
Subscriber access provided by The University of Manchester | The John Rylands University Library

Nano Letters is published by the American Chemical Society. 1155 Sixteenth
Street N.W., Washington, DC 20036

Letter

Conductance of p-n-p Graphene Structures with “Air-Bridge” Top Gates
Roman V. Gorbachev, Alexander S. Mayorov, Alexander
K. Savchenko, David W. Horsell, and Francisco Guinea

Nano Lett., 2008, 8 (7), 1995-1999 • DOI: 10.1021/nl801059v • Publication Date (Web): 11 June 2008

Downloaded from http://pubs.acs.org on December 3, 2008

More About This Article

Additional resources and features associated with this article are available within the HTML version:

• Supporting Information
• Access to high resolution figures
• Links to articles and content related to this article
• Copyright permission to reproduce figures and/or text from this article



Subscriber access provided by The University of Manchester | The John Rylands University Library

Nano Letters is published by the American Chemical Society. 1155 Sixteenth
Street N.W., Washington, DC 20036

http://pubs.acs.org/doi/full/10.1021/nl801059v


Conductance of p-n-p Graphene
Structures with “Air-Bridge” Top Gates
Roman V. Gorbachev, Alexander S. Mayorov, Alexander K. Savchenko,*
David W. Horsell, and Francisco Guinea

School of Physics, UniVersity of Exeter, Exeter EX4 4QL, United Kingdom, and
Instituto de Ciencia de Materiales de Madrid, CSIC, E28049 Madrid, Spain

Received April 14, 2008

ABSTRACT

We have fabricated graphene devices with a top gate separated from the graphene layer by an air gapsa design which does not decrease the
mobility of charge carriers under the gate. This gate is used to realize p-n-p structures where the conducting properties of chiral carriers are
studied. The band profile of the structures is calculated taking into account the specifics of the graphene density of states and is used to find
the resistance of the p-n junctions expected for chiral carriers. We show that ballistic p-n junctions have larger resistance than diffusive ones.
This is caused by suppressed transmission of chiral carriers at angles away from the normal to the junction.

Graphene, a monolayer of carbon atoms, is a new two-
dimensional system1 with unusual properties: the gapless
energy spectrum of electrons and holes is linear, and these
carriers are chiral. It is the chirality that suppresses the
backscattering of carriers2 and allows them to penetrate
through potential barriers without reflection (the Klein
paradox3). The theory of ballistic graphene p-n junctions4

predicts that the carriers propagate through the barrier without
scattering if their angle of incidence is 0° (with respect to
the normal) and are partially reflected at other angles. This
angular selectivity of the carriers determines the resistance
of a ballistic p-n junction.

To realize ballistic transport through a graphene p-n
junction, the mean free path of carriers l has to be larger
than the characteristic length of the junction 2t. A number
of intriguing phenomena, such as small-field positive mag-
netoresistance4 and oscillating transmission probability,3 can
be observed in a ballistic p-n-p structure where the total
length (two junctions plus the n-region) is smaller than l.
Ballistic p-n and p-n-p structures can also be important for
a number of potential applications: for example, graphene
lenses5 and filter circuits3 where the electrical current of chiral
carriers is focused on or directed to a desired contact.
Therefore, exploring the ways of producing high-mobility
p-n-p graphene structures with large l and understanding the
mechanisms of carrier propagation through them is an
important task.

Graphene flakes obtained by mechanical exfoliation1 are
conventionally deposited on a SiO2/Si substrate where the
conducting n-Si layer forms a (back) gate acting on the whole

flake. Inversion of the type of carrier in a part of graphene
flake has been recently achieved by using an additional (top)
gate which is positioned above the graphene layer.6–9 In the
p-n junctions fabricated so far, the top gate rests on an
insulating layer that can decrease the mobility of graphene
carriers under it6 and hinder the realization of ballistic p-n
and p-n-p structures. We avoid this problem by fabricating
p-n-p graphene structures using suspended “air-bridge” top
gates. (Similar designs were used earlier in semiconductor
nanostructures.10,11) The mobility of carriers under the top
gate in such structures is the same as in the rest of the
graphene layer.

The theory of ballistic graphene p-n junctions4 considers
a “smooth” junction, 2kFt .1, where kF is the Fermi wave
vector of the particles and 2t is the tunneling distance of the
carriers. The transmission probability of such a junction as
a function of the angle of incidence θ (with respect to the
normal to the junction) is given by

w(θ)) e-π p V F k F
2 sin 2 θ / F ) e-π p V F k y

2 / F (1)

Here, VF ) 106 ms-1 is the Fermi velocity of carriers and
F/e is the electric field in the barrier which is assumed to be
constant over the tunnelling distance so that the potential
�(x) ) Fx/e. The term ky is the component of the wavevector
parallel to the junction, ky ) πn/W, n ) 1, 2,..., where W is
the width of the barrier. Therefore, the transmission of chiral
carriers is restricted to the angles θ e θc = (F/πpVFkF

2)1/2 or,
equivalently, the transverse momentum values ky e (F/
πpVF)1/2. The conductance of a ballistic junction is then, ref
4,* Corresponding author.
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For the calculation of the resistance of a graphene p-n
junction, it is important to know accurately the electric field
at the p-n boundary, which can be much larger than that in
the rest of the barrier.12 This is caused by poor screening
near the point of electro-neutrality (the Dirac point) where
the density of carrier states decreases to zero. Therefore, to
find the expected resistance of ballistic p-n junctions in our
samples, we have computed the potential profile of the
experimental p-n-p structures. This is done for different
combinations of the back and top gate voltages, taking into
account the density of states in graphene which changes
linearly with energy.

To fabricate ballistic p-n junctions, one positions the top
gate close to graphene, which increases the field F and
decreases the tunnelling distance t(ky, F) ) pVFky/F. In
addition, the Fermi wavelength increases when the electron
diffusively approaches the junction, up to the distance ∼l/2
from its center when it passes through it ballistically. As a
result, the length of the junction 2t can become comparable
to the wavelength, and the assumption of ref 4 of a smooth
barrier not applicable. To examine the validity of this
approximation for our structures, we have also found the
transmission probability w(θ) by solving the Dirac equation
numerically,13 using the calculated potential profile �(x).

This calculated potential �(x) allows us to determine the
resistance of the p-n-p structure expected for diffusive
propagation of carriers (without taking into account their
chirality) and to compare the result with experiment. The
required resistivity F(�) of the sample at different Fermi
energies is found from the resistance as a function of back-
gate voltage Vbg (at top-gate voltage Vtg ) 0).

Here, we present the results for three samples with
different mobilities. The sample with the smallest mean free
path has a resistance in the p-n-p regime which is in
agreement with the diffusive model, while the higher-
mobility samples (with ballistic transport through the p-n
junctions) show an enhanced value of the resistance, which
agrees with the result we expect for the chiral carriers.

To fabricate the p-n-p structures, we have chosen graphene
flakes of rectangular geometry on SiO2/Si substrates with a
300 nm oxide layer. The samples have the following
dimensions, in micrometers: L ) 5, W ) 0.24 (sample S1);
L ) 4.3, W ) 0.6 (sample S2); and L ) 1.45, W ) 0.15
(sample S3). The mobility of these samples outside the region
of electro-neutrality (at a carrier density of 3 × 1011 cm-2)
is 13, 11, and 6 × 103 cm2 V-1 s-1, respectively. The
procedure of the top gate fabrication is illustrated in Figure
1a. Two layers of PMMA with different molecular weights
are spun on the flake: a soft resist (495 K) on top of a hard
resist (950 K). They were then patterned using low-energy
(10 kV) e-beam lithography (to achieve larger undercut in
the top PMMA layer). Two different exposure doses were
used in the areas of the span and pillars of the bridge, while

the area outside the bridge was not exposed. The dose in
the span is just enough to expose the soft resist but too small
to affect the underlying hard layer. Both layers are exposed
at a larger dose in the areas of the pillars (and contacts).
The structures are then developed and covered with 5/250
nm of Cr/Au. The “lift off” removes PMMA leaving the
bridge with a span up to 2 µm supported by 2 pillars. Figure
1b shows an SEM image of sample S2 with a bridge top
gate and two Ohmic contacts. The mean free path in our
samples is l ≈ 45-100 nm, and the distance between the
top gate and the flakes is 130-210 nm. In the attempt to
produce a p-n-p structure with ballistic properties, the top
gate is made short in the direction of the current flow:
100-170 nm.

Two-terminal measurements of R(Vbg) in quantizing
magnetic fields have confirmed that we are dealing with
single-layer graphene. The gray-scale plot in Figure 1c shows
the shift with magnetic field of two resistance peaks
corresponding to the first electron and hole Landau levels.
In this experiment, the carrier concentration was varied by
the back gate voltage: n/Vbg ) 7.2 × 1010 cm-2 V-1 (the
relation from the known capacitance of the structure with a
300 nm SiO2 layer). A positive (negative) Vbg induces
electrons (holes) in the graphene layer, and the 0th Landau
level (the bright vertical line) corresponds to the Dirac point.
The dotted lines show the position of the 1st Landau level
of electrons and holes in accordance with the filling factor ν
) 4eBn/h ) (1.14,15

Figure 1d shows that, by changing the combination of the
voltages on the back gate and top gate, one can get different

Figure 1. (a) Three stages of the air-bridge fabrication: electron
beam lithography with two exposure doses; development, and
deposition of the metal film. (b) A false-colour SEM image of a
graphene flake with a metal air-bridge gate, tilted at 45°. (c) Gray-
scale of the positions of the maxima in R as a function of carrier
density and magnetic field, with dotted lines corresponding to the
shifts of the lowest Landau levels expected for single-layer
graphene. (d) Positions of the resistance maxima at different Vbg, Vtg,
with different regimes of the device operation indicated, sample
S1.

1996 Nano Lett., Vol. 8, No. 7, 2008



regimes of the operation of the device, with both p-n-p and
n-p-n modes available. Different regions are separated by
the resistance peaks corresponding to the Dirac points under
the top gate (steep line) and back gate (almost horizontal
line). The slope dVbg/dVtg of the steep line (from 0.24 to 0.4
in our samples) gives the efficiency of top-gate control with
respect to that of the back gate.

Figure 2a shows R(Vbg) at Vtg ) 0, where the peak
corresponds to the Dirac point. Figure 2b-d shows how the
resistance of the samples changes (for fixed Vbg values shown
by points in Figure 2a) when a top-gate voltage is applied.
When the main part of the sample outside the top gate is
p-type, applying a negative Vtg decreases the resistance due
to the increase of the hole density under the top gate.
Applying a positive Vtg increases the resistance of the
samples, first because of the depletion of electrons under
the top gate and then because of inversion of the sign of
carriers and formation of a p-n-p structure.

At the onset of the formation of the p-n junction, the
resistance shows reproducible oscillations as a function of
Vtg. They survive at high temperatures, which strongly
suggests that they can be due to the oscillations of the
transmission coefficient caused by interference of chiral
carriers3 within a ballistic p-n-p structure. However, this
effect has to be separated from mesoscopic fluctuations of
resistance16 that can be enhanced in the Dirac points of the
p-n junctions. (We will discuss the separation of these effects
elsewhere.17) Here, we consider the average values of the
resistance and present the results obtained in a higher
temperature range (T ) 50-77 K) where the effect of the
mesoscopic fluctuations is less important.

The band-structure profile along the p-n-p structure at
different Vtg is calculated numerically for the geometry shown
in Figure 3a, by solving the two-dimensional Laplace
equation with the potentials of the two gates as boundary
conditions. The presence of the flake is included as an
additional boundary condition on the jump of the normal
component of the displacement field at the flake: ∆Dn )
en(x), where n(x) is carrier concentration along the sample.
Taking the Fermi level as zero and using the linear energy
dependence of the density of states in graphene flake, ν(E)
) 2E/πp2VF

2, one gets the relation between the carrier
concentration along the junction n(x) and the electrostatic
potential: n(x) ) sgn(�)e2�2(x)/π(pVF)2, where sgn(�) reflects
the fact that carriers can be both electrons and holes
depending on the position of the Dirac point with respect to
the Fermi level. Examples of such calculations for the three
samples are shown in Figure 3b-d, where indeed one can
see a rapid increase of the electric field at the boundaries
between p- and n-regions considered in ref 12: F ) (0.8-2.4)
× 106 eV/m.

We use the “calibration” curves R(Vbg) in Figure 2a to
find the resistivity of the flake at different Fermi energies
(different electrostatic potentials if the Fermi level is taken
as zero). We used the relation between Vbg and the
electrostatic potential � known from the capacitance between
the flake and the back gate: �(mV) ) 31�Vbg(V). With the
calculated distribution of the potential along the structure
�(x), the integration of the resistivity F(�) gives the
resistance expected for diffusive propagation of carriers: R
) (1/W) ∫F(x) dx.

In the range of Vtg corresponding to accumulation (negative
Vtg) and depletion (small positive Vtg) under the top gate,
the resistance is well-described by the diffusive model, Figure

Figure 2. (a) Resistivity of the three samples as a function of the
back-gate voltage, at Vtg ) 0. Points indicate the fixed values of
Vbg where the top-gate voltage was swept to produce p-n-p
junctions. (b) The resistance of sample S1 as a function of top-
gate voltage at different Vbg. (c,d) The resistance as a function of
top-gate voltage at different Vbg of samples S2 and S3, respectively.
Points show the results of the calculations of the expected resistance
assuming diffusive transport of carriers. (Dashed lines in b,c are
guides to the eye.)

Figure 3. (a) Geometry of the top-gated structure used in the
calculations of the potential profile along the flake, sample S1.
(b,c,d) Potential profile of the top-gated samples S1, S2, and S3
along the barrier at different Vtg for a fixed Vbg. The curves
correspond to the position of the Dirac point, and zero is the Fermi
level. The bars show the mean free path l.

Nano Lett., Vol. 8, No. 7, 2008 1997



2b-d. One adjustable parameter, the distance h between the
top gate and the graphene flake, was used in plotting the
calculated values: h ) 140, 210, and 130 nm for samples
S1, S2, and S3, respectively. The obtained values are close
to those expected from the fabrication process and agree with
observed efficiency of the top gate, Figure 2d. With larger
positive Vtg and formation of the p-n-p structures, samples
S1 and S2 show significantly larger values of the resistance
than expected from the diffusive model: ∆R = 4 and 2
kOhm, respectively. However, the narrowest sample S3 with
the lowest mobility shows agreement with the diffusive
model in the whole range of Vtg, Figure 2d.

To explain these observations, we find the characteristic
thickness of the p-n junctions in the three samples and
compare it with the mean free path l. According to ref 4,
the reason for the enhanced resistance of a junction is the
decrease of the transmission when the electron approaches
the junction at an angle θ + 0, Figure 4a. Conservation of
the parallel component of the momentum ky produces a gap
in the energy spectrum E(kx) for the motion across the
junction, Figure 4b. The distance 2t is then defined as the
classically inaccessible region which requires electrons to
tunnel along it, Figure 4c: t ) pVFkFsinθ/F. The critical angle
for carrier transmission in the three samples varies in the
range θc ) 20-30°, assuming the length of the ballistic p-n
junction to be l and taking the kF value at a point x ) -l/2
from the barrier, Figure 4a. As the tunnelling distance 2t
depends on the angle of incidence, we take for a typical value
of the barrier thickness 2t(2θc) = 40 nm in our samples.

The mean free path l has been found using R(Vbg) of a
uniform sample at Vtg ) 0, Figure 2a, and the relation σ )
2e2(kFl)/h. The value of l weakly depends on Vbg, and when
extrapolated to the Dirac point (Vbg ) 0 for an undoped
sample), it gives l = 100, 75, and 45 nm respectively for
samples S1, S2, and S3. Comparing the tunnelling length
with the mean free path shows that the p-n junctions in S1
and S2 are certainly ballistic (l . 2t), while in S3 they are

less ballistic (l ∼ 2t). This can explain the agreement of the
resistance of S3 with the result of the diffusive model in
Figure 2d.

To find the expected resistance Rpn of ballistic p-n junction
in samples S1 and S2 and compare it with the observed
difference ∆R in Figure 2, we first assume a smooth potential
barrier, 2kFt .1, and by using the calculated value of electric
field F, we get the tunnelling probability w(θ) from eq 1.
Equation 2 is then used to obtain the resistance of the ballistic
p-n junction. We have found that using summation rather
than integration is more appropriate in our case, as samples
S1 and S2 have less than 12 modes (the narrowest sample
S3 has only three modes). The value of the Fermi momentum
kF in these calculations is taken at a distance l/2 from the
barrier using the values of the mean free path found above;
however, the result for Rpn hardly changes if the value of l
is varied by two times either way. This is clear as the
tunnelling probability w(θ) in eq 1 depends only on ky which
takes specific, quantized values ky ) πn/W. The obtained
values are Rpn ) 5 and 2 kOhm for samples S1 (at Vbg )
-9 V, Vtg ) 40 V) and S2 (at Vbg ) -4 V, Vtg ) 30 V).

Taking into account the Fermi wavelength at the distance
l/2 from the barrier, we see that 2kFt = 2 for the three
samples. To examine the applicability of a smooth-barrier
approximation for this (not too large) value of 2kFt, we have
calculated w(θ) directly using numerical methods13 and
compared the result with that obtained from eq 1. It shows
less than 5% difference from the value of Rpn calculated
above and a significantly larger resistance than the one
expected for a sharp, rectangular barrier where w(θ) )
cos2 θ.4

In experiment, it is not the resistance of an individual
ballistic p-n junction which is measured but the resistance
of the whole p-n-p structure. It can be different depending
on whether its middle, n-region is long or short compared
with l (i.e., diffusive or ballistic). For a diffusive n-region
with three independent contributions (two junctions and
middle region), Rpnp g 2Rpn, while for a ballistic n-region,
Rpnp = Rpn.4 The resistance of a ballistic p-n-p structure
should not increase with addition of another junction as the
electrons approaching the second junction have already been
selected by the first junction within the critical angle θc.
Therefore, they all will have high transmission probability
w(θ) going through the second junction.

Figure 2b,c shows clearly that the resistance of S1 and
S2 is larger than that expected in the diffusive model by
∆R, because of the ballistic transport of chiral carriers
through two p-n junctions. To find their resistance, we
assume that they are independent; that is, the n-region is
diffusive. Then the observed difference ∆R ) 2(Rpn - Rpn

D ),
where Rpn

D is the resistance of the diffusive p-n junction on
the length l which was taken into account in the diffusive-
model calculation shown in Figure 2. With the values l )
100 and 75 nm, one finds that Rpn

D ) 2 and 0.6 kOhm for
samples S1 and S2, respectively. This gives the correspond-
ing resistance of the ballistic p-n junction Rpn ) 4 and 1.6
kOhm, which is close to the expected values of 5 and 2
kOhm. (Even better agreement, within 10%, is achieved if

Figure 4. (a) Momentum of the electron approaching the junction
at an angle θ. (b) The gap in the spectrum E(kx) (highlighted) at θ
+ 0. (c) Band-structure profile along the length of the p-n-p
structure. The value of the gap determines the tunneling length 2t(θ).
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another quantization rule for graphene is used:18 ky ) π(n +
1/2)/W, n ) 0, 1, 2,....) The assumption of the diffusive nature
of the n-region at large Vtg is confirmed by Figure 3, where
the whole p-n-p region is seen to be larger than the mean
free path. However, near the onset of the p-n junctions, at
small Vtg, the p-n-p region is much shorter and can be fully
ballistic.

In conclusion, we have fabricated p-n-p and n-p-n graphene
structures using nonperturbative “air-bridge” top gates. The
chiral nature of charge carriers in graphene has been directly
demonstrated by detecting an increase of the resistance of p-n
junctions caused by their selective effect on the propagation of
chiral particles. Our detailed analysis shows that individual p-n
junctions are ballistic and that a ballistic p-n-p structure can be
realized using this fabrication method.
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