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Detailed calculation of the thermoelectric figure of merit in an n-doped SiGe alloy
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In this study, we develop a detailed numerical approach towards the theoretical calculation of the phonon
contribution to the dimensionless figure of merit ZT that parameterizes the efficiency of the thermoelectric
effect, and apply it to the case of an n-doped Si0.754Ge0.246 alloy sample. This is achieved by using accurate lattice
dynamical eigensolutions from the application of the density functional perturbation theory, supplemented by a
semiempirical approach for crystal anharmonicity. The success of the application of the theoretical method for
lattice thermal conductivity, within the single-mode relaxation time scheme, in explaining available experimental
data is highlighted. Using well-known phenomenological theories, based on the nearly-free electron model,
for the behavior of the electronic components of ZT , we are then able to calculate the figure of merit over a
temperature range of 300–1200 K.
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I. INTRODUCTION

The concept of conversion of electricity into heat and vice
versa—the thermoelectric effect—has been considered very
useful for several decades (see, e.g., Refs. 1–4). This has re-
cently been the subject of intense theoretical and experimental
interest.5,6 This interest has arisen largely since it has been
shown experimentally that the efficiency of thermoelectric
conversion (which is described by the figure of merit ZT ) can
be substantially increased with nanostructuring.5–7 In general,
existing three-dimensional thermoelectric (TE) materials are
found to exhibit high efficiency (ZT > 0.5) either at low
temperatures (such as Bi2Te3, between 200–500 K) or in
an intermediate temperature range (such as PbTe, between
600–900 K), or at high temperatures (such as SiGe alloys,
between 800–1300 K). It has also been suggested that it may
soon be possible to engineer thermoelectric structures that
function optimally across a wide variety of temperatures,5

leading to obvious industrial applications. However, in order
to properly engineer nanostructured TE materials, we must
understand not only how nanostructuring affects the various
parameters governing thermoelectric efficiency but which
parameters produce the greatest effect. At present, it seems that
approaches that attempt to minimize the phonon contribution
to the thermal conductivity show most promise.5,8 However,
the theoretical behavior of this quantity is not currently well
understood.

Over the past several decades, a large number of theoretical
investigations have been undertaken in order to assess ZT of
semiconductor single crystals. While the electronic properties
are reasonably well formulated within the nearly-free-electron
model, numerical calculations that fully account for the
temperature variation of that most basic of quantities, viz., the
Fermi energy EF have not necessarily been made. The quantity
that has remained the least well convincingly studied is the
lattice contribution to thermal conductivity κph. In this respect,
four publications deserve to be mentioned. Meddins and
Parrott9 do not elaborate on any specific method for evaluating
the electrical conductivity σ , Seebeck coefficient S and the
bipolar contribution to thermal conductivity and resort to a
high-temperature interpolative scheme for the calculation of
κph for SiGe alloys. Vining10 has adopted a complete treatment

for the electronic contributions, viz., for σ , S, electronic
and bipolar contributions to thermal conductivity κel and κbp,
respectively. However, this work does not explicitly consider
the temperature dependence of EF . Moreover, Vining has
employed a phenomenologically derived, simple expression
for the anharmonic phonon relaxation time, incorporating a
low-temperature form of the three-phonon Umklapp scattering
rate, where the three-phonon Normal scattering rate is taken to
be a simple scaling (by an undeclared factor) of the Umk-
lapp scattering rate. These low-temperature considerations
should not be expected to be valid at high temperatures,
entailing that an application of that scheme to systems of
reduced dimensionality is unlikely to be useful. Similarly,
the more recent work of Minnich et al.11 improves on
Vining’s10 and Slack and Hussein’s12 similar treatment of
the electronic parameters of the system, but performs the
phonon conductivity calculations using an approach similar
to that used by Vining. Slack and Hussein12 themselves use
an empirical approach to the phonon conductivity. Hicks and
Dresselhaus8 have attempted to explicitly include the Fermi
energy EF in their formulation of σ and S, but did not account
for its temperature variation. Although they have discussed
the effects of reducing dimensionality on the various TE
coefficients, in their treatment, κph is considered to be no more
than a temperature-independent adjustable parameter. Thus it
seems reasonable to conclude that—to our knowledge—there
is currently no publication that presents a systematic numerical
calculation of the TE coefficients of semiconductors over a
wide range of temperatures.13

In this paper, we aim to provide as complete and accurate
a theoretical approach as possible to the calculation of the
phonon contribution to the thermal conductivity (and hence to
the calculation of ZT ) in alloyed systems, which we hope will
serve as a basis for future work performed on more complex,
nanostructured systems.

In the next section of the paper, we shall outline the
theoretical background of our calculation. Firstly, we discuss
the behavior of the electronic components of ZT using the
well-known expressions based on the nearly free-electron
model for the electronic band structure. The behavior of
these components is well understood in bulk materials—our
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treatment of them will hence be phenomenological and a
summary in nature, as it is the calculation of the contribution
arising from phonons that is most challenging and which shall
therefore command the majority of our attention. Next, we
turn to our theoretical scheme for the computation of the
lattice contribution to ZT , viz., the phonon conductivity. One
important element in our approach that should be emphasized
is that we make use of an expression for the anharmonic crystal
potential that includes contributions from the optical as well as
acoustic modes; this expression is defined in a semiempirical
fashion, and we expect this approach to complement other,
recently developed approaches such as those of Refs. 14–16.
This will be discussed in more detail in the second section of
the paper.

The third section details our approach for calculating
the phonon eigenmodes, frequencies and velocities through
the use of density functional perturbation theory (DFPT)17

(reviewed in Ref. 18). In the fourth section, we detail the
results of our study, beginning with the results of our fitting
of the electronic parameters to the experimental data, and
then, turning to the focus of this paper, we initiate our
discussion of the phonon-dependent aspects of the sample
with an examination of the form of the dispersion relations
of the model cell used in the DFTP calculations and how
they are affected by bond relaxation, and a discussion of some
theoretical issues surrounding the notion of a “mean-free path”
and its definition within the context of the study of thermal
conductivity. Lastly, we discuss the results of our calculation
of the total thermal conductivity and the figure of merit ZT

and how they compare to the experimental results for ZT of
sample 7 in Meddins and Parrott,9 before summarizing our
conclusions.

II. THEORETICAL BACKGROUND

As indicated above, a typical measure of the efficiency of
thermoelectric conversion is given by the dimensionless figure
of merit ZT , defined as follows:

ZT = S2σT

κ
, (1)

where S is the Seebeck coefficient for the material, σ is its
electrical conductivity, T its temperature, and κ is its total
thermal conductivity. We can treat the thermal conductivity as
a sum:

κ = κel + κph, (2)

where κel is the electronic and κph is the phonon (lattice)
contributions. Obviously, it is through the latter term that the
phonon physics of the material affects the figure of merit.
Following previous theoretical works,8,10–12 we will evaluate
σ , S, and κel within the application of the nearly-free electron
model. We present an extensive theoretical approach for
calculation of the lattice thermal conductivity κph.

A. Electronic components of ZT

Firstly, we shall examine the behavior of the components
of ZT , which are primarily electronic in nature (S, σ , κel), as
a prelude to examining the more difficult phonon conductivity
contribution κph. Since we are more interested in the fine

detail of the latter, our examination of the former is of
necessity somewhat brief, being more concerned with suitable
phenomenological modeling of the quantities in question as
opposed to the minutiae of their physics. To this end, we shall
discuss the application of our expressions to the relevant data
in this section, so as not to detract from the main focus of our
study.

1. Temperature variation of Fermi energy

Numerically accurate values of the Fermi energy are
required at each temperature we wish to calculate the electronic
transport coefficients. For the system under study, we use the
following expression for the incompletely ionized, extrinsic
semiconductors,19 but replacing the first term with one more
suited to the case of strongly degenerate semiconductors:20

EF = (3π2Ndon)2/3

2h̄2(2Nval)2/3mdos
e

+ kBT

2
ln

Ndon

2AeNval

− kBT sinh−1

[√
AeNval

8Ndon
e−(Ec−Ed )/2kBT

]
. (3)

Here, mdos
e is the density-of-states effective mass and Nval

is the number of valleys in the conduction band. We define
Ae/h = 2(mdos/∗

e/h kBT/h̄2)3/2, and the quantity Ndon represents
the number of donor impurities.

2. Seebeck coefficient

We adopt the nearly free electron model and use the
following expression for the absolute value of the Seebeck
coefficient:4

|S| = kB

e
[M(α) − ηR] , (4)

M(y) = (s + 2.5)

(s + 1.5)

Fs+3/2(y)

Fs+1/2(y)
. (5)

Here, α = ηR − (Ec/kBT ), where ηR = EF /kBT with EF

being the Fermi energy, s is determined by the dominant
electron scattering mechanism, and we make use of the Fermi
integrals

Fa(y) =
∫

xa

ex−y + 1
dx. (6)

3. Electrical conductivity

We adopt the nearly-free electron model and write the
expression for the conductivity derived in Drabble and
Goldsmit,21 generalized to the case of multiple valleys,
as

σ = Nvale
2τ0

3π2m∗
c

(
2mdos

e kBT

h̄2

) (
p + 3

2

)p

Fp+1/2(α), (7)

where Nval is the number of energy valleys, m∗
c is the

conductivity effective mass, and τ0 represents the energy-
independent portion of the relaxation time

τ = τ0(αkBT )p, (8)
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with p being a constant depending on the type of scattering.
We have considered ionized impurity (imp) scattering, acoustic
phonon (ac) scattering, and optical phonon (op) scattering as
being relevant to our work. Expressions for these scattering
rates from each valley are22

τ−1
imp = Z2e4NiC

16πε2(2mdos)1/2kBT )3/2
α−3/2, (9)

τ−1
ac =

√
2E2

Dmdos3/2
(kBT )3/2

πh̄4ρc2
L

α1/2, (10)

τ−1
op = (2mdos)3/2D2

o

4πh̄3ρω0
[(n̄ + 1)

√
(αkBT − h̄ω0)

+ n̄
√

(αkBT + h̄ω0)]. (11)

In the above expressions, m∗
c is the conductivity effective mass,

ρ is the density of the sample, cL the speed of LA phonons, ED

is an acoustic deformation potential, ω0 is the frequency of the
highest longitudinal optical mode, Do is an optical deformation
parameter, ε is the host dielectric constant, Ze is the impurity
charge, Ni is the impurity concentration, and C is a constant
that is usually between 1.4 and 2.22 The first and second
terms in the optical scattering expression are contributions
from phonon emission and absorption events, respectively.
From the above expressions, it is clear that the parameter
p takes values 3/2 for impurity scattering and −1/2 for
acoustic and optical phonon scattering. The conductivity ex-
pressions, considering individual scattering mechanisms, then
become

σimp = 64
√

3Nvalε
2
(
mdos

e

)2

πm∗
cZ

2e2NiC

(
kBT

h̄

)3

F2(α), (12)

σac = 2Nvale
2h̄ρc2

L

3πE2
Dm∗

c

F0(α), (13)

σop =
{

σop, ab E � h̄ω0

σop, ab + σop, em E > h̄ω0
, (14)

σop, ab = 4Nvale
2ρω0kBT

3πD2
on̄m∗

c

F0(α), (15)

σop, em = 4Nvale
2ρω0kBT

3πD2
o(n̄ + 1)m∗

c

F0(α). (16)

Using Matthiessen’s rule, we sum the resistivity contribu-
tions as follows:

σ−1
n = σ−1

ac + σ−1
op + σ−1

imp. (17)

We denote the conductivity as σn since it is the electronic
contribution to the conductivity. For our system, and in the
temperature range of interest (i.e., above 300 K), the impurity
and optical phonon scattering rates are found, respectively, to
be approximately four and two orders of magnitude smaller
than the acoustic phonon scattering rate. We thus considered
only the dominant acoustic contribution and neglected the
others. We remark that there also exists a small contribution to
the conductivity from holes, which we denote σp, and model
in a simple fashion described later in this paper. This last
does not significantly contribute to the overall conductivity,
which is dominated by σn, however, it will prove important
when considering the bipolar contribution to the thermal
conductivity, which we discuss next.

4. Electronic and bipolar contributions to thermal conductivity

The electronic contribution to the thermal conductivity is
typically taken to be κel ∝ σeT , with the Lorentz number
L being the constant of proportionality (see, for example,
Refs. 19,21, and 23). However, a complication arises when
we deal with the behavior of the system at high temperatures,
which require an account of the effects of thermally excited
holes. The thermal conductivity contributions arising from
electrons and holes are not simply additive; in combination
they give rise to an additional contribution known as the
bipolar term,2,21,23–25 which may be quite large even if σh/σn

is small. Following the derivation given in Ref. 21, we may
write the total electronic conductivity (including this term) as

κel = k2
B

e2

{
L(α)σnT + L(β)σpT + σnσpT

σ

[
(Ec − Ev)

kBT
+ M(α) + M(β)

]2
}

,

(18)

L(y) = (s + 3.5)(s + 1.5)Fs+5/2(y)Fs+1/2(y) − (s + 2.5)2Fs+3/2(y)2

(s + 1.5)2Fs+1/2(y)2
,

where we have defined β = (Ev/kBT ) − ηR .
The hole density can be written as nh ≈ n2

in/Ndon,19 where
nin = √

AeAh exp[−(Ec − Ev)/2kBT ], allowing us to make
use of the following simplified expression:

σp = eG exp[−(Ec − Ev)/kBT ], (19)

with G treated as an adjustable parameter.

B. Phonon contribution to thermal conductivity

Here, we move the focus of our discussion to the theoretical
heart of our work: the calculation of the lattice (phonon)

portion κph of the thermal conductivity κ . Working within
the single-mode relaxation time approximation,26 we write
the following expression for the thermal conductivity:

κph = h̄2

3V kBT 2

∑
qs

c2
s (q)ω2(qs)τ (qs)n̄qs(n̄qs + 1)

=
∑

qs

κqs , (20)

where the total volume of the system is V = Ncell�0 (Ncell

being the number of unit cells in the system and �0 being the
volume of each unit cell), q being the phonon wave vector, s
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is the label of the phonon branch, cs(q) is the magnitude of
the velocity for a given mode qs, ω(qs) is the frequency, and
n̄qs is the Bose-Einstein distribution at equilibrium. The total
single-mode relaxation time τ (qs) is given by

τ−1(qs) = τ−1
BD(qs) + τ−1

MD(qs) + τ−1
EP (qs) + τ−1

AH(qs), (21)

where we have contributions from boundary scattering
τBD(qs), mass-defect effects τMD(qs), electron-phonon inter-
actions τEP, and anharmonic phonon-phonon interactions τAH.
We shall discuss the first three contributions separately from
the latter.

1. Harmonic scattering processes

The boundary scattering of phonons is expressed as26

τ−1
BD(qs) = cs(q)

L
, (22)

where L is a measure of the effective size of the crystallite
microstructure in the sample studied in Ref. 9. Mass-defect
scattering arises due to the perturbation in crystal potential
from the difference between the average mass of the alloy and
the actual mass at a given atomic site of a particular species or
isotope. We use the form given in Ref. 27,

τ−1
MD(qs) = ω2(qs)gs(ω)PNcell

4π
MD, (23)

where gs(ω) is the phonon density of states and P is an
adjustable parameter that we have introduced in the manner
of Ref. 28 in order to absorb the effects of defects such as
impurities and vacancies into τMD(qs), which are otherwise
hard to parameterise. MD determines the average effect of
species and isotope masses on the relaxation time. We use the
formulation in Ref. 29, which incorporates both alloying and
isotope effects in a relatively simple fashion, and express it for
the alloy SixGe1−x as

MD = x

(
mSi

m̄

)2

IS(Si) + (1 − x)

(
mGe

m̄

)2

IS(Ge). (24)

Here, mS is the average mass of the species S, m̄ is the average
mass of the alloy constituents, and IS(S) incorporates the
effects of the different isotope masses

IS(S) =
∑

i

fi

(
mi − mS

mS

)2

, (25)

where mi is the mass of the ith isotope and fi its frequency.
We use isotope data from Ref. 30 for Ge and from Ref. 31
for Si.

We parameterize the electron-phonon scattering through a
generalization of the expression for medium-high doping used
in Ref. 9:

τ−1
EP (qs) = neβ1

∣∣Es
def

∣∣2√
πα1e

−α1

h̄ρcs(q)2
. (26)

Here, ρ is the density of the system, α1 = m∗
ecs(qs)2/2kBT and

β1 = h̄ω(qs)/kBT , and we approximate ne with Ndon. Edef is
the deformation potential, expressed as26

Es
def = A

Nat∑
i

q̂ · ei
qs . (27)

In this expression, ei
qs is a member of the set of Nat eigenvectors

of an acoustic phonon mode qs, Nat is the number of atoms
in the unit cell, and A is an empirically adjustable parameter
that controls the strength of the deformation potential and thus
determines the magnitude of the electron-phonon scattering.
Since this expression is only valid for acoustic phonons, in
our numerical calculations, we set it equal to zero when the
frequency corresponding to a mode (qs) is greater than some
cutoff value corresponding to the largest value of an acoustic
frequency at the Brillouin zone boundary (in our case, this is
170 cm−1, which is the largest value at the X point in the z

direction).

2. Anharmonic scattering processes

The calculation of the anharmonic contribution to the
phonon relaxation time is far from simple. The behavior of
this aspect of the system is determined by the values of the
third-order force constants, whose effects can be summarized
through a number of parameters such as the mode-dependent
Grüneisen constants (γMD), which determine the strength of the
scattering for different three-phonon processes.26 One might
think that the ab initio calculation of the third-order constants
using DFPT methods such as those described in Refs. 18
and 32 or the force-displacement approach of Ref. 33 would be
sufficient unto themselves, but there are a number of caveats
that suggest that these approaches may be complemented by
others such as the one employed in this paper.

Firstly, Lopuszyński and Majewski34 have shown that in
the elastic limit, ab initio calculations carried out via the
theory of nonlinear elasticity show that while values of γMD for
longitudinal acoustic (LA) modes are in reasonable agreement
with experiment with discrepancies of around 0.9 to 10%, the
difference between experimental and theoretical values of the
transverse acoustic (TA) modes can be between roughly 84%
to 98%. They suggest that this could be an indication that the
final value of γMD is very sensitive to numerical errors in the
third-order elastic constants on which it depends. Something
similar could be true in the case of ab initio calculations
performed outside of elastic limit, for in their recent, state-
of-the-art calculation Esfarjani, Chen, and Stokes16 employ
the method of Ref. 33 in order to calculate force-constants ab
initio and find that the values of the TA modes are again rather
different from experiment due to a truncation in the number of
third-order force constants used (they note that a large number
are needed in order to calculate these modes correctly). While
we are not presently aware of any calculations of the various
γMD for the method of Ref. 32, on the strength of the foregoing
one should perhaps avoid assuming unreservedly that an ab
initio DFPT calculation will exactly reproduce the values of
quantities that may be very sensitive to numerical error.

A further interesting issue is the temperature dependence of
the γMD and their constituent force constants; if we examine
the experimental behavior of the mode-averaged Grüneisen
constant γ in Si and Ge in Figs. 61 and 51 on p. 373 and
p. 413, respectively, of Ref. 35, we can see a rather strong
temperature dependence as T is increased from 0 K to around
300 K, with γ decreasing from a positive value to a negative
minimum before increasing once more and finally tending
towards a positive value that is not necessarily identical to the
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value close to T = 0 K. This implies that the behavior of the
γMD is also temperature dependent, something that can also be
inferred from measurements of the temperature dependence
of the linear expansion constants36 from which γMD may be
derived. However, DFT and DFPT calculations are carried out
at T = 0 K and do not give the behavior of the force constants
as temperature is varied. Studies of the lattice heat transport
in Si,14,16 Ge,14 and SiGe alloys15 do give experimentally
compatible values for various temperature ranges (see Ref. 14
for the entirety of the T = 0–300 K range, Ref. 16 for
T = 100–500 K, and Ref. 15 for T = 300–600 K), and that
deviations from experiment outside of those ranges may be
accounted for by additional scattering effects as discussed in
Ref. 16 for their results; but these studies contain no discussion
of the effects of temperature on the force constants. One
exception to this is Ward and Broido’s ab initio examination
of phonon relaxation times in Si and Ge,37 where the effects
of temperature on lattice properties via thermal expansion
have been tested by varying the lattice constant by an amount
appropriate for the temperature. They find that this gives results
for the overall thermal conductivity that are within 1–2% of the
value calculated using the T = 0 K force constants. It should
be observed that the assumption that phonon properties are
affected only by thermal expansion as temperature is varied
is a product of the quasiharmonic approximation,18,26,38 but
since this approximation seems to be assumed valid in many
calculations of this type (including the one in this paper) any
problems arising from it are unlikely to be unique to their
work.

That the aforementioned calculations work so well in spite
of the potential problems we have raised is perhaps due to the
complexity of the anharmonic contribution to the properties of
the systems of interest. Simply put, it is difficult to tell how the
individual mode contributions to each allowed three-phonon
scattering event sum or cancel, since there are so many, and it
is possible that much of the detailed variation due to error or
temperature may be counteracted by their weighting as they
enter into the calculation of the relaxation time. It is hard to tell
at this point; perhaps more work is needed. This complexity
also renders the calculations somewhat opaque to theoretical
analysis despite their accuracy, and hence there is still much
need for an approach to anharmonic and similar effects that
is intermediate between that of a full ab initio approach and
traditional long-wavelength limit calculations.

In future work, we intend to examine how lattice scattering
is modified due to the properties of various nanostructures and,
consequently, how the thermal conductivity (and therefore
ZT ) are affected by this modification. A full calculation
would probably work against our aim of understanding the
mechanisms involved since the complexity of the anharmonic
contributions to systems in question might obscure the major
details of the underlying mechanisms, and so we choose
a semiempirical approach that employs ab initio DFPT
elements, which we hope will capture as many of these
factors as possible. The price we pay is the loss of a certain
amount of predictive power regarding a given system; however,
the prize we gain is that it becomes relatively simple to
predict the effects of changes in structure between systems
and account for the mechanisms underlying them, while in
addition (hopefully) attaining good qualitative estimates of

the magnitude of these effects. However, to begin with, we
here test our approach using as detailed a calculation of the
lattice contribution to the thermal conductivity as possible for
a known system where experimental results are available, not
only for reasons of simple validation, but because it gives an
idea of plausible semiempirical parameter ranges suitable for
cases of nanostructured systems of similar composition where
appropriate experimental results may not yet be available.

The approach we have chosen is developed from the
concepts presented in Refs. 26,39, and 40. In brief, we describe
the anharmonic phonon-phonon scattering through the use of
a continuum model to treat acoustic as well as optical phonon
modes, and express the three-phonon scattering strength using
the mode-averaged Grüneisen’s constant γ , which we treat as
a semiempirical adjustable parameter that can also be made
temperature dependent if desired. The relevant expression for
phonon anharmonic relaxation time in this approach is

τ−1
AH(qs) = πh̄γ̄ 2

ρV

∑
q ′s ′, q ′′s ′′, G

(Bqs, q ′s ′, q ′′s ′′ )2

ω(qs)ω(q ′s ′)ω(q ′′s ′′)

×
[
n̄q ′s ′ (n̄q ′′s ′′ + 1)

(n̄qs + 1)
δ(ω(qs) + ω(q ′s ′)

−ω(q ′′s ′′))δq+q ′, q ′′+G + 1

2

n̄q ′s ′ n̄q ′′s ′′

n̄qs

δ(ω(qs)

−ω(q ′s ′) − ω(q ′′s ′′))δq+G, q ′+q ′′

]
, (28)

where

Bi,j,k = {
√

ω(i)ω(j )[ω(i) + ω(j )]|ω(k) − ω(k)|/c(k)

+ similar terms with i, j,and k interchanged}/3!,

(29)

with ω(k) being the frequency at the  point (zone center)
for mode k and c(k) is the phonon speed for the branch
and momentum labeled by k. A zero (nonzero) reciprocal
lattice vector G accounts for a Normal (an Umklapp) process
and γ̄ is a mode-averaged rescaled Grünneissen constant.
The reasoning behind this generalization is discussed in the
Appendix to this paper. We observe that this approach does
not make use of two of the three approximations examined
in Ref. 37 as it uses complete phonon dispersions rather than
Debye-type approximations and accounts for the effects of
optical modes in addition to acoustic modes. It does, however,
make use of the third approximation (that of the elastic
continuum) but we believe that it can provide good qualitative
results nonetheless.

III. NUMERICAL AND COMPUTATIONAL DETAILS

A. Electronic parameters for sample under study

Before discussing the electronic transport coefficients S,
σ , and κel, we first note that the system of the present
study, sample 7 of Meddins and Parrott’s study,9 is a sintered
Si0.754Ge0.246 n-type doped alloy with P impurities acting
as donors. In their study, Meddins and Parrott determined
the carrier concentration of the sample at room temperature
to be 9.4 × 1025 m−3 (we take this value to be a reason-
able approximation of Ndon) and its density to be around
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TABLE I. Parameters for the electronic contributions to ZT derived from comparison with experimental data. We list the name of the
parameter, its value, the measured quantity with which it is associated, the corresponding equation for that quantity, and the figures in which
the theoretical behavior of that quantity is plotted alongside experimental measurements. A dagger indicates that this quantity was selected
rather than directly fitted.

Parameter Value Quantity Equation Figure

mdos
e 0.51me |S| (5) via (3) 3

cL 7504 ms−1 † σac (13) 4
C 0.0013 † σn (32) 4
ED 10.5eV †11 σac (13) 4
mc∗ 0.45me † σac (13) 4
ν 0.4 σn (32) 4
m∗

‖ 1.10me · · · · · · · · ·
m∗

⊥ 0.35me · · · · · · · · ·
G 3.2 × 1023

(
T

300

)2.3
m−1 V−1 s−1 κ (2) via (18) and (19) 4, 10

2860 kg m−3 (this is lower than might be expected through a
weighted averaging of the masses of the component elements
and could indicate that the sample is somewhat porous). For
our calculations, we will also require the relative locations of
the conduction band edge Ec, the donor energy level Ed , and
the valence band edge Ev . Since Meddin and Parrott did not
measure these values in their study, we must estimate them.
We set Ec = 0 so that it functions as a reference energy, and
take our values for the valence band edges from Fig. 8 of
Ref. 41 and the donor levels from Table 9.1 on page 269 of
Ref. 19. Accordingly, for Si, we take Ed = 0.045 eV and Ev =
Ec − 1.170 + [4.73 × 10−4/(636 + T )]T 2 eV; and for Ge,
we take Ed = 0.012 eV and Ev = Ec − 0.7437 + [4774 ×
10−4/(235 + T )]T 2 eV. We then estimate the corresponding
values for the alloy as a weighted average of the values for
Si and Ge. This gives us values of Ed = −0.037 eV and a
set of temperature dependent values for Ev . We take Nval = 6,
as the composition of our sample places us within the Si-like
region.35 The value of cL is taken to be 7504 ms−1, which is
the speed of the LA mode at the q point closest to  in the
Monkhorst Pack grid used in our phonon calculations. Table I
lists the electronic parameters used in this work.

B. Technical aspects for calculations
of phonon-related quantities

Firstly, we replace Brillouin zone integration of required
functions with summation over a set of momenta and asso-
ciated weighting factors generated through a Monkhorst-Pack
(MP) scheme.42 In order to avoid complication in the numerical
calculation of velocities of phonons, we chose to use a
shifted set of MP points (i.e., a set that does not include
symmetry points in the zone). Secondly, we note that Eq. (28)
includes a number of δ-function terms that are difficult to
evaluate numerically and must be approximated. We follow the
approximations used in Refs. 39 and 40 and replace the exact
momentum conservation condition with an approximation as
follows:

q + q ′ ± q ′′ − G = 0 → |qμ + q ′
μ ± q ′′

μ − Gμ| � �μ,

μ = x,y,z, (30)

with �μ being the absolute value of the smallest momentum
division of the MP grid in the μ direction. This replacement

is required as the use of the MP grid entails that the exact
condition can never be fulfilled; an approximation is needed
in order to obtain nonzero values of the inverse anharmonic
relaxation time. Previous calculations39,40 have shown that this
procedure yields reasonable results. We use a set of 26 G
vectors, which produces a stable result in this case. Thirdly,
we use the definition of the Dirac δ function in terms of a
Gaussian function:

δ(y) = lim
σ→0

1

σ
√

π
e−y2/σ 2

, (31)

where 0 � y � 0, the energy conservation condition has been
rescaled by ω MAX (the largest zone-center frequency), and we
choose a broadening factor σ that is numerically appropriate
(for this study, we use σ = 0.5). If δ(y) < 0.01 for a given
set of modes, we instead set it to zero, in order to avoid
spurious contributions arising from large quantities far from
the center of the Gaussian. Table II lists the parameters used
in the calculations of phonon-related quantities.

C. Calculations of phonon eigensolutions and velocities

As discussed in the previous section, for numerical evalua-
tion of κph, we require to calculate phonon frequencies {ω(qs)},
eigenvectors {e(qs)}, and velocities {v(qs)}. We obtained these
quantities through the application of density functional theory
and linear response theory [the combination known as density
functional perturbation theory (DFPT)],17,18 as implemented
in the routines incorporated into the QUANTUM ESPRESSO

package.43 Norm-conserving pseudopotentials utilizing a local
density approximation (LDA) to the DFT44 were employed in
our calculations.

TABLE II. The various parameters determining the behavior of
κph, their values, and the quantities and equations associated with
them.

Parameter Value Quantity Equation

L 0.2 μm τ−1
BD(qs) (22)

P 400.0 τ−1
MD(qs) (23)

A 0.8 eV τ−1
EP (qs) (26) via (27)

γ̄ 0.63 τ−1
AH(qs) (28)
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FIG. 1. (Color online) The Si0.75Ge0.25 cell used in our DFT
calculations. Blue (dark) spheres represent Si atoms, and lilac (light)
spheres represent Ge atoms. Image generated using XCRYSDEN (see
Ref. 47).

We simulated the Si0.75Ge0.25 crystal structure by consider-
ing the eight-atom cubic unit cell depicted in Fig. 1. We do not
expect there to be any significant error arising from the slight
discrepancy in alloy composition, nor from the (inevitably)
ordered nature of this alloy model when comparing our
results with measurements on the Si0.75Ge0.25 disordered alloy
studied in Ref. 9. Using a cell dimension of a = 5.48 Å
consistent with Vegard’s law of the weighted average (i.e. a =
0.75aSi + 0.25aGe), we adopted shifted 4 × 4 × 4, 6 × 6 × 6,
8 × 8 × 8, 10 × 10 × 10 Monkhorst-Pack grids with kinetic
energy and density cutoffs of 15.0 and 60.0 Ry, respectively,
and performed an electronic calculation while allowing the
atomic coordinates in the cell to relax. DPFT calculations
were carried out using the equivalent unshifted grids, and
from the resulting force constants we calculated the phonon
eigensolutions for the original shifted grids. From these results,
the thermal conductivity matrix was calculated, and κph was
taken to be the average value of the diagonal components,
neglecting the off-diagonal values as artifacts of our model.
Comparisons of the thermally averaged mean-free path due to
anharmonic scattering for a system with γ̄ = 0.5 at T = 100,
600, and 1200 K were made in order to check convergence

(see Table III). As can be seen, these results are not very
promising, however, if we compare values of κph for various
grids calculated using the parameters (see Table II) obtained
through the fitting procedure used on 10 × 10 × 10 results and
listed in Table IV, we see a very different picture. Here, the
convergence is monotonic, and is of the order of less than 30%
in the worst case (T = 1200 K) for the finest grid, which is
at the limit of our computational capacity. We suspect that
this difference in behavior may be due to divergences in the
value of the anharmonic mean-free path that are present at low
values of q;38 these may become troublesome as finer grids
(containing ever smaller q values) are employed. As Ziman
notes in his discussion of the divergence problem in Ref. 38,
the cure is the inclusion of additional forms of scattering
(usually boundary scattering); since we have (as far as we
are aware) accounted for all major sources of scattering in
our final calculation of κph, this may be the reason for the
improvement in convergence. The decrease in convergence as
T is increased is likely due to the increasingly important role
that the anharmonic scattering plays at higher temperatures;
however, we should note that in the region of interest its lack of
convergence is still somewhat tamed by the presence of other
scattering mechanisms. This also indicates that the mean-free
path for anharmonic scattering should not be used alone in
order to estimate convergence; the effects of other scattering
processes must be taken into account.

There remains only the choice of an appropriate MP grid for
our calculation. As implied above, we used the eigensolutions
corresponding to the 10 × 10 × 10 grid in our calculation
of κph; it was felt that this grid presented the best trade-off
between convergence and computational effort available.

IV. RESULTS

A. Electronic properties

Figure 2 shows the temperature variation of the Fermi
energy EF for the n-doped sample number 7 in Ref. 9 with
temperature. There is clear evidence that the system shows
extrinsic-type behavior in the region of interest. We assumed
that acoustic scattering was dominant and so fixed the value
of the scattering parameter at s = −0.5. We then numerically
fitted our expression for |S| to the experimental data of Ref. 9
using the algorithms described in (for example) Ref. 45 in
order to find an optimal value of mdos

e (displayed in Table I).
Since this also required the calculation of EF , we are able to
display the behavior of that (see Fig. 2) and of |S| (see Fig. 3)
with temperature.

TABLE III. Convergence of the mean-free path due to anharmonic scattering calculated on successively more fine shifted MP grids for
T = 100 K and γ̄ = 0.5. Here, �λTE

AH is the relative difference between the value of λTE
AH computed for the present grid and the value of λTE

AH

computed for its successor, expressed as the nearest whole percentage of the smallest value.

T = 100 K T = 600 K T = 1200 K

MP Grid Number of grid points λTE
AH (m) �λTE

AH λTE
AH (m) �λTE

AH λTE
AH (m) �λTE

AH

4 × 4 × 4 12 0.3445 × 10−7 · · · 0.3567 × 10−8 · · · 0.1748 × 10−8 · · ·
6 × 6 × 6 36 0.6586 × 10−6 181% 0.5530 × 10−7 145% 0.2661 × 10−7 142%
8 × 8 × 8 80 0.3251 × 10−6 100% 0.3041 × 10−7 81% 0.1485 × 10−7 79%
10 × 10 × 10 150 0.8427 × 10−6 159% 0.7355 × 10−7 141% 0.3560 × 10−7 139%
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TABLE IV. Convergence of κph at T = 100 K due to anharmonic scattering as MP grids are made successively more fine, using the
parameters of Table II. Here, �κph is the relative difference between the value of κph computed for the present grid and the value of κph

computed for its successor, expressed as the nearest whole percentage of the smallest value.

T = 100 K T = 600 K T = 1200 K

MP grid κph (W m−1 K−1) �κph κph (W m−1 K−1) �κph κph (W m−1 K−1) �κph

4 × 4 × 4 3.4321 · · · 1.3251 · · · 0.79718 · · ·
6 × 6 × 6 4.8023 40% 4.2119 218% 3.8353 381%
8 × 8 × 8 3.3913 42% 2.8882 45% 2.3016 67%
10 × 10 × 10 3.3795 0.35% 3.3841 17% 2.9478 28%

Figure 4 shows the temperature variation of σ . As with
the Seebeck data, it can be seen from Meddins and Parrott’s
experimental data9 that there is no obvious transition to a
region of intrinsic-type conductivity for the temperature range
of interest. However, in order to properly account for the
temperature dependence of σn, it was found that multiplication
by an ad hoc term was necessary:

σn = σacCT ν, (32)

where C and ν are adjustable parameters. The need for these
terms may be a result of inelastic scattering processes that
are neglected in our analysis (see Ref. 19); the necessity
of including a similar factor has also been noted in a
recent theoretical analysis of conductivity data in BiTe-based
systems.46

We take E2
Dm∗

c/C and ν as the overall adjustable parameters
for our final fit, obtaining a value of 3286.90me eV2 for
the former and 0.4 for the latter. Choosing ED = 10.5 eV,
consistent with Ref. 11, C = 0.013 and m∗

c = 0.45me, we
obtain the following values for the parallel and transverse
masses by using the equations relating them to m∗

c and mdos
e :19

m∗
‖ = 1.10me and m∗

⊥ = 0.35me. It should be observed that
m∗

⊥ is slightly more than twice what one would expect from a
linear average of the corresponding Si and Ge masses, whereas
m∗

‖ is more or less what is expected; this is because our m∗
c and

mdos
e values are larger than expected. We display the resulting

parameters in Table I.

200 400 600 800 1000 1200
Temperature (K)

-0.15

-0.1

-0.05

0

0.05

E
F
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eV
)

FIG. 2. (Color online) Calculated behavior of EF with tempera-
ture for the system of our study.

There is also a small contribution to σ from σh, which can
have a large effect on the bipolar contribution to the thermal
conductivity. We modelled the hole conductivity using Eq. (19)
and obtained the parametrization displayed in Table I through
consideration of the total value of the thermal conductivity, as
described below. We should note that although Fig. 4 displays
the sum of the two conductivities, σh/σn is small enough
within the temperature range of the experimental data that the
effect of the inclusion of the hole contribution on the curve is
negligible (at T = 1100 K, σh is about 2% of σn, and for lower
temperatures it is smaller), supporting our decision to ignore
it when fitting to the experimental conductivity data. These
assumptions do not hold for extremely high temperatures,
however, at T = 1200 K, σh is about 8% of σn, and will likely
increase; our value for σ here is less trustworthy than for lower
temperatures. However, this regime is outside the temperature
range for which we possess experimental data.

B. Phonon dispersion curves and density of states

Figures 5 and 6 display the phonon dispersion curves along
the Cartesian axes of the system and the density of states
for the ordered Si0.75Ge0.25 alloy with eight-atom unit cell
utilizing a 10 × 10 × 10 MP grid. Results are presented for
both the relaxed and unrelaxed cases. We will note a number
of general features of interest in the relaxed case. Firstly,
the dispersions of phonon branches in the [001] direction
differ from those in the [100] and [010] directions, which

200 400 600 800 1000 1200
Temperature (K)

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

|S
| (

V
 K

-1
)

Meddin and Parrott Sample 7
Our Theoretical Calculation

FIG. 3. (Color online) Calculated behavior of |S| compared with
experimental data from Fig. 4 of Ref. 9. (Data used with the
permission of IOP Publishing Ltd.)
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FIG. 4. (Color online) Theoretical behavior of σ compared with
experimental data taken from Fig. 3 in Ref. 9. (Data used with the
permission of IOP Publishing Ltd.)

are identical (see Fig. 5). This should not be surprising, as if
we refer to Fig. 1, we can see that the positioning of the Ge
atoms in the cell distinguishes that direction from the others.
From the dispersion relations, we can also see that a pair of
“gaps” appear in all three directions between frequencies of
about 300–350 cm−1 and about 400–425 cm−1. By comparison
with Fig. 6, we can see that the locations of these gaps
roughly correspond to frequencies between approximately
310–345 cm−1 and approximately 400–428 cm−1 where the
phonon density of states has fallen to zero. It is thus clear

that two phononic gaps exist for the structure modelled in our
work. The presence of such gaps in thin SiGe systems has been
noted and discussed previously.48,49 This is a consequence of
our use of an ordered model that resembles a superlattice
of unequal period upon repetition of the unit cell in our
DFPT calculations; strictly speaking, we should use a larger,
cubically symmetric cell in our calculations, but we are limited
by our computational resources. In order to overcome this, we
assume as a first approximation that any macroscopic system
will consist of randomly oriented cells of this kind, and hence
that the isotropic lattice thermal conductivity can be considered
to be the average of the diagonal components of the thermal
conductivity matrix for a single cell. We do not feel that this
approximation will lead to significantly different results from
calculations carried out using a different choice of cell.

Returning to our discussion of the DFPT results, we may
support the notion that the ordering of the alloy is the chief
factor in the existence of the phononic gaps by considering
the phonon dispersion curves for the modelled SiGe alloy
along each of the three Cartesian directions. A comparison
between the relaxed and unrelaxed results shown in Fig. 5
indicates that the dispersions of low frequency branches
(comprising the acoustic modes and optical modes below
around 300 cm−1) are relatively unaffected by bond relaxation
(there is some small modification as 300 cm−1 is approached,
but nothing significant). However, the same cannot be said
of the higher-frequency optical branches, whose behavior is
considerably modified. Examination of the phonon density of
states in Fig. 6 would seem to support this—the unrelaxed and
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FIG. 5. (Color online) Comparison of phonon dispersion relations along the [100] (top left), [010] (top right), and [001] (bottom center)
directions for the ordered Si0.75Ge0.25 system discussed in the text.
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FIG. 6. (Color online) Phonon density of states against frequency
for the ordered Si0.75Ge0.25 alloy discussed in the text. Note the pair
of frequency “gaps” in the vicinity of 325 and 420 cm−1.

the relaxed cases are qualitatively similar (though not identical)
below around 350 cm−1, which includes the lower of the two
frequency gaps. Above this frequency, we can see that there
are considerable differences in the locations of the peaks in
either case, and the size of the higher frequency gap is slightly
increased by bond relaxation from around 410–422 cm−1 to
around 400–428 cm−1. We can therefore conclude that bond
relaxation affects the size of one gap in the system, but that it
does not give rise to the gaps themselves.

C. Phonon mean-free path

We now turn to an interesting question that has perhaps not
received the consideration that it deserves: the notion of the
mode-average phonon mean-free path (MFP) λ. The issue in
question is the precise form of the mode averaging that one
can employ, and it is this which we examine in what follows.

One prescription that has been used in calculations of
this quantity (for example, in Ref. 50) is a simple thermal
averaging:

λTE =
∑

qs λqs n̄qs∑
qs n̄qs

, (33)

where λqs = cs(q)τ (qs). Another suggested prescription (see,
for example, Refs. 38 and 39 for theoretical discussions
and Ref. 51 for a proposed measurement technique) weights
the value of λqs at a given mode and momentum with the
corresponding specific heat and velocity:

λSH = 1

c̄C

∑
qs

Cqscs(q)λqs = 1

c̄C

∑
qs

κph(qs), (34)

where c̄ = ∑
qs cs(q)n̄qs/

∑
qs n̄qs is the mode-averaged ve-

locity, Cqs = ω2(qs)n̄qs(n̄qs + 1) is the specific heat for a
given mode, C = ∑

qs Cqs is the overall specific heat, and
κph(qs) is the phonon conductivity for a given mode. We
tend to prefer this definition as it relates more directly to the
measured quantity of interest, which is to say the lattice thermal
conductivity.
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FIG. 7. (Color online) The temperature dependence of the phonon
mean-free path (MFP) calculated using various methods, compared
with that of the relaxation length of the mode whose weighted
contribution to κph is the greatest (λMAX).

Furthermore, we may also wish to calculate the MFPs
arising from different contributions to scattering; in this case,
we replace the total τ (qs) in a given equation with the
τ (qs) corresponding to the contribution of interest. We will
denote the contributions of interest with subscripts as follows:
total anharmonic (AH), Normal (N), Umklapp (U), and also
compare with the values of the following definition of the
MFP:

1

λIN
=

∑
qs τ−1

qs c−1
s (q)n̄qs∑

qs n̄qs

, (35)

and with values of the variationally derived lower bound of the
MFP:38

1

λLB
= c̄

C

∑
qs

Cqsτ
−1(qs)

c2
s (q)

. (36)

In Fig. 7, we plot the mean-free paths (MFPs) calculated
using all these methods and utilising all available phonon
modes. We also display λMAX, which is the MFP associated
with the mode whose weighted contribution to κph is the
greatest. We can see that there is a large and obvious difference
between the results of the various methods, with λTE and λSH

being the most similar, λIN being an order of magnitude smaller
than the latter. λLB is smaller still; this is unsurprising since
it is the lower bound of the MFP. λMAX is larger than all of
these, consistent with the analysis of Ref. 52, which notes that
mode-averaged MFPs are likely to greatly underestimate the
degree to which modes with long MFPs contribute to κph in
systems where the effects of defect scattering are strong (as
is in fact the case in this alloy—see the next section for more
details). Because of this, one can immediately rule out λLB

and λIN as good definitions of the MFP; they are far too small.
With regards to λSH, as we see here and in Richardson et al.,52

it also underestimates the contribution from long MFP modes.
We find that λTE also offends in this regard (though not quite as
badly as λSH). This entails that one must exercise caution when
interpreting MFP data—not only can it be misleading in certain
systems, but its value is strongly dependent on the method by
which it is calculated; in the case of the present system, even
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FIG. 8. (Color online) The temperature dependence of the phonon
mean-free path (MFP) due to total anharmonic scattering, Umklapp
and Normal processes as calculated by thermal averaging (TE) and
from the thermal conductivity (SH).

if λSH and λLB did not likely underestimate the value of the
MFP, they do not give the same answer as to its value. We do
not know of any strong theoretical reason for preferring one
definition over the other; however, in a practical sense (as far
as thermal conductivity measurements are concerned) we are
inclined to prefer λSH, for its calculation utilises experimental
quantities that are readily measured, as in Ref. 51. What is
most important, however, is that whichever method one uses
is clearly stated.

Figures 8 and 9 display the MFP due to total anhar-
monic, Normal, and Umklapp scattering for the above mode-
averaging schemes. For all cases, we see that the MFP due to
Normal processes is typically larger than that of the MFP due
to Umklapp processes, suggesting that the latter are generally
more important to the overall scattering. We should caution
against taking these results as final and definitive, due to the
badly convergent nature of the anharmonic MFP discussed in
the previous section. However, we think they are likely to be
qualitatively reliable.
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FIG. 9. (Color online) The temperature dependence of the phonon
mean-free path (MFP) due to total anharmonic scattering, Umklapp
and Normal processes as calculated by thermal averaging of λ−1

qs (IN)
and from the variational lower bound formula (LB).
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FIG. 10. (Color online) Comparison of the presently calculated
values of the thermal conductivity (κ) with the theoretical and
experimental values read from Fig. 6(g) in Ref. 9. (Data used with
the permission of IOP Publishing Ltd.)

D. Thermal conductivity

Due to the complexity involved in the implementation of the
calculation of κ , numerical fitting proved unfeasible, and it was
necessary to manually tune the semiadjustable parameters so as
to attain results that displayed reasonable agreement with Med-
dins and Parrott’s9 measurements of the total thermal conduc-
tivity κ . The parameters listed in Table II (and used in Fig. 10)
and those concerning σp in Table I were obtained by choosing
a given parameter set, calculating κph from the eigensolutions
generated for a 10 × 10 × 10 MP grid, adding the results to
the κel values to obtain κ , and then comparing this with the
experimental results, and repeating the process with adjusted
values of the parameters until good agreement was reached.

Figure 10 displays the resulting values of κ alongside
the experimental results of and a theoretical calculation
from Ref. 9. Qualitatively speaking, it can be seen that our
calculation is a better match to the data than theirs for the
region in which they give theoretical values aside from the
data point at the lowest temperature, which is somewhat
undershot, and that our calculation has a wider range of
validity. For temperatures greater than 900 K, where the bipolar
contribution is dominant (and thus the behavior is determined
by our parametrization of σp), the curve matches the data
less well; in fact, the form of the data is such that it made
selecting appropriate values for the behaviour of G difficult,
which should be kept in mind when considering the accuracy
of our calculation in this region. It should be kept in mind that
the value of the material density ρ used for the calculation of
κph is the weighted average value of 3077.5 kg m−3 rather than
the measured value of 2860 kg m−3 found in Ref. 9; but any
errors resulting from this difference will be absorbed into the
values of A and γ̄ , which control the strength of the scattering
processes that exhibit density dependence.

Examining the results displayed in Table II, we note that
our fit was obtained using a value of L, which is the lower limit
of that expected by Ref. 9, suggesting a fairly small crystallite
size. P is fairly large, indicating that we are accounting for
scattering from a large number of defects consistent with
our discussion of the mean-free path results; it would not be
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FIG. 11. (Color online) Frequency dependence of κqs(T ) nor-
malised by κph(T ) in our calculation. While κqs is the contribution
without the weight factor associated with q, the total contribution
κph is computed after summing κqs with the required weight factor
associated with q.

surprising if the large concentration of impurities in the heavily
doped sample were to play a role in this. As a result of the lack
of experimental data in the regime where electron-phonon
scattering has an important effect, the value of A cannot
be considered to be precise, however, a finite but not too
large value seems to be required in order to properly capture
the behavior of the system in the lower-temperature region.
Due to the number of adjustable parameters and the method
we have had to adopt in order to tune them, we cannot properly
say that this is a uniquely optimal set, but it is certainly a good
one, and it seems plausible that any other parameter set that
gives a good fit will be reasonably similar.

We also should note that we obtain better agreement
with experiment at temperatures in the 700–900 K than
Garg et al. attain for their computation of κ for undoped
Si0.3Ge0.7 [presented in Fig. 3(a) of Ref. 15]; this should not be
wholly surprising since we are making use of a semiempirical
approach; this improved agreement may be as much due to our
use of adjustable parameters as it is to the inherent virtues of
our approach.

We now turn to the frequency dependence of κph, presented
in Fig. 11 for three temperatures with frequencies below
100 cm−1 (≈3 THz) corresponding to points in momentum
space coinciding with a 14 × 14 × 14 MP grid. The dominant
frequencies are all contained within this area, which is consis-
tent with the results presented in Fig. 2(a) in the paper by Garg
et al.15 for Si0.5Ge0.5 alloys calculated using the virtual crystal
approximation, and the “double peak” structure of the two most
dominant modes is reproduced, although the peaks are situated
at higher frequencies in our case. From Fig. 5, we can see that
this frequency range is occupied by acoustic modes, entailing
that they contribute the most to κph. However, there are some
differences. One of these is that in our case the magnitude of the
normalized values does not appear to be as strongly affected
by increases in temperature, and there is a pronounced “spike”
in the contribution from a frequency near 70 cm−1. Another is
that our values appear to be larger by a factor of around 6.25.

20 40 60 80 100

Frequency (cm
-1

)

0

1

2

3

4

%
ag

e 
co

nt
ri

bu
ti

on
 to

 κ
ph

T=100.0
T=600.0
T=1200.0

FIG. 12. (Color online) Percentage contribution of each fre-
quency to κph(T ). Note that this includes the weighting arising from
our use of MP summation.

These differences may both be a function of methodology and
of the differing compositions of our materials.

However, one must be careful when drawing conclusions
from these data as to the relative contributions of various
frequencies to κph. This is because in our actual calculations,
we make use of the MP momentum summation scheme, and
therefore each frequency displayed in Fig. 11 in fact makes
a contribution to κph that is weighted according to the q
point with which it coincides. We display the percentage
contribution to κph of each frequency following such weighting
in Fig. 12. It is apparent that the general behavior with tempera-
ture is consistent with that of Fig. 11. However, we can also see
that the weighting of the contributions has drastically altered
our conception of how low frequencies contribute to κph, for
while the overall trend in the degree of contribution is still
downwards for frequencies greater than 40 cm−1, the contri-
butions of a small number are strongly enhanced. For example,
the contributions of two frequencies in the region of 45 cm−1

are far greater than would be expected from Fig. 12, in fact con-
tributing more than the subdominant frequency of that figure.

There is a caveat with regards to these data, however. We
have naively plotted the frequency data without regard for
degeneracy or the manner in which numerical error separates
out what should be degenerate modes, entailing that we may be
undercounting the contribution of some frequencies (for exam-
ple, those corresponding to transverse acoustic modes). But it
would seem likely that this would not overly affect our general
conclusion, which is that when accounting for the contributions
of various modes to κph one should take into account the degree
to which each mode is weighted by the MP summation scheme,
as it is entirely possible that not doing so might mislead as to
which modes are in fact dominant, and to what degree.

E. Figure of merit

Having calculated the relevant electronic and vibrational
contributions, we are now in a position to calculate the figure
of merit ZT for Sample 7 in Ref. 9. In Fig. 13, we compare our
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FIG. 13. (Color online) Comparison of the calculation of ZT in
the present study with that of Fig. 9 in Ref. 9. (Data used with the
permission of IOP Publishing Ltd.)

results with the calculation performed by Meddins and Parrott,
which is based on their theoretical model detailed in Ref. 9.

There is reasonable qualitative agreement between our
results and the results presented by Meddins and Parrott.9

However, in quantitative terms, there is a discrepancy of
around 16% at 1000 K, and at lower temperatures, our results
are slightly larger than theirs. One factor that may account
for much of this difference is that Meddins and Parrott
do not appear to include the bipolar contribution to κel in
their analysis, and since it is at high temperatures that that
contribution is dominant, it is unsurprising that their values of
ZT are greater than ours in this region. From our numerical
results, we suggest that for the modelled Si0.75Ge0.25 alloy
values of ZT > 0.5 can be expected throughout the high-
temperature range of around 750–1200 K, with a maximum of
approximately 0.68 at around 1000 K.

A comparison with, and comment on, the work carried out
by Minnich et al.,11 is also appropriate. These authors applied
a detailed model, similar to that adopted by Vining,10 of the
electronic behavior and of the phonon contribution to κph to
experimental results for n-doped Si0.8Ge0.2 (where Ndon was
obtained by fitting to experimental results) and for n- and
p-doped Si0.7Ge0.3 where a number of samples with different
Ndon were available. The results for the n-doped Si0.7Ge0.3

sample with Ndon = 7.3 × 1025 m−3 are the most relevant here,
since the composition and Ndon of this sample are reasonably
close to that of the sample treated in this study. In the fourth
panel of Fig. 1 in Ref. 11, they display ZT for their n-type
Si0.7Ge0.3 samples, and for the sample of interest, it can be
seen that the results are qualitatively similar up to around
T = 1000 K, with a peak at a slightly larger value of ZT

(closer to the 0.8 of Meddins and Parrot’s results9 than the 0.7
of ours) and a far sharper decrease than we observe at higher
temperatures. Some of this difference is likely to arise from
our different approaches, and some of it from the differences
in composition between our samples. However, the qualitative
similarities are a good sign.

Our calculation of ZT in an SiGe alloy includes as complete
as possible an account of the phonon scattering rates and the
effects of the bipolar contribution to thermal conductivity. It is

hoped that it will provided a benchmark for future theoretical
explorations of the thermoelectric efficiency of more complex
systems such as nanowires or superlattices.

V. SUMMARY AND CONCLUSION

In this study, we have examined the theoretical behavior
of the thermoelectric figure of merit ZT and its constituent
quantities for the case of a sintered Si0.754Ge0.246 doped
with P impurities examined by Meddins and Parrott.9 We
have established phenomenological models to account for the
behavior of the electronic quantities, and have focused in detail
on the mechanisms underlying the phonon contribution to the
thermal conductivity κ . In this respect, we have developed a
full-scale theory of the lattice thermal conductivity considering
the role of acoustic as well as optical phonons in Normal and
Umklapp three-phonon interactions and included the bipolar
contribution to thermal conductivity.

We have made use of density functional methods in
order to obtain the required phonon eigensolutions and a
detailed calculation of the anharmonic contribution to phonon
scattering based on a semiempirical model for anharmonic
crystal potential. The subsequent calculation of κph + κe shows
good agreement with measurements in the entire temperature
range 300–1100 K. We have also examined the frequency
dependence of κph, finding that it is consistent with the
previously reported results of Ref. 15 apart from some
differences in temperature dependence and have discussed
some issues concerning the notion of a mean-free path.

From this information, we have calculated the dimension-
less figure of merit ZT and compared it with the (incomplete)
calculation in Ref. 9. While, in general, the qualitative behavior
of the ZT versus T curve in our work is quite similar to that
in Ref. 9, with the more complete theoretical treatment we
have predicted values of greater than 0.5 in the temperature
range of around 750 to at least 1200 K with a maximum of
approximately 0.68 at around 1000 K.

In addition to the study of the thermoelectric properties, we
have also examined a more conceptual issue: that of the calcu-
lation of the phonon mean-free path. We have shown that in the
literature, there exist different prescriptions for evaluation of
phonon mean free path, yielding different results. We suggest
that care must be exercised in comparing results obtained from
different methods of mode averaging procedures.
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APPENDIX: THE ANHARMONIC INTERACTION TERM

While the anharmonic crystal potential involving acoustic
phonons has been widely discussed, the contributions due
to optical modes have not been fully considered, although
Klemens53 and Ridley and Gupta54 have given simple presen-
tations of the effects of scattering to and from optical modes.
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In this work, we have expressed the anharmonic phonon
relaxation time due to three-phonon Normal and Umklapp
processes involving acoustic and optical phonon modes, using
Eqs. (28) and (29). This form of the anharmonic phonon-
phonon interaction was proposed by S. P. Hepplestone55 and
was indeed employed in previously published works,40,49 but
has not yet appeared in print. In this appendix, we shall attempt
to justify and present the relevant expression for the cubic
anharmocity in crystal potential.

We shall begin with following expression for the third-order
perturbative term in the elastic continuum potential, taken from
Ref. 26:

V3 =
√

h̄3

8ρ3V

∑
qs, q′s′ ,

q′′s′′

T ss ′s ′′
qq ′q ′′ (a†

qs − a−qs)(a
†
−q ′s ′ − aq ′s ′ )

× (a†
q ′′s ′′ − a−q ′s ′ )δq+q ′+q ′′, G, (A1)

where

T ss ′s ′′
qq′q′′ = 1

3!

√
qq ′q ′′

cscs ′cs ′′
Ass ′s ′′

qq′q′′ , (A2)

with a
†
qs (aqs) being the phonon creation (annihilation)

operator for a given mode qs, q being the magnitude of the
momentum, and cs being the speed of a phonon belonging to
branch s. Note that cs is not dependent on q at this point; this
expression is derived on the assumption that we are treating
acoustic phonons in the continuum, q → 0, limit, and so we
can relate frequency and momentum through the dispersion re-
lation ω(qs) ≈ csq. Our aim is to reverse-engineer from (A1) a
starting point similar to that used by Klemens56 from which we
may derive an expression for the anharmonic term that includes
aspects of the behavior of optical phonons while remaining true
to the spirit of the original continuum, acoustic approach.

Taking the expression for the angularly averaged modulus
of Ass ′s ′′

qq′q′′ as a guide:26

∣∣Ass ′s ′′
qq′q′′

∣∣2 = 4ρ2

c̄2
γ 2c2

s c
2
s ′c

2
s ′′ , (A3)

we put Ass ′s ′′
qq′q′′ = (2ρ/c̄)γ cscs ′cs ′′ , with c̄ being an average

phonon speed and γ being the modulus of the Grüneissen
constant, and so arrive (following a little algebra, and assuming
acoustic dispersions at q → 0) at the expression

T ss ′s ′′
qq′q′′ = 2ργ√

ω(qs)ω(q ′s ′)ω(q ′′s ′′)
Bss ′s ′′

qq′q′′ , (A4)

Bss ′s ′′
qq′q′′ = 1

3!

ω(qs)ω(q ′s ′)ω(q ′′s ′′)
c̄

. (A5)

Equation (A5) has the same general form as the approximation
used by Klemens.56 Indeed, if we replace c̄ with the speed

cs ′′ , then in the limit of small q and assuming an acoustic
dispersion, we obtain

Bss ′s ′′
qq′q′′ = 1

3!
ω(qs)ω(q ′s ′)q ′′, (A6)

which is very similar to the expression Klemens56 has derived
in order to motivate his approximation. We shall use this as
the basis for our derivation of the general anharmonic term
with which to treat three-phonon interaction involving both
acoustic and optical modes.

1. Treatment when q ′′s′′ is an optical mode

We shall begin with the situation when q ′′s ′′ is an optical
mode and consider three-phonon processes of the types
ac + ac ⇀↽ op and ac + op ⇀↽ op. For small values of q ′′,
we express ω2

o(q ′′s ′′) = ω2
o(s ′′)2 − cs ′′oq

′′2. Rearranging this,
we may write

q ′′ = (ωo(s) + ωo(q ′′s ′′))1/2|ωo(s) − ωo(q ′′s ′′)|1/2

cso

≈
√

2ωo(q ′′s ′′)|ωo(s ′′) − ωo(q ′′s ′′)|1/2

cso

, as q → 0.

(A7)

Next, we observe that Bss ′s ′′
qq′q′′ is identical under exchange of the

modes qs and q ′s ′; we account for this in Eq. (A1) by simply
multiplying Bss ′s ′′

qq′q′′ by a factor of 2 and ignoring subsequent
terms where those modes are exchanged. Replacing q ′′ in
Bss ′s ′′

qq′q′′ with this expression, we obtain

Bss ′s ′′
qq′q′′ = 1

3

ω(qs)ω(q ′s ′)
√

2ωo(q ′′s ′′)|ωo(s) − ωo(q ′′s ′′)|1/2

cs ′′o
.

(A8)

Instead of following Klemens53 or Ridley and Gupta54 and
assuming that the dominant decay is of the form ωo(q ′′s ′′) ≈
ω(qs)/2 ≈ ω(q ′s ′)/2, we shall be more general; examining
the energy conservation condition

ωo(q ′′s ′′) = ω(qs) + ω(q ′s ′), (A9)

we may see that

ω(qs) = Bωo(q ′′s ′′), (A10)

ω(q ′s ′) = (1 − B)ωo(q ′′s ′′), (A11)

where we consider values of B between zero and unity.
From Eq. (A9), we may write

√
2ωo(q ′′s ′′) = √

2[ω(qs) +
ω(q ′s ′)]1/2 and so ω(qs) = √

Bω(qs)[ω(qs) + ω(q ′s ′)]1/2,
and hence

Bss ′s ′′
qq′q′′ = 1

3

√
2Bω(qs)ω(q ′s ′)[ω(qs) + ω(q ′s ′)]|ωo(s) − ωo(q ′′s ′′)|1/2

cs ′′o
. (A12)

We may also write
ω(q ′s ′)
(1 − B)

≈ ωo(q ′′s ′′)|ωo(s) − ωo(q ′′s ′′)|
|ωo(s) − ωo(q ′′s ′′)| = A2|ωo(s) − ωo(q ′′s ′′)|,

(A13)
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where A is defined above, and so acquire

Bss ′s ′′
qq′q′′ = A

3

√
B(1 − B)ω(qs)ω(q ′s ′)[ω(qs) + ω(q ′s ′)]|ωo(s) − ωo(q ′′s ′′)|

cs ′′o
, (A14)

from which we may obtain

T ss ′s ′′
qq′q′′ = 2ρo√

ω(qs)ω(q ′s ′)ωo(q ′′s ′′)
1

3!

√
ω(qs)ω(q ′s ′)[ω(qs) + ω(q ′s ′)]|ωo(s) − ωo(q ′′s ′′)|

cs ′′o
, (A15)

where o = 2Aγ
√

2B(1 − B). It should be noted that in order
for o to have a meaningful value at q = 0, we require
that γ

√
B(1 − B) ∝ |ωo(s) − ωo(q ′′s ′′)|α as q → 0, where

α � 1/2, in order to cancel the zero-tending term in the
denominator of A. This is a strong constraint on the behavior
of γ ; however, it is an artifact of the form of the term that
we must adopt for numerical simplicity. One could consider
using other forms, but then one would have to make use
of a frequency window in order to distinguish optical and
acoustic terms, a process that is cumbersome and which could
introduce its own inaccuracies. In this case, we much prefer

to choose the form given above, which is easy to implement
numerically.

2. Treatment when q ′′s′′ is an acoustic mode

To deal with three-phonon processes of the type ac + ac ⇀↽
ac, with q ′′ corresponding to an acoustic mode, we first observe
that from the acoustic dispersion relation in the limit of small
q, we may derive q = |ωa(s) − ωa(qs)|/csa , since ωa(s) =
0. From Eqs. (A10) and (A11) and energy conservation, we
may obtain

√
ω(qs)ω(q ′s ′) = √

B(1 − B)[ω(qs) + ω(q ′s ′)].
These may be used to derive

T ss ′s ′′
qq′q′′ = 2ρa√

ω(qs)ω(q ′s ′)ωa(q ′′s ′′)
1

3!

√
ω(qs)ω(q ′s ′)[ω(qs) + ω(q ′s ′)]|ωa(s) − ωa(q ′′s ′′)|

cs ′′a
, (A16)

where a = 2γ
√

B(1 − B). This expression for T is essen-
tially the same as in Ref. 26. (Note that the value of B here
is not necessarily identical to that of B in the previous section
when q ′′ was an optical mode, nor is it necessarily identical
with values of B considered for scattering between a different
triad of phonon modes.)

3. Form for numerical calculations

For ease of calculation, we take a = o = γ̄ , by analogy
with the use of the mode-averaged Grüneissen constant in
typical computations of this form. Since contributions from
both acoustic and optical q ′′ now share an identical form, we
may suppress the indices which distinguish them and write an
overall term:

V3 = γ̄

√
h̄3

2ρV

∑
qs, q′s′ ,

q′′s′′

Bqs, q ′s ′, q ′′s ′′√
ω(qs)ω(q ′s ′)ω(q ′′s ′′)

δq+q′+q′′, G

×(a†
qs − a−qs)(a

†
−q ′s ′ − aq ′s ′ )(a†

q ′′s ′′ − a−q ′s ′ ), (A17)

with

Bi,j,k = {
√

ω(i)ω(j )[ω(i) + ω(j )]|ω(k) − ω(k)|/c(k)

+ similar terms with i, j, and k interchanged}/3!,

(A18)

where i, j , k label phonon modes, and c(k) is now the
momentum dependent, i.e., phase speed for the mode k; here,
we make a generalization to the case where q no longer
tends to zero. From this, we may obtain the expression
for the anharmonic single-mode relaxation time used in our
calculations—that is, Eq. (28).

We should remark that the assumptions made in deriving
the above expression are perhaps somewhat crude: unlike
Klemens53 or Ridley and Gupta,54 we have not properly
considered distinctions in behavior arising from the different
ways in which the displacement of optical and acoustic
vibrations deform the crystal. However, given that Klemens’s
expression53 is equivalent to that of Ridley and Gupta (as
the latter have observed54), and that the former’s derivation
shows that the differences amount to a rescaling of the optical
Grüneissen constant away from the value it would have were
it derived assuming acoustic behavior, we should not be too
worried; such a distinction would be ignored by our use of
a mode-averaged form of the rescaled Grüneissen constant
regardless of the final form of our expression. Indeed, given
that all such expressions are strictly valid only in the continuum
limit, and that our calculation by necessity extrapolates beyond
that limit, we should not expect our expression to be any worse
an approximation than the others, and in terms of simplicity of
numerical implementation and avoidance of problems arising
from ambiguities in the labeling of the phonon eigensolutions
in the output of ab initio codes, we feel that it has much to
recommend itself.
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