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Samples

Samples were manufactured using the method of mechanical exfoliation of highly-oriented

pyrolytic graphite devised in [1], on a n+Si/SiO2 substrate with oxide layer of thickness

t = 300 nm. Lithographically defined Au/Cr contacts were subsequently made to each flake.

Resistance measurements were carried out in the temperature range from 0.25 to 25 K using a

standard lock-in technique with 1 nA driving current. Samples B, D, F1 are two-terminal and

F2 is four-terminal (the additional contacts were used to account for the contact resistance).

The concentration of carriers (electrons n and holes p) in graphene is determined by the

capacitance between the graphene and n+Si substrate: e(p − n) = (ǫǫ0/t)Vg. There was a

small unintentional doping of the samples leading to a shift in gate voltage (∼ 5 V) of the

position of the resistance peak with respect to Vg = 0, which has been accounted for in the

main text. The graphene–Au/Cr contact resistance has been found from the deviation of

the height of the quantum Hall plateau from the expected value of 2e2/h (see insets to Fig.

1 of main text). The values of the contact resistance for samples F1 and D are about ∼100Ω

and ∼600Ω for sample B.

Averaging procedure and analysis of magnetoconductance

A method of effective averaging is important in small-sized samples to remove the in-

fluence of mesoscopic fluctuations, as without it one can get contradictory results for the

magnetoconductance (MC). (If we attempt to measure ∆σ(B) at different Vg, the character

of the MC depends on the specific point in Vg at which it is measured). Figure 1 shows

how the averaging is performed. For each temperature the conductivity of the sample as a

function of the gate voltage is first measured across a 2 V range at incremental values of the

magnetic field. Then the curve at zero magnetic field is subtracted from each curve and the

resulting difference is averaged across the 2 V gate voltage range. One can see from Fig. 1

the average increase of 〈∆σ〉∆Vg
with magnetic field. These averaged values of the MC are

plotted as a function of B in Figure 2 of the main text.

1



150

200

250

-0.4 -0.2 0.0 0.2 0.4

200

250

750

800

850

8.4 8.6 8.8 9.0 9.2

800

850

 

 

 (
S)

 0 mT
 3 mT
 13 mTT = 0.26 K

Dirac region a)

 

 

Vg (V)

T = 1.2 K

 0 mT
 3 mT
 13 mT

n=0.7x1012 cm-2

 

 

 

 (
S) T = 0.26 K

b)

 

 

Vg (V)

T = 1.2 K

FIG. 1: Illustration of the averaging procedure of the magnetoconductance of sample F1 in two

density regions at two temperatures (only a fraction of ∆Vg is shown here): (a) Dirac region, (b)

electron region. Dotted lines show repeated sweeps at B = 0.

The perturbation theory of weak localization (WL) is applicable at kF l ≫ 1 (a diffusive

metal). In our samples kF l, found from the conductivity σ = 2e2(kF l)/h, varies in the range

3–30, with the smallest values in the Dirac region: 4, 3, 8 and 6 for samples D, F1, F2 and B,

respectively. Another limitation for the application of the diffusive theory of WL is B . Btr,

where the ‘transport’ magnetic field is found from the condition LB = (~/eB)1/2 ≈ l. This
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limits the range of magnetic fields where we perform the analysis to B 6 100mT.

For the narrowest sample B, the dephasing length is larger than its width and therefore

the 1D theory of WL [2] should be used in the analysis of its MC in small fields. However,

at fields where LB < W (W is the width of the sample) i.e. at B > 7 mT, the 2D theory

becomes applicable. As the bulk of the data is obtained in this range of the field, we have

used 2D theory (Eq. 1 in main text) to analyse the MC.

Comparison of characteristic lengths and times
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FIG. 2: Comparison of characteristic lengths and times for samples F1, F2 and D at different

carrier densities.

Figure 2 shows for samples F1, F2 and D a comparison of the length L∗ with length Li,
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as well as the values of the corresponding times τ∗ and τi (using Lx = (Dτx)
1/2) for different

carrier densities. We emphasise that in the analysis of the MC the value of L∗ is closely

linked to that of Li. In Eq. 1 the second and third terms have the same sign, therefore by a

slight increase of one of them and a corresponding decrease of the other, one can get a similar

agreement with experiment. Figure 2 shows not only the values found from the best fit (the

higher B-region being most sensitive to these two parameters) but also the synchronous

variation allowed in these values while retaining a good fit, indicated by arrows. In spite of

the variations, there are several trends seen in the figure. First, the value of Li is always

significantly larger than L∗ and somewhat larger in the better quality sample F2. Second,

there is a decrease of Li with increasing carrier density, although its value is smaller in the

Dirac region. Finally, there is a decrease of L∗ when the carrier density is increased above

the Dirac region. The dashed curves in Fig. 2 indicate the expected decrease of Li and τi if

the scattering rate is proportional to the density of states, which increases linearly with the

Fermi energy ǫF ∝ V
1/2
g .

Estimations of the effects suppressing WL in a single valley

Trigonal warping

According to [2] the breaking of the time-reversal symmetry in one valley can occur due to

the suppression of backscattering by the trigonal warping of the Fermi surface. The trigonal

warping rate is

τ−1
w = 2τp(µǫ2

F /~v2
F )2 ,

where τp is the momentum relaxation time, vF ≈ 106 ms−1 is the Fermi velocity and µ is the

structural parameter equal to µ = γ0a
2/8~

2. Here γ0 ≈ 3 eV is the nearest-neighbour hop-

ping energy and a ≈ 0.26 nm is the lattice constant in graphene. For the typical parameters

in our samples we obtain τ−1
w ≈ 0.001 ps−1 for the Dirac region (ǫF ≈ 30meV, τp ≈ 0.1 ps)

and τ−1
w ≈ 0.3 ps−1 for the highest measured concentration (ǫF ≈ 130meV, τp ≈ 0.05 ps).

Trigonal warping of the Fermi surface is therefore a very weak effect compared to other intra-

valley scattering mechanisms and cannot be the main reason of the strong chirality-breaking

observed in our experiments (τ−1
∗

≈ τ−1
p ).

Dislocations

Another possible mechanism of chirality breaking in the graphene sheet is dislocations

in the honeycomb lattice [3]. If the trajectory of a quasiparticle goes near the core of a
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dislocation it leads to a change of the phase due to the induced strain. For randomly

distributed dislocations the scattering rate related to this mechanism is

τ−1
gauge ≈

vF

kF ξ2
,

where ξ is the average distance between dislocations [3]. In order to obtain the experi-

mentally found chirality-breaking rate τ−1
∗

≈ 10 – 20 ps−1 the distance ξ should be about

15 − 50 nm. However, the cores of the dislocations should also cause inter-valley scatter-

ing, which is why this estimation is in contradiction with the relatively large value of the

inter-valley scattering length (Li ≈ 1µm) observed experimentally.

Ripples

As proposed in [4], ripples in the graphene layer on a silica substrate can lead to sup-

pression of weak localization because of the effective magnetic field generated by strain of

the interatomic bonds. The vector potential corresponding to a single ripple with diameter

d and height h is [4]:

A =
γ0 |∇h|2

evF
,

where ∇h ≈ h/d. The flux through one ripple is Φ =
∮

A ·dl ≈ Ad and Φ =
∫

B ·dS ≈ Bd2,

therefore the magnetic field associated with one ripple is

B ≈ A

d
=

γ0

evF

h2

d3
.

Since the curvature vector of a ripple is random, the resulting magnetic field through the area

limited by the dephasing length Lφ and containing N ≈ L2
φ/d

2 ripples should be averaged

as follows:

Beff =
B√
N

=
γ0

evF Lφ

(

h

d

)2

.

The roughness of the graphene sheet found from AFM measurements is about 0.3 nm and

the size of the features is about 10 nm. This gives a value for the magnetic field associated

with one ripple B ∼ 0.1T. For our typical value of Lφ ∼ 1 µm the effective magnetic field is

then Beff ∼ 1mT. Since suppression of the quantum interference requires a magnetic field

Beff > Btr ∼ 0.1T, the estimated value is too small to destroy the localization effect. The

random magnetic field can only introduce an uncertainty in the value of B, Fig. 2 of the

main text, comparable to the accuracy to which the field is set by the power supply.
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Potential gradients

The last mechanism which can produce the breaking of time-reversal symmetry is a

gradient of potential coming from the charged impurities in the substrate. A potential

gradient leads to a distortion of the dispersion curve of a single valley and hence breaks the

valley symmetry. As shown in [3] the resulting scattering rate can be estimated as

τ−1
grad ≈ τ−1

p (kFa)2 .

In order to get τ−1
grad ≈ τ−1

p one should have kF a ≈ 1. This corresponds to the carrier density

n = k2
F /π ≈ 5 ·1014 cm−2, which is two orders of magnitude higher than the densities studied

in the experiment.

We conclude from these calculations that all existing estimations for the chirality-breaking

scattering rates are not sufficient to explain our experimental results.

Scanning probe microscopy studies

The atomic force microscope used in this work was an Ntegra Aura from NT-MDT.

We used non-contact tips NSG01 with resonance of 150 Hz at an amplitude of . 40 nm.

To obtain high resolution in the xy-plane ‘diamond-like carbon’ coated tips with curvature

radius 1− 3 nm were used; tip convolution therefore limited feature resolution to this scale.

To remove the influence of the water layer present on the silica substrate all measurements

were performed in an atmosphere of dry nitrogen at 3 mbar, giving a tip resonance quality

factor Q ≈ 1000. The noise in the z-scale (height) is of the order 0.02 nm measured on pure

graphite and silica with the AFM operating with acoustic and vibrational isolation.

We found that the surfaces of the silica and the graphene after lithographic processing

were covered in droplets of PMMA with height ≈ 2 nm, similar to the findings of [6]. They

reduced the image quality and also made determination of the step edge between graphene

and silica difficult. To obtain the scans of clean graphene shown in Fig. 4 of the main text

we mechanically cleaned the surfaces. Figure 3(a) shows a phase contrast image of sample

F2 where both the PMMA droplets and a cleaned area are seen.

To understand the extent to which the PMMA droplets exist under the flake (due to the

lithographic process of depositing location markers prior to the deposition of the graphene

flake), we introduced a tear and fold into the sample F2 as seen in Fig. 3(b). We see

first that the surface under the flake is indeed free from PMMA droplets and therefore the

topography of the flake is only influenced by the silica roughness. (This conclusion was
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FIG. 3: AFM measurements of sample F2. (a) Phase contrast image where the PMMA droplets

on the left and cleaned area on the right can be seen, with two regions in the clean area highlighted

by boxes. (b) Magnified topographic image of box ‘(b)’ showing the torn edge of the graphene

flake. (c) Magnified phase contrast image of box ‘(c)’ with silica (top) and graphene (bottom). (d)

Autocorrelation analysis of the roughness in the boxes highlighted in (c), with insets of silica (top)

and graphene topography (bottom). Scan (a) is 3µm size and the phase change at the graphene–

silica boundary is 2◦. Scans (b)–(c) have the same 0.8µm size. In (b) the colour-scale varies over

4 nm.

also confirmed by similar measurements on other flakes). Having a flake fold allows us

to determine better the thickness of the flake, by measuring the step height between two

graphene areas (as opposed to measurements of the step height between silica and graphene

which always give a larger value of the step, ∼ 1 nm). We find that the thickness of the

flake is < 0.5 nm, which confirms that the flake is a monolayer (supporting the results of

the quantum Hall measurements discussed in the main text). An interesting result from the

tear is that the graphene flake has a tendency to form larger ripples when detached from the
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silica surface, with a ripple height ∼ 0.5 nm and width 20 nm. (The roughness of the flake

on the substrate is ∼ 0.3 nm, see the main text.) When comparing the surface roughness of

silica and graphene, Fig. 3(c,d), we see that the surface height variation on the clean silica

surface is ∼ 60% larger than on the graphene, i.e. graphene significantly smoothes out the

substrate roughness.
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