References next up previous
Next: About this document Up: Dynamic Properties of Previous: References

References

1
G. D. Watkins in, Radiation Damage in Semiconductors, Ed \ P. Barach, (Dunod,Paris 1964), 97.
2
A. R. Bean, and R. C. Newman, Solid State Commun. 8, 175 (1970).
3
R. C. Newman, and A. R. Bean, Rad. Eff. 8,189 (1971).
4
G. D. Watkins, and K. L. Brower, Phys. Rev. Lett. 36, 1329 (1976).
5
L. W. Song, and G. D. Watkins, Phys. Rev. B. 42, 5759 (1990).
6
R. Wooley, E. C. Lightowlers, A. K. Tipping, M. Claybourn, and R. C. Newman, Mat. Sci. Forum 10-12, 929 (1986).
7
J. F. Zheng, M. Stavola, and G. D. Watkins, The Physics of Semiconductors, ed. D. J. Lockwood, World Scientific, Singapore, (1994) p 2363 .
8
M. Besson, and G. G. DeLeo, Phs. Rev. B 43, 4028 (1991).
9
M. J. Burnard and G. G. DeLeo, Phys. Rev. B 47, 10217 (1993).
10
J. Tersoff, Phys. Rev. Lett. 64, 1757 (1990).
11
R. B. Capaz, A. Dal Pino,Jr., and J. D. Joannopoulos, Phys. Rev. B 50, 7439 (1994).
12
A. Mainwood, Mat. Sci. Forum, Trans. Tech. Publications, to be published, (1995).
13
A. K. Tipping, and R. C. Newman, Semicond. Sci. Technol. 2, 315, (1987).
14
L. W. Song, X. D. Zhan, B. W. Benson, and G. D. Watkins, Phys. Rev. B. 42, 5765 (1990).
15
G. E. Jellison, J. Appl. Phys. 53, 5715 (1982).
16
K. P. O'Donnell, K. M. Lee, and G. D. Watkins, Physica B 116, 258 (1983).
17
G. Davies, and M. C. do Carmo, J. Phys. C. 14, 1687 (1981).
18
K. Thonke, H. Klemisch, J. Weber, and R. Sauer, Phys. Rev. B 24, 5874 (1981).
19
R. C. Newman, and R. S. Smith, J. Phys. Chem. Solids 30, 1492 (1969).
20
G. B. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B 26, 4199 ( 1982).
21
S. Öberg, P. K. Sitch, R. Jones, and M. I. Heggie, Phys. Rev. B. 51, 13138 (1995).
22
M. J. P. Musgrave, and J. A. Pople, Proc Roy Soc A268, 474-84 (1962).
23
R. Jones, and S. Öberg, Phys. Rev. B 44, 3673 (1991).
24
R. Jones, P. Leary, S. Öberg, and V. J. B. Torres, Mat. Sci. Forum, Trans. Tech. Publications, to be published, (1995).
25
R. Jones, J. Goss, C. Ewels, and S. Öberg, Phys. Rev. B, 50, 8378, (1994).
26
G. Davies, and R. C. Newman, in Handbook on Semiconductors, 3, ed. by S. Mahajan, Elsevier (1994), p 1557.
27
K. Thonke, A. Teschner, and R. Sauer, Solid State Commun., 61, 241, (1987).

FIGURE CAPTIONS

Figure 1. The ground state configuration of the interstitial carbon defect in Si. The atoms with reduced coordination numbers are marked.

Figure 2. The A-form of the di-carbon defect. The defect can be thought of as a C tex2html_wrap_inline334 defect bound to a substitutional carbon atom.

Figure 3. The B-form of the di-carbon defect. This defect is a bond centered silicon atom lying between two substitutional carbon atoms.

Figure 4. The pseudo-wavefunctions of the carbon interstitial defect in Si. The white triangle represents the carbon atom, and its nearest Si neighbors are represented by white circles.
(a) Wavefunction of second highest occupied state, (110) plane,
(b) Wavefunction of highest occupied state (110) plane,
(c) Wavefunction of lowest unoccupied state (110) plane.

   table254
Table: Structural data of the C tex2html_wrap_inline334 and C tex2html_wrap_inline334 -C tex2html_wrap_inline340 defects in Å . Here, the subscripts indicate the coordination of the atoms involved, with reference to Figures 1-3.

   table265
Table: Experimental and calculated LVMs, cm tex2html_wrap_inline338 , of the C tex2html_wrap_inline334 defect, and their downwards isotope shifts

   table285
Table: Experimental and calculated LVMs, cm tex2html_wrap_inline338 , and their downwards isotope shifts of the B-form of C tex2html_wrap_inline334 -C tex2html_wrap_inline340

  table301
Table: Relative total energies (eV) for the A and B forms of the di-carbon defect with varying charge state.

tex2html_wrap_inline962 Reference 14.
tex2html_wrap_inline964 Reference 9.
tex2html_wrap_inline966 Reference 12.



Antonio Resende
Wed Jan 15 12:41:08 GMT 1997