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a b s t r a c t

We study fluctuations of the conductance of micron-sized graphene devices as a function of the
Fermi energy and magnetic field. The fluctuations are studied in combination with analysis of weak
localization which is determined by the same scattering mechanisms. It is shown that the variance of
conductance fluctuations depends not only on inelastic scattering that controls dephasing but also on
elastic scattering. In particular, contrary to its effect on weak localization, strong intervalley scattering
suppresses conductance fluctuations in graphene. The correlation energy, however, is independent of the
details of elastic scattering and canbeused to determine the electron temperature of graphene structures.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Fluctuations of the conductance of electron systems have been
studied for many years in metals and electron gasses formed in
semiconductors [1]. They originate from the interference between
phase-coherent electron paths that cross the system, and in
diffusive, phase-coherent systems the conductance fluctuations
are universal (UCF): their average amplitude of the order of e2/h
is independent of themean conductance [2]. Another consequence
of quantum coherence in diffusive systems is a weak localization
(WL) correction to the conductance. It was shown recently thatWL
in a new two-dimensional (2D) system, graphene [3], is unusual
in that it depends not only on inelastic but also elastic scattering
of chiral carriers, both within and between the two graphene
valleys [4,5].
As quantum interference lies at the origin of both UCF and WL,

it is important to understand if manifestation of UCF in graphene is
also different from that in conventional 2D systems. In our earlier
studies of WL in monolayer and bilayer graphene [5,6] we have
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established that quantum interference of carrierswithin one valley
is suppressed, but the presence of significant intervalley scattering
makes it clearly detectable in the magnetoconductance. Here we
perform the first analysis of conductance fluctuations in graphene,
both in the metallic and electro-neutrality (Dirac) regions, which
are complemented by WL studies. Using recent theories of UCF
in graphene [7–9], we show that, similar to WL, the amplitude
of the fluctuations can be strongly affected by the intensity of
elastic scattering, so that it can be larger than in conventional
2D metals. In graphene flakes, however, significant intervalley
scattering reduces it to a value close to that in one-valley 2D
systems with non-chiral carriers. In order to detect the unusual
properties of UCF in graphene with a significant (up to four times)
increase of the variance, one has to fabricate samples with no
intravalley suppression of interference as well as weak intervalley
scattering.
We also examine the effect of elastic scattering in graphene

on the autocorrelation function of the fluctuations as a function
of the Fermi energy, and show that under usual experimental
conditions the correlation energy is insensitive to the specifics of
scattering and can be used as a direct measure of the electron
temperature. Methods to determine the true electron temperature
become important in graphene-based devices where phonons are
poorly coupled to the environment, so that with commonly used
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currents the overheating of electrons is highly likely. The classical
conductivity has a very weak temperature dependence [10] and
therefore is not suitable for this purpose. Both the WL and the
variance of UCF have strong temperature dependences [5,6], but
the magnitudes of these effects depend on the details of inelastic
and elastic scattering and so do not readily allow for the extraction
of the temperature from them. We show here that analysing the
width of the correlation function does unambiguously yield the
electron temperature in graphene, as well as in any mesoscopic
diffusive conductor.

2. Theory

The variance of the conductance fluctuations in graphene
is determined by the standard set of the perturbation theory
diagrams in h̄/(pF`) � 1 (` is the electron mean free path)
shown in Fig. 1. Structurally, they coincide with the diagrams
describing mesoscopic fluctuations in usual conductors [11] but
the Hikami boxes are different [7,8,12] because of the linear energy
spectrum, carrier chirality and valley degeneracy in graphene. In
the low-temperature limit, LT � Lϕ , where LT = (h̄D/kBT )1/2 is
the thermal diffusion length, Lϕ = (Dτϕ)1/2, (D is the diffusion
coefficient and τϕ is the phase-breaking time), the variance of
conductance fluctuations becomes [7,8]

〈δG2〉 ≡ F (0) =
12
β
g2s R(L,W , Lϕ, Li, L∗), (1)

where G is the conductance in units of e2/h, δG = G − 〈G〉, W
and L are, respectively, the sample width and length, gs is the spin
degeneracy, and the time-reversal symmetry parameter β = 1
for B � B0 = (h̄/e)/L2ϕ and β = 2 for B � B0. The function
R(L,W , Lϕ, Li, L∗) is given by

R =
∞∑

n=1,m=0

{η−2nm + (ηnm + 2(L/Li)
2)−2

+ 2(ηnm + ((L/Li)2 + (L/L∗)2))−2}
= R1 +R2 + 2R3, (2)

where ηnm = π2n2 + (L/W )2π2m2 + (L/Lϕ)2, Li = (Dτi)1/2 is the
intervalley scattering length determined by the scattering rate τ−1i ,
and L∗ = (D/(τ−1w + τ

−1
z ))1/2 stands for the intravalley scattering

length determined by both the trigonal-warping scattering rate
τ−1w and the scattering rate τ−1z due to sublattice asymmetric
potentials [4].
In the case of Lϕ � L, Li, L∗ the conductance variance given by

Eqs. (1) and (2) is independent of the dephasing length and can
be represented as R = αR1, 4 ≥ α ≥ 1. The coefficient α is
sensitive to the strength of intervalley and intravalley scattering in
a particular graphene sample. Namely, α = 4 if Li, L∗ � L; α = 1
for L � Li; and α ≈ 2 for Li > L > L∗. Therefore, the variance
of conductance fluctuations in graphene is different from that in
a conventional metal [2] as it is represented there only by the
term R1 in Eq. (2) and is insensitive to the microscopic details of
disorder. In the case of a long and narrow graphene sample, strong
intervalley scattering at the edges (L � Li) results in α = 1 and
R1 = ζ (4)/π4, leading to 〈δG2〉 = (2/β)g2s /15, which coincides
with the usual result for quasi-1D disordered wires.
At finite temperatures, the autocorrelation function of conduc-

tance fluctuations, F(∆), is given by a convolution of the ensemble-
averaged correlator, F (ε) ≡ 〈δG(E) δG(E + ε)〉, and the thermal
broadening factor

K(ε,∆) =
∫
dEf ′(E, εF)f ′(E + ε, εF +∆),
Fig. 1. (a), (b) The diagrams which contribute to the main order in the
diagrammatic expansion of the conductivity–conductivity correlation function. The
solid lines are the impurity averaged retarded or advanced Green functions, the
short wavy tails are the current vertices and the long wavy lines the diffusion
ladders. (c), (d) Hikami boxes of two types and additional diagrams which
determine renormalization in the main order in 1/kF l� 1, where the dashed lines
correspond to the disorder potential. (e) Diagrammatic equation for renormalized
current vertex.

where f ′(E, εF) = −1/(4kBTe) cosh−2[(E − εF)/(2kBTe)] is the
energy derivative of the Fermi–Dirac distribution function (Te is the
electron temperature). Thus

F(∆) ≡ 〈〈δG(εF)δG(εF +∆)〉〉

=

∫
dεK(ε,∆)F (ε). (3)

Here the brackets 〈〈· · ·〉〉 stand for both the ensemble and thermal
averaging and

F (ε) = 4g2s
∑
n,m

∑
l=1,2,3,4

(∣∣D l
nm

∣∣2 + 1
2
Re
[
D l
nm

]2)
, (4)

D1
nm ≡

(
−
i
h̄
ετD + ηnm

)−1
, (5)

D2
nm ≡

(
−
i
h̄
ετD + ηnm + 2(L/Li)2

)−1
, (6)

D3,4
nm ≡

(
−
i
h̄
ετD + ηnm + (L/Li)2 + (L/L∗)2

)−1
, (7)

where τD ≡ L2/D.
The variance of the conductance and the correlator F (ε) given

by Eqs. (4)–(7) are sensitive to the microscopic details of disorder
in a particular sample. However, in the normalized autocorrelation
function Fn ≡ F(∆)/F(0) these details do not manifest themselves
under usual experimental conditions.
To show this, let us first consider a narrow wire, W �

min(Lϕ, L), with strong intervalley scattering at the boundaries.
Then the part of the correlator F which contributes to Fn can be
written exclusively via the ‘valley-singlet’ diffusion propagators
D1
nm. The sum over m in Eq. (4) in this case is dominated by the
m = 0 term. (Note that we have taken into account only the
diffusion modes and neglected the Cooperons, which corresponds
to the regime of suppressed WL by magnetic field.) We obtain an
asymptotic expression for Fn(∆) assuming L � Lϕ keeping only
the term withm = 0 and performing the summation over n:

F (ε) = 4g2s

(
1

2
√
2

(
Lϕ
L

)3 3t2 + t + 2
t3
√
t + 1

−

(
Lϕ
L

)4 t2 + 2
t4

)
, (8)
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Table 1
Lengthscales (in microns) of samples F1 and F2 at high carrier density. The values
of the dephasing length, Lϕ have been determined from analysis of the weak
localization. Shown here are values at T = 0.25 K (L0.25 Kϕ ) and 4 K (L4 Kϕ ). ` is the
mean free path and n is the carrier density in 1012 cm−2 .

Sample L W L0.25 Kϕ L4 Kϕ Li L∗ ` n

F1 4.1 1.8 1.5 0.7 0.4 0.06 0.07 1.4
F2 3.8 1.8 3.8 1.7 0.5 0.1 0.1 0.7

where t ≡
√
(ετϕ/h̄)2 + 1. This function is sharply peaked,

with a maximum at ε = 0 and width h̄/τϕ . In contrast, the
thermal broadening factor K(ε,∆) has a broad peak at ε = ∆

of width ∼ kBTe � h̄/τϕ . Convolution of these functions results
in a normalized correlation function that is independent of the
microscopic details contained in F (ε):

Fn(∆) =
K(0,∆)
K(0, 0)

=
3 (θ coth θ − 1)

sinh2 θ
, θ ≡

∆

2kBTe
. (9)

The width of this one-parameter function, determined from
Fn(θc) = 0.5, is θc = 1.36, which results in

∆c ≈ 2.7kBTe. (10)

This result remains valid under the condition LT ,W � min(Lϕ, L)
for any Lϕ . L, and allowing for all the diffusion modes in Eqs.
(5)–(7) in graphene or, indeed, in any othermesoscopic disordered
conductor. This result was tested numerically in [9]. There, the
values of ∆c were found to lie within a narrow interval, 2.7 ≤
∆c/kBTe ≤ 2.9, within 10% of the asymptotic value 2.7 of Eq. (10).
Good agreement with this value (within 25%) was also foundwhen
2D samples were considered.

3. Experimental details

The samples studied experimentally in thiswork aremonolayer
graphene flakes created by mechanical exfoliation on a n+Si
substrate covered by 300 nm of SiO2. In addition to monolayer
graphene flakes, we have also studied a bilayer sample (Bi: L =
1.5 µm, W = 1.8 µm, see [6]), to examine the generality of the
method of determining the electron temperature. (The number
of layers in the studied structures has been established from the
analysis of the quantum Hall effect [5,6]). The manifestation of WL
effects in monolayer and bilayer graphene can be very different,
but the correlation properties of conductance fluctuations as a
function of the Fermi energy are expected to be universal.
The ac current driven through the sample was 1 nA to avoid

overheating (determined by measuring the effect of increasing the
current on themesoscopic fluctuations). The Fermi energy, εF , was
controlled by a gate voltage, Vg , applied between the substrate
and the flake (in our monolayers, εF = h̄vF

√
πVgC/e, where C

is the capacitance per unit area between the gate electrode and
graphene). The conductance of all samples is shown as a function
of Fermi energy in Fig. 2. The dephasing rate was determined from
a fit of the magnetic field dependence of the sample conductance
to the theory of weak localization in graphene [4,5]. (Indeed, in
order to analyse the UCF properly the values of not only Lϕ but also
Li and L∗ need first to be determined and this can only be done
in combination with analysis of the WL.) The sample parameters
are given in [9] and extra details of samples F1 and F2 are given
in Table 1. Samples B1 and B2 are quasi-1D samples with width
W = 0.3 µm and length L = 3.7 and 2.0 µm, respectively.
Fluctuations of the conductance occur as a function of both the

Fermi energy and perpendicular magnetic field. The fingerprint
of the fluctuations is robust and temperature dependent over
the whole experimental range of 0.26 to 20 K. For a particular
range of energies and fields the autocorrelation function F(∆)
Fig. 2. Dimensionless conductance of the graphene samples as a function of the
Fermi energy at T = 0.25 K. (For B2 the hole region is studied so the scale has
been reversed to comparewith other samples.) The shaded regions show the energy
rangeused in the analysis. The inset shows thedistribution function of δG for sample
F2 averaged over ∼14 000 ‘realisations’ (filled symbols are for high density, open
symbols for the Dirac region).

of the fingerprints can be analysed to determine the variance
F(0) and the correlation energy ∆c from F(∆c) = F(0)/2.
The Vg range was chosen to incorporate a sufficient number
(∼100) of fluctuations without significantly changing the average
value of the conductance. In our experiments this limits the
range of temperatures to T < 10 K. To increase the number
of fluctuations (sample ‘realisations’) the measurements were
performed at several (10–20) values of magnetic field in the range
B� B0.
Fig. 3(a) shows a typical fingerprint of conductance fluctuations

(with average background, 〈G〉, removed) in sample B1 as a
function of the Fermi energy in a magnetic field of 90 mT.
In Fig. 3(b) the (normalized) autocorrelation function of the
fingerprint in (a) is shown. In the inset of the figure the circuit used
in the measurements is shown.
The random nature of the fluctuations is demonstrated for

sample F2 in the inset of Fig. 2 where the distribution of the
conductance fluctuations is seen to have a Gaussian shape typical
of UCF [13]. (It is also seen that for this sample the magnitude of
the fluctuations is very similar at high carrier density and in the
Dirac region.) Fig. 4 shows the variance of samples F1 and F2 at
high carrier density. One can see immediately that the variance
is temperature dependent over the whole range of temperatures
down to 0.25 K. In the WL experiment, however, it was found
that the magnitude of the quantum correction determined by Lϕ
saturates at low temperatures [5] (when Lϕ ∼ L). This highlights
the importance of the lengthscale LT for the amplitude of UCF in
2D, when LT < Lϕ [15].

4. Analysis and discussion

Using the values of Lϕ , Li and L∗ determined from weak
localization measurements in Eq. (3) we are able to calculate
numerically the theoretical values of the variance for our samples.
For F1 and F2, Lϕ ∼ L > Li � L∗. One can see from Eq. (2) that the
last two terms inR are suppressed by the strong elastic scattering
and therefore α ∼ 1. The good agreement between theory and
experiment, Fig. 4, shows that Lϕ calculated from WL and UCF is
the same quantity, as predicted in [14], and also that unlike its
effect inWL intervalley scattering acts to suppress the conductance
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Fig. 3. (a) Typical fingerprint of δG (normalized by e2/h) for sample B1 at T =
0.25 K and B = 90 mT as a function of Fermi energy. (b) Normalized correlation
function for sample B1. The inset shows the circuit used in the experiment and
construction of the graphene sample.

Fig. 4. The variance of the conductance fluctuations of samples F1 (circles) and F2
(squares). Solid symbols correspond to the experimental results while open ones
represent theoretical values calculated using Eqs. (3)–(7) for F(0).

fluctuations. In [5] it was shown that there is strong intravalley
suppression of quantum interference in graphene deposited on
silica, hence the four-fold increase of conductance fluctuations
(Theory section) will not be seen. In addition, due to intervalley
scattering at the sample edges the intervalley diffusion length
Li has an upper limit of the sample width. Therefore in narrow
graphene samples it is difficult to achieve conditions where α > 1,
and as a result the amplitude of fluctuations is similar to that
observed in a usual diffusive metal. We found previously [16] that
the fluctuations in bilayer sample Bi can also be interpreted using
a standard UCF model. This shows a dramatic contrast with WL
where in the presence of intervalley scattering the shape of the
magnetoconductance curve shows strong dependence on small
variations in the elastic scattering.
The values of the correlation energy extracted from the

correlation functions are shown in Fig. 5(a). It can be seen that
the correlation energy increases linearly with increasing bath
temperature. Eq. (10) is plotted in Fig. 5 as a solid line. There is
Fig. 5. (a) Experimental value of the correlation function width ∆c for various
bath temperatures extracted from the UCF in four graphene-based devices at high
carrier density (F2: open squares, B1: filled circles, Bi: open triangles). The solid line
corresponds to Eq. (10). (b) Correlation magnetic field of sample B2. Filled squares
are experimental results and open squares are ∆Bc = (h/e)/WLϕ . The dashed
horizontal line shows ∆Bc = (h/e)/WL. (c) Ratio Lϕ /LT for high carrier densities
in samples F2, B1 and Bi.

agreement between the theory and experiment for all the samples.
This includes the bilayer sample (open triangles in figure), which
contrasts with the significant difference between monolayer and
bilayer samples in themanifestation ofweak localization [6,17,18].
This also indicates general applicability of the developed model
to all diffusive systems. The criterion of the applicability of the
theoretical result in Eq. (10), Lϕ/LT > 1, is seen to be satisfied in
the studied samples, Fig. 5(c).
We want to note that the results of our experiments on

graphene show some general properties of UCF [2]. Increasing
magnetic field above B0 has shown the conventional decrease of
the variance by a factor of two. Also, the correlation magnetic field
has been seen to be related to Lϕ(T ) in the usual way. Shown in
Fig. 5(b) is the correlation field for sample B2 as a function of
temperature. For this sample Lϕ > W , so the expected dependence
of the correlation field is ∆Bc(T ) ≈ (h/e)/WLϕ(T ) [1]. This is
plotted as open squares in the figure and clear agreement is seen
with experiment, including the saturation of∆Bc that occurs at low
temperatures when the dephasing length approaches the sample
length.
Finally we discuss the results of our measurements in the

Dirac region where the applicability of the developed analytical
theory of UCF is not obvious, although the conductivity of our
samples satisfies the commonly used criterion for the diffusion
theory, 〈G〉L/W � 1. (We have also shown previously [5] that the
diffusive theory of weak localization describes well the magneto-
conductance in the Dirac region.) Numerical investigation of the
conductance fluctuations in graphene (from sample to sam-
ple) [19] have shown that their amplitude is considerably stronger
than in conventionalmetals. At the same time experiments on few-
layer samples [20] have shown that conductance fluctuations (as
a function of the carrier density) are suppressed near the charge-
neutrality point.
In our experiments we consider a region of carrier densities

around the Dirac point, −30 < εF < 30 meV. Firstly, we do not
observe an increase of the amplitude of conductance fluctuations
in the Dirac region comparedwith that in the high-density regions.
In samples F1 and F2 the variance in the Dirac region is very close
to that in high-density regions, while in narrow samples B1 and
B2 it is several times smaller. Secondly, it can be seen from Fig. 6
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Fig. 6. ∆c as a function of bath temperature at carrier density close to the
Dirac point (F2: open squares, B1: filled circles, Bi: open triangles). The solid line
corresponds to Eq. (10). Inset: Ratio Lϕ /LT at low carrier density in samples F2, B1
and Bi.

that the correlation energy deviates from the ‘high-temperature’
limit at low temperatures. This can be attributed to the fact that
for all samples the high-temperature condition is now destroyed
because of a decrease of the dephasing length by> 30% that occurs
when moving from high to low carrier density, Fig. 6 (inset). (This
decrease of the low-temperature dephasing length in the Dirac
region was obtained from the analysis of WL in both monolayer
and bilayer graphene samples [5,6].)

5. Conclusion

In conclusion, in combined studies of conductance fluctuations
and weak localization in monolayer and bilayer flakes we
have demonstrated that the variance of universal conductance
fluctuations in graphene is strongly affected by elastic scattering,
in particular intervalley scattering. However, the correlation
energy of the fluctuations as a function of the Fermi energy
is insensitive to these scattering mechanisms under common
experimental conditions. Analysis of this correlation energy allows
direct measurement of the electron temperature in graphene
structures. We have also discussed the evolution of the variance
and the correlation energy of the conductance fluctuations from
the region of high carrier density to the region close to the point of
electro-neutrality.
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