(1—051) +0(S1,E 4, + (511 + 512)E1p)) (6.14)

E_33 B (L= 0(251, = 59)) +0(Sy1Epqy +255E55).

The eigenvalues consist of a doublet and a singlet given by

4 —
w3=-FE, (6.15)
P
and
4 —
wi="Eg, (6.16)
P
6.3.1.2 calong[111]
Thisisatrigona deformation in which
LE11 = E_zz = LE33 = Byy(1— 30(Syy + 251,)) + 30(Syy + 25) (B + 285, (6.17)
By, = Eip=Ey= 308, (B + Epg+ AyyFy)
The eigenvaluesare
4 — —
w] = ;(Ell — By, (6.18)
and

4 — —
w? = ;(Ell +2F,,). (6.19)
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6.3.1.3 calong[110]

In this orthorhombic deformation an off-diagonal component is introduced:

= Ep = Ep(1— 05+ 30((Syy + S19) Eygy + (911 +359) Fyp0)
= %U Sag(Epy + Eppg+ A1) (6.20)
= Ep(1—05) +0(S1,E5; + (S +510)Ep5)-

SISl

w
w

Degeneracy has now been removed and three eigenval ues are obtained:

4 — —
w3 = ;(Ell +E,) (6.21)
and
2 4~
wi= L (6.22)

6.3.2 Phonon deformation potentials

There are several different ad hoc definitions and notations used to describe the strain dependence
of theoptic modefrequenciesat thezone centre[4, 20]: K, = dw?/ dn,; and IZ’Z.], = gInw?/ an,; =
(1/w(2,)KZ.j are general expressionswhilst p = K,,, ¢ = K,, and r = K ,, are parameters specific
to cubic symmetry. When the eigenval ue expressionsin the previous subsections are differentiated
with respect to stress, relations precisely the same as those given in [4] are obtained with

R Py
203 2F,,
¢ _ b
S 6.23
203 2F,, (623)
L o- 1+ Eios+ A1al103
‘*’CZJ by
together with the mode Griinei sen parameter
1 E..,t2FE
=21+ 2 6.24
76T 73 ( 2E,, (624

A dlighty different approach has been adopted by Nigsen[17] who defines a phonoelastic
tensor Q asthe squareroot of the dynamical matrix. Elementsof thistensor, expanded in powers of
7, then combine to give frequencies under strain. Certain of the linear coefficients then correspond
to phonon deformation potentials: Q,,, Q,, and 2Q,, corresponding to the lefthand sides of the
three members of (6.23) above.
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6.4 TheKeating model

The Keating formalism[10] models the strain energy only and does not provide values for the
cohesive energy or the lattice parameter, a (=3.567 ,&). The vdue of a is assumed when forming
the strain variables A, = (7.7 — 710,719, where i and j label atoms neighbouring a particular
reference atom, s, and 70 and ;0 label the unstrained configuration.

The connection between A the finite strain tensor  and the inner displacement vector
follows from the definition of homogeneous deformation. If H isthe deformation gradient matrix
then 7% = H#° + F~1(, where the sign depends on which sublattice the reference atom lies on,

— 70 70 70
A, =27, roE2r 70 +C () (6.25)
and
B =2, £ () + 0, + (., (6.26)

where terms of order three and higher have been omitted.

6.4.1 Harmonicinteractions

The harmonic energy per cell derives here from a nearest-neighbour 2-body interaction, three
nearest-neighbour 3-body interactions and a certain 4-body interaction. It takesthe form, [19],

2 4
1 ,
2) - 2 2 .1
pO = 2y (oaA“. +3 (802 + Lo(d, +D A +TAN, ,.@Az.ink)) (6.27)

4
s=1 =1 j=1

where the prime on the summation over j indicatesthat j # i. The x term is related to the f¢¢*
valence force field parameter introduced by McMurry et al. [14] as an essential ingredient in the
treatment of the flattening of the transverse acoustic dispersion curves towardsthe X and L points
in the Brillouin zone. It relates to a chain of three bonds in a 180° dihedral-angle configuration.
The absence of a summation over k& arises as follows. The bonds labelled j and % are attached
to opposite ends of bond 7 and are parallel. Under homogeneous deformation the outer bonds
are strained in the same way, forcing the two angles of the chain to change in the same way.
Thisresultsin TAVITAY szZ.Zj and the interaction becomes formally indistinguishable from the simple
3-body bond-bending interaction. Elastic constants and the zone-centre frequency cannot be used
to separate 5 from . However the expressions for some of the phonon frequencies at the zone
boundary mix 3 and « in different proportionsthereby enabling the separation to be made.

The second-order elastic, inner elastic and internal strain parameters are given by thefollowing,
inwhich 5* denotes 3 + «:

1
Cy = E(OH-Bﬂ* -0 +37)

1
Cp = —(a—f"—0o+3n)
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1
B = Z(a+3p*—o+3r) (6.28)
a
1
024 = —(a+f"—0-1)
a

4 %
D14 = ;(O&—ﬁ _T)

16 N
Ell = g(a+ﬁ +0'_7-)
4 _ a oa— 3 -7
e P g
4
Cx = _EAM

where B isthe bulk modulus, . isthe Kleinman internal strain parameter and the remaining total
second-order constant, C,,, is given by (6.1).

In addition, because A, and AZ.], contain terms in (2, the ‘harmonic’ energy contains small
anharmonic contributionsvia £,, and F,,,,. These are given by

16 i}
EQ =BG, = la— " +o+37) (6.29)

Initially the mode was limited to the o and 5* terms aone and applied to Group IV elements and

[11-V semiconductors[10, 13]. Thetargetsfor fittingwere C',,, C';, and C,,.

Table 6.1: Parametrization of the harmonic part of the Keating model. As explained in the text all
fitsof ‘3’ to experimenta data are in fact fits of 5 + «: thisisindicated below by the use of 5*.

Unitsare GPafor €', ; and B, GPaA -2 for E,;, and GPaA for « etc.

— a, §* fittings — a,0%7 «,p% 0 Present work

— Exact — Lg ? Exact Exact LSg  Observed
O Fit Fit 756 433 990 1051 Fit Fit 1072 1079(5)*
Ul Fit —199 Fit 447 69 100 Fit Fit 131 124(5)=
E, 756 Fit Fit Fit 666 770 Fit Fit 562  553.4(8)°
Cu 576 350 567 -13 520 589 593 Fit 574 578(2)*

B (Fit) 226 335 Fit 376 417 (Fit) (Fity 445  442(4)
(, 0206 —045 028 102 0131 0.20 0.12 0074 0093 0.125(20)

o 1294 430 1006 1582 1068 1304 1056 987 1009
3 852 1140 564 -122 821 848 852 852 840
o —-238 -250 -234

-33 19 21

* Reference[15] ° Reference[25] © Reference[6]

Values of o and 3* deduced from C';, and ('}, [15] gave C', to better than 0.3%[10]. This very
encouraging result hid a 37% error in £, or a17% error in the Raman frequency w, [25]. It also
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predicted a value of 0.21 for ¢,.. Thiswas later measured by my research collaborators and the
much smaller value of 0.1251+0.020 obtained[6]. With more experimental data available different
fits can be made and these are listed in Table6.1. For columns 2 through 5 two data are used to
determine o and 3* and the implications set out: at least one quantity is very poorly predicted
each time and ¢ in particular isbad. In column 6 a least-squaresfit to four data by Anastassakis
et al.[1] leads to o = 1068 GPaA and g =821 GPaA. This gives avaue of ¢, closeto that
measured, though w, is still 10% too large and C',, is 44% too small.

The first extension of the Keating model to include an additional interaction was made by
Bashenov et al.[2] who introduced (using ) the term denoted here by . Column 7 liststhe quoted
values; the precise method of calculation isunclear.

Thecasefor theinclusion of the other 3-body termwas discussed by Riicker and Methfessel [19].
They pointed out that a good agreement for ', C',, C,, and w, in diamond could be obtained
using just «, 5* and o (v in their paper) whereas it appeared important to introduce = to improve
the fit to the phonon dispersion in Si and Ge. Column 8 shows the result of thisfitting. Each fit
generates a uniquerelation for ¢, interms of the fitted parameters—in this case

(4@(011 _ 3012)) 1/2

6.30
T (6.30)

1-2(,

Thisgivesavaue(,- = 0.102that is closeto atheoretical calculation[17] and reasonably close to
experiment [6]. The predicted valuefor ', isnow 593 GPa, much closer to the observed 578 GPa.

Theinclusion of both extratermswill now be considered. Inversion of the earlier equationsfor
Chp Crp Eyyand Dy (88 Eyy) yields

3
a a
a = g(cn +Cp)* 6_4E11(1 +2(y)

a

#7 = 4Cu-Cp) (631
a a®
o = —5(011 - 012) + 1_6E11(1 B CK)
a a®
r = _g(C11 — 30+ 6_4E11(1 = 2(g)-
These then imply
8a(Cy, — Cry— Cyy) 1z
1-¢, = ( R7F ) 03
K chz)

giving ¢, = 0.074, avalue that is somewhat lower than either the measured value or theoretical
predictions. If the tolerances on the experimental data are taken into account a range of values
isobtained: ¢, = 0.074+ 0.009. Although thisis not quite enough to bracket the experimental
range there are reasons, discussed in Sec. 6.5, for supposing that the experimental value may have
been dlightly overestimated. This 4-parameter fit islisted in column 9. A least squares solution
involving the observed value of ¢, produces the fitting shown in column 10.
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To check further the quality of thefitsand to resolve the 5/« problem involves consideration of
the zone-boundary phonons[21]. At the X point these have frequencies given by

and at the L point by

2
M “YrLo LA

2
M“To

2
MwTA

2 —
MwLO =
2 —
MwLA =
2 —
M“To =

2 _
MwTA =

4o+ 83 + 47 + 4x
= 4a+83" +4r — 4k

8a — 8r (6.33)
80

= 83* -8k

20+ 133 + o + 41 + 4x
20+ 133" +o +47 — &

6a+ 3 — 30 (6.34)
6a+3* — 30—k

8a + 48 + 4o — 87 +4x

8a+45" +40 — 87

45

453% — 4k,

Table 6.2: Phonon frequencies f(= w/2r) at thel’, X and L points. Units: THz for f, GPaA for

3" etc.

Point Mode Exact fit Least-sg. fit  Observed" |

r LOTO 3993 3093 4023 40.23 39.93

X  LOLA 3709 3536 37.09 35.45 35.80
TO 3136 3136 31.68 3168 32.39
TA 2941 24.78 29.20 24.78 24.04

L LO 4042 36.77 40.29 36.80 37.21
LA 3091 30.40 31.05 3057 31.00
TO 3590 35.90 3621 3621 36.25
TA 20.80 17.52 2065 17.52 16.55

G 852 840

3 605 605

K 0 247 0 235

* Reference[25]: errors are estimated at 2-3%



6.4 The Keating model 97

Columns 3, 5and 7in Table 6.2 show thefrequencies predicted using the four parameters o, 5*,
o and 7 (i.e. with no explicit » term), in both exact and least-squares versions, and those observed.
The least-squaresfit appears to be very slightly better.

The TO modes, which have no explicit « component, are well predicted with errors of only
-2% and -0.1%. Apart from one the remainder are overestimated: in particular the errorsin the TA
modes are 22% at X and 25% at I.. Thischaracteristic failure to pick up the flattening of the TA
modes near the boundary is markedly reduced by setting « = 247 GPaA inthe exact and x = 235
GPaA in the least-squares fittings to give the values listed in columns 4 and 6: the errors in the
TA modes are now 3% and 6% respectively and the separation of 5* has now been achieved with
3 = 605 GPaA in each case.

With the simple model under consideration there is no way to improve al the zone-boundary
frequencies. | showed in[7] that the most general force constant fitting to nearest and next-nearest
neighbour interactions[12] imposes a condition on the cal cul ated frequencies:

z(sz o in + wjz“O - wjz“A)L = 3(“)72“0 - WQZ“A)X- (635)

Observed values do not satisfy this equation: the left- and right-hand sides differ from their mean
by 6%, afigure that suggeststhat the above fit is as good as it can be.

Theinner elastic constantsand internal strain parameters are collected together in summary Ta-
ble6.4 in Sec. 6.5 and the decomposition of the cal culated constantsand the associ ated compliances
are shown in summary Tables6.5 and 6.6.

6.4.2 Anharmonicinteractions

Keating extended his method to the anharmonic régime[11] by considering the, § and ¢ termsin
the following expression for the anharmonic energy per cell

2 4 4
@ = %ZZ(7A3+Z 503 + 30, + 0, )02 (6.36)
s=1 =1 7=1
#3002 + D2)A, + 3000 A+ SN (B +A, )))

where al nearest-neighbour 2-body and 3-body interactions have been written down. He suc-
cessfully applied this model to fitting the third-order elastic constants of Si and Ge. The direct
measurement of these constants for diamond would be extremely difficult for several reasons and
has probably not been attempted. Nevertheless experimental data are available that relate to the
third-order elastic constants, through pressure derivatives of second-order constants,[15] and to
third-order inner elastic constants, in theform of stressderivatives of the Raman frequency [8]. The
pattern of analysis used here is essentially the same as the one developed in [1]. The latter work

however involved only a2-parameter harmonic fitting and this affects, in principle, thefitsto £,
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and I, and causes poorly fitted quantities (£,,,

fitting.

B and, perhaps, ;) to distort the anharmonic

Thethird-order elastic and inner elastic constants are given by the following expressions:

Q
N
B
B

[

v —8+9 —3n—30+9¢
Clp = 7—0+e=3n—-30+9¢
Clog = 7+30—3c¢—3n—30+9¢
0844 = y+0—e—3pt+to+E
Cs = 7—0+3¢—3p—-30+¢
Cos = 7—3+30 -3
4
D114 = ;(7-(;—6—77-*30-{-5)
4
D124 = E(7+5_6_77+0+€)
4
Digg = 3(7_77"'0—35)
EQ = B 5435049
m - 2V €T
16
B, = SG—d—ctnroto)
16
Fe = ¥(7+77—9—35)
64
Fipg = $(7+377_30_3€)-

Thefull £,,, and £, ,, are then given by

— 2 3
Elll - Egl)l + Egl)l

— 2 3
EllZ - E£1)2 + E£1)2

and the remaining total third-order constants, C',,,, C';55 and C5, by expressionsin(6.2).

(6.37)

(6.38)

The target quantities related to the pressure derivatives of the second-order constants are
Cl11+2C 19, 2C 1, + Crogand C', + 20 6, given by (6.6), where values of '), have been derived
from[15]. The latter work actually determines pressure derivatives of ultrasonic wave propagation
coefficientsand their €}, and (), valuesmust beincreased by unity and ('}, decreased by unity for
consistency with the definitionsin (6.6). The targets related to the phonon deformation potentials
ae By +2F, 1, By — B, and B e+ Ay, F s, given by (6.23), where values of p, ¢ and - have
been deduced from[8] and £, , and A, , have been carried forward from the | east-squares harmonic
fit. The (equal) values of 142} and £{2), arising from thefitting of the harmonic energy should be
removed from the first of the above three targets. This quantity is, however, very smal: for the

exact fittingitis —20.6 GPaA and aminute —0.4 GPaA for the least-squaresfitting.
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Table 6.3: Parametrization of the anharmonic part of the Keating model using pressure derivatives
of the second-order elastic constants and the phonon deformation potentials. All input quantities
are dimensionless. The unitsfor + etc. are GPa

Input Ref.[8] Ref.[1]  Present work Observed ‘
Cy 731 Fit 697  6.98(70)"
1, 3.23 Fit 209  2.06(70)
Cha 4.40 3.95 Fit 398  3.98(30)"
(€4, —C1)/2 245 2.46(10)"
(Cr +Ch,+2C8,))2 8.65 8.50(60)"
(p +29)/ 2w -335  —3.19 Fit —3.18 —3.18(24)
(» — q)/2w3 -050 -052 Fit —052 —052(8)
r/ws -12  -1.89 Fit —-188  —1.9(2°
v —-1670 —1478 —-1200 —1198

B 95 140 164 166

€ —499  —654 567 —566

n —227 —-139 138

9 181 145 143

13 0.55

* Reference[15]  ° Reference[8]

With six targets and six force constants an exact fitting is possible. This gives a value for ¢
(0.55 GPa) that is over 250 times smaller than the next smallest. It quantifies and confirms the
observationin[1] that thisterm, which indicates anharmonic crosstalk between contiguous bonds,
should probably be small. When ¢ is neglected and the remaining five constants fitted by least-
squares the new values differ from the old by no more than 1.4%. The results of these fittings
are displayed in Table6.3 together with the earlier fitting based on two harmonic terms and three
anharmonic ones[8], and that of [1]. Differences between the present results and those in[1] are
initially puzzling since the same basic approach and the same input data have been used in each
case. Small differences areto be expected asaconsequence of the use of different valuesof ¢, £/,
and B. Theforce constantsderived in[1] are consistent with the values of the third-order constants
and with the three phonon deformation potential s but return values of 5.21, 3.32 and 11.33 for the
three pressure derivatives on which they are supposed to be based. A clueis provided by Egs. (7)
in[1] where two of the three expressions contain twice the correct contribution of second-order
constants: infact al three derivativeshave been so used. Theerror arisesfrom theinappropriate use
of equations devel oped by Thurston and Brugger [22] to facilitate the determination of third-order
el astic constantsfrom ultrasoni c measurements by including compensation for changesin specimen
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dimensions under stress.

One of the conclusionsdrawn in[1] wasthat theforce constants  and # made arelatively small
contribution to the elastic constants but were crucia to fitting the phonon deformation potentials.
The present results make this point even more strongly: thetwo constants almost compl etely cancel
and provide less than 0.5% of the elastic constants.

All the calculated anharmonic constants have been entered in Tables6.4 and 6.6 in the next
Section.

6.5 Summary of results

Theinner elastic constantsand internal strain parameters are shownin Table6.4. Most of theseare
appearing for the first time.

Table 6.4: The inner eastic constants and internal strain parameters. Units are GPaA~! for D,
GPaA~2for £, GPaA—3 for I/ and A for A.

Inner elastic constants Internal strain

D, 466 FE, 5619 A, —0083
¢, 0093 0.108°

Dy, —259 By, -2705 Ay, 006 139"
Dy, —529 FE,, —998 Ap, 079 1110
Dy —1028 P, —1860 Fp, —2879 Ag, 132 1.96°

@ Reference[17]

Only £, and A,,/(, are known experimentally (see Table6.1). The calculated value of £,
is just 1.5% too large whereas ¢, at 0.093 is somewhat smaller than the 0.125 measured. The
only other calculation of ¢, is dueto Nielsen[17] who used local density functional theory with
ab initio pseudopotentias. It isintriguing that the value he obtained in the course of fitting all the
elastic constantsto the L DA output was 0.092(2), essentially the same as the present one. Thevalue
he actually reported, 0.108(1), was obtained by a quite separate, albeit more direct, calculation.
The possibility that the experimental value is too large follows from the fact that the sample was
subjectedtoauniaxia stressof 6.2 GPaparallel to[1, 1, 0]. Thisislarge enoughtoinduce quadratic
componentsin the inner displacement and leads to an effective parameter

4
e =— P (Agy+ 0(S1pA114+ (S1 + S15)A100))- (6.39)

Inserting calculated values shows that the experiment probably yielded too high a value in the
ratio 0.087 to 0.083. Thiswould reduce ¢, to 0.119, a shift of 5%, well within the already large
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experimental uncertainty. At the third order the present values are rather less than those obtained

in[17].
The decomposition of the elastic constants into partia and internal contributionsis shown in
Tables6.5 and 6.6.

Table 6.5: The second-order elastic constants: stiffnessesare in GPa, compliances arein (TPa) 1.

Present work Observed Abinitio Observed

C,, Patid Internad Total Ref.[15] Ref.[17] Ref.[19] S;; Total Ref.[15]
c,, 10723 1072.3  1079(5) 1050(10) 1104. S, 0.958  0.949(5)
Cpy 130.7 130.7 124(5)  127(4) 149. S, —0.104 —0.098(3)
Cha 577.8 -39 5740 578(2) 550(5) 581. S, 1.742 1.730(6)

Table 6.6: Thethird-order elastic constants: stiffnessesare in GPa, compliances arein (TPa)~2.

Present work v,0,efit  Abinitio
C,; Patid Internal Tota  Ref.[§] Ref.[17] Sk Total
C,,  —6475. —6475. 6260 -6300(300) S5, 4.609
C,  —1947. —1947. 2260 —-800(100) S, 0.936
Cios 982. 982. 112 04000 S,,; —1.698
Claa 91 24. 115. —674 0(300) S, —2230
Clss  —3079. 8l. —2998. 2860 -2600(100) S 7.808
Cysg —355. 219. 135 —823 —1300(100) S, 0.716

At the second order additional abinitio cal cul ations, inwhich thefull-potential linear muffin-tin
orbital (FP-LMTO) method has been used, are available[19]. These are clearly of similar quality
to those in[17]. In spite of its simplicity the 4-parameter Keating model clearly matches the
predictions of more sophisticated cal culations with regard to elastic constants and the zone-centre
phonons.

At the third order the present results are quite similar to the previous 3-parameter fit of Grims-
ditch et al.[8] Thisis expected as it is known that the extra two parameters introduced in[1] and
used here have their mgjor impact on the phonon deformation potentials. Nielsen’s calculations
provide the only theoretical comparison. These have been included even though they are quoted to
only 2 significant figures. The two largest constants, '}, and C',,
with thiswork but C' .. seems rather inflated, the present value is much more in keeping with the
relative size of this constant in other diamond-structure materials.

The calculated compliances are essentialy of the same quality as the stiffnesses. They can be
used directly to give the linear compressibilitiesat second and third order: & = 0.749 TPa~! and

are in reasonable agreement
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K = 6.83 TPa~2. The corresponding volume compressibilities are k, =3k =225 TPa! and
K, =3K =205TPa 2

6.6 A modified Keating model

Thereis adrawback to the use of the Keating model: its parameters are not transferable. Thisfact
apears to have passed unnoticed because the model has been applied exclusively to structures with
thesame atomic configuration, i.e. thetetrahedral arrangement common to diamond and zincblende.
The problem arises from Keating's inclusion of the structure-specific lattice parameter « into his
definition of strain[10]. It manifestsitself most clearly in the attempt to account for the elasticity
of hD which should be almost the same as that of cD insofar as the atomsin the two structures have
precisely the same nearest neighbour configuration. The issueis resolved by a simple redefinition
of strain.

6.6.1 Cubicdiamond referred torhombohedral axes

The simplest way to illustrate the non-transferability problem is to refer the elasticity of cD to
rhombohedral axes. If these are taken to be Oz, || [110], Oz, || [112] and Oz, || [111] the
resulting sets of eastic and inner elastic constants have the forms appropriate to the rhombohedral
Lauegroup RI. Each set dividesinto two subsets. thegroup of el ementsthat correspondto hexagonal
symmetry and the group of elements that disappear if there is no rhombohedral symmetry. The
transformed partia e astic and inner elastic constants are given in terms of the cubic constants by
the expressionslisted in Table4.4 and Table5.2. Total elastic constants transform in the same way
asthe partial constants because any inner elastic contributionsto them transform compatibly.

The Keating parameters are not tensor components and thereisno rulefor their transformation.
The Keating expressions for the partial and inner elastic constants can be transformed, however,
and giverise, for example, to

081: S(a+ﬁ* —o+7)
etc., where « is the lattice parameter of the cubic unit cell. The harmonic energy per cell in the
cubic systemis given by (6.27). This energy does not change when the axes are rotated and nor
dotheA,; and A, being differences of scalar productsand thus independent of coordinate system.
Yet we would not expect to find « appearing in the equation if we were starting directly from the
rhombohedral description, which involves a unit cell containing six atoms and |attice parameters
a, = a/\/2 and ¢, =V/3a, seeFig.4.1. If (6.27) isused with ¢, in place of a (explicitly in the
initial factor and implicitlyinA,; and A, ) itis necessary to halve the harmonic Keating parameters
to regain acceptabl e second-order constants, the same bulk modulusfor example. Similarly, for the
anharmonic energy and third-order constants, division by 21/2 is necessary. Using the parameters
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deduced earlier in this way generates the quasi-rhombohedral partial and inner elastic constants
listed in Tables6.7 and 6.8.

Table6.7: Calculated second-order partial and inner el astic constants of cubic diamond with respect

to both cubic and rhombohedral axes. Units are GPafor C'?,, GPaA~1 for D.; and GPaA-2 for

15"

Cubic Rhombohedral Cubic Rhombohedral
% 10723 9 11793  D,, 466 Dy 38.0
% 1307 Y, 95.0 Dy —269
9, 5778 (Y 59.4 Dy —269

C% 12150 Dag 53.8
c9 5065 F,, 5619 E, 5619
c9,  -505 Es 5619

Table 6.8: Calculated third-order partial and inner elastic constants of cubic diamond with respect

to both cubic and rhombohedral axes. Units are GPafor C9,,, GPaA~1 for D,y GPaA~2 for
B and GPaA~3 for Fiipe
Cubic Rhombohedral Cubic Rhombohedral Cubic Rhombohedral
c9, -6475 (9, -12317 D,, -259 D, -1161 E,, -2705 E,, -3711
c9, -1947 %, -130 D,, -529 D, -189 K., -998 F,, —662
c%, 982 (9%, 1484 D, -1028 D4 275 B, -1860 E,, —327
0 91 (9, -10520 D, —353 Es —1525
C% 3079 9, 304 Dy, —243 B —1189
C% —3%5 9, -—1371 Dys 821 Egy =327
9, —2833 Dy  —23 Eg,  —4047
% —1610 Dy —39 El, 474
O —3482 Dy, 610 B\ 474
C%s  —196 Dy,  —389
%, 185 Dgys 538 F),, —2879 F,, —2351
9, 164 Dggy  —2596 F, 1662
9%, 754 Day, 94 Py —3324

c9,  —908
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6.6.2 Recastingtheenergy expressions

The simplest satisfactory solution emerges if the « =2 and o~ factors are removed from £ and
E®._ Additionally acosmetic alteration in the coefficients of individual termsin £® and E© will
remove various powers of 2 whose presence is due to Keating's use of «/2 in place of « in his
original definition of strain. The modified energies per cell become

2 4 4
2 _ 1 2 " a2
O = 1} (aA“. 3 (502 + o, +A A+ TA“.A],J,)) (6.40)
s=1 i=1 j=1
and
2 4 4 ,
3 — 1 3 3 2
E® = 1} (»m“, 3 (603 + (B, + A, A2 (6.41)
s=1 =1 j=1
2 2
+77(Aii + Ajj)Aij + OAiiAijAjj + gAiiAjj(Aii + Ajj)))

where the prime on the summation indicatesthat j # i. The previous notation has been retained so
that confusion is avoided: expressions for elastic constants will change (as shown below) but the
conceptual foundation of the model remains the same.

6.6.3 Modified Keating parameters

Identification of the old and the new energy expressionsindicates how the parameters of the model
must be modified: for example

2
mod = 2 (6.42)
and 16

The modified results for all the parameters deduced for cD by least squares fitting in Sec. 6.4 are
listed in Table6.9 in two different units.

Table 6.9: Modified Keating parameters

| Previous Modified
o  1009GPaA | 1586GPaA~!  0.990ev A4
3 840 132.0 0.824
o —234 _184 ~0.115
21 3.3 0.021
~ -1198GPa | —1408GPaA-3 —0.879eVA-6
5 166 195 0.122
¢  —566 ~99.7 ~0.623
n  —138 _243 ~0.152
0 143 50.6 0.316




6.6 A modified Keating model

105

6.6.4 Modified cubic diamond referred to cubic axes

All that remainsisto collect together the modified expressionsfor the different categories of elastic

constant. Powers of 4/a in the unmodified expressions for the inner elastic constants and the

internal strain arose from components of the unstretched bond and are replaced here by powers of

V/3/r,. At the second order

Sk

%(04 +38* — 20 +3r)

%(04 — 3% — 20 +37)

%(04+ %ﬁ* — 20 +37)
g(a+ﬁ* —20—7)

—ﬁ(a—ﬁ -7

——(04+ﬁ +20 — 1)
2r0

o oa— 3 -7
_%(awuzf—r)

where r isthe equilibrium bond length. Also

2 2
Eil)l E&l)z__ 2( o — 3% + 20 + 37)

represent the anharmonic contribution to the harmonic energy.

At thethird order

Clll

3
46— 20— 0 +60)
a3
T5(3) — 35 +2c — 67— 39 +18¢)
“(7+35 2¢ — 27— 0 +6¢)
1—6(37+35—26—677+0+2€)
a3
—(37—35+66—677—30+2€)
a

(’V 2n+0 — )

3
£(3 35— 2¢ — 27+ 30 +26)

3
6\/_(37+35 2¢ — 2n+6 + 2¢)

(6.44)

(6.45)

(6.46)
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e
D156 = 6 (3 —2n+0 — 65)

3
ES = 1—678(37+35+66+2n+50+25)

3
Q) = a_i — 35— 2c+2n+60 +
B 167‘8(37 30 — 2¢+2n+6+2)
3

a® 3
Eie = 1—6—2(37+277—0—6€)

33\/_
Py = 15 = (3y + 61 — 30 — 69).

Thefull £, and F,,, are then given by

Ey = Eizl)l + Eﬁ)l (6.47)
_ 2 3
E112 - E§1)2+ Eil)Z
as before.
6.7 Summary

The origina goal of finding a simple model to characterize both the harmonic and anharmonic
aspectsof theelasticity of diamond has been achieved: the 4/5-parameter harmonic model provides
an excelent fit to the second-order experimental data and the 5-parameter anharmonic fitting
predicts third-order elastic constants that are in reasonable agreement with both a previous 3-
parameter model and an ab initio calculation. Fewer parameters always lead to a poorer fit.

The single unexpected outcome has been the implication, supported by an earlier ab initio
calculation, that the internal strain parameter, ., is possibly even smaller than observed, where it
isdready lessthan 25% of the valuesfound for other group IV elementsand 111-V semiconductors.

Finally the Keating model has been recast in a form that makes the parameters characteristic
of the bonds alone, and not dependent on the dimensions of the unit cell chosen to describe the
structure. Thismeansthat the elasticity of cD can bereferred to rhombohedral axeswithout altering
themodel parameters and that these parameters can be transferred unchanged to hD, as exemplified
in Chapter 8.
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Chapter 7

Hexagonal graphite: review of data, previous calculationsand a fit to
the modified anhar monic Keating model

7.1 Introduction

The (amost?) exclusive use of the Keating formalism in connection with cubic diamond- and zinc-
blende-stucture materials has led to itsidentification as amodel of the covalent bond. In fact there
isno ‘physical’ content in the Keating model—it issimply away of associating strain derivatives of
energy with the structural variables, interatomic separations and angles, that are thought likely to be
significant for whatever reason. In this Chapter | extend the modified Keating model to hexagonal
graphite.

The elasticity of hG is a challenge from both theoretical and experimental points of view on
account of the extreme anisotropy of the structure. If the elasticity of cD is referred to cartesian
axeswith Oz, || [1IO] and Oz || [111] the greater part of the resulting quasi-rhombohedral set of
elastic constants (given in full in Chapter 6, Tables6.5 and 6.6) may be compared directly to the
hG set. Both the differences and the similarities are startling: hG's C'y, at 38 GPais a mere 3%
of its cD equivalent, 1212 GPa, whilst the combination that relates to uniform strain within layers,
C', +C,, 181240 GPain hG and 1270 GPain cD. ThushG is as stiff as cD within alayer but 30
times more compliant between layers. A consequence of thisis the ease with which irregularity of
stacking can take place and accounts for the fact that single crystalline regions of natural graphite
are awaysboth limited in extent and contain a mixture of the hexagonal and rhombohedral forms.
Such materia cannot be used for ultrasonic determinations of el astic constants but, in powder form,
can be compressed and changesin the | attice parameters followed by X-ray diffraction,[22, 27]. In
thisway both second- and third-order compressibilitiesmay be determined.

Second-order elastic constants may be obtained from ultrasonic experiments on compression-
annealed pyrolytic graphite, [5, 11, 12]. This materia consists of layersthat are stacked with high
precision (c-axes parallel within 0.5°) but whose a-axes are distributed at random. In spite of this
itistill possibleto find the single-crystal constants because second-order elasticity isisotropicin
the basal plane, rendering the randomness invisible. This isotropy does not extend to the third-
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order éastic constants. Since the latter are usually measured by determining the uniaxial stress
dependence of ultrasonic wave velocities through single crystals it is unlikely that they will be
determined directly in the foreseeable future. Some combinations may be determined indirectly
through the pressure dependence of the second-order constants, however.

The theoretical challenge arises from two sources. Firstly there is the relative complexity of
the structure. The basis consists of four atoms, none of which occupies a site with inversion
symmetry. Thus, as shown in Chapters4 and 5, there are numerous inner elastic constants besides
the 5 independent second-order and 10 independent third-order constants for amaterial belonging
toLauegroup HI. To extract afull complement of components using any model inwhich the energy
isnot asimple function of interatomic separations, unit cell volume etc., requires the cal cul ation of
the energy for more than 280,000 configurations! Thismakesthe devel opment of aparametrization
of the bondingin hG highly desirable.

Secondly there is the anisotropy. It is often reasonable in the case of close-packed structures,
such as the FCC and the HCP, to fit L ennard-Jones potential sto second-order el astic constants and
to transfer the parameters to defect situations. This cannot be done for hG: there is no way to
define a pair potential that can represent a binding energy of 5 eV/atom and a nearest-neighbour
distance 1.42 A within alayer as well as the values 0.02 eV/atom and 3.35 A between layers, [7].
To improve the situation an empirical potential for carbon invoking 3-body contributions was
introduced by Stillinger and Weber, [36], and Tersoff produced another that takes variable atomic
coordination into account via a many-body term, [38], giving a reasonable account of the in-plane
bonding. This was extended by Nordlund et al., [34], who added an interaction to accommodate
the weak interlayer bonding. A further development, due to Heggie, [19], resulted in a carbon
potential capable of interpolating smoothly between sp? and sp® configurations. Part of this
potential involved Keating-like terms, though these were limited to just the bond-stretching and
bond-bending ones of the original [23] model. As the development and optimization of a Keating
model has been so successful for ¢D, [3, 15, 23, 24] (and Chapter 6!) | felt it worthwhileto extend
the ideas to hG. The elastic constants fall into two groups. one contributed to principally by the
sp?-bonding interactions within the graphene planes and the other by 7-bonding between planes.

In Sec. 7.2 1 review the experimental dataand justify my model. The development of the model
iscarried out in Sec. 7.3 and the fitting and the results are presented and discussed in Sec. 7.4.

7.2 Modelling the elagticity

7.2.1 Appraisal of input data
7.2.1.1 Atthesecond order

Thefive second-order elastic constants of pyrolytic graphite were determined by Blaksleeet al. [5]
and three of these are taken as target values here. Revised values are used for C';; and C'y,.
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Valuesfor C',, ranged from 0.18 to 0.35 GPa and are very small. They arise from the anoma-
lously low velocities of transverse ultrasonic waves propagated along the c-axis and stem from
the mobility of dislocations. When the latter is eliminated by neutron irradiation values up to 5
GPa are found. The high values are believed to be characteristic of ideal single crystal material.
Sensitivity to the state of the crystal has been demonstrated by Grimsditch[16] using Brillouin
surface scattering. He confirms the value 5.051+-0.35 GPa found earlier for a sample of natural
graphite[17] and confirms also what appeared at first sight to be a contradictory value 3.251+-0.015
GPa, reported in[26] for highly oriented pyrolytic graphite. The difference is consistent with the
influence of crystallitegrain size on the speed of surfacewaves. The higher val ue has been adopted
here.

Zhao and Spain[41] have used their compressibility data to probe the linear modulus B (=
1/k,) and present a case for raising the value of (', from 15 GPa to 224+-2 GPa. Unfortunately
they have inadvertently used the expression for the planar modulus! If their procedure is carried
through correctly the value of C', ; islowered to 7.9+:3.5 GPa.

Five of the six zone-centre optic mode frequencies are known of which two can be converted
directly to inner elastic constant values. The E;, mode[30, 31] at 1587 cm~1 (47.58 THZ) gives
EX2 =253.0GPaA~2and theA, mode[32] at 868 cm~* (26.0 THZ) gives E32 = 75.66 GPaA-2,

7.2.1.2 Atthethird order

The anharmonic part of the potentia determines the non-linear part of the compressibility and the
pressure derivatives of the second-order constants and of the zone-centre optic mode frequencies.

Theearly work on the compressibility of graphite carried out by Lynch and Drickamer [27] has
been examined and their tabulated values of a/a, and ¢/ ¢, fitted to quarticsin p. Thisgivesfor the
linear compressibilitiesk, = 14.4 x 10~* GPa~* and k_ = 2.24 x 10~2 GPa!. Theformer value
is high compared to that derived by inversion of the C'; ;, 6.4 x 10~* GPa*, and casts some doubt
on the a(p) measurements. The value of £ _ is much closer to the inversion value of 2.7 x 10-2
GPa~1. Other experiments[5, 12] gave (2.6840.13) x 10~2 GPa ! and (2.440.2) x 10~2 GPa 1.
The non-linear compressibilities are K, = 2.8 x 1074 GPa~? and K, = 4.66 x 1073 GPa 2.
Thisvaue of K is actually rather large and indicates a perceptible non-linearity in the in-plane
compressibility. Kelly [25] observesthat thisnon-linear variation of « cannot be correct in thelight
of the work of Hershbach and Laurie[20], in which indirect information on the anharmonicity of
in-plane bonds is obtained by analysing C-C bond force constants. Zhao and Spain[41] report
that the pressures in[27] are probably overestimated increasingly with higher pressure, thereby
introducing the suspect non-linearity into the pressure dependence of «. Their own work shows no
such behaviour.

A more recent study of finely ground natural graphite by Hanfland et al.[18] presents com-
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pressibility data via a one-dimensional analogue of the Murnaghan equation of state[29]:
rfro = (3 /Bp+ 277

wherer isa or c, ﬁgl = —(d|nr/dp)p=0 =k, isthelinear compressibility and 5 is the pressure
derivative of 3. The valuesk, = 8.0 x 10~ GPa~! and k_ = 2.8 x 1072 GPa! are implied.
Expansion of the above expression to second order in p leads to the identification

=2 is
k2
and their value of 10.8 for 3’ when r = ¢ thenimpliesthat &_ = 10.0 x 10~3 GPa 2.

The full set of pressure derivatives of second-order elastic constants was first presented by
Gauster and Fritz[11]. Thevalueof '), at 0.0023 was problematic, likeC',, avictimof dislocation
mobility. A later study[12] reassesses the derivative to be 0.81+0.15 and also raises the earlier
value of C7, from 9.6 to 14.6+1.1.

The Raman shiftsunder pressure of the Ezg modes have been measured [18] and yielddf /dp of
0.140 and 0.145 THz(GPa)~* for the Ezg2 and Ezg1 modes respectively. Similar measurement [2]
ontheB, ; modegivesdf/dp = 0.572 THz(GPa)~ 1.

7.2.2 Justification of model

Asindicated in the Introduction it is the large anisotropy of graphite that makes the modelling of
elastic constants particularly difficult. Most early work, as reviewed in Kelly,[25], concentrated
on explaining the interlayer constants, C'y,, €'y, and their pressure derivatives. In particular the
experimental work of Blakslee et al.[5] and Green et al.[12] was followed by theoretical studies
using, firstly, simplepairwisepotentials (L ennard-Jonesand exponentia core) in [13] and, secondly,
parabolic and other band models for the electronic contributionsto the constantsin[14].

In aseparate investigation| have used the Ewald summation technique [10] to calculate thefull
spectrum of contributions to elastic and inner elastic constants through third order for al inverse
powers of atomic separation from n = 4to n = 14. It wasimpossible (a) to combine any two of
thesein such away that the structurewasin equilibrium at the observed | attice parameters, i.e. with
thefirst-order constantsC'; and C'; simultaneously zero, or (b) to combine any threein such away
that '} = C'; = O without C'y; being negative and C',, dwaysfar too small or negative. In addition
all zone-centre optic mode frequencies involving the ngj were imaginary.

The notion that elastic constants may be simulated by any combination of pair potentials can
be ruled out by reference to one of the two second-order Cauchy relations. Central forces within
the graphene planesimply €9, = 3C9,. The observed valuesare ', = C?, — A = 1060 GPa and
Cy, = C% +A =180 GPa, where A istheinternal strain contribution. This gives C'9, = 930 GPa,
(9 =310 GPaand A = —130 GPa. A value of |A| equal to 40% of C'?, is unreasonably large,
implying enormous internal strainin total contrast to cD where it isvery small. Thus one expects
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strong non-central forces withinthelayers. The second relationisC',; = C',,. Asshown above the
relevant valuesare C';; = 7.9+ 3.5GPaand ¢, = 5.05+ 0.35GPa. Withinthelarge experimental
error the Cauchy relation is satisfied although the quoted value of (', , exceeds that of ', by 60%.
| therefore suspect and assume the presence of weak non-central forces between the layers.

Nemanich et al.[32] who reported the first experimental determination of the A, mode fre-
quency, 868 cm—1, drew attention to previous cal culations based on various force field models in
which frequencies in a wide range from 600 cm—? to 1300 cm—! were predicted. They asserted
that the nature of the lattice dynamics of graphite is such that even a valence force model with
bond-stretching, bond-bending and three-body terms cannot describe the A, mode: afour-body
force, characterized by a puckering of the layer planes, isrequired. This problemisnot found with
the model developed here.

Nemanich et al. [30] measured the E,2 frequency aswell asthat of theE,  mode and found the
splitting between them to be 150 GHz. They argued that to fit thew(E, ) > w(Ezgz) observation it
isnecessary to include second-nearest-nei ghbour out-of-planeinteractions, a conclusion supported
by Al-Jishi and Dresselhausin their | attice-dynamical model [1]. Such interactionsareincludedin
this devel opment.

7.3 Themodified Keating model

The structure of hG isshownin Fig. 7.1 and fully described in Chapter 4.

Figure 7.1: The structure of hG with a unit cell indicated.

| also use Bernal notation[4] in which theinequivalent sitesare designated A (sublattices3 and
4) and B (sublattices 1 and 2).
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7.3.1 Thestrain variables

With four atoms in the basis the strain variables are more complicated than those of ¢D because of
the three distinct inner displacement vectors, ¢ *. The strains may be expressed as

A =2r0p pi042pi0omy omom (7.1)
i p 'Ipg' q p°p “p°p
and
A = Zrion P04 pi0yp 4 pd0,m o op o (7.2)
i p 'pa’ q p°p 'pp “p°p

where terms of order three and higher have been omitted and the significance of 2™ and 7 is as
follows. Consider the reference atom belonging to sublattice 2 in the central layer in Fig. 7.2. It
has three bondsto atoms on sublattice 4 within the layer and four sets of three bondsto sublattices
1 and 3 in the layers above and below. When i refers to sublattice 1 2™ = —('! (minus because a
positivevalueindicates 2 relativeto 1, 3relativeto 2 or 1, or 4 relativeto 3, 2 or 1). Similarly when
i refers to sublattice 3 7™ = +( 2 and when it refers to sublattice 4 then 27 = (2 + (3 because ‘4
relativeto 2’ isequivaent to ‘3 relativeto 2’ plus‘4 relativeto 3'. Similarly for 7 and z#, and for
the remaining reference atoms.

7.3.2 Themode parameters

Theédectronic structure of graphiteis successfully approached by the Slonczewski-Weiss-McClure
(SWMcC) model [8, 9, 28, 35, 37] and leadsto a parametrization in which the energy of =-bonding
is associated with various vectors (AA’, AB’, BA’ and BB') between adjacent layers, vectors (AA”
and BB"') between alternate layers, and with the nearest-neighbour in-plane vectors (AB and BA).
Table 7.1 shows the SWMcC parameters deduced by Charlier, Gonze and Michenaud [8] in their
first-principles study of the electronic properties of hG, together with a brief indication of

Table 7.1: The SWMcC model parameters v, (data and attribution taken from [8]) and the bond
interactions selected for the Keating model.

v, Vaue(eV) Arisingfrom Bond-stretching Bond-bending

Yo 2.598 AB and BA in-planeinteractions AB BA AB/AB BA/BA

Y, 0.364 AA’interlayer interactions AA’ AA’IAB
(determines width of 7= bands at the K point)

Y4 0.177 AB’ and BA’ interlayer interactions AB’ BA’ AB'/AB’ BA'/BA’

Y3 0.319 BB’ interlayer interactions BB’ BB'/BA’

Vs 0.036 AA” dternate layer interactions

Yy —0.014 BB” dternatelayer interactions

76

(determines = band overlap)
—0.026 Chemicd shift between A and B atoms
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the significance of these parameters, as given in their Appendix. This providesaguideto selecting
specific sets of vectors to parametrise the easticity of hG. Corresponding to the four largest
parameters | focusinitially on four sets: one planar and three interlayer.

1. The planar part of the energy per cell is modelled analogously to cD. The three nearest-
neighbour A atomsto a B atom, see upper right portion of Fig. 7.2, giveriseto three 2-body
‘bond-stretching’ BA . interactions, three 3-body ‘bond-bending’ BA, BAj interactions and
various couplings between them. The same number of interactions arise from each A atom.
Up to four harmonic parameters («, 3, o and 7) and six anharmonic parameters (v, 4, ¢, n, 6
and &) may be needed here.

Figure 7.2: Configurations of bondsin the Keating model. Filled atoms are Berna type A, empty
atomsaretypeB. Upper right: threein-plane BA bonds. Lower right: an AA’ and three AB’ bonds.
Lower left: three AB’ bonds. Upper left: a BB’ and two BA’ bonds. The associated interactions
are described in the text.

2. Thisset comprisesthe 2-body AA' interaction between nearest-neighbours (NN) in adjacent
planes, see lower right portion of Fig. 7.2, and the 3-body interactions that couple the AA’
with the three neighbouring obliqueinterlayer vectors AB; . Up to ten more parameters may
be needed (with superscript’).

3. Thisset comprisesthethree 2-body AB! next-nearest neighbour (NNN) interlayer interactions
and the three 3-body interactionsinvolving AB! AB; pairs, see lower |eft portion of Fig. 7.2,
together with the symmetrical group of 2-body BA’ and 3-body BA', BA; interactions. Up to
ten more parameters may be needed (with superscript ).

4. This set comprisesthe three 2-body BB! interaction between nearest-neighboursin adjacent
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planes and the 3-body interactions that couple each BB with the two closest neighbouring
obliqueinterlayer vectors BA; see upper left portion of Fig. 7.2.

These sets are also shownin Table7.1 in line with the SWMcC parameters v, with which they are
associated. Oneset can be discarded, however, because of geometrical interdependence. Thisarises
asfollows. Starting and finishing at a B site there are several loops of four vectors, symbolically
BB’ + B'A + AA’ + A'B = 0, which may be used to expressal A and A belonging to set 4 in
terms of the strain variables of the other three sets.

With a possible 12 harmonic and 18 anharmonic parameters arising from the remaining three
sets| am loth tointroducethe AA” and BB interactions. In fact theseinvolve vectorsjoining pairs
of atoms on the same sublattice and their ‘bond-stretching’ aspect thus makes no contribution to
theinner elastic constants.

7.3.3 Theenergy

The three sets of parameters defined above, together with the bookkeeping, result in expressions
considerably lengthier than thoserelating to cD. Not all terms are destined for use. In keeping with
the streamlining introduced in the modified model al numerical coefficients are unity. The halves
outside the summations compensate for double counting. The second-order energy per unit cell is

4
@ = %Z
s=1 1

3 3
3 (ogAiZZ. +3°(802 + o0, + B ), + DA, ) (7.3)
=1 =1

3
!
+a02 43 (B2 40 (B DA+ T, )
=

4 2 3
3 (O‘/Ai' +D (0 + 0B+ B0+ A )) '
s=3 =1 7=1
The third-order energy per unit cell is

3

4 3
3y - 1 3 "(5A3 2
B9 = 3 E :(7Aii+§ : (645 + ey, + D, )5
s=1 =1 =1

+ (D2 + D2 )N, + 0D DD +ENA (D, +A ) (7.4)

Yy Iy

3
3 " 51p3 2
I Z (8”07 + €Dy, + B, )D7,

=1
1p2 2 1" "
T (B AT+ DD D+ DA B Ajj)))
4 2 3
1 3 3 2
> ('VIA% FD(FD] + B+ D)8
s=3 =1 7=1

+ U/(Azzi + AJZ,],)AZ,], +0A NN +EN N (A“ + Ajj))) .

ity 7 Iy
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7.3.4 Theelastic constants

Every independent el astic and inner el astic constant has been obtained in terms of these parameters
by applying the generalized method of homogeneous deformation (described in AppendixA) to
a unit contribution of each Keating parameter in turn. Writing each constant M, as a linear
combination of Keating parameters K, with coefficients 1 and a common factor F.: M. =
F;x 3 p; K givestheresults set out in Tables7.2, 7.3 and 7.4.

Table 7.2: Coefficients of the modified Keating parameters in the second-order partial and inner
elastic constants. The common factors are expressed in terms of the lattice parameter « = 2.46 A
and the interlayer spacing d = 3.3495A. t standsfor /3.

Planar Interlayer: NN Interlayer: NNN
Factor o ﬁ o T o ﬁ/ o 7 o' ﬁ// " "
9 2ta?/3d 1 1 -2 2 2 -4 2
9, 2ta®/9d 1 -1 -2 5 2 _2 _4 10
Cia 4td/3 2 2 4 -4 4 8
37,2 1
Cas 16td®/a i 4 2 2 4 8 4
Cua 4td/3 1 2 4 2 4 -4
Dis a/3d 2 -2 -1 -2 4 -4 -2 -4
D3 a/30 -2 2 1 2 2 4 -4 -2 -4
B 2t/3d 2 2 -2 4 2 4 -4
B2 2t/3d 2 2 -2 4 2 4 _4
Ef 2t/3d 1 4 2 4 -4
B 26/3d 2 1 2 =2 2 2 4 2 4 -4
£ 4td/a® 1 2 4 8 16 8
1 4td/a® 1 2 4 8 16 8
B3 4td/a® 2 4 2 4 8 16 8
33 2 4
EE Atd/a 2 5 10 4 4 8 16 8
11(2
E111(,1)12,331 2t/3d 2 -2 2 4 4 -4 4 8
12(2
E111(,1)12,331 2t/3d 2 -2 2 4 4 -4 4 8
13(2
E111(,1)12,331 2t/3d 1 4 -4 4 8
33(2
E111(,1)12,331 2t/3d 2 -2 2 4 2 4 4 -4 4 8
Ellisszszss 8td/a? 1 1 2 4 8 4
Ellfsszszss 8td/a? 1 1 2 4 8 4
Ellfsszszss 8td/a? 1 2 1 2 4 8 4
Effsszszss 8td/a” z 5 1 2 4 8 4
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The common factors have been expressed in terms of the interlayer spacing d rather than the

|attice parameter ¢ to facilitate comparison with the treatment of rG in Chapter 9.

Table7.3: Coefficientsof themodified K eating parametersin thethird-order partial elastic constants
and the D and I tensors. Numerical dataasfor Table7.2

Planar Interlayer: NN Interlayer: NNN
Factor ~ & ¢ nn 6 & & ¢ o0 ¢ L S /A A O
oy ta*/d 1-1 2 -2 -1 2 2 -2 4 -4 -2 4
%,  8ta?d/3 1 1 3 3 -2 -1 8
Clas  32td%/3 1 213 3 -3 6 3 12
Caay  32td°/a? 1612 12 612 6 12 24 24 12 24
%, 2ta?d/9 1 4 12 -12 -6 12 24
O 2ta?d/3 1 4 12 2 4 -8
Cay  8td%/3 36 824 12 6 12 24
%  ta*/9d 3 2 6 1 -2 6 4-12 2 -4
C% ta*/9d 1-4 6 -2 -3 2 2 -8 12 -4 -6 4
C%s  8ta’d/9 1 1 3 6 -3
Dl 4ad/3 2 2 6 6 -6 6 -3
D3 4ad/3 2 412 6 6 -6 6 -3
Dl.  2ad/3 1 4 12 -3 -6 12 -12 -24
D} 2ad/3 35 8 12 -3 -6 12-12-24
Dy, a®3d 3 3-2 -3 -1 2 6 6 -4 -6 -2 4
D3, d%3d -3-3 2 3 1 -2 2 6 6 -4 -6 -2 4
D}, a3 -5-1 2 5 -1 2 -10 -2 4 10 -2 4
D3, a®3d 5 1-2 -5 1 -2 - -10 -2 4 10 -2 4
D%, 2ad/3 1 4 12 -12 -12 12 -6
D3,  2ad/3 828 12-12-12 12 -6
P a/3d 12 -3 -6 12 -12 -24 24 —6-12 24 -24 48
Fiz a/3d 12 -3 -6 12 -12 -24 24 —6-12 24 -24 48
FL3 a/3d 4 24 -6 -12 24 -24 48
s a/3d 4 24 —6-12 24 -24 48
s a/3d 2 8 24 -6 -12 24 -24 48
3 a/3d -12 3 6-12 12 24 8 24 -6 -12 24 -24 48
3 a/3d -12 3 6-12 12 24 6 6 12 24 -6 -12 24 -24 48
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Table 7.4: Coefficients of the modified Keating parametersin thethird-order £ tensors. Numerical
dataasfor Table7.2

Planar Interlayer: NN Interlayer: NNN

Factor v & e n 0 & ~ & & o 0 & A" & &y ¢
EL® 142/3d 6 1 2-4 12 2 4-8
EZ® 142/3d 6 1 2-4 12 2 4-8
B 1a?/3d 12 o 4_8
EB® 142/3d 6 1 2-4 12 2 4-8
ES® ta?/9d 6 -6 -3 6 12 12 12 _6 12 24
EZY 142/9d 6 -6 -3 6 12 12 12 _6 12 24
ES® 142/9d 2 12-12-6 12 24
EX® 142/9d 6 -6 -3 6 12 2 4 1212 -6 12 24
ES® ad/3 4 4 12 61224
EZO) ad/3 4 4 12 61224
B3O ad/3 2614 12 61224
RS Ad)3 68824 12 61224
By 2d/3 2 8 24 12 2448
Y 2d)3 2 8 24 12 2448
B 2td/3 412 2 8 24 12 2448
By 2d/3 3 612 24 12 2448
By 2td/3 91616 6 8 24 12 2448
Eg®  Atd/3 1 4 12 -12 2412 48
B3 Ad)3 1 4 12 -12 2412 48
B3 Ad/3 2614 12-12 2412 48
ERY  Ad/3 58 616 12-12 2412 48
Byl 8id®/a? 368 24 12 24484824 48
B 8id®/a? 368 24 12 24 484824 48
B3 8id®/a? 61212 612 12 24 4848 24 48
B 8id®/a? 41530321428 12 24 484824 48

7.4 Thefittingand theresults

As there is only a limited amount of experimental data it is not possible to fit more than a few
parameters. Even with an excellent match to all data there is no guarantee of uniqueness. At the
second order theinterlayer constantsare fitted first. The primary target data, see Table 7.5, are C'
(3. Cyy and E33, deduced from the frequency of the A, mode.

13
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Table7.5: Target data for the harmonic part of the modified Keating model. Unitsare GPafor €' ;
and GPaA~2 for E. .

Target Experiment ~ Assumed Fit
C13 7.9435" 7.9
Cas 36.5+1.0° 36.5
Cus 5.05+0.35° 5.05
B2 75.66:£0.09" 75.663
ER - F2+ES 75.65 75.65
L9+, 620.+28. 620.
5(A3, — Al -0.082  -0.082
e 0.115 0.115
cY 1063.85  1063.85
cy, 17615  176.15
Cyy 1060.4-20.* 1060.
Cho 180.+£20. 180.
B2 253.04+0.5° 253.0
ER g2+ 3 2516+05° 251.6

“Re-evaduation of conclusion drawn in Ref. [41]
'Ref.[5] °Ref.[16] “Ref.[32] “Ref.[30]

Inaddition thecombination E31— E12+E33 istentatively deduced from theval ues of thefrequencies
of the Blg1 and the Blg2 modes. No experimental value exists for the latter but in the lattice
dynamical literature[1, 33] it is shown as nearly degenerate with the A, mode—so aclose value
has been assumed. Interlayer interactions are responsible for the splitting between the E; and
Ezg2 modes. A near-perfect fit isfound by scanning possible sets of parameters interactively using
Mathematica software[39]. The parameters so found contributeto both C9; and C%,. Thesevalues
are subtracted from the observed values and, together with the frequency of the E; mode, are
used to determine the planar parameters. A degree of freedom exists because the experimental data
does not fix the (unknown) internal strain. In view of the extremely small value found incD | set
this arbitrarily so that %(Aie - A}G), which governs the in-planeinner displacement, was equal to
-0.082 and equivalent to a quasi-Kleinman parameter ¢,- of 0.115. The harmonic parameters are
listed in the upper part of Table7.7.

The anharmonic parameters were fitted by a similar process using the target datain Table7.6.
The quality of the experimental datais mixed and it was very difficult at first to find a redistic fit
at al.
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Table 7.6: Target datafor the anharmonic part of the modified Keating model. Unitsare GPa~? for
the K, and THzGPa~* for the f’. The ("}, are dimensionless.

‘ Target Experiment ~ Assumed  Fit
Cls 3.1+0.5° 32
Chy 9.640.8°

15.2+1.1° 14.6 12.9
Cla 0.8140.15° 1.9
['(Ey,y)  0.145+0.012° 0.147
f'(By,)  0572+0.020" 0.673
Cy 39.0+£3.9* 39.0
1, 11.0+1.1¢ 11.0
f'(Ey,)  0.140+0.001¢ 0.140
10°K 282¢1.92¢ O(7.5) 8.0
103K 4.66¢ 10.0° O(10) 119

“Ref.[11] °Ref.[41] °Ref.[18] “Ref.[2] °Ref.[27]

Eventual success depended on solving two problems. Thefirst of these occurred intheinterlayer fit
where a value near to zero was always predicted for [}, the pressure dependence of the frequency
of the B mode[18], one of the more reliable pieces of experimental information. It was resolved
when it was realised that ('), and f have identical dependence on the Keating parameters and
that afit could be achieved by raising the target value of (', from 0.81 to 1.9, about 60% of C".
This appears to be totally reasonablein that C',, is about 60% of C';,. The quantities C;; and f{
are similarly linked. Remarkably only three interlayer parameters are required and none of them
involves bond-bending. The second problem is the prediction of the third-order compressibilities
K, and K_. The former is heavily dominated by C',,, and the latter by C'3,.. Although these
stiffnesses are fully determined by the interlayer parameters the planar fit has to be obtained before
K, and K can be found. There is no reliable value for K but | have assumed that it will be
similar to that of ¢D in view of the great similarity of the planar elasticity of hG to that of cD, to
which attention was drawn in the Introduction. Interlayer fitsthat were otherwise satisfactory were
discriminated by the planar fit valueof K.

The planar fit is based on C',, C,, f; and K. Theseinvolve the six parameters in only four
combinations: 2v + 36, 4, ¢ + 8 — 4¢ and n + 20 — 4¢. In addition there isalinear relation between
the four targets limiting the number of planar parameters to three. | haveset n = § = ¢ = 0 and
solved for +, ¢ and ¢. The results of the anharmonic fitting are summarized in the lower half of
Table7.7.
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Table 7.7: The modified Keating parameters. Note the smaller units for the anharmonic interlayer

parameters.
Planar Interlayer
GPaA-! evA—4 GPaA-!  evVA-* GPaA-1 evA-4
o 26621 1662 |« 3955 0.2469 o 3.231 0.0202
3 24053 1501 | @  3.005 0.0188 " 0.288 0.0018
o 30.12 0188 | o/ -5.037 —0.0314

T 53.50 0334 |7 -6120 —0.0382 1" 1.447 0.0090
| GPaA—3 evA—S| MPaA—3 meVv A6 MPaA—3 mev A6
v —68713  —4289 |+ 2113 1312 4" —3562 —0.2247

§ -961.91  —6.004

¢ —36519 2279
¢ 605 ~0.0378

The most striking feature of the parameters overal is their relative size. The harmonic ones
drop roughly an order of magnitude in going from set to set: « to o’ to o, for example. Whilst
this is expected on the basis of the relative sizes of the various second-order elastic constants it
is no guide to the startling anharmonic patterns. Firstly the expected order of magnitude increase
in passing from harmonic to anharmonic planar parameters, « to v say, istotally reversed for the
two interlayer sets. Secondly it appears that v’ is more than 3000 times smaller than ~ implying
that anharmonicity is almost exclusively a planar feature. Thirdly the planar set has bond-bending
parameters of similar sizeto its bond-stretching onesin marked contrast to the interlayer setswhere
bond-stretching dominates.

The above fit trandates into the interna strain tensors and inner elastic constants shown in
Tables7.8 and 7.9.

Table7.8: Theinternal strain tensorsin A. The actual in-planeinternal strainisgivenby A}, + Afl
inonelayer and by A2, + A3, in the other. These components are equal and oppositeand thefirst
of themis given in the fifth column.

~ 2 3 2
io). AilJ. AZy AYy AilJ. +AY
16 -1.21 1.29 -1.37 0.082

136 0.7 -0.7 0.7 0
145 7.1 -7.1 7.1 0
211 -53.8 78.2 -102.6 244
222 544 -793 1042 -249
314 -1.2 12 -1.2 0




74 Thefitting and the results 122

Thevaue of thelinear interna strain was arbitrarily pre-selected. The components of the quadratic
internal strain have been included because they follow directly from the inner elastic constants, as
shownin Chapter 4. They do not affect el asticity below thefourth order. From aformal perspective

they appear well-behaved: for example the AL .. + A2 _ are all zero. Thisis certainly to be

UK UK

expected as y-components aone would be involved in the relative displacement of sublattices if
A and B sites were equivalent. The A% ot Ag ., are the only components that involve the planar

parameters, hence their large values.

Table 7.9: Theinner dastic constants. The D tensors are in GPa ,&_1, the E tensorsin GPa A 2

and the I tensorsin GPa A 3

1 3
Di, -195 D3, 20.0
3
Dis 24 D3y -2.4
3
Diss -1.6 D3 -1.6
3
D3, -6248. D3 6 6247
3
D}, 5434. D3, -5433.
3
Dy, -24 D3, -2.4
2 3 33
EF 2530 Ej? 2530 K3 092 K 251.6
12 13 33
E3 7566 FE32 7566 E33 163 E3 75.65
2 3 33
B, -4562.  EiZ  -4562.  EY 59 E¥ -4574

2 3 33

Efl, 1074, B, 1074 B, 61 B, 1062
Bl 139 EZ 139 EF, 17 EE 13.9
B -34  Ei% 34 EI 34 FEIL -34 E¥. 34
EY, 1147 EY 1147 EY 07 FE3 1028
EY, 450 EX, 450 FEX, -605 FEX, 27.8
759 pH2 7759 BB 01 FIZ -0.1

33 223 333
e 01 FE 7756  FXS 7756

Theinner elastic constants clearly reflect the contrast just noted between constantsthat involve
the planar parameters and those that don't.

The decomposition of the elastic stiffnesses and compliancesis shown in Table7.10. Thefive
second-order constants selected as targets came from various sources, including a re-analysis of a
previously modified value of C';;. Their inversion therefore generates a novel set of second-order
complianceswhich, sincethefitting procedure reproduced the experimental stiffnessesexactly, may
be taken as the de facto experimental valuesaso. Derived quantities, such asthe compressibilities,
follow directly, as shown in Chapter 5.
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Table7.10: Thecomposition of thecal culated el astic stiffnessesand the corresponding compliances
and compressibilities. Stiffnesses are in GPa, second-order compliancesin TPa~! and third-order
compliancesin TPa 2.

N Cry — Sty N Crik — Sk

IJ Patid Internd  Totd Totd | IJK  Partid Internal Tota Tota
11 106385 -3.85 1060.0 0973 | 111 —-8629.8 —-30225 -11672.3 7.0
12 176.15 3.85 180.0 -0.164 | 113 -14.6 6.7 -7.9 -3.3
13 79 79 -0.175 | 133 -1254 -1254 1.0

33 36.5 36.5 2748 | 333 -579.0 -579.0 11910.
44 5.05 505 198.0 144 -45 -4.1 -86 —-219.2
244 -9.0 4.1 -49 -3823

344 -75.0 —75.0 80696.
166 -58748 —-899.7 67745 34.9
266 20395 -1070.3 968.1 -10.6
366 -34 6.8 34 -5.7
. 0634 K, 8.0

_211 K, 11906.

. 284 K, 11922

The spectrum of the third-order stiffnesses of hG is shown, | believe, for the first time. The
C'; ;5 display the now-familiar planar/interlayer contrast. Whereas the magnitudes of the internal
strain contributionsto the second-order constantswere from 0.4 to 2%, at the third order they range
from 15 to 200%. On inversion to compliances just two components dominate, Ssq, and Sy, as
do S5, and S, a the second order. The great disparity between S,,, on the one hand and S, ;,
S113@1d .S, 5, ontheother is precisely what is needed to achieve the disparity between K and K .

The zone-centre optic mode properties are shown in Table7.11. The modes and eigenvectors
are described in Chapter 4. The two larger in-plane mode frequencies were targeted and there was
no difficulty in reproducing the experimentally observed 150 GHz difference. In their Born-von
K&rman | attice dynamical study [1], Al-Jishi and Dressel haus found, in agreement with Nemanich
et al.[30], that the above difference could be accounted for only by the inclusion of a second
neighbour interlayer interaction. They further added that all the zone-centre frequencies and elastic
constants, apart from €', 5, could befitted using only two interlayer and four planar neighbourhoods.
To fit both €', 5, which they took to be 15 GPa, and the frequency difference required extension to
four interlayer neighbourhoods. Whether the value of 7.9 GPathat has been used here would have
improved their fit isunknown: what | have shown isthat all the second-order elastic constantsand
zone-centre frequencies can be fitted using one in-plane and two interlayer sets of interactions.
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Table 7.11: The zone-centre optic modes. Experimental frequencies are given in both cm~* and

THz, the pressure derivativesin THz GPa 1.
Frequency f Derivativedf /dp
Mode Eigenvector Experiment  Calculated Experiment Calculated
E, 2=1:=23=0 1587.¢ 47.58 4758 0.142
22=1,23=23=0
~ 3 ~ 2 ~ a c
By AR {~0 15827 4743 47.43 0.140 0.140
z;z—zgz%, zgzo
1 ~ 2 ~ 3 ~ b ©
By, AR -HRAR 42° 126 1.41 0.145 0.147
z% ~ —zg ~ zg ~ %
A, 22=1:1=23=0 868.© 26.02 26.02 -0.52
~ 3 2 -
By, B -Br L, 50 25.74 0.97
1o 2 0 23~ d
By, ~BR-BNBNG 1274 381 3.82 0.572/ 0.673
“Ref.[31] °Ref.[30] °Ref.[32] “Ref.[33] °Ref.[18] /Ref.[2]

The pressure derivativesof thefrequencieswere based on three experimental data, two of which
were very well matched with the third overestimated by 18%. Of the remaining three derivatives
that of theE, modeisclearly very reasonable. The other two are larger in magnitude and opposite
insign. The actua variation of frequency with pressure for al the modesis shownin Fig. 7.3.
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Figure 7.3: Pressure-dependence of the zone-centre optic-mode frequencies.
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These results are particularly satisfying because they characterize the behaviour of a material
approaching a pressure-induced phase transition: the axial modes A, and Bi,2 show immediate
softening whilst aninitial hardening of B1qu isfollowed by increasing softening from about 9 GPa.
The frequency becomes zero, and the structure unstable, at 16 GPa. Thisvalue is perhaps a little
high because of propagation of error from the overestimated value of theinitial hardening.

Numerous investigations have shown that hG undergoes some sort of transition in just that
range: Bundy and Kasper [6] achieved the first synthesisof hD by subjecting well-crystallized hG
to astatic pressure exceeding 13 GPa and temperature above 1000°C; Hanfland et al. [ 18] observed
the Ezg2 Raman line, noting a broadening that began at 9 GPa and the disappearance of the signal
at 14 GPa; Yagi et al.[40] used a variety of high pressure devices and synchrotron radiation to
clarify structural details of the transition, finding that it occurred at about 14 GPa and that the
martensitically-transformed phase was hD.

75 Commentary

A widely-used aternative to valence force field or Keating models is the Tersoff potential for
carbon[38]. Its parametrization was undertaken by optimizing alarge number of cohesive energies
of carbon polytypes, vacancy formation energies, together with the lattice constant and the bulk
modulus of ¢D. The emphasis was thus on energy rather than energy derivatives. Recently an
interlayer potential of the Tersoff typewas proposed for graphitein[34]. | have tested thismodified
energy agorithm by incorporating it in place of the Keating energy algorithm. The results were
poor. For example C';; was down by 60%, C';, was very negative and C';, was down by 75%.
In addition €', ; and €', were essentially zero and some zone-centre frequencies were imaginary,
results indi cating i nsufficient bond-bending content in the interlayer modification. This highlights
the importance of having realistic energy derivatives.

The Keating model is a simple vehicle for carrying such derivatives through third order. |
believe that thisis the first time the mode has been extended rigorously to a non-cubic structure.
As a preliminary it was necessary to review experimental data and an erroneous modification to
C,5 Was identified and corrected. The parametrization is compact and involves only the nearest
neighbourswithinalayer and the nearest- and next-nearest neighbours between layers. The quality
of the harmonic fitting is very good, there was no difficulty in achieving a convincing fit, though
it must be borne in mind that the fit is not unique. The planar parameters have substantial bond-
bending character, qualitatively similar to those of cD (see Table6.9), whilst the interlayer onesare
biassed in favour of bond-stretching.

A single target, " ,, had to be changed (from 0.81 to 1.9) in order to obtain any credible
anharmonic fitting. The final result is particularly impressive in three respects. Firstly it gives a
good account of the pressure dependence of the remai ning four second-order €l astic constants, three
optic-mode frequencies and the two third-order compressibilitiesin terms of just six parameters,
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only one more than was necessary for cD. Secondly it gives an excellent account of the optic-mode
behaviour to be expected of a material that undergoes a pressure-induced phasetransition. Thirdly
the huge contrast between the sizes of the planar and the interlayer parameters emphasises the
difference between the covaent, strongly angularly-dependent, in-plane interaction and the weak,
almost central, interlayer interaction.

At first sight it appears paradoxical that the linear variation of « (small K ) and the quadratic
variation of ¢ (large K ) as functions of pressure[27] should be associated with the strong planar
and weak interlayer anharmonicitiesrespectively. The paradox arisesin theinversion of third-order

stiffnesses to compliances and stems from the strong anisotropy of hG. Because ', ,, iS S0 much

111

larger than C',,, thereciprocal nature of theinversion makes S, ;, very much smaller than S, and

333
so on. Thus K _ is dominated by planar anharmonicity, /', by interlayer anharmonicity and the

paradox isresolved. Thisargument will apply to other layer structures, such as hBN.
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Chapter 8

Hexagonal diamond: elasticity and zone-centre optic modesvia
transferred Keating parameters

8.1 Introduction

The possibility of a hexagonal form of diamond was first suggested by Kathleen Lonsdale in
1944[7]. When amineral having the expected X -ray diffraction pattern was subsequently found to
comprise over 30% of the diamonds in the Canyon Diablo and Goal para meteorites it was named
lonsdaleite[4] in her honour. It was suggested that the mineral formed from crystalline graphite
inclusionsby impact shock, either on collisionwith Earth or by earlier collisionsin space[5]. More
recently there has been a different suggestion: various laboratory simulations seem to favour its
formation by vapour deposition, most probably in apresolar, circumstel lar condensation process|3].
It has also been found, again accompanying cD, as an inclusionin Vietnamese rubies[2]. Far less
exotic but of more pertinence to this thesis, however, is its appearance in studies of hG under
pressure. As briefly indicated in Chapter 7 hG undergoes a pressure-induced phase transition to
hD at about 14 GPa, behaviour that is almost perfectly predicted by the modified Keating model to
which the hG elasticity data has been fitted.

hD is more complex than cD, with more elastic constants at both second and third order, and
with many more inner elastic constants. The formal details of the inner elastic constants and
the zone-centre optic modes were treated in Chapter 4 and the anatomy of the total second- and
third-order elastic constantsin Chapter 5.

As both cD and hD are sp3-bonded it is to be expected that tota energies, bond lengths, and
elastic constants will be very similar when compared in the appropriate manner. In fact some of
the lattice properties of cD and hD have been calculated recently [11] by a total energy method
using density functional theory within the local density approximation. Small differencesin tota
energies, bond lengths, and bulk moduli reflect the fact that both structures have the same first- and
second-nei ghbour environments, but different third-nei ghbour ones. Thefrequencies of zone-centre
optic phonons were also calculated: the triple-degeneracy of the cD Raman mode was partialy
lifted and the frequencies of the hD modes were about 2% smaller than their cubic counterpart.
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8.2 Thehexagonal diamond structure

Even though the Keating model islimited to first- and second-neighbourssmall differences can still
be accommodated as aresult of the lower symmetry of hD. The extra degree of freedom, resulting
from two lattice parameters in place of one, alows the equality of the four bond lengths to be
relaxed: the axial bond may differ in length from the three non-axia bonds. The structures of the
two diamond all otropes are described in Chapter 4.

8.21 Thequas-cD case

Thiscase, in which the atomic volume and all bond lengths are taken to be the same asthosein ¢cD,
isdepictedin Fig. 8.1.

PO

(@) (b)
Figure 8.1: (a) The triple-hexagonal cell for cD and (b) the primitive hexagonal cell of hD. The
numbers indicate the distinct subl attices on which the atomsllie.

Takinga,_ = 3.567 A thelattice parametersin the quasi-cD casearea = ac/\/i = 25222 A and
¢ =2a_/\/3=41188 A.. The volume per atom Q, = v/3ca?/8 = 5.6731 A2, The common bond
lengthis given by

ro = %c = %a (8.1
and has the value 1.5446 A.

8.2.2 Theactual hD case

The detailed study of the hG to hD transformation undertaken in[12] reveals a small departure
from the quasi-cD case. The lattice parameters extrapolated to ambient pressure are ¢ = 2.513(6)
A and ¢ = 4.171(5) A, indicating a slight decrease in the value of « but a 1.3% expansionin c. The
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¢/a ratio goes up from the ideal 1.6330 to 1.66 and remains constant to at least 30 GPa pressure.
In this case three bond lengths are given by

Tos = \/ %az + 4222 (8.2

o = 5(1—42)c (8.3)

and the fourth by

where z is the structural coordinate that is equal to 1/16 in the quasi-cD case, see Table2.8. The
measurements undertaken in[12] are not sufficient to give this parameter. If it is assumed that
the structure retains equal bond lengths then », = r, = 1.5474 A and z, which is given by
1 — 8z = 4a?/3¢?, changes from 0.0625 to 0.0645. This scenario seems unlikely—it appears to
take no advantage of the extradegree of freedom available. On the other hand the assumptionthat =
remains at 1/16 produces amarked inequality of bond lengths: r, = 1.5417 A and Toe = 1.5641A,
adifferenceof 1.5%. Theactual behaviour of hD probably liessomewherein between. Calculations
for both these extremes are presented bel ow, together with those for the quasi-cD case.

8.3 Modified Keating model

Now that the Keating model has been modified to use transferable parameters it is a simple matter
to produce a compl ete description of the elasticity of hD.

8.3.1 Thestrain variables

The strainsin the modified model for hD are formally the same as those for hG:

A, =270 pi042p0,m 4 7w (8.4
i » g g pp “p’p
and
A.. =270 04 0.0 4 pd0,m 4 oo om (8.5)
ij plpaa "o o o TpTp

where terms of order three and higher have been omitted. The significance of 2™ and Z* is as
follows. Consider the reference atom belonging to sublattice 2 in Fig. 8.1(b). It has three bonds
to atoms on sublattice 1 and one bond to an atom on sublattice 4. When « refers to sublattice 1
77 = (! (minus because a positivevalue indicates 2 relative to 1, 3 relative to 2 or 1, or 4 relative
to 3, 2 or 1). If  refersto sublattice 4 then ™ = (2 + (3 (because 4 relative to 2 is equivalent to 3

relativeto 2 plus 4 relative to 3). Similarly for 7 and 77, and for the remaining reference atoms.

8.3.2 Theenergy

The expressions for the modified energies per cell are the same as those for cD, (6.40) and (6.41),
except that the summations are now over four sublatticesrather than two. The anharmonic term in
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& hasbeen retained for the sake of formal compl eteness even thoughit was found to beinsignificant
vis-a-viscD.

4 4 4

/
E® = 1} (QAZZZ, +Y (DL + o, DD, TAiiAjj>) (8.6)
s=1 =1 j:l

and

4 4 4
E® = 1 Z Z ('VA?Z' + Z’<5Afj +e(D,; + Ajj)Afj

s=1 =1 j=1

2 + DI+ DN DA EN N (D + Ajj))) . @87
There is one important detail relating to the transferable parameters that needs attention: the value
of 3*. Inthe analysis of cD * was introduced as the combination 5 + «, where « represented
the interactions of planar chains of three bonds, and the separation of 3 from x was achieved by
analysing phonon frequencies at the Brillouin zone boundary. In hD there are only nine chains
per atom whereas cD has twelve. Thus where 5* was 132.0 = 95.1 + 36.9 GPaA~! beforeit is
replaced now by 95.1+ 3 x 36.9 = 122.8 GPaA .

Table 8.1: Modified Keating parameters

Harmonic Anharmonic
GPaA-1  evA-* GPaA-3  evA-®

o 158.6 0.990 v —140.8 -0.879
3* 122.8 0.767 5 195 0.122
c —184 -0.115 e —99.7 -0.623
T 3.3 0.021 n =243 —0.152

6 50.6 0.316

£ 0.0 0.000

8.4 Thepartial and inner elastic constants

Expressionsfor the partial and inner el astic constants have been obtai ned by identifyingthe Keating
energy density with the free energy per unit initial volume quoted in (1.10), ignoring first order
terms. They have been confirmed by using the generalised method of homogeneous deformation,
given in the Appendix, with a unit contribution from each of the model parameters in turn. As
they are rather more numerous than those of hG they are presented in tabular form. The numerical
coefficients relate only to the two cases where z = 1/16.
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Table 8.2: Coefficients of the modified Keating parameters in the second-order partial and inner
elastic constants and eval uation of the constants under the three régimes described in the text. The
| attice parameters are ¢ and ¢, and ¢ is an abbreviation for /3. The coefficients are valid only for
the z = 1/16 cases.

"o 70 Toa = T0c

Constant Factor o« (G* o 7 | Quasi-cD z=0.0625 - =0.0645
9, 4a%/3¢ 1 1 -2 11146 1132. 1132.
9, 4a?/9¢ 1 -1 -2 5| 1060 104.7 104.7
9, te/J12 1 -1 -2 11| 648 66.1 67.4
% tc®/32¢> 7 5 -14 5] 1188 1252. 1247.
9, te/Jl2. 1 5 —2 —1| 4790 4837 490.1
DL, 2a/3c -2 2 1 2| -341  -338 —33.8
Dic t/3 -1 1 —1838 ~189 —-234
Dy t/3 -1 1 —1838 ~189 —19.1
D3 tc®/8a® 1 -1 ~-1| 376 39.1 29.6
EH 4/3c 2 2 3 -2| 2809 279.4 279.4
B2 4t/3c 1 68.8 68.5 68.5
B3 4t/3c -1 10.3 10.2 10.2
ER tc/8* 8 11 6 -2| 3507 360.4 361.4
EYZ tc/8*> 6 1 -6 166.0 170.6 169.2
EY tc/8a? 3 -10 6| 802 82.4 83.2
B 4/3c 2 -2 3 6| 204 203 203
B 4t /3¢ 2| 37 37 37
B 4t /3¢ ~1 10.3 10.2 10.2
T tc/8a2 4 -1 3 12| 1391 143.0 145.0
B2 tc/8a%2 3 -3 1| 14938 1539 151.4
B3 tc/8a? 3 -5 129.0 1326 134.4
ER® tc/2¢2 2 -2 3 6| 204 203 203
E32P te/2a? 2| 37 37 37
B3P te/2a? -1 10.3 10.2 10.2
ER® 33 /64a* 4 -1 3 12| 1391 143.0 145.0
EXP 33640 3 -3 1| 1498 153.9 151.4
E3@ 363 /64a 3 -5 129.0 1326 134.4
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Table8.3: Coefficientsof themodified K eating parametersin thethird-order partial elastic constants
and the D and F tensors.

"oa 7 Toe  Toa = o
Constant Factor  ~ 1] € N 0 ¢ | Quasi-cD 2z =0.0625 = =0.0645
cy 2ta*/e 1 -1 2 -2 -1 2|-12317. -12118. 12118
s teca?/24 3 3 -2 -6 -1 26| -1305 -1326 153.6
Clas tc/128 1 -1 6 -2 -17 70| -14842 15584  -15957
Cass 3tc®/1024a® 61 —13 46 —122 —13 46 | —10520. —11411.  —11148.
oM tca?/24 1 -1 1 -2 1 2| -3044 3094 —308.8
Cu tca?/24 3 -6 1 -2| -13708 13933 14218
Cags tc3/128 1 -13 22 -2 -9 6| -28329 29746  -2978.3
Ces 2ta*/9c 3 2 -6 1 -2| -1609.7 -15838  —1583.8
Cos 2ta*/9¢ 1 -4 6 -2 -3 2| -34820 34258 34258
Coes tea?/24 1 2 -2 -1 6| -190 -1992 ~2163
Dl 2a3/3c -3 1 3 -1 2 517.4 511.0 511.0
Diy 2a¢3/3¢ -1 -2 1 1 1 -2 732 72.3 72.3
Dl ca/16 -2 2 2 2 1-12 80.0 81.6 89.7
D}, ca/32 -4 1 -4 4 4 8 352.8 360.0 369.1
D, ca/16 -2 -1 2 1 274.3 279.8 283.8
D}« ta®/6 -3 1 2 -1 2 4105 412.0 442.7
Dl ta®/18 -3 3 3 2 -2 -6 ~11.3 ~11.3 -5.9
Digs tc?/96 -3 -15 6 2 9 -18 -19.3 ~20.0 3.7
D}, ta?/6 -3 -3 2 2 1 -2 305.2 306.3 3219
D, ta®/18 -3 3 6 2 -3 -18 ~194 ~195 ~20.0
D33 tc?/%6 -3 3 -6 2 -3 30 269.2 279.1 279.8
D3 tc*/64a®> 15 3 -6 -10 3 -6| —1298.  —1390. —1234.
D3, tc?/96 —18 12 2 -9 6 47.0 48.7 79.0
FH 2¢/3c -4 1 1 -6 4 8 1019. 1012. 1012.
FL2 2a/3c -2 814 810 810
FL3 2a/3c -1 2 20.9 20.8 20.8
Fls t/4 -8 -3 -2 -12 4 8 708.9 716.6 746.6
Fiz t/6 -3 4 6 -16 -15 -10
ris t/12 -9 2 4 —24 —65.0 —65.7 ~67.0
F2l t/12 3 8 6 ~4.2 ~4.0 -2.8
Fiz3 t/4 -3 2 2.6 2.5 18
r t/6 -2 2 -3 —28.6 -29.0 ~30.0
rzl t/6 6 4 -6.8 ~6.6 ~4.6
Fya 3tc?/640? 32 9 —14 12 —20 -40 | -1078.  —1121. —1043.
Faz /32> 54 3 —10 6 —36| -7408 7786 —738.4
Fg3 tc?/64a? 9 -14 -52 12 24 194.8 205.1 196.5
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Table 8.4: Coefficients of the modified Keating parameters in the third-order £ tensors.
T0q _rf T0e T0q = T0e

Constant Factor ~ 1] € N 0 ¢ | Quasi-cD 2 =0.0625 = =0.0645
EL® 4ta%/3c 3 1 1 —2|-1769. -1753.  —1753.
E28 2ta?/3c ~1779 -1763  -176.3
£SO 4ta?/3c ~1 86.7 85.9 85.9
Ea® 4a2/9c 3 -3 -1 3 6 ~301.9 -2593  —2593
£2P 2ta?/9c 1 ~593  -588 ~588
EEP 4ta?/9c -1 28.9 287 287
B tc/24 6 -6 10 2 9 36| —4617 —4728  —5014
B2 tc/24 —9 10 —3489 -357.2  —3545
B3 tc/24 6 -2 -9 —2987 -3059  —305.7
£ tc/96 24 21 8 8 6 -24| -804 —8400  —8636
B2 tc/48 -9 20 —6 —367.8 3766  —3743
B3 tc/96 ~ —27 18 -8 —18 24| -2259 -2313  —2308
B tc/24 6 -6 7 2 9 48| -3727 -381L7  -3987
B2 tc/24 1 ~6 36| -1198 1227  -1266
Epi® tc/24 3 -2 -9 12| -2098 -2147 = -2127
Exd  1c3/256a2 168 —51 106 —52 —12 —24 | —2561.  —2717.  —265L.
B2 1325642 162 -9 46 —216 —6 36| -1682. —1779.  —1723.
B3 1c3/25642 —27 90 —164 —36 120 | -5456 5772  —603.1
ER, /12 12 -3 -12 4 -12 -24| -2638 2657 -282.3
EL a/12 12 -12 -15 4 -6 —-12| -—1741 -1754  -1864
L3 a/4 -1 4 62.9 63.4 62.7

8.5 Theinternal strain parameters

Using the appropriate inner elastic constantsin (4.16) yields the internal strain parameters that are
shownin Table8.5. Theaccidental degeneracy displayed by the quasi-cD parametersisremoved on
passingtorea hD. If A}G isto be compared with the A, , of cD both parameters need to be scaled:
the former by a/2, the latter by a /4, these being the projections of the bondsaong the Oz, axes.
This gives the values 0.121 and 0.093 respectively. Without the 3* adjustment A}G =0.117 which
scales to 0.093 as isto be expected. This shows that the 3* adjustment has a significant effect on
theinternal strain.
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Table 8.5: Theinternal strain parameters. Thefinal entry relates to cubic diamond. Unitsare A.

oo 7 "o Toa = o
Constant Quasi-cD z=0.0625 = =0.0645
Als 0.153 0.153 0.153
Als 0.069 0.070 0.087
Ay 0.069 0.068 0.069
Az -0.139 -0.141 -0.107
A 0.083

8.6 Thetotal elastic constantsand associated pressure derivatives

Armed with values of the interna strain and the inner elastic constants Egs. (5.1), (5.2), (5.7) and
(5.8) can be used to anatomize the macroscopic constants. Firstly | summarize in Table8.6 the
resultsfor thetotal elastic constantsat the second and third order, the bulk modulusand the pressure
derivatives of the second-order constants for the three régimes under consideration.

Table 8.6: The second- and third-order elastic constants, the bulk modulus and the pressure
derivatives of the second-order constants. Constants are in GPa, derivatives are dimensionless.

"0u 7 Toc T0a = T0c "oa 7 "o Toa = o
Constant Quasi-cD ~=0.0625 > =0.0645 | Constant Quasi-cD > =0.0625 =z =0.0645
Ch 11334 11192 11192 [C,,,  -11912. —11720. 11714
Ca 1138 1124 1124 | Cyy ~1011 1027 1057
013 70.0 71.4 715 0133 —-1746.6 —-1833.9 —-1831.2
Cas 11772 12406 12407 | Ciggy ~96622 —10481.  —10494.
C w 476.4 486.0 486.0 | C 144 —424.6 —4315 —-434.0
B 439.1 4429 443.0 0244 —-1169.4 —1188.6 —-11839
C 344 —2831.0 —2972.6 —2974.6
o 8.78 8.70 8.71 | Cg ~1321.6 13003  —1299.0
ct, 154 154 153 | Cige ~34325 -33771  —33758
Cly 0.98 0.97 1.00 | Clyeg ~2147  -2182  -2197
Cl 9.34 9.82 9.69
ct, 3.06 3.09 312
B’ 3.77 3.80 3.80

There does not appear to be any distinct trend in the changes from column to column. The bulk
modulusisin al casesvery closeto the observed cD vaue of 442 GPa. Thefitted value of 445 GPa
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dropsto 439 GPaas aresult of the 3* adjustment. The calculationsin[11] give hD abulk modulus
2.3% larger than that of cD, whilst the measurements of Yagi et al. give 425425 GPa—equality
within experimental error. The pressure derivative of the bulk modulusis about 2% larger than the
value 3.72 found for cD. Secondly | singleout the‘ unequal bonds' régimeto show, in Table8.7, the
full decomposition of al constantsinto partial and internal contributions, together with the elastic
compliances and the compressihilities.

Table 8.7: The composition of the calculated elastic stiffnesses and the corresponding compli-
ances and compressibilitiesfor the ‘unequal bonds' régime. Stiffnesses are in GPa, second-order
compliancesin TPa~! and third-order compliancesin TPa~2.

N Cry — Sty N Crik — Sk
I1J Patid Interna Totd Total | IJK Partia Internal Tota Tota
11 11321 -129 1119.2 0.905 | 111 -12118.1 398.3 -11719.8 8.7
12 104.7 77 1124 -0.088 | 113 -132.6 29.9 -102.7 -04
13 66.1 53 714 —-0.047 | 133 —1558.4 275.5 —1833.9 0.7
33 12516 -11.0 1240.6 0.811 | 333 —-11410.7 929.9 -10480.8 53
44 488.7 2.7 486.0 2.058 | 144 -3094 -122.1 —-431.5 0.6
244 —1393.3 204.7 —1188.6 3.8
344 —2974.6 2.0 —2972.6 9.9
166 —1583.8 2835 —1300.3 34
266 —-3425.9 48.8 -33771 116
366 -199.2 -19.0 -2182 -0.2
~ 0770 K, = 724
. 0717 K. 656
. 2.258 K, 2104

The inner elasticity contributes to every constant in hD, in marked contrast to the situation for
¢D and hG. The internal share varies between 0.5% and 7.5% for the second-order constants and
between 0.1% and 30% for the third-order ones.

The compressibilities are no longer isotropic as they are in ¢D and in the quasi-cD version of
hD. The results for c¢D, from Chapter 6, are k = 0.749 TPa~%, K = 6.83 TPa~?, k, = 2.25 TPa™ %,
K, =205TPa 2.

8.7 The zone-centreoptic modes

The frequencies and eigenvectors follow from the analysis in Chapter4 and are presented in
Table8.8. The calculated tri pIy—degeneraIeng mode frequency of 40.23 THzin cD correspondsto
the triple degeneracy of the two Elg and the Alg modes at 39.49 THz in the quasi-cD cal culation.
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The 1.8% lower value is due entirely to the reduced value of 5* and falls nicely in the middle
of the range of 0.5% to 2.8% reduction observed in [6]. The Ezg frequency is well predicted,
only exceeding the observed value by about 2%. For the Raman active modes the Keating model
isin near-perfect agreement with the density functional calculations of Wu and Xu[11]. For the
optically-inactivemodes, however, the agreement ispoorer. Calculationsfor thereal hD caserevea
no change in the three doubly-degenerate modes but show the lifting of the triple degeneracy by an
increase in frequency of the Ay, mode of about 650 GHz. Thisisrather larger than the 270 GHz
foundin[11].

Table 8.8: The zone-centre optic modes. Experimental frequencies have been converted to THz.
Comparative information for cD is given at the bottom.

Caculated— Tou 7 T0e Tou = 0.
Mode Eigenvector Experiment  Ref.[11] Quasi-cD =z =0.0625 =z =0.0645
E,, 21=-2=2%2:=0 39423975 39.12 39.49 39.49 39.49
Z%Z ZSZLZ,,Z%:O
E,, s=-:f=:=2%  3508/3522 3577 35.80 35.80 35.80
E,, 2=1:21=22=0 15.62 19.91 19.91 19.91
23_1722_2220
Ay,  #=-23=24,25=0 3042-30.75 39.39 39.49 40.13 40.15
— 2 - .3 =
B,, :=-:%=:3=% 37.56 39.07 39.71 39.94
B, #=12=23=0 33.55 30.93 31.44 31.31
T,, 39.931 39.99 40.23
“Ref.[6] 'Ref.[9] °Ref.[8] ?Ref.[10]

The pressure derivatives of the frequencies are shown in Table8.9. Apart from the E, modes
they dl have approximately the same value as cD.

Table8.9: Pressure-derivativesof optic-modefrequencies. Thefina entry relatesto cubic diamond.
Unitsare THzGPa L.

"oa 7 "o Toa = o "oa 7 "o Toa = o
Mode Quasi-cD > =0.0625 > =0.0645| Mode Quasi-cD > =0.0625 =z =0.0645
Elg 0.098 0.099 0.099 Alg 0.098 0.099 0.099
Ezg 0.092 0.092 0.092 BZg 0.093 0.095 0.096
Ezu 0.032 0.031 0.031 Blu 0.101 0.102 0.101
T, 0097 T, 0097
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The unexciting variation of frequency with pressure up to 20 GPaiis presented in Fig. 8.2.
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Figure 8.2: Pressure-dependence of the zone-centre optic-mode frequencies.

8.8 Summary and stingin thetail

It has been possible to provide a full and plausible picture of the elasticity of a material, about
which very little is known, by transferring parameters from a well-characterized close relative.
The adjustment of one of these parameters, 5*, in recognition of geometrical differences at the
third-neighbour level, proved to bejust what wasrequired to give an accurate prediction of al three
Raman frequencies. Thereis no obvious significant difference between the three structure régimes
considered but. . .

.. .experiments have indicated[12] that the ¢/« ratio remains constant under
pressureat 1.66, slightly greater than the quasi-cD value of 1.633, up to at least 30 GPa. Thisresult
generates aparadox. Itimpliesthat k> k_, making the hD crystal more compressiblein the Oz
and Oz, directions than it isin the Oz direction, in which case the application of pressure must
increase the ¢/« ratio! The only way in which theratio can remain constant isif £ = k_, and that
implies the quasi-cD scenario. It may well turn out that the origina synthesizers of hD, Bundy
and Kasper [1], were nearer the mark with their values of « = 2.52A, ¢ = 4.12A and ¢/a =1.635.
Clearly more experimental work needs to be done to clarify thisissue.
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Chapter 9

Rhombohedral graphite: elasticity, zone-centre optic modes and the
rG-to-cD transformation via transferred K eating parameter s

9.1 Introduction

The Chapters of this thesis follow closely the chronological order of my involvement with their
content. Up to this point | have believed in the existence of a rhombohedral allotrope because
| have been aware of papers about it: the bandstructure treatment of Haering[8], the theoretical
investigations of the rG-to-cD conversion by Kertesz and Hoffman[10] and Fahy et al.[4], and
the comparative ab initio studies of a number of forms of graphite by Charlier et al.[3]. These
papers refer to the fact that rG has never been isolated and state that it constitutes from 5 to 15%
of most naturaly-occurring graphite. Since an alotropeis defined as a distinct crystalline form of
an element | think that rG may not be a genuine allotrope but that there is neverthel ess something
whose nature is worthy of study. To get a clearer idea of what it is one must return to the original
structure investigations.

9.2 Doestherhombohedral allotrope exist?

The original work of Lipson and Stokes[11] is frequently cited but, | suspect, rarely read. The
authors were led to study an X-ray powder photograph of graphite that had been crystallized by
arcing in order to elucidate some faint lines that could not be explained by the accepted structure
of hG[2, 9, 12]. Such lines had been found quite generaly in photographs from a wide variety
of natural and artificia specimens. When the faint lines were indexed on the basis of a hexagonal
cell they were found to have simple fractiona ¢ indices that were always multiples of % The
simplest way to explain the lines was to postulate a structure with a unit cell whose ¢-axis was %
times as long as the usual one and to see the sample as a small amount of the new structure mixed
with the ordinary one. Careful measurements of the intensities of all the lines showed that some
had contributions from both structures, some were unigue to the hexagonal form and some to the
rhombohedral. Quantitatively, however, the enhancement of the intensities of the common lines
was hot quite right and Lipson and Stokes attempted to remove the new structure by digestion with



9.2 Doesthe rhombohedral allotrope exist? 142

concentrated sulphuric and nitric acids. The faint lines were removed but the enhanced lines were
as enhanced as before. It was concluded that the action of the acid had been ‘to rearrange the
layers of atoms, rather than to remove the new structure’, a view supported by the broadening of
lines with ¢ non-zero (the regular arrangement of layers had been disturbed) and the unchanged
width of lineswith ¢ zero (the integrity of planar layers had been preserved). They also concluded
that there would always be a proportion of disordered material. All the intensity data would be
consistent if their sample comprised 14% of therhombohedral, 80% of the hexagonal and 6% of the
disordered structures. The structure they proposed for rG isthat given in Table4.1 with a = 2.456
A, c=10.044A and v = % They did add a comment which as far as | know has been disregarded
although, as| discusslater, it may well have some significance: ‘ The parameter « cannot, of course,
be determined exactly; we have chosen thisvalue as it gives plane hexagonal rings. Actually the
value » = 0.164 would give slightly better agreement with the intensities, and thiswould mean that
the atoms were +0.03 A out of the planes. The intensities, however, are too small for thispoint to
be stated definitely!

The other mgjor study was made by Freise and Kelly[6]. They deformed natural graphite
single crystals and polycrystals at room temperature and coupled optical and electron microscopic
investigations of these with X-ray investigations of the appearance and disappearance of the peaks
corresponding to therhombohedral form. Before detailing their own experiments they summarized
earlier work on the dislocation structure of natural graphite: all total dislocations are observed to
have Burgers vectors of the type a/3 <11§0>. In addition these dislocations are observed to split
into partial dislocationswith Burgers vectors of thetypea/3 <1I00>. In agraphite crystal with the
layer planes arranged in the hexagonal stacking sequence, the associated stacking fault becomes a
region arranged in the rhombohedral stacking sequence. They report values of the stacking-fault
energy centred on 0.55 erg/cm? [1, 14], equivalent to 0.09 meV per atom in the plane.

Their first experiment showed that their starting material, both singlecrystal and polycrystaline
samples, had no rhombohedral component. Next they compressed their single crystals along the
c-axis between not-quite-parallel platens. This axia loading was necessary to enable shear to be
applied in the basa plane without wholesale cleavage. No rhombohedral form was induced by
shear. However, when they took filingsfrom the singlecrystal, a processthat invol ves much greater
shear deformation, a large fraction of the rhombohedral form was detected. Extensive annealing
studieswerethen carried out to characterize the rhombohedral domains. Directly after deformation
they were about 10 layers thick. With increasing annealing temperature both the thickness of
the domains and the volume fraction of the rhombohedral material decreased. The annealing
behaviour is independent of time at a particular temperature, indicating that the disappearance of
the rhombohedra form is not an activated process. The authors emphasi ze that randomly arranged
isolated stacking faults will not give rise to rhombohedra reflections, only broadened hexagonal
ones. Theonly regular arrangement that fits observation is one stacking fault on every other plane.
Any other sequence must give rise to extra reflections, and these are not observed. They further
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conclude, onthebasisthat the chance of finding 10 planesinthecorrect sequenceisabout 0.1%, that
some ordered arrangement of dislocations occurs during deformation. Regions of rhombohedral
stacking can become unobservableif just one or two dislocationsglidethrough the stack. Thework
of Baker etal. [1] and Siemset al. [ 14] had shown that thetotal dislocationslying onthebasal planes
in graphite were always split into widely separated partial dislocations between 1000 and 2000 A
apart. Thislarge separation means that a dislocation density of 1012 cm~2 will produce stacking
faults over half the area of every layer plane. A larger density does not increase the proportion of
stacking faultsover asingle plane. Inthework under discussion the dislocation density in annealed
samples was 100 to 1000 times smaller, and smaller still in the undeformed material.
All in all their work suggeststhat rhombohedral stacking

isproduced by severe basa shear;

e isaround 10 layersthick;

e extendsover an area of around 210° unit rhombi;

e islimited to half alayer;

e isreduced by annealing (and completely removed if the temperature reaches 3000°C);
e and can be removed by dislocation glide.

Thisinterpretation clearly explains why isolated rhombohedral graphite cannot be produced from
hexagonal graphite. Thereisnotrue alotrope—just amosaic distributionof microcrystalline defect
regionsembedded in thehG host. Each defect regionis, however, large enough to justify theoretical
study of its structure as a quasi-allotrope, and the rest of this Chapter iswritten in that spirit.

9.3 Cohesveenergy

hG and rG consist of strongly-bonded graphene layers stacked under the influence of relatively
weak forcesin ABAB and ABCABC sequences respectively, to use a common description. One
expects their energies to be very close and this turns out to be the case. Measured stacking fault
energies in hG[1, 14] are dways positive (around 0.09 meV/atom) showing that hG is the more
stable alotrope. Thisis confirmed by energy cal culations: for example, Furthmiller et al. find that
the cohesive energy of hG exceedsthat of rG by 0.9 meV/atom|[7]. Thisvalueisreduced to amere
0.11 meV/atom, suggestively close to the stacking fault energy, in the work of Charlier et al.[3].
There is a lack of calculations of the éasticity, though some naive expectations have been
expressed. ThusFahy et al.[5] assert : ‘ Becausethe number of bonds between thelayersisthe same
in rhombohedral graphite and in hexagonal graphite we expect their behavior under compression
to be very similar! The bonds between layers may be the same in number but their distributions
are significantly different. The most important difference is a consequence of symmetry: in hG,
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where each graphene layer isamirror plane, theinternal strain is entirely confined to those layers
but in rG, whose only mirror planes are normal to the layers, the internal strain is free to occur
along the unique axis as well. By taking the Keating parameters for hG and transferring them to
rG it is possible to make good the previous lack.

9.3.1 Equilibrium structure

In Sec.9.2 | drew attention to the tentative comment that the experimental results in[11] were
better served by « = 0.164 than by the planar value v = % This implies buckling of £0.03 A,
a shortening of the 3.35 A bond by 1.8%. A very simple picture, Figure9.1, explains the origin
of such buckling. An eclipsed atom in hG, say 3, has equal and opposite ‘large’ interlayer forces
acting on it due to the eclipsing atoms above and below it, similarly an uneclipsed atom, say 1,
experiences equal and opposite‘small’ interlayer forces due to the non-eclipsing atoms above and
below it. Both atoms have extremely large and balanced in-plane forces acting on them. No net
forces act upwards or downwards and the integrity of the planesis ensured. Now consider those
forces transferred to planar rG. No atoms are eclipsed on both sides and each atom has one ‘large’
and one‘small’ interlayer force acting on it besidesthe very large in-planeforces. Atom 2 isdrawn
towardsthe atom below it and atom 1 towardsthe atom above. Small components of what were the
in-plane forces will now be sufficient to augment the ‘small’ forces so that together they balance
the ‘large’ forces.

@00 @- @ A @ ®®
T

>0 @ @G @ @
@ @

(@) (b) (©)

Figure 9.1: Force diagram for (a) hG, (b) planar rG and (c) buckled rG

This could give rise to buckled rG, a structure near the beginning of a transformation path from
rG to cD. However, an observable effect is unlikely. Ab initio calculations® of the total energy for
a small range of values of « around the planar value show a minimum for « = 0.1666 + 0.0003
which indicates that the net axial force on an atom is no greater than 0.2% of the in-plane force, a
realistic figure that is consistent with the very small interlayer Keating parameters.

1| am most grateful to my colleague Professor G. P. Srivastava for making these calculations on my behalf.
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9.4 Modified Keating model

The structure of rG isfully described in Chapter 4. Two layers are shown in Fig. 9.2 and the three
sets of interactions corresponding to those used for hG are indicated. Bernal notation is no longer
meaningful but itisuseful to refer to the atoms on sublattices 1 and 2 by A and B, with superscript
primes to indicate adjacent layers.

Figure 9.2: Configurations of bonds in the Keating model. The interactions are described in the
text.

1. The planar part of the energy per cell isthe same asthat in hG. The three nearest-neighbour
A atomsto a B atom, see lower centre portion of Fig.9.2, give rise to three 2-body ‘bond-
stretching’ BA, interactions, three 3-body ‘bond-bending’ BA, BA, interactions and various
couplings between them. The same number of interactions arise from each A atom. Four
harmonic parameters («, (3, o and 7) and six anharmonic parameters (v, 4, ¢, n, 8 and &) may
be defined though not al of them are used.

2. Thisset comprisesthe 2-body AB’ interacti on between nearest-neighboursin adjacent planes,
seeright-hand portion of Fig. 9.2, and the 3-body interactionsthat couple AB’ with the three
neighbouring oblique interlayer vectors AA!. Unlike the hG case this set is limited to the
plane above. Thereis a corresponding set of BA’ interactions confined to the plane below.
Ten more parameters may be defined (with superscript /, corresponding to the equivalent
parametersin hG).

3. This set comprises the three 2-body AA! interactions and the three 3-body interactions
involving AA! AA; pairs, see left-hand portion of Fig. 9.2, together with the symmetrical
group of 2-body BB, and 3-body BB, BB; interactions. Thereisaset of each abovethe plane
and below the plane. Ten more parameters may be defined (with superscript ).

In hG it was possible to ignore a potentia fourth set of interactions, BB’, by noting a geometrical
dependence between its strains and the strains of the other three sets. Any Keating parameters
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associated with this set were implicitly included in the parametrization of the other sets. The
corresponding case applies here through the numerous equivalences of the form B’'B=B’A + AB.
Becausethisisadifferent relation from the onein hG theimplicit contribution of theseinteractions
to the parameters above will aso be different.

94.1 Thestrain variables

The strainsin the modified model for rG are the same as those for cD:

- 10 10 70
A, =2r 7, roE2r 70 +C () 9.1
and
- 10 0 70 0
Aij = 2rp npqré + (rp + r; )Cp + CpCp (9.2

where terms of order three and higher have been omitted. Where the sign is undetermined the +
sign is taken when the reference atom lies on sublattice 1, the — whenitison 2.

9.4.2 Theenergy

The expressions for the modified energies per cell are the same as those for hG except that
summations are now limited to two sublattices. As aways the subscripts: and 7 are solely for the
sake of bookkeeping—keeping in touch with the numbers of neighbours. Where, for thefirst time,
there is only a single neighbour to consider (the AB’ interaction set) the bond has been indicated
by asubscript 1. The second-order energy per unit cell is

2 3 3
!
E@ = 13N (an? + 30 (502 +o(b, + 0D+ AN, ) 9.3)
s=1 i=1 j=1

g7

3
!
+aB%+ 3 (302 + 0B, + A+ 7DD, )
7=1

2 3
1 2 2
+3 E :(O/All + E :(ﬁ/Alj +o'(By + A A+ T/AllAjj>)‘
s=1 =1

The third-order energy per unit cell is

2 3 3
@ - 1 3 " oA3 2 2 L A2
B =3 D, (’VAn' + (087 +elBy; + 8,07 + (A5 +DT)A,
s=1 i=1 =
+OD 00+ DA (D + A ) (9.4)
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2 3
1 3 3 2 2 L A2
3 (7/A11 £ (I3 + Dy + 8, )AT + /(8T + 2D
s=1 7=1

HOALAA +EDGA (B +A)).

Table 9.1: The modified Keating parameters.

Planar Interlayer

GPaA~1 evA—4 GPaA~1  evA—* GPaA-1 evA—4

o 26621 1662 |« 3955 0.2469 o 3.231 0.0202

3 24053 1501 |  3.005 0.0188 " 0.288 0.0018

o 30.12 0188 | o/ -5.037 —0.0314

T 53.50 033 |7 -6120 -0.0382 1" 1.447 0.0090

| GPaA—% evA-©| MPaA—3 meVvA-© MPaA—3 mev A6

v —68713  —4289 |+ 2113 1312 4" —3562 —0.2247
§ -961.91  —6.004
¢ —36519 2279

¢ 605 ~0.0378

9.5 Elasticity of rhombohedral graphite

Expressionsfor the partial and inner elastic constantsin terms of modified Keating parameters have
been obtained for the planar rG structure, as they were for hG, by the method of homogeneous
deformation. The second-order constants are presented in Table9.2. At the third-order only those
planar parameters that were non-zero in hG, and the bond-stretching interlayer parameters have
been included in Table9.3. Comparison with Tables7.2, 7.3 and 7.4 shows that all the partial
constants have the same expressionsin both graphite allotropes. The most notable difference isthe
lack of any contributionto theinner elastic constantsfrom the NNN interlayer interactions. Thisis
because the AA’ (and BB’) connect points on the same sublattice. At the third order five of the six
D. - thatinvolve &’ will be zero because the transferred parameters do not includeit.

The partial and inner elastic constants derived from Tables9.2 and 9.3, and checked by a
homogeneous deformation calculation, are shown in Table9.4. The large number of null D, -
and E;; components isapseudo-symmetry effect arising from the limited number of interactions
taken in the model combined with the assumption of planar layers. A similar effect is shown by hD
whenthelattice parameters are chosento give thequasi-cD configuration: thelinear compressibility
becomes isotropic. A new feature is the appearance of additional anharmonic contributions, F{%
and F$2), to the harmonic energy.
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Table 9.2: Coefficients of the modified Keating parameters in the second-order partial and inner
elastic constants. The common factors are expressed in terms of the lattice parameter « and the
interlayer spacing d. t standsfor /3.

Planar Interlayer: NN Interlayer: NNN

Factor o 08 o T o' ﬁ/ o 7 o ﬁ” p/—4
9 2ta?/3d 1 1 -2 2 2 -4 2
9, 2ta?/9d 1 -1 -2 5 2 -2 -4 10
C 4d/3 2 2 4 -4 4 8
Y 16td3/a? z 4 2 2 4 8 4
Y, 4td/3 1 2 4 2 4 —4
084 2a/3 1 4 -4 -2 -4
Dy 20/3d -2 2 1 2 1
Ds 4t/3 1 1
Dy 4t/3 1 2
2 4td?/3a? 1 3 6 3
By 4/3d 2 1 2 =2 1
L 8td/3a 2 3 6
2
E £1)1,112,331 4/3d 1 -1 1 2 1
2
B, 5 8td/3a? 1 3
Pt 8t/3a 2 3
F&, 8t/a? 2 3

When the pseudo-symmetry is broken by the buckling of layers then « is no longer % but
smaller, and many coefficients that are zero (i.e. blank spaces) in Tables9.2 and 9.3 will become
non-zero, as will the associated constants.

Theinternal strain component common to the two allotropesis slightly different, as shown in
Table9.5, and the null value for A, isanother pseudo-symmetry consequence.

The full decomposition of the constantsis given in Table9.6. The overadl picture reveas that
the two graphite allotropes are remarkably similar. The calculated valuesof ', and C', inrG are
alittlesmaller than they are in hG on account of the extra contributions of interna strain and this
in turn makes & alittle bigger than it isin hG. At the third order it is only C',,, that is greatly
changed by interna strain, but this gives S, ;, the value —40.1 TPa 2 whereasitis+1.0 TPa~2 in
hG. This causes the one upset in thefitting: it produces a negative K . This was the most difficult
target to fit in hG because, as explained in Chapter 7, it depends on the interlayer anharmonicity
and particularly on the smallness of S, 4, relativeto S,,,. The remaining compressibilitiesk , K,
k, and K areessentialy identical in the two allotropes.
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Table9.3: Coefficientsof themodified K eating parametersin thethird-order partial elastic constants
and inner elastic constants. The common factors are expressed in terms of the lattice parameter «
and the interlayer spacing d. t standsfor v/3.

Planar NN :Interlayer: NNN

Factor v ¢ ¢ D U O
9, ta*/d 1 -1 2 2 4
%,  8ta?d/3 3 8
O 32td® 1 4
Oy 32td°/a? 1 12 6 24
%, 8ta?d/3 1 2
9,  8ta?d/3 3 -2
0%, 32td3/3 1 3
C%  ta*/9d 3 2 6 -4
C%s ta*/9d 1-4 6 2 4
C%  8ta®d/9 2 3
9 4q%/3 3 2
9, 4a3/3 1 -2
%, 16ad?/3 2 3
Co 16ad? -1 2
Dys 24%/3d -3 1
Dy 243/3d —-1-2 1
Dy, 23/3d -3-3 2
Dy, 2a3/3d 5 1-2
Dy,  16ad/3 1
Dy, 8ta?/3 1
Dy,  8ta?/9 1
Dy, 64td?/3 1
Dayy  32td*/a? 1 6
Dg,,  32td?/3 1
B 2ta®/3d 6 1
B, 2ta?/3d  2-2-1
EQ, 32d/3 1
ES, 321d3/a? 1
& 2a/d -4 1 2

FQ 32td?/a? 1
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Table 9.4: Calculated second- and third-order partial and inner elastic constants. Unitsare GPafor
C9,,GPaA~tfor D, , GPaA~2for 7, and GPaA=3for F .

Partial [nner Partial [nner
9 106385 D, 395|C9, -86304 D, 5026. E,, -9148
% 17615 D, -47|C%, 146 D 6655 E,, 2125
(&N 79 Dy -399|C%, -1254 D, 00 E,, 3L1
Y 365 Dy -004|C%, -5838 Dy 00 Ep 0.0
o 5.05 2, —45 Dy, 00 FEg 2161
c?, 16 B, 5028|CY, -90 Dy 00 FE,, 1035
E, 1480(C%, -750 D, 00 E;, 0.0
0% -58752 Dy 00 FE4 0.0
(% 20396 Dy, 00
C%s -34 Dy, 00 [y, 1552
%, 24 Dy 00 F,; 488
% —05 Dy 2423 [, 1681
%, -159 D, 00
Co 10.6

Table9.5: Theinternal straintensorsin A. Thevaluesfor rG appear on theleft. Theactual in-plane
internal strain in hG is shown on the right for comparison.

] AZJ AZZJ + A23J
16 0079 —0.083
15 0.009

31 0.269
33  0.000
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Table 9.6: The composition of the calculated elastic stiffnesses, the corresponding compliances
and compressibilities and the pressure derivatives of the second-order stiffnesses. Stiffnesses are
in GPa, second-order compliances in TPa~* and third-order compliancesin TPa~2. The pressure
derivatives are dimensionless.

N Cry — Sty N Crik — Sk
1J Patia  Internal  Total Totd | IJK  Partid Internal Tota Total
11 106385 -—-13.86 1049.99 0.980 | 111 —-8630.4 —-28569 —-11487.3 7.35
12 17615 -7.64 16851 -0.157 | 113 -14.6 77 -6.9 -2.80
13 790 -0.01 789 -0.178 | 133 -1254 65.3 -60.1 -40.1
33 36.5 0.0 36.5 2747 | 333 —-583.8 0.2 —583.6 12052.8
44 505 -0.04 501 200.1 144 -45 0.2 -4.3 —226.6
14 1.56 0.37 1.93 -0.438 | 244 -9.0 -0.8 -9.8 —-339.2

344 -75.0 0.0 -75.0 82207.8
166 -58752 -8534 -6728.6 35.1
266 2039.6 -1026.9 1012.7 -104
366 -34 0.2 -3.2 -5.0
114 24 1133 1109 -20.9
124 -05 0.8 0.3 —-4.6
134 -15.9 0.0 -15.9 -75.1
444 10.6 0.0 10.6 —-84196.7
k, 0645 K,  -312
ko271 K,  11886.
k, 284 K, 11824.
cly 388  (39.0)
Cl, 10.9 (11.0)
Cla 3.2 (3.2
Cly 131 (129)
Ca 1.9 (1.9)
cl, 0.4

Thefirst five pressure derivatives are essentially the same as the fitted val ues of the anharmonic
targets for hG, shown in parentheses.
9.5.1 Zone-centreoptic modes

The Eg mode in rG mimics the Ezg2 mode of hG with a frequency of 47.43 THz and a pressure
derivativeof 0.14 THz/GPa. LikeNisetheAlg mode mimicsthe Blg2 withvauesof 25.74 THz and
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-0.97 THz/GPa. The behaviour under pressure is shownin Fig. 9.3 and indicates a phase transition
in the vicinity of 22 GPa.
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Figure 9.3: Pressure dependence of the zone-centre frequencies.

9.6 TherG-to-cD transformation

Although rG has never been isolated this has not inhibited study of its possible conversion to
¢D. A continuous transformation between the two structures can be envisaged because cD can be
described by a primitive rhombohedra cell with two atoms in the basis in just the same way as
rG. Thequasi-rD pictureisillustrated in Chapter 5. The top two rows of Table9.7 show the lattice
parameters (of the triple hexagonal cell), the volume (of the primitive rhombohedral cell) and the
atomic coordinate of the two structuresinvolved. Also listed are the lengths of the axial bonds, 2,
the non-axial bonds, r, and the buckling angle, 6.

Table 9.7: End-pointsand transition-state parameters.

‘ a c V. U R r 0 Ey
rG 2460 10.048 17.554 % 3350 1.420 90.00
cD 2522 6.178 11.346 % 1545 1545 109.47

Ref.[10] 2519 6.684 12243 0139 18 150 1042 06
Ref.[4](1) 2513 7.088 12920 0.182 207 148 1014 0.33
Ref.[4](2) 2372 6.770 11.0 0155 21 1.38 97.0
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Theselatter parameters, indicated in Fig. 9.4, are related to the former by

R =2uc, (9.5)
1
T CoSH = 2¢ (u - 6) (9.6)
and
reing = -2 (9.7)
V3
The volume per pair of atomsis
V. = écaz (9.8)
€ 6
@ >—@
@, @._
@® @®
R=2uc @
0
2 1 r @ @
2c/3
@
“ B @ ®
O @ G-

@ (b) ©

Figure9.4: rG-to-cD transformation path (a) initial rG, (b) intermediate stage, showingtheessential
parameters and (c) final cD.

R, r and 4 al change continuously during a concerted transformation and there is no uniquely
constrained path. Several procedures may be followed. From a purely geometrical viewpoint the
values of a, ¢ and » could be uniformly interpolated between their extreme vaues and R, r and
6 calculated by the equations above. This would be to ignore the physics, though. One physical
approach is to take the parameter of greatest change, 2, and to interpolate it regularly between
its extreme values. At each vaue the total energy is minimized with respect to r and §. The
implied values of «, ¢ and u are then deduced. A second approach isto postulate a process such as
hydrostatic compression, interpol ate between the extremes of the cell volume V_ and minimizethe
associated enthalpy, F' + pV_, at each value. Both these approaches have been published and will
now be briefly discussed and further illustrated by use of the Keating model.

9.6.1 Energy minimization calculations

In [10] Kertesz and Hoffmann presented an orbital model for this solid-state, high-pressure, trans-
formation, relating it to chemical reactions having orbital symmetry constraints. They took R as
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the independent reaction coordinate and optimized » and # at each vaue using extended Hiickel
band calculations. They identified a transition state at the maximum of the total energy versus 2
curve. Thisoccurred at 2 = 1.86 A, r = 1.5 A and 6 = 104.2°. The energy barrier £/,; was about
0.6 eV/atom. The transition state therefore occurs for « = 2.519 A, ¢ = 6.684 A and « = 0.139.
These results have been entered in the third row of Table9.7.

They used the small initial rate of increase of r with R to argue that the graphene layers do
not buckle at low pressure. In connection with the (unstable) transition state they remark that it is
customary to relate different solid-state structures by studies of hypothetical, sometimes unstable,
structural models.

Fahy, Louie and Cohen[4] subsequently made a pseudopotential total-energy study of the
transformation. In the first of two calculations they followed the rationale of the above work and
found an energy barrier of 0.33 eV/atomwhen R = 2.07 A, r = 1.48 A and § = 101.4°. Thisresult
has been entered in row four of Table9.7. Intheir study they follow the charge density in the plane
of Fig. 9.4b along energy-minimizing path. They conclude, firstly, that only when £ < 2.1 A does
the charge density between the layers become substantially inhomogeneous and accumulate along
the axial bond and, secondly, that not until 2 < 1.8 A does the double peak, characteristic of the
sp® bond in ¢D, appear.

TheKeating model doesnot support energy minimizati on but does provideameansof following
the elasticity and optic-maode frequency behaviour along a transformation path. In the following
illustration R is taken as the independent variable and interpolated between its extremes. The
|attice parameters are adjusted proportionately and the values of the other bondlengths and of the
parameter v follow (this procedureis not as unphysical asthe purely geometric variation mentioned
earlier: effectively both ¢ and uc are changed proportionately which means that « itself does not
change very much initially; buckling is therefore slow to start, in keeping with the studies under
discussion). The question of how the cD parametri zation should merge with and ultimately replace
the rG parametrization is answered by considering the charge density conclusionsjust reported. |
take the Keating energy as

E=fE . +(1-fE 9.9

where, with ;= 1.8and I, = 2.1, the switching functionis

when R <R

0 Rkt ) min’
f=¢ 3- %cos(H) whenR_ < R<R__, (9.10)
1 when R <R.

The results for the second-order elastic constants are illustrated in Fig. 9.5, for the internal strain
parameters in Fig. 9.6 and for the zone-centre optic-mode frequencies in Fig. 9.7. Each display?

2| have inadvertently used R =17 in the switching function when preparing these displays. The effect is of no
great significance as the results are essentially qualitative.
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is divided into three by the upper and lower limits of the switching function. On the |eft only the
rG parameters are involved, any variations being due solely to the changes in the geometry of the
cell, and on the right only cD parameters are involved. The mixing of the two régimes occurs in
between.
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Figure 9.5: Second-order elastic constants along a transformation path. ¢, and (', , are shown at
x 10 magnification. Termina values on theright are quasi-rD values.

It is partly the geometrical aspect of the partial constants, the disposition of « and d in the
common factorsin Table 9.2, and partly the internal strain that determines the overall variation of
the total constants seen in the rG region. Thus both C?, and C?, increase as «?/d and double
in size as 68% of the path is traversed. Roughly equal contributions from inner displacement are
subtracted from each, about 5% of C'; but 25% of C, at the limit, leaving the variation of C';, to
dominate the picture. The only other feature that merits comment isthe variation of '), thisvery
small constant makes a negative excursion in the rG region and then, uniquely, risesto a maximum
in the middle of the transition region. The significance of this eludes me, however!
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Figure 9.6: Interna strain parameters along atransformation path. Terminal valueson theright are
guasi-rD values.

The apparent constancy of A,.(= —D,,/F;,) is due to its net common factor of a which
increases by only about 2% across the rG region. In view of the general manifestation of pseudo-
symmetry in planar rG it isallittle surprising that A, (= — D, / F;;) does not start at zero, as do
Ajgand Ay,
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Figure 9.7: Zone-centre frequencies along a transformation path. The terminal value on the right
isthe quasi-rD value.
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The one interesting feature of the optic-mode frequenciesis their (accidental?) degeneracy in
thetransitionregionat 2 = 1.8 A. Thisisthe very value of the onset of peaksin the electron density
along the axial bond, [4], and close to the value 1.76 A, deducible from measurements on Fig.3
in[10], at which a symmetry-imposed level crossing at the I" point occurs. The latter isrelated to
the change from sp? + p_ to sp® bonding, essentially the same fact.

9.6.2 Hydrostatic compression path

Fahy, Louie and Cohen'’s second cal culation followed a hydrostatic pressure path with results that
were very different from those based on energy minimization. The path for example does not lead
continuously to the cD structure but terminates when p = 80 GPaand V, = 11.0 A3 at which point
R=21A,r=1.38Aand 6 = 97°. Thisresult has been entered in row five of Table9.7. Thelogic
behind this calculation is not clear. The authors state that they have treated V', as an independent
variable and have varied » and # to minimize the enthalpy at each value of V_. For a hexagonal
cell, however, a given value of V_ does not fix the lattice parameters, only the product ca®. A
complete energy minimization should sasmplearange of (a, ¢) pairsand optimize R, r and 8 at each
(simultaneously via u). Thereis noindication that this has been done.

Further doubt is raised by the present elasticity results. The harmonic and anharmonic axial
compressibilities, k, = 0.0271 GPa~* and K, = 0.0119 GPa 2, imply that the effective compress-
ibility at apressure p GPais, by (5.18), k% = k_ — 0.5() , — kf)p =0.0271 — 0.0056p GPa~!. This
goesto zero at a pressure of 4.84 GPa. However, if the anharmonic part is neglected and a path is
chosen that (i) changes a and ¢ according to k£, and k_ and (ii) changes u.c in the same way as ¢,
then amodest pressure of just over 14 GPa leads to a structure very close to that of diamond. The
processisillustrated in Table9.8 below.

Table 9.8: Hydrostatic compression path.

| p/GPa a/A /A VR R/A /A 9|
0 2460 10048 1755 0167 3350 1420 90.0
2457 9503 1656 0163 3095 1.420 929
2454 8958 1557 0159 2841 1424 958
2450 8413 1458 0154 2587 1431 98.7
2447 7.868 1360 0148 2333 1442 1016
10 2444 7323 1263 0142 2.079 1457 1044
12 2441 6.778 1166 0135 1.824 1475 107.2
14 2438 6.233 1069 0126 1570 1.496 109.8
14.2 2437 6178 1060 0125 1545 1498 1101

o o ~DN

The axial bond has reached itsideal value 1.545 A but the other bonds are still slightly short.
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Some discrepancy will aways be present since « isforced to shorten in ahydrostatic compression.
It is no coincidence that this pressureis close to the value at which hG undergoes a transformation
to hD.

It may bethat this speculative discussionis of academic interest only. In amolecular dynamics
simulation of the conversion by Scandolo et al.[13] it was found that hG was converted into both
¢D and hD via an intermediate orthorhombic phase of graphite. This process resulted in different
orientation rel ationships between theinitial and final crystal structuresfrom the oneimplicitinthe
discussionsabove. Althoughthey did not explicitly study rG it seemslikely that rG will behave in
asimilar way.

If thereisatechnological interest in actualy achieving the r G-to-cD conversion then auniaxial
stress route might be worth investigation. A compressive stress o, changes the lattice parameters

according to

i_z = S1303 + 3513305 (9.12)
and A

- = S350+ 3533305 (9.12)

Since S;; < 0and Sy, > 0 acompressive stress (which is negative) causes o to increase and ¢ to
decrease simultaneously.

9.7 Summary

The Chapter began with an exploration of the precise nature of rhombohedral graphite, focusing
on the initial structural studies of natural graphite and work on defects to be seen therein. It
was concluded that the rhombohedral form was not a true alotrope but a mosaic distribution of
microcrystalline defect regions embedded in the hG host. These regionscould be sufficiently large,
however, to merit their study asif they were truly allotropic. Theissue of whether the equilibrium
state consisted of planar or buckled layers was resolved in favour of planar layers.

Theed asticity intermsof themodified K eating model wasthen cal cul ated for the planar structure.
The transfer of Keating parameters from hG to rG showed that the two allotropes were elastically
extremely similar. The possession of a set of elastic constants for this as-yet-uncharacterized
meaterial provided an opportunity to explore the rG-to-cD transformation in greater detail. There
were no surprises, but there was a hint that changes in the nature of the bonding were indicated in
the behaviour of the optic-mode frequencies.
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Chapter 10

Bond-order potentials

TheKeating model isnot apotentia—itisaway of storing second and third derivativesof theenergy
with respect to significant structural parameters, the scalar products of interatomic vectors. There
are no preconceptions about the forms of interactions between atoms and crystal equilibriumis not
addressed. Every eastic and inner elastic constant is a linear combination of some of the Keating
parametersand if the (possibly) many of the former can be well reproduced by the (probably) few of
thelatter thenitislikely that all significant variables have indeed been considered. Thisiscertainly
the case for cD and hG as | have shown in Chapters6 and 7. In a manner of speaking the Keating
parameters are just adistilled set of elastic constantsand are not greetly illuminating.

I1lumination comes from understanding the nature of theinteractionsin thecrystal. Early work
focused on the ¢(r) « 1/r™ potentials which could describe the Coulomb interaction (n = 1)
and the van der Waals interaction (n = 6) rigorously, and the short-range repulsive interaction
(n = 910 12) effectively. Later work introduced exponential terms ¢(r) oc exp(—ar) ontheground
that these mimicked the spatial variation of electron wavefunctions. In reality al central potentials
imply the satisfaction of Cauchy relations. equality between their contributionsto different partial
elastic constants at each order such as C9, = €%, and €%, = €9, = C%,. As satisfaction of
Cauchy relationswas never found it could be concluded that interatomic distances al one could not
form a complete set of significant variables and/or other contributionsto the energy of the crystal
had been ignored. Additional variables might be volume or angle and neglected contributions
vibrational energy and el ectron energy.

Themain factor that defeated these early attemptsto define asimple anaytical potential wasthe
nature of bonding. Non-metals, with their networks of localized bonds, are the prime candidates
for angular dependenciesin energy. But an anaytic form, as general as the Coulomb potential for
ionic bonding, is unlikely to exist.

Theintroduction of the pseudopotential concept and the devel opment of high-speed computing
have led to ever-increasing sophisticationin the treatment of the energy and bandstructure of solids.
This might be thought to have made the computation of elastic constants a routine accompani ment
and rendered unimportant the need for interatomic potentials. This is not the case for at least
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two reasons. Firstly, the full extraction of the multitude of elastic and inner elastic constants for a
crystal of relative simplicity, such ashG, still requiresthe computation of the energy at an enormous
number of strained configurations. Thusif afew minutes suffice for one computation of energy the
full elasticity may require several weeks! Secondly, large-scale molecul ar-dynamical simulations
require computationally-rapid updating of system energies and forces. Simple agorithms based
on effective short-range potentials are essentia here. Such are the empirica bond-order potentials
developed by Abell[1], Tersoff [16, 17, 18, 19] and Brenner[2, 3], together with a refinement
due to Burgos, Haac and Bonadeo,[4]. They have the form of a short-range pair potential in
which the attractive term has a factor that depends on local coordination and bond angles. Their
parametrization has been carried out by considering the energies of atomic clusters, of defects, of
bonds in hydrocarbon molecules, of cohesion of crystalline phases, of optical phonons etc. With
relatively few parameters to fit it is not surprising that the derived potentias are only ‘good in
parts'. The Tersoff/Brenner formulation involves angular dependenciesthat reflect only o bonding
and behaves poorly when applied in other situations,[11]. This drawback appears to have been
overcome in the last two years through the development, by Pettifor and Oleinik, of an analytic
bond-order potential that includes = bonding explicitly,[10, 11, 12].

Asthe empirical bond-order approach has similaritiesto the Keating approach | have shownin
detail in Appendix C how they arerelated. Incidentally | have exposed certain general dependencies
connecting the various Keating parameters at each order. In the remainder of this Chapter | report
on the bond-order work with some changes in notation to prevent confusion with notation used
earlier in the thesis: thus my interatomic vector 7 and its magnitude ¢, which relate atomic site
to an implied reference site s, is used where the bond-order literature has FZ.], and rii- Similarly B,
replaces B, as the bond order function. Various switching functions that define cut-off distances,
and which are irrelevant in a crystalline environment, have been omitted.

10.1 Empirical bond-order potentials

Abell’s stated motivation was the goa of developing a general description of bonding that would
(i) isolate key features that determine whether a species prefers molecular or metallic bonding and
(i) would explain outstanding differences, as well as similarities, between molecular and metallic
bonding, [1]. He was persuaded that such similarities existed from the observation of an apparently
universal relation between binding energy and interatomic spacing discovered by Ferrante, Smith
and Rose[6, 14]. His basic method was LCAQO parametrization in the context of the chemical
pseudopotentia. His central result for the binding energy is

E =) F, (10.1)
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where I/ _isthe binding energy of the atom at site s, Z isits atomic coordination and

1 : :
b= §<VR(r2) = B,V,() (10.2)
isthe pair potential relating atomsat s and i. The repulsive and attractive parts of the potential are

given by

V(') = Aexp(=Apr) = Slzel =P (_ﬁm(ri a re)) (103)
and SD
V() = Bem(-) 1) = T ep (—5V2/S0 1)) (104)

r' is the magnitude of the vector from site s to site i and A, A, B and X, are characteristic
constants. The right-hand members of these equations contain alternative constants designed to
expose the connection between the potential and the Morse potentia that underlies the universal
relationship referred to above. r_ and D_ are the bondlength and binding energy of the C, dimer
and.S =\,/A,. Fortheorigina Morse potential S = 2 and acritical value of theratio, S_ ~ 2.7,
appears to discriminate between close-packed structuresfor which .S > .S _, and more open onesfor
which S < S_. Eq.(10.2) is not a central potential because of B, , thefirst-shell bond order in the
nearest-neighbour approximation. B, isrelated to thedistributionof valence el ectronsover bonding
and anti-bonding states. It is unaffected by uniform expansion but is ‘ quite sensitive' to structural
changes a constant volume, thereby making Eg. (10.2) non-central. B is crucia to the elasticity
of carbon: it isthe source of the bond-bending terms in the Keating formalism. The remainder of
Abell’s paper is concerned only with the energetics of metals and molecules, B; plays no further
part. Elemental carbon is referred to only once, when Abell reports Lannoo'’s calculation[9] of
S=14
Itisin Tersoff’s work on silicon that the bond-order term B, is given functiona form. In[16]
he asserts that all deviations from a simple pair potential are ascribed to the dependence of B,
upon the local atomic environment. Specifically B; should be amonotonically decreasing function
of the number of bonds »/ competing with * (i.e. Z — 1 in aregular crystalline environment),
the strength of the competing bonds and the cosines of the angles between the competing bonds,
cosd, .. A trial representation of such a function is then presented which | shall not repeat here
as Tersoff changes hismind in[17] in which he proposes (though with » where | write/ and with
1/2n where| have n)
B. = (1 + (azi)l) - (10.5)
where
z
Z 9(6,,,) &p(A\3(r' — 17)®) (10.6)
7=1
with
g(0) =1+ c2/d? — ?/(d* + (cos — h)?). (10.7)
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I have replaced his use of 3 by « to avoid possible confusion. In subsequent papers[18, 19] the
factor exp[/\g(rij -, k)3] was omitted. Applicationof the potential to carbon was presentedin[18].
The parameters were said to have been fitted by calculating ‘the energy and structure of humerous
polytypes of carbon, and the elastic properties, phonons, defect energies and migration barriers
in diamond and graphite’. ‘Graphite’ meant graphitic layers and ‘el astic properties and phonons'
referred only to diamond. In Tersoff’s opinion the elastic properties of graphite are ‘adequately
described’ even though he finds €', at 12.1 Mbar too large by 14% and (C'}, — C;,)/2 @ 7.0
Mbar too large by about 40%, reflecting ‘ excessive bond-angle stiffness’. His arithmetic is faulty
somewhere, the latter error is 59% in fact, and the figurestranslateto C';, = —1.9 Mbar as opposed
to the +1.8 Mbar observed—hardly ‘adequate’. The parameters deduced are shown in Table10.1.

Table 10.1: Empirical bond-order potential parameters. Parameters in parentheses have been
deduced from Egs. 10.3 and 10.4.

‘ Parameter Tersoff Brenner 1 Brenner 2 Burgoset al. ‘
A (eV) 1393.6 (476.45)  (518.37) (625.67)
Ap (AD 3.4879 (2.4094)  (2.4094) (2.9090)
B (eV) 346.74 (307.26)  (328.02) (225.14)
A AD 2.2119 (1.8677)  (1.8677) (1.8446)
D, (eV) (5.1645) 6.325 6.325 6.362
r. (A) (1.4472) 1.28 1.315 1.3883
3 (A-Y (1.964) 15 15 1.638
S (1577) 1.29 1.29 1577
a 1.5724x 10~ 0.0113 0.0113 1.5724x 10~
[ 0.72751 1.0 1.0 0.891
n 0.687276 0.8047 0.8047 0.687276
c 38049.0 19.0 19.0 38049.0
d 4.3484 25 25 4.745
h -0.57058 -1.0 -1.0 -0.7171
m (A1) 0.0 2.25 0.0 0.0

Brenner, independently, applied the Tersoff formalism to carbon[2, 3]. His bond-order term
takesthe form Z
! —n
=1+ . 10.8
B, ( ]z:; az]) (10.8)
where
2 =900, ) ep(m( - 17)) (10.9)
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with
g(0) =1+ c2/d? — /(d* + (cos — h)?). (10.10)

The parameter « is missing from these equations in[2] although its value is reported. It appears,
however, inthelater paper, [3] whereit multipliestheright-handside of ¢(¢). My placingitin B, is
equivalent, and facilitates comparison with the Tersoff form. Asthere are two differences between
the two accounts, r_ goes from 1.28 A t01.315 A and m goes from 2.25t0 0, | have listed sets 1
and 2 for Brenner.

Brenner felt that it was not obvious that the formalism was capable of describing the strong
7-bonding that stabilizes the graphite planes whilst maintaining an almost equally energetically-
stable diamond phase. To achieve these ends at the same time he used the following data: the
binding energies and equilibrium bond distances of the C, molecule, the graphite layer and the
diamond phase, the binding energies of hypothetical simple cubic and face-centred cubic phases
and the energy barrier calculated for the rG-to-cD transition by Fahy et al.[5]. The parameters
thereby deduced giveriseto the entriesfor set 1in the Table above. For set 2 the value of the dimer
bondlength appears to have been relaxed.

Burgos, Halac and Bonadeo, [4], were not satisfied with the quality of fit achieved by either
Tersoff or Brenner and set out to refine the computation. They focused on dynamic properties
as these are particularly poorly predicted. One specific observation on the calculated ratio of the
frequencies of out-of-planemodes at the ™ and M pointsof the Brillouin zone showed that the gross
failure to agree with experiment was due to the form of the potential and would only be eliminated
by dtering Eq. (10.2). They decided to add a new term that would not disturb the static properties
and chose atorsional one. Stripped of switching functions and couched in different notation this
was

VOr=r N T, (10.11)
(7, k)%
wherer = —0.208 eV and
P (77 x 7Y - (7 x 7F)
ijk rd (r1)2rk

Physically 7* represents an interatomic vector from atom 7 to one of its nearest neighbours other

(10.12)

than the reference atom, geometrically it isthe negative of a vector from the reference atom to one
of itsnearest neighboursother than atom:. Table 2in[4] showsthe staticand dynamical predictions
of Tersoff, Brenner and Burgos et al. and compares them with experiment. Root-mean-square
deviationsfor Tersoff and Brenner are 30.1% and 28.8% respectively. Theinclusion of thetorsional
term and the refinement of D_, r_, 3, [, d and /. produced a seemingly remarkable improvement
with the deviation brought down to 9.7%. This figure is heavily weighted by the predictions of
various frequencies and does not reflect improvement in predicting the elastic constants: in that
respect Tersoff’s work is far superior, as evident in Table10.2 below. A noteworthy outcome of
this fitting was the increase in the binding energies of diamond and graphite. Care was taken to
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maintain the difference between them small but their magnitudes increased to about 8.56 eV. The
authors note that thisisin keeping with recent ab initio calculations, [8, 13, 20].

Thereisno unigue connection between bond-order potential parametersand Keating parameters.
Two approaches will be described.

10.1.1 Matched elastic constant predictions

In this approach subsets of the spectrum of elastic and inner elastic constants obtained from the
bond-order potential by the generalized homogeneous deformation program are fitted by least
squares, or even exactly, to the appropriate Keating expressions. Firstly the program was run with
the experimental values of lattice parameters and nearest-neighbour separations. Sizable positive
vauesof C'; showed that the energy was not minimized at the experimental valueof r; and that the
crystal was under pressure to reduce the value. Self-consistent recalculation at the implied values
of r, resulted in C'; closeto zero and amarginal improvement in predicted values. The resultsfor
the first- and second-order constants are shown in Table 10.2 (columns headed BHB 1 and BHB 2
refer to calculationswithout and with the torsional term).

Table 10.2: SOECs of ¢D predicted by bond-order potentials and equivalent Keating parameters.
Units: GPa for ', GPaA~1 for D and « etc., and GPaA~2 for . Also shown are the Raman
frequency (in THz), the bulk modulus and the Kleinman internal strain parameter.

‘ Parameter Tersoff Brennerl Brenner2 BHB1 BHB 2  Thiswork

o 0.5 17.2 191 12.6 12.6 0.0

o 1.5440 1.5055 1.5406 1.5248 1.5248 1.5446
o -0.01 -0.03 -0.01 0.02 0.02 0.00
O 1074.2 363.2 350.0 763.7 763.7 1072.3
Ul 101.7 1994 197.1 140.3 140.3 130.7
024 671.2 392.2 351.9 554.8 535.6 577.8
Cu 641.6 320.0 2717.2 531.0 483.2 5740

B 425.9 254.0 248.1 348.1 348.1 4450
E, 766.7 287.7 333.5 624.8 525.2 561.9
Ir 47.0 27.7 30.9 41.6 38.2 40.2
Cr 0.220 0.576 0.532 0.220 0.360 0.093

o 1.282 0.672 0.718 1.018 1.021 0.990

Jé; 0.851 0.147 0.134 0.552 0.552 0.824

o -0.019 0.018 0.082 0.117 -0.091 -0.115

T -0.038 0.076 0.091 0.088 -0.051 0.021

The self-consistent constants are used to determine a set of equivalent Keating parameters by



10.1 Empirical bond-order potentials 166

inverting Eq. (6.44). There are various ways of doing thisand | have chosento take C';,, C';5, D,
and ;. Theresults have been added to Table 10.2. Qualitatively they appear in closer agreement
than do the data from which they are derived. At thethird order the situationis much more chaotic
and the Keating parameters vary wildly depending on the el astic constant set chosen for inversion.
Parameters based on an exact fit to the first five TOECs and D, ,, are given in Table10.3. The
Tersoff v is-0.064 for thisfit but becomes -0.183 if just the five Keating parameters excluding &
are fitted by least squares. If 0844 isreplaced by £, ,, then the least squares procedure leadsto ay
of -2.761!

Table 10.3: TOECs of ¢D predicted by bond-order potentials and equivalent Keating parameters.
Units: GPafor C', GPaA~1 for D, GPaA~2 for I and GPaA~3 for ~ etc.

Parameter Tersoff Brenner1 Brenner 2 BHB 1 BHB 2 Thiswork

C,,  -6526.  -1612.  -1558.  -4059.  -4059.  -B4T5.
Cp,  -1653. -765. -761.  -1170.  -1170.  -1947.
Clo 685. -496. -506. 189. 189. 982,
9,  -1230. 712, -757. -883. -870. 91.
S, 2741 -1264.  -1135.  -1989.  -1957.  -3079.
%  -1763. -962. -867.  -1261.  -1251. -355.
Dy, -700. -349. -502. -572. -689. -259.
B, ~ -6281.  -1342.  -1487.  -3884.  -3419.  -2705.
5 0064  -0424  -0398  -0338 0445  -0.879
5 -0.018 0031 0027  -0016  -0.016 0.122
e 0671  -0126  -0110  -0413 0413  -0.623
1 0.548 0.131 0.117 0.273 0212  -0152
0 -0.482 0.122 0029  -0169  -0.180 0.316
¢ -0.018 0.043 0.024 0.014 0.009 0.000

10.1.2 Matched energy derivatives

In this approach an analytic link is established between derivatives of the bond-order potentia and
the first-, second- and third-order Keating energy expressions. Appendix C contains the derivation
of these relationstogether with ademonstration of the arbitrariness of the Keating parameters. The
results are presented in Table10.4. Brenner 1 is not considered because of its more complex form
of B.. A singleresult suffices for thetwo BHB versions.
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Table 10.4: Keating parameters of cD from derivatives of the bond-order potential. Units: GPaA

for 41 and v, GPaA~1 for « etc., and GPaA 3 for  etc.

Parameter Tersoff Brenner2 BHB 1 Thiswork
i 0974 0.579 1.013 0.000
v 0974 0.578 1.012  0.000
a 0.887 0.527 0.644  0.990
08 0.579 0.111 0.404 0.824
o -0451 -0.267 -0.439 -0.115
T -0.163 -0.076 -0.141  0.021
0% -0.895 -0.409 -0.603 -0.879
1) -0.363 -0.036 -0.146  0.122
€ -0.647 -0.100 -0.380 -0.623
n 0214 0.121 0.190 -0.152
6 -0.103  0.050 -0.000 0.316
£ -0.057  0.029 0.050  0.000

Table 10.5: Keating parameters of graphene from derivatives of the bond-order potential. Units:
GPaA for ; and v, GPaA~1 for « etc., and GPaA—3 for  etc.

Parameter  Tersoff

Brenner2 BHB 1 Thiswork

I 1.099 0.788 1.216  0.000
v 1.099 0.786 1.216  0.000
o 1924  0.892 1283 1.662
J¥ 2542 0.298 1100 1.501
o 0321 -0.312 -0.209 0.188
T -0.162 -0.147 -0.184 0334
~ -2173  -0.776 -1.283 -4.289
o -4.342  -0.080 -0.458 -6.004
€ -5.197 -0.309 -1.253 -2.279
n -1.115 0.105 -0.145  0.000
0 -2.886 -0.062 -0.646  0.000
13 -0.237  0.045 -0.012  0.000
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10.2 Analytic bond-order potentials

Analytic bond-order potentials (BOPs) have been developed by Pettifor and Oleinik[10, 11] by
approximating the many-atom expansion for the bond order withinthe two-centre, orthogonal tight-
binding model. These go beyond Tersoff-Brenner inthat (i) they address both ¢ and = bond orders
and (ii) they consider self-returning hopping paths of length 4 aswell aslength 2 in computing their
potential functions. In the context of hydrocarbon systems the BOPs handle correctly the breaking
of = bonds on radical formation.

Unfortunately the approximation involvedin deriving equation (80) in [11] for thes bond order
proved to lead to unphysical behaviour in molecular dynamics simulations. Properly bounded
BOPs were obtained in[12] and this refined approach resulted in the quantification of single,
double, triple and conjugate bonds in carbon systems to within 1% of the accurate tight-binding
calculationsfor o bonds, and to within 15% for = bonds. A problem has now arisen in connection
with the binding energy. The data necessary for its computation are contained in Horsfield et
al.[7]. 1 have confirmed all the entries for cD and graphenein Table V of [10] except UU_, which |
find is —24.775 rather than —24.749 eV/bond and which makes the binding energy —8.797 rather
than —8.759 eV/atom. Thus graphene appears more stable by some 291 meV/atom athough a
figure near zero is expected on the grounds that the binding energy of hG exceeds that of cD by
25 meV/atom whilst the interplanar binding energy of hG is aso about 25 meV/atom[15]. In the
revised work the bond potentialsare unaltered but the bond orders are different and the two binding
energies become -7.631 and -6.997 eV/atom, respectively. These now make cD more stable than
graphene by an enormous 634 meV/atom. In the light of this discrepancy | do not fed it worth
pursuing the numerical implications. The ingredients of the formalism however remain of interest
and are presented bel ow.

Equations (9) and (12) for GZB]%P and O?ﬁf in[12] are the general expressions for the o and =
bond order, equivalent to two B functions. They and their associated equations are simplified in
treating purely elemental carbon. The notation used below has been changed to accommodate my
bookkeeping by atoms rather than bonds. The o bond order is

BY = ! (10.13)

52 + 20i
1+ 1 20 5
[1+ /@79, =%, ]

where 32. =[2,/p,/Q+p)6;/V] (Fg) represents a normalized sp atomic energy level separation,
witho =€ —e =6.7€V,p =11listheratioof twobondintegrals (ppo/|sso|) and

. z / P 2 1 2
DY ( T+ ) (coseisj+p—) . (10.14)

i=1

The 4-hop term beginsin the same way as the 2-hop term, but al so includes summations over cubic
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and quartic factors which are not shown here:

Y4 2 2 zZ ,Z
Q)ZU:Z/(lﬁC’pg) ((;0302,5],+i) +Z Z (10.15)

=1 Py =1 k=1

The = bond order is

BT = 7 (10.16)

1 1
+
R e

where
' z ., » VCT(TT’j 2
I o ANO
% = {(1003202.5j) (1+p ) (W(w’ +(1+ 0080, ) (10.17)
]zl o A 0
and
. Z ! Z " Anq A
®, =) Y (1-cos’6, )1 - cosPh, )32 07 cos2Ae. — ¢,), (10.18)
=1 k=1
where
@2:( P ) Vito)) (10.19)
7o\ L+p, )\ Vil

and the ¢j and ¢, aredihedral angles.
Asthe ¢ and = bond terms are additive the Keating parameters implied by the BOP can be
obtained from the expressionsin Appendix C by including terms for each bond type.
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Chapter 11

In conclusion

My twofold task has been: firstly, to display the development of inner elasticity in general terms,
with acomplete exposure of the underlying symmetry implicationsand adetailed analysisnot only
of how subl atti ce di splacements contribute to the macroscopi ¢ el astic constants but al so of how they
determine the frequencies and eigenvectors of the optic modes at the zone centre; and secondly, to
illustrate that development by detailed treatment of the elasticity and zone-centre optic modes of
four carbon allotropes.

| have carried out the first task much as | did originaly. | have however sharpened-up some
of the argument and focused on the rel ation between sublattice tensors and inner elastic constants
with the intention of showing the inherent, though unimportant, arbitrariness of the latter. In the
connectionwith lattice dynamicsat the zone centreit is satisfying to have derived a secular equation
for the optic modes aone, a development | have not seen el sewhere.

It was part-time employment on the study of hG that triggered the parallel study of the other
three allotropes and ultimately the writing of thisthesis. The four allotropes made an interesting
group: the two with two atoms in the basis have the highest and the lowest symmetries, the
two with four atoms in the basis have the same intermediate macroscopic symmetry but different
microscopic symmetry; adifferent pairing contraststhe sp3-bonded diamondswith the sp?-bonded-
layer structures of the graphites and the remaining pairing comprises two stable materials on the
one hand with apair that consistsof acrysta rarely seen outsidethe high-pressurecell and acrystal
that has never been isolated on the other.

| felt that a common approach was the best way to handle the dasticity and that the Keating
model would be a good vehicle. The main, and initially only, problem was that the model had
never been applied rigorously to materia in any structures other than cubic diamond or zincblende.
Formal extension of the model to hG revea ed alarge number of parametersto be found and alarge
number of elastic constantsto be fitted. Mercifully the elasticity within the graphene layers proved
to require less parameters than cD and the weak bonding between the layers required only three
bond-stretching and no bond-bending parameters to deal with the anharmonicity. The exciting
reward of thisfitting was the revel ation of soft optic modes at the zone centre and the prediction of
a pressure-induced phase-transformation at about the correct pressure.
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The minor problem, that appeared only after | began applying the method to hD, was simply
that Keating's original formulation of strain contained a divisor (half the lattice parameter «) that
was dependent on the choice of unit cell. By omitting this divisor, effectively absorbing it into
the Keating parameters, a modified set of Keating parameters is obtained for cD which can be
transferred successfully to hD. In asimilar way Keating parameters derived for hG were transferred
torG.

The validity of treating the elasticity of the poorly-characterized hD by transfer of parameters
was supported by good accounts of the Raman frequencies and the bulk modulus. A small
problem was identified: the reported constancy of a non-ideal axial ratio to high pressures is
inconsistent with the anisotropy of linear compressibility inherent in a crystal with hexagona
symmetry. Symmetry-related problems also arise with the hypothetical structure of rG: there is
no mirror plane perpendicular to the axis, as there is in hG, to guarantee the planar character of
the graphene layer. The lower symmetry of rG is aso associated with an internal strain tensor
having four independent components as opposed to hG’s one. The strong axial components are
implicitly reponsible for a negative anharmonic compressibility that may be the single reason for
the non-existence of the pure crystalline form.

Theformal part of thisthesiscan beconsiderably extended by passing from the mechanical tothe
thermodynamic régime and investigating the effects of e ectric and/or magnetic fields on sublattice
displacements, generdizingtheinternal strain concept and anatomizing therel ated tensor properties
in amanner analogousto that used for the elastic constants. Ferroelectricity in particular, with its
phase transitions, should be rewarding.

The lattice dynamical aspects have been restricted to the zone centre, an adequate treatment
for the present purpose, but could be extended usefully and with little difficulty to cover the entire
Brillouin zone.

The successful use of the modified Keating model with hG suggeststhat the model might well
be suited to studying the elasticity and the vibrational properties of nanotubes and fullerenes.

The development of the Keating model can be used in conjunction with specific interatomic
potentials if that appears appropriate—to handle the Coulomb interaction in an ionic solid, for
example. In such cases afirst-order Keating energy has to be introduced to balance the first-order
part of the additional potential and render zero the first-order elastic constants that arise.

Further possiblesynoptic studies of cases where aparticular structural motif underliesavariety
of crystal structures spring to mind: SO, unitsin quartzes, tridymites, cristobalites, coesite and
stishovite; H,O in variousices (in Icel the O atoms occupy aquasi-hD configuration) and BN inits
zincblende, wurtziteand graphitic versions. Rationalizationof dataviathe modified Keating model
can serve as a useful preliminary in the derivation of a more sophisticated transferable interatomic
potential.



Appendix A

Gener alised homogeneous defor mation

The éastic constants of finite strain theory can only be computed directly when the contributions
to the energy of the system are simple analytical functions of the interatomic separations or of
the unit cell volume. The favoured aternative is to use infinitesimal strain theory with suitably
tailored homogeneous deformations. In the traditional approach two such ad hoc deformations
were sufficient to determine the two second-order elastic shear constants of FCC metals, such as
copper [1] and aluminum|[2], inwhichthereisnoinner elasticity. Inthelatter work the deformation
was not defined in terms of a parameter that tended to zero in the unstrained state and in neither
case was the volume conserved to better than first order. If the method isto be applied to higher-
order elastic constants and to hexagonal and rhombohedral material, where there are at least five
second-order, ten third-order and numerous inner elastic constants, a rigorous formal procedureis
necessary.

A.1 Homogeneous deformation

Homogeneous deformations are represented by deformation gradient matrices and may operate on
the crystal structurewith or without sublatti ce displacements. They may be defined in ageneralised
way interms of auniform volume-changing part and ashape-changing part. Thelatter isrepresented
by

J(x) = S(2)[I +2P] (A1)

where P isa3 x 3 matrix of small integers or zeroes that determines a particular deformation of
shape, I istheunit 3 x 3 matrix and « is ameasure of the strain. .S(z) is a scaling function used
to ensure that the determinant of .J(z) is unity, so that the volume of the crystal is undisturbed by
the shape-changing part. It isgiven in terms of the trace and determinant of P (tp and dp) and the
trace of the matrix of the cofactors of the elements of P (cp) by

[S()] =1+ tat cpxz + dpxs. (A.2)
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The uniform volume-changing part is a factor (1 + v)%/3, where v isthe relative change of volume
of the unit cell under strain, giving

H(z,v)=(1+0)Y3](2) (A.3)

for the net deformation gradient matrix.
The displacement of sublattice « is defined by a small vector @ such that the position vector
7 of aparticular atom on the sublattice in the unstrained crystal becomes 7 after strain where

F = H(z,v)rg +a”. (A.9)

Anindividua contribution to the free energy per unit initial volume in this approach may be
written

o — 0 0 o, o
pol'(w”,v,2) = poF(0,0,0)+c v+c x+du;
+1c0 02+ 0 va+ 30 22+ doudv +d2 udz + e un’

2% vx 2 zx W e 2513

J
+10 B34+ 210 2y 420 a2+ L0 3
6 “vuv 2 vz 2 vzw 6 "z
+2d2 ufv?+d? uSvr + 3d2 uta?
2% e i twx 1 2%ze ™

1 af o 1 af o 1oy o B
+t3e U ui vt e Ul uj$+6fi‘k u s uy, (A.5)

for aspecific choice of P. Summation over repeated subscripts«, 7 and k& and over the superscripts
«, 3 and v isimplied: the former run from 1 to 3 and the latter from 1 to 2 (cD and rG) or 1
to 4 (hD and hG). The coefficients labelled with vs and/or s are linear combinations, e.g. df
is a combination of severa of the d¢,,.. Lower case symbols ¢, d, e and f have been used
for the different tensors to indicate their kinship with the upper case versions used in the finite
strain approach. Coefficients defined in the above way are called Fuchs constants following their
introductionin[1].
The Lagrangian strain is given by

2n(z,v)+ 1 = H(z,v)H(z,v) (A.6)

where thetilde denotes matrix transposition. The rotationally-invariant measures of inner displace-
ment (* are defined from the rel ative displacements of atoms on two subl attices by

CMa,v) = H(z, )@ — @) (A7)
or
CMa,v) = H(z, )N G (A.8)
where -~ -
-1
- 1
A= S S S S (A9)
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No generdlity islost if P istaken to be symmetric and thus finally we have
2n(z,v) + 1 = (A +0)3[S@))2[I +22P + 2°P?] (A.10)

and
CMa,v) = (@ +0)Y35@)T + 2 P)N 7. (A.11)

The constantscal cul ated directly from Eq. (A.5) arerelated to those appearing in Eq. (1.10) through
chain rule differentiation with the operators

0 - (9m) 9
oz dx ) On,

0 877[) 0
— = — ] — A.12
ov (81} oy, ( )
) ¢\ o -0
= = .. /\O[ .
8%? (8%? 8(]/\ H”($7U) 84}/\

Coefficients are evaluated at zero strain when differentiation is complete.

A.1.1 Fuchsconstantsin termsof Brugger constants

The completely general relationships between Fuchs and Brugger constants are given by the
expressions below in which summation over repeated subscripts is assumed. The convention
6, =1when =1,2or 3 andiszero otherwise, is used. The coefficients¢. are related to those in
Eq.(A2)byt, = —t,,t, = 5t§ —6c, and t, = —(20t2 — 45t ¢ +27d ). P and Q each appear in
two guises: as 3 x 3 matrices with elements P sz and as6 x 1 matriceswith elements P, ().
The latter relate to the former in the same way as 7, relatesto 7, ..

Under volume strain alone:

0o _ 0
3c, = 5101
0 — 0 0
O,, = —06,C;+6,6,C7; (A.13)
0 — 0 0 0
27c,,, = 40,C7 —36;0,C7;+6;6,0,Chpc

Under shape strain alone:

3 = (t,6,+3P)C?

(t,0; +12t, P, +9Q )OO + (135,56 , + 3, (3, P, + 8, P;) + 9P, P,)CY,
Mty8, + Ot Py +271,Q )OO +3(20,,6,5, +3(t, + H3)(5,P; +6,P))
2 PP+ 9t1(5IQJ + 5JQI) + 27(PIQJ + PJQI))C?J
+2(135,0 0, + 328,68 , Py + 8,0, Py +68,6,.P))

0
+9t1(5IPJPK + 5JPIPK + 5[&"PIPJ) + 27PIPJPK>CIJK'

©
)
(=}
1

£
1
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Under volume and shape strain together:

180 = 41,6, +3P)CO+ (2t,6,6,+3(3,P, +5,P))C?,
540 = —A(t;8,+3P,)C%+3(2,6,5, +3(5, P, +5,P))CY,
+2(t,8,0 0, + (8,0, Py +8,6,. P, +8,8,.P))C%, (A.14)
540 = A(t,0, +12t, P, +9Q )OO+ (2(t, + 4t5)5,0, +36t,(5,P; + 6, P))

+72PIPJ + 9(5IQJ + 5JQI)> C?J + 2<t5515J5K
+2t1(5l 5J PK + 5[ 5[&" PJ + 5J 5[&" PI ) + 3(51 PJ PK + 5J PI PK + 5[&" PI PJ )) C? JK*

Under sublattice displacement(s) aone:

de = /~\oz/\DA
p p

e = NN pm (A.15)
raq raq

fozﬁw — /~\oz/\/~\ﬁu/~\wu F/\p,u

pqr pgr

Under volume strain and subl attice displacement(s) together:
o —  AQaX A A
33, = NND)+6,D7))
94~ NAN=2D) +8,D7 +6,6,. D7) (A.16)

UV pJK
Gy A A
NN (2B + 6, B0 ).

3P
PV

Under shape strain and subl atti ce displacement(s) together:

o A A A A
3d5, Nt D) +3P, D +(t,0, +3P,)Dy )
902, = NM(t,— D) +61, P, D+ ((t,+ 2625, + 18, P, +9Q ) D), (A17)
+6Pip(t15J + 3PJ)D;\J + (ti(SJ(SK + 3t1(5JPK + 5[&"PJ) + 9PJPK)D/\ )

PJK
AR (20 20 + 3P, BN+ 3P, FN)+ (1,8, +3P)E,

af f ,)
3e J9pJ ipTg pgK /"

pqx

Under volume and shape strain, together with subl atti ce displacement:
o —  AQaX A A A A
1842, = AN2t,D) +6P, D} +2(41,5,+9P,)D), +64,P, D},
+<2t15J5K + 3(5JPK + 5[&"PJ)) Dg/J\JK) : (A'18)
A.2 Computational procedures

A sufficient variety of deformations must be selected to ensure that all the independent elastic and
inner elastic constants can be uniquely determined. Severa dozen distinct ones are used. These
involve
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1. uniform volume change on itsown,

2. aset of different shape-changing matrices P, detailed for the four carbon allotropes under
discussionin Table A.1, each to be used both with and without volume change,

3. oneof the components of subl attice displacement ", or one of the pairs u" ,uf , or one of the

triplets u" ,uf ., , either alone or combined with the previousitems.

TableA.1: Specification of the shape-changing matrices P and the corresponding scaling functions.
pP.=P, in each case.

| Number P, P, Py P, Py Py S(z)~3 |
c—Diamond
1 1 0 0O 0 0 O 1+
2 o o o 1 1 1 1—322+28
3 o 1 -1 1 1 o 1— 32228
h—Graphite (1-5), h-Diamond (1-7) and r—Graphite (1-9)
1 0O 0 3 0 o0 O 1+ 32
2 0O 0O 3 0 o0 1 1+ 3z — 22
3 0O 0 3 1 0 0 1+3z—22-38
4 1 -1 0 0 o0 O 1— 22
5 0O 0 0 1 1 1 1—322+28
6 0O 0 3 0 0 -1 1+ 3z — 22
7 O 0 o0 -1 1 1 1—322+2,8
8 1 1 0 1 1 0 1+2z—2a2—28
9 1 1 0 -1 1 0 1+2z—2a2—28

Each deformation is used with a grid of seven equally spaced values of z, v and/or each u{* as
appropriate. The energy is determined at each point in the grid and partial energy derivatives
are calculated by numerical differentiation, using least-squares fitting of a polynomial (a cubicis
completely satisfactory) to seven equally spaced points.

Thefull set of relationshipsfor each of the four structures featuring in this thesis are laid out
in the next four subsections. The Fuchs constants are most simply expressed in terms of linear
combinations of Brugger constants. Abbreviationsfor some of the latter are tabulated prior to the
full listings. Thelettersindicate combinationsrelating solely to volume change (b,), solely to shape
change (g,) or to volume and shape change (). Additional auxiliary combinations may make
their appearance in variousthird derivatives (a,). The multiplier A isdefined in (A.9) above.
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A.21 c-Diamond

It is useful to abbreviate certain strings of Brugger constants to prevent some of the expressions
below from becoming unwieldy.

Table A.2: Linear combinationsof Brugger constantsfor cubic crystals.

Abbreviation Brugger combination ‘ Abbreviation Brugger combination ‘

by ¢y ) by %(0111 +6C71,+2C )
93 -G+ %(0111 — 3C11p+ 2053
b, %(011 +207) 9a —C+Cysg
91 ¢+ %(011 —Cp) 9s ¢+ %(0144 — Clss)
9, Ci1+Cy my —Cp+5(Chyy — Cpo)
"y —C1+(Crg + 2059)

The expressions are further simplified because A = 4 = v = 1, leading to AN = (1), etc.

Under sublattice displacements alone

6?15 = (= 1)awEn
flazﬁsw = (- 1)a+ﬁ+wF123-
Under volume deformation
= b
&, = —3by b,
b = b= byt by
eilﬁu = (- 1)a+ﬁ% (2B, + (Eyqy +2Byp)).
Under shape deformation #1
ng = 30
bee T T301% 9
G = —8b1* 3o+ Vgp+ gmy
eiylﬁx = (- 1)a+ﬁ% (2B + (B — Eip))-
Under shape deformation #2
A = 12,
& = 36g,+48g,
0

= —4b, +12b,+16g, + 4m,
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Under shape deformation #3

0 —
Camc - 4gl + 8«92
0 —
rrT

o —
dlac -

g =

2z

s =

3z

s =

= —6g, —12g, + 24g5
(-1)*2D,,

(_ 1)a2<D14 + 2(Dll4 - D124)>
(- 1)“2(5D14 +4D

156)

lvz (_ 1)0 % <3D14 + (D114 + 2D124)>

af
€13

af —
€22,

= (—1)*2(Ey + Epp)

A.2.2 h-Graphite, h-Diamond and r-Graphite

= (— 1)a+52<2E11 + (E111 - E112)>‘

Thelinear combinationsinthefollowing Tableare valid for al three alotropesdueto their common

description in terms of a hexagonal cell.

Table A.3: Linear combinations of Brugger constants for hexagona and rhombohedral crystals.
Two combinations that appear several times are further abbreviated: ¢! = C';; — Cg6 — 2056
and €, = €15 — Cyeer

Abbreviation Brugger combination Abbreviation Brugger combination
by 3(2C; +Cy) by 37(8C, +12C), +6C 35+ C3)
91 ¢ -G 9s Cy+§(C, = 3C, +3C 35— Cazo)

9e Cp+ 5 (Crag* Cogg — 2Csay,)

b, §(2C1, +2C,+ 4015+ Cyy) 97 ~Cy+ 7 (Crep+ Cagp — 20'350)
92 Cp+ 5 (Cpy+Cpy— 4015+ 20) 9s C1e6 — C'es
93 Cp+5(Cy = Cyy) 99 Cp+ 5 (Crag — Cosa)
94 C1+Cy my 4C, = 3C 33— Cags
my Cp+Cp—Ch3—Cyg mg —Cy+3(2C, = 3C, +Cg30)
aq —Ch+ (Cll +COp+ C13) My —Cp+ <0144 + ot C344)
ay Cp+35(Cpy+Cpy— 207) mg ~C1+ (Cle6+ Caps + Cze)

The relations below apply to al three alotropes. Where & and F signs occur they precede
terms deriving from 3m symmetry relevant to certain inner elastic constants of hD and to certain
partial and inner elastic constantsin rG. Additionally, in the case of rG, the A,  and v superscripts
can all be dispensed with and the A factors replaced by powers of —1 exactly as for cD.
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Under sublattice displacements alone
4 = ARy
% = ARy
flﬁzw = A ANE i\léy
flalﬁsw = AMAW/\WF&%U
f gsﬁsw = NNHAVE 3%3%”-
Under volume deformation
= b
&, = —3by b,
b = gbr— byt by
ein, = FACA(2EY + (B + Elfy + Bify)
€35, = FNCON(2E] + (2Liggy + Fly).
Under shape deformation #1
cg = 29,
A —2g, +12g,
CSx - %91 - %ml
A 4g, +36g, — T2a, — 48g,
ngx _%91 - %m1+4a1+ 169, +4m,
Cgux ggl - %ml - %mz
d3, = 2NN (D3 — (D3~ Dyy))
d3,, = 2N"N(=D3+(Dy +5D3,) + (Dgyy + Dy — 4D35+ 2D335))
d3,, = SNN(D3— (D3 —4D3,) — (D3 + D3y — D3 — Disg)
e, = —ACNEQRE + (B + Byl - 2E3])
€55, = 2NVNH(2E5 — (Egh — Egly).
Under shape deformations #2 (upper signs) and #6 (lower signs)
2m = 8¢, +66¢g, — 96a, — 12g, — 48g, — 249, F C', £ 8C,,,
d3,, = N(=(Dys+4Dye) F (D3 + 3D+ 2Dy — D3g) + 2(Dyy5+ Diys — 2Diy))
B, = SAV(-4D}+ 12D} + 13D} +35D% + 6(Djy; + DYy, — 4D+ 2D3) +12D},)
B, = E5RN (D) +6D)+ (203 + D)+ AD}ys + D+ D)
Gl = SAORM(EN + (BN + By - 253 T 2E)
= LROR(EY + B 2m)
5y = HNAH(EN + Qb +2E50L).
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Under shape deformation #3

o —4g, +48g, — 96a, — 48¢, — 48¢, — 487,

o — Ach A
dlx = 2A D16

o — A A A A
d3x = 2N\ <D3 B (D3l B D33 )

dy,, = —2A* (6D35 + (Dgyy — Digyp — 4D135))

dy,, = 2N(2D5g = (Dgyy + Dyy))

dy, = 3NN(=D3+ 4Dy +2D5) +3(D3yy — 2D315+ D)
di,, = 3N (6Ds+ D31y — Dy * 2Dj30)

d3,, = 3N(D3 = (Dg —4D35) — (D1 + D3y, — Dy — Digy)

153 —  AQAN A A A
eiyzx = N AW<2E11M + (Ellul - E11Mz )
— NaAN A
ey = 2NNk
es) = 2NAPREf

Under shape deformation #4
0o _ 2

Camc - §gl + 4g3

0 _
Cxxx - _498

0 — 4 16 2 4 4
Come = 9917 33— gmy*t 30+ 35

—  2Ra)( A A A A A

dg,, = FNN(D3+(5Dg + Dag) +3(Day; — D))

Under shape deformations #5 (upper signs) and #7 (lower signs)

A = —4g, +4g,+8g,+8C,
O = £(4gy+ 129, + 24g, — 48gg) + 8(3C 4+ 3C 55 — 2C,,,)
0 — 8 16 32 4 8 4 8
Cove = —391Y 393t F94— 3mytaagt3my+3mg£ 3 (4014 +(CpptCppp * 0134))

o —  AQA A A A
dlx = A <D3 + 2D15 + 2D16)
o —  AQX A A
ds, = N (D3 +2D7s

di,, = A (Z(Die +4D19) £ (3D35+ 2(Dyy5 — Dis ))

A3 = NNEMD1 +2D3) +2D3 +4Dg + 43 +2Dg5+ D3y — D3y +4D3,)))

di,, = 3NN(D3+6Ds+ 2Dz + Dyg) + 2ADjys+ Dipg + Dige) £ (6D + Diyy — Dy + 2D1y)
A3, = SNND3+6D]+(@D3 + Dyg) + 2ADyys + Dips + Diye)

af _  RaAR A A A A
613595 = A A/\W<Elfb + B +2E 5+ 2E1§6)'
Under shape deformations #8 (upper sign) and #9 (lower sign)

0 _ 5B 14 56 16
Cove = 01— $Ys— 893 — 209, + Fmy + Ggs+8gg+ 169, £ 4(—=TC, + 2(Cpyy+ Cpop — 2C13)))
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A.2.3 Formal checks

There are numerous opportunitiesfor errors to arise in acomplex calculation. To test the accuracy
of the calculations that are reported in this thesis the extravagance of calculating all possible
componentsof thed, e and f tensorswasindulged. Thisshowed explicitly that all expected crystal
symmetry relationswere satisfied. In thistest there may be more than a million applications of the
energy agorithm and several hundred applications of the least-squares fitting subroutine. Where
components should have been zero small values arising from statistical noise were found though
in all cases these were a million or more times smaller than the smallest non-zero components of
the same tensor. The positive outcome of the test suggests that instances where two components
of atensor differ by partsin a thousand or by a factor of the order of a thousand are physicaly
significant.

The accuracy of the subsequent conversion of the Fuchs constants into Brugger constants was
tested in twoways. Inthefirst the energy agorithmwas replaced by the summation of asimplepair
potential ¢(r) = 1/r° over a cluster of more than 8000 atoms. The results of this were compared
with the direct calculation of Brugger constantsfor this potential using the modified Ewald method
describedin[1]. Inthe second test the energy algorithm was replaced by (1.10) with the previously
computed values of all the elastic constants. Self-consistency wastotal.
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Appendix B

Tensor transformationsfor non-standard point-group settings

The conventional setting of axes simplifies the approach to macroscopic tensors by requiring only
one analysisfor each of the crystal classes. Thisisexemplified by the Tables in Chapter 2. At the
microscopic level the symmetry elements common to sites on two distinct sublattices (such as are
involved in the forms of inner elastic constants D+, F** and F*#*) may not be so conveniently
oriented and considerably more than 21 cases may be encountered. In the following two Tables
a number of variant settings have been set out and the transformations that convert the standard
settings into the variants have been listed. Tensor componentsin the variant setting are then given
by the transformation rule

Ap — Ap
(Tijk")variant = Yip@gTr (qur") standard (Bll)

Table B.1: Transformation matrices to convert tensor components from the standard to variant
settingsin trigonal and hexagonal point groups. a = 1/v/2,b=1/v/6and ¢ = 1//3.

Point Standard Variant Transformation matrix
group setting setting NO. ayy Gy Gqg Qyy Gpy G gy Ggy Ggg
3 001 111 1 ¢« b ¢ —-a b ¢ 0-=-20 ¢
El 2 a b ¢ a —-b — 0 2b —c
111 3—a4 b —c—a b ¢ 0 2b —c
1E 4 —q —b —¢c a —b —c 0 =20 ¢
3m 001 100 001 010 5 0 1 0-1 0 0 0O 0 1
32 110 110 Matrix no. 1
111 110 Matrix no. 2
111 110 Matrix no. 3
111 110 Matrix no. 4
6m2 001 100 010 001 010 100 Matrix no. 5
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Table B.2: Transformation matrices to convert tensor components from the standard to variant
settingsin monoclinic, orthorhombic and tetragonal point groups. a = 1/+/2.

Point Standard Variant Transformation matrix
group setting setting NO. ayy Gy Qg Qyy Upy Gy Ggp gy Ggg
m 010 100 1 01 0 0 O 1 1 0 O
2 001 2 001 1 0 0 0 1 O
110 3 a a 0—-a a« O O 0 1
110 4 a-a 0 @« a 0O O O 1
101 5—-a a« 0 0 0 1 a« a O
101 6 « a« 0 0 O 1 a-a O
011 7 0 0 1 ¢ a O0—-a a O
011 8 0 01 a-a 0 a a O
mm2 100 010 001 110 110 001 Matrix no. 3
222 101 101 010 Matrix no. 6
011 011 100 Matrix no. 8
001 100 010 Matrix no. 1
010 001 100 Matrix no. 2
4 001 010 Matrix no. 1
4 100 Matrix no. 2
4mm 001 010 110 010 001 101 Matrix no. 1
a2m 100 010 011 Matrix no. 2
422 001 110 010 Matrix no. 3




Appendix C

Keating model parameter sfrom bond-order potential parameters

C.1 TheKeating model

The Keating energy expressions for ¢D given in (6.40) and (6.41) relate to the unit cell. If the
summation over the basisis omitted the net contributions per reference atom s are

A A
1 /
2 - 2 2
B0 = 23 (aA“, +3 (802 + o(B; + D, A, + TA“.A],J,)) (C.1)
=1 7=1
and
1 A A ;
3 — 3 3 2
EY = 2 > ('VAH £ (0] + e, +0,)A% (C2)
=1 7=1

(02 + D2 )+ 0D A A +EA N (D Ajj)))

oty 37 37

where the primes on the summations indicate that ; # ¢, the asterisk on § has been dropped and
the atomic coordination has been denoted by Z rather than 4 so that the derivations below have
greater generality. A first-order expression, requiring two further parameters i and v, should aso
be considered to accommodate cases where the Keating model represents only a part of the total
energy:

Z Z ,
Z (,uA“. + Z I/Aij) . (C3
=1

J=1

NI

C.1.1 Dependenciesamongst the variables

When the atomic coordination is 7 there are Z variables A, and Z(Z — 1)/2 variables A A
series of relations of dependence between them may be generated from the fact that the Z vectors
7t satisfy

(C4)

s
!
1
o

o
11
=
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whence, on squaring,
Z . . 4 ! .
Yo (7Y T ) =0 (C5)
=1 7=1
Thisrelation is true whether the structure is homogeneously deformed or not, thusit follows that
z z_,
So(a,+> ;) =0, (C6)
i=1 7=1
alinear dependence of the variables. Quadratic and cubic dependencies follow from squaring and
cubingthisrelationship. These procedureslead to nested summationsover productsof thevariables
involving distinct dummy subscripts<, 7, k and [ in the quadratic caseand over 7, 7, k, I, mand n in

the cubic. In the Keating model the products never involve more than two different subscripts so
the following expressions have been limited to precisely that situation.

Z Z ,
So(02 43 (202 v 2m 0,48, )+8,8,) ) =0 ©
i=1 j=1
and
Z Z ,
3 3 2
Z(Aﬁ + > (403 +602 (8, +1,) (C8)
i=1 j=1

oty 37

+ 3A,,(A.2.+A2,,)+6A..A.,A,,+gA,.(A..+A,,)A,,)) - 0.
Y ANKL] 77 [ J37 33

Each of the previousthree relations may be multiplied by an arbitrary factor, K, /2 say, and added to
the equivalent pth-order energy expression without changing itsvalue. All the Keating parameters
will change in the following way, however:

[ oa—atk, v =Yt Ry
v— vtk B — B+ 2k, & — 0+ 4kg
o—o+2k, € — €+ 6rg
T— Ttk n — n+ 3k,
6 — 6 +6ry

3
€—>€+§I433

Clearly there will be invariant combinations, just one at the first order 1 — v, but numerous
possibilities at the second and third order. Thus some elastic constants may be invariant, others
not. For examplein cD

Cyy = %(a+3ﬁ _ 20 +37) > %(a+3ﬁ — 20+ 37 +61,) (C.9)
whereas in the planar interaction in hG
2 2
%= (a5~ 20+7) (C.10)

does not change.
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C.2 Thebond-order potential

The bond-order potential associated with the reference atom s is

1 Z. Z,
ES = é Zz:lz (VR(T‘ ) - VA(T‘ )BZ(C”)) , (Cll)

where the function B, contains a summation over the Z — 1 other atoms j to which atom s is
coordinated and ¢ - isthe cosine of 05 ., the angle between 7 and 77. Both Tersoff and Brenner
included »* and rf explicitly in B, in thelr origina treatments. Subsequently they retained only
theimplicit dependenceviathec; . [1, 5]. Expanded as a Taylor series the bond-order term can be
written

4 zZ z 2
— 0 ! 8Bz’ 1 ! 0 BZ'
Bc,) = BY+Y (80 )OACNEZ M (8%8% OAcijAcik (C12)

7z 7z 3
1 / / / 0°B.
+— —= | Ac.Ac., Ac,,.
GZ Z Z (802']‘80%80”)0 CZ] C By

Thisequation showsthat B, (cij) may be considered as asum of termsinvolving 2 bonds, 3 bonds, 4
bonds and so on. The Keating model, however, involves only 2-bond terms so it simplifies matters
to extract these separately, asin

Z 2 3
0 [ (0B, 1 (9B, .. 1 (0B, 3
Bi(c;;) = B +Z {(ac.,) D+ 5 (ac? @By + 5| 53 ) @), (C1Y
J=1 /0 /0 3 /0

and to ignore the 3- and 4-bond parts,

@) : Z 4 Zn 82Bi
BI(c,) = Z > g B Ac, Ac, (C.14)
771 k=1 oot/ 0
1( 0B, on. L1 9B, )
+2 i Ac. )*A Ac, (Ac.
2 (80221‘8%)0( ) B (80 0ck, 0 )

BA(c, )—Z Z Z ( e, 80 ) Ac; Ac; Acy, (C.15)

=1 k=1 =
which are relevant only to more sophlstl cated treatments of bond order, the analytic approach in

n

[2, 3, 4] for example. Thenotation >~ " meansthat k& # 7 or j; and > " meansthat [ # 4, j or k.

C.3 Equivalent Keating parameters

The relation of the Keating model to the bond-order potential is established by treating V,, and
Vv, asfunctions of the scalar products R, = 7 - 7 or R = 71 . 7/, as appropriate, and B, as a
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functionof R, R, and R, through the 7 — 1 cosines given by

Ci; = Rij/ R”’RJ‘]‘- (C.16)
Equation (C.11) can thus be written
1.2
k= 2 Z (VR(Rii) = Va(R;)B(Ry;, Rijv RJ‘]‘)) (C17)
=1

and its derivatives with respect to each of the R, identified with derivatives of the Keating
expressions with respect to A, since 8/8qu = (dqu /dqu)@/@qu and da,, /dqu =1. Thus
at thefirst order:

[ radv, v, dB, Z dB,
Ho= {(E) - (E) Bi - VA(RZ'Z') (@) - - VA(Rkk) (@) c()(-:-18)

0B. é?Bj
. (W) V(R ( 8%) }0, (C19)

where the single subscript zero indicatesthat all components are to be evaluated at the equilibrium
configuration.

Bracketted terms in (C.1) and (C.2) indicate pairs of routes to the Keating parameters o, ¢, 7
and ¢ and account for the pairs of definitions embedded in the following sets of relations.

At the second order

1| [d?v, d2v, dv dB,
- — B. -2 (=== 2
2 { ( dR2 ) ( dR% | (dR“.) (aR“.) (C.20)

and

A
1
'—\
——

=
—
R
=

o —_
9B, 9%B
—Va(R) (81%2') N Z Va(Ry,) (ﬁ;)} ’
2 k=1 2 0
1 9°B, 9°B,
ﬁ = _Z VA(R“) 8R2 +VA(RJ‘]‘) 8R2 3
1] (¥ 0
_ 1 /dv,\ [ 9B, 9B, ’B;
N {(E) (830‘) "l (GR“.@RM) *Valls) (aR“’aRiJ |
-1 dVy 9 J 8232' ’ j
T _5{(d )(83) Vatft) (MMRH Vi) ox o
77 ) ) 77 ) 77

and

\]
1
|

92B. 9%B. Z n 9%B
+V - 3 + . 7] + 7k .
(R (733.@3}7) VA(RN)(GRMaRﬁ) ; Vi(R,,) orl,) |
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At thethird order

1| [d3v, a3V, d?v dB,
= — R B. -3 = L c.21
T T 6 { ( AR ) ( dR3 ) dR2 (aR“.) (€21

e,

Il

|

'—\

i
——

:S

Py

X

i‘_/
P N———
S%

SRS

\_/ :

+

:S |

- <
=

o

N
TN
SIS
S|,
~—
——
o

2
1
|
N
——

=
1
|
N
——

=
1
|
Nl
——
TN
2%
=
~—
TN
| @
|
S
~ \:_/
AN
TN
| ey
x| <
S
~—
TN
QO
sm QD
%m%
o
~—

) (o )+(di) (8552)

v, (R, _ B,
+
( ) aR aR aR aR aR aR 07

=V, 9B, A Vs 9°B,
$T dRz OR ( dR, ) R, 8R ik ) \ o
B °B 9B,
+V,(R.) (8R28R ) Vv (R ) (GRZGR ) Z V (B ( RZGR )}
and 0
_ 1) [V 8B 0%B, W\ (B
¢ _Z{(dej) (8R ( ) (aR IR, )+ (ﬁ) (33;)

9B, 9°B,
Valty) (aRﬁaRJ@) Vall )(aR 8R2) Z v Al (aR ORZ, )}0

k=1
A sufficient condition for the pairs of relaionsfor o, ¢,  and £ to be equal is that B, and B, each
be symmetrical with respect to interchanges of £z, and R... Equation (C.16) showsthisto be the
casesince B, and B, are assumed to be functions of the cosines aone.
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Care is needed in evaluating the various partial derivatives in the above equations. Thusin
(C.18), the expression for y, the partial derivative that multiplies V, (2;.) involves a summation

JB. Z.1 / dc.. 0B,
(@) =; (aR;) (87]) (C.22)

whereasthe partial derivativethat multi pIiesVA(Rjj) insidethe summation (i. e. for k = 5) consists

aBj i 8025 8Bj .03
(aRﬁ)‘(aRﬁ) de,; | (€23

In the expression for v, (C.19), both the partial derivatives are single products because specific

over the Z — 1vauesof j # i

of asingleterm

values of 7 and ;j are implicit. Similar considerations apply to al the second- and third-order
relations.
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