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Thermodynamic Density of States of Two-Dimensional GaAs Systems
near the Apparent Metal-Insulator Transition
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We perform combined resistivity and compressibility studies of two-dimensional hole and electron
systems which show the apparent metal-insulator transition—a crossover in the sign of @R=@T with
changing density. No thermodynamic anomalies have been detected in the crossover region. Instead,
despite a tenfold difference in rs, the compressibility of both electrons and holes is well described by the
theory of nonlinear screening of the random potential. We show that the resistivity exhibits a scaling
behavior near the percolation threshold found from analysis of the compressibility. Notably, the
percolation transition occurs at a much lower density than the crossover.

DOI: 10.1103/PhysRevLett.96.216407 PACS numbers: 71.30.+h, 05.70.Ce
The apparent metal-insulator transition (MIT) in high-
mobility two-dimensional systems remains a topic of fun-
damental interest [1] and continuing debate [2]. The anom-
aly of these systems is exemplified by the existence of a
narrow range of carrier densities around n � nc where the
slope of the temperature dependence of the resistance,
@R=@T, changes its sign. To unravel a complex interplay
between interactions and disorder in this phenomenon, it is
essential to combine transport measurements with other
experimental probes, in particular, measurements of the
thermodynamic density of states [also referred to as the
charge compressibility [3,4] ] � � dn=d�, where � is the
chemical potential. There have been only a few measure-
ments of � near the apparent MIT [5–7], among which
work [5] on a 2D hole gas with large values of the Coulomb

interaction parameter rs � 1=
������������
�na2

B

q
� 5–16 has at-

tracted much attention. (Here aB � 18 �A is the effective
Bohr radius for the hole mass of 0:38m0.) In their experi-
ments done at T � 0:3–1:3 K the authors of Ref. [5] found
that the inverse compressibility ��1�n� has a minimum
which is positioned exactly at nc. This was interpreted as
a thermodynamic signature of an interaction-driven phase
transition discussed in theoretical works [8,9].

An alternative explanation of the minimum of ��1�n�
can be based on the nonlinear screening theory (NST) [10–
13] that emphasizes the role of disorder. The basic premise
of the NST is that a low-density metal is unable to screen
fluctuations of potential, so that depletion regions with
vanishingly small local density appear and grow as n
decreases. The NST predicts that ��1�n� has a minimum
at n � nm (determined by disorder), and a rapid upturn to
positive values at n < nm.

This theory also predicts a percolation threshold at n �
np [11], where np � nm=3 in typical GaAs systems [13].
There have been suggestions, based on the conductance
scaling, that the percolation transition is closely related to
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the change in the sign of @R=@T [12,14,15]. [The existence
of the percolative MIT in 2D GaAs structures was proposed
earlier in [11].]

In this work we use combined compressibility and con-
ductance measurements to shed light on the origin of the
apparent MIT in 2D hole gases (2DHGs) with large inter-
actions between the carriers—a problem widely debated
over the last few years [16–18]. We find no signature of a
critical behavior of ��1�n� near the apparent MIT. We do
find evidence for the percolation transition, but it occurs at
a concentration much lower than nc. Finally, the NST
provides a quantitatively accurate description of both the
measured compressibility and the position of the percola-
tion point. As for the sign change of @R=@T, we surmise
that in our 2DHG samples it is most likely caused by an
interplay of different scattering mechanisms [19–21],
similar to 2D electron gas (2DEG).

Two types of system have been examined: a 2DEG with
rs � 1–4 and a 2DHG with rs � 10–35. We find no rela-
tion between the position nm of the minimum in ��1 and
the position nc of the MIT—the two densities can differ by
a factor of 2 and, furthermore, their ratio is sample and
cooldown dependent. The ��1�n� dependence fits the NST
[13] predictions very well for both carrier types. We show
that in some range of T the dependence of the conductance
of both systems on carrier density fits the usual percolation
scaling ansatz. The percolation threshold found agrees
with the prediction from the analysis of the compressibility
in terms of the NST. However, its density is significantly
lower than the crossover density nc, which makes a direct,
universal connection between the apparent MIT (the sign
change of @R=@T) and percolation doubtful.

Our 2DEG structures E01 and E02 contain two GaAs
quantum wells of width w � 200 �A separated by a 200 Å
and 300 Å-thick AlGaAs barrier, respectively, Fig. 1. The
top-layer mobility at the highest density is 5�
105 cm2=V s for E01 and 8� 105 cm2=V s for E02. The
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FIG. 2 (color online). d� for 2DEG structure E01 with s �
200 �A, s1 � 700 �A, s2 � 400 �A. Solid lines are the results of
the field-penetration method, dashed line—the capacitance
method. Dotted line—the NST theory with ni � 1:2�
1011 cm�2. [The donor concentration found from �q�n� is n�i �
2:3� 4:5� 1011 cm�2, while the maximum concentration of
(uncorrelated) donors is nGi � 9:0� 1011 cm�2.] Inset: com-
parison with 2DEG structure E02 (s � 400 �A, s1 � 900 �A, s2 �
500 �A), where ni � 2:2� 1011 cm�2 and n�i � 3� 4:5�
1011 cm�2, while nGi � 11� 1011 cm�2).
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FIG. 1 (color online). Capacitance of a double-layer 2DEG
structure E01 measured simultaneously by two methods: Cb—
field penetration, C—capacitance; T � 4:2 K, f � 4 Hz.
Inset: diagrams of capacitance measurements in (a) double-
and (b) single-layer structures.

PRL 96, 216407 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
2 JUNE 2006
2DHG samples H03 and H05 with mobility 4:7�
105 cm2=V s and 5:6� 105 cm2=V s, respectively, are
formed in standard single-layer AlGaAs=GaAs hetero-
structures with Au gates.

The resistance as a function of gate voltage, Vg, is
measured at T � 0:03–10 K, in a similar way to [16],
and the relation between Vg and n is established by the
Hall effect. The position of nc is determined at the lowest
temperature of the compressibility measurements, T �
0:26 K. The compressibility is found to be temperature
independent in the range 0.26–1.5 K for 2DHGs and
0.26–5 K for 2DEGs. The compressibility and conduc-
tance measurements have been repeated several times, one
after another, to confirm that there is no drift in the struc-
ture. The compressibility is determined using two tech-
niques—the ‘‘capacitance’’ and the ‘‘field penetration’’,
Fig. 1.

Capacitance method.—Here the ac voltage ~Vg � 2 mV
of frequency f � 1–100 Hz is applied to the gate and the
90� phase-shifted current ~I in the probed layer is measured
(Fig. 1, inset), yielding the capacitance C � ~I=2�f ~Vg.
Instead of � we discuss the quantity which is a measure
of inverse compressibility: the Thomas-Fermi screening
radius d � �""0=e2���1 [3]. It is easy to show that d is
related to C by the formula d � ""0A�C

�1 � C�1
0 �=�1	

��1�, where A is the gated area and C0 � ""0A=s1 is the
geometric capacitance between the gate and the probed 2D
layer, Fig. 1. In a double-layer structure, where the
‘‘probed’’ 2D layer is the top quantum well, the factor � �
�db 	 s2 	 w�=s1 accounts for the electrostatic interaction
between the two layers [3]. Here s2 is the separation
between the centers of the quantum wells and db �
aB=4
 s2 	 w is the screening radius of the bottom layer.
In a single-layer structure s2 ! 1 and the correction ��1

is set to zero.
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Field-penetration method.—In this technique the com-
pressibility of the top layer is found from the capacitance
Cb between the gate and the bottom layer. The measured
capacitive current ~Ib is caused by the electric field pene-
trating through the top layer in proportion to its ��1. Once
Cb�Vg� is found, the screening radius d is calculated using
Eqs. (7)–(9) of Ref. [3].

In real 2D systems there is a change in the transverse
confinement (and the corresponding subband energy) with
varying n. This gives a small contribution �dsub to dwhose
sign and magnitude depend on the structure and the method
of capacitance measurement. To compare the results ob-
tained in different experimental situations, we subtract this
contribution and discuss the quantity d� � d��dsub. The
value of �dsub is of the order of the 2D layer thickness and
is calculated by a perturbation theory. For a single-layer
heterostructure �dsub � 0:46�aB=n�

1=3 [22]. For double-
layer (quantum well) structures we compute �dsub using
the infinite square-well approximation, similarly to
Ref. [23]. This gives for the capacitance method �dsub �
	0:3967w�1� 0:0544�� in the thin-well limit, � �
nw3=aB 
 1. In the field-penetration technique �dsub �
�0:1033w�1� 0:1148��; cf. Ref. [3].

In Fig. 2 we present d� for sample E01 found from both
the capacitance and the field-penetration methods. The
field-penetration technique is more accurate than the ca-
pacitance technique at large n, because in this method the
subtraction of the geometric term C0 is obviated. However,
at low densities around the minimum in ��1 the contribu-
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FIG. 3 (color online). d� for 2DHG structures H03 and H05
with s � 500 �A and s1 � 2670 �A, obtained by the capacitance
method. Dotted lines—NST theory. The dopant concentrations
for H03 are: ni � 1� 1011 cm�2, n�i � 1:1� 2:2� 1011 cm�2

and nGi � 5:6� 1011 cm�2. The minimum for H05 (ni � 2:4�
1011 cm�2, nGi � 5:6� 1011 cm�2) is shifted to larger n. Inset:
d� for H03 (cooldown 2), ni � 1:5� 1011 cm�2 and nGi �
5:6� 1011 cm�2.

PRL 96, 216407 (2006) P H Y S I C A L R E V I E W L E T T E R S week ending
2 JUNE 2006
tion C0 is less important, and one can see that the two
methods give nearly identical results.

Now we turn to the comparison of the results with the
nonlinear screening theory. This theory predicts:

d� � �aB=4� 	�dex 	�dcor 	 �ddis: (1)

The first term in Eq. (1) is due to the single-particle density
of states (kinetic energy) of the 2D carriers. The correction
�dex � ��8�3n��1=2 comes from the exchange interac-
tion. Another negative contribution is due to correlations
between the carriers: �dcor � �""0=e

2�d2�nEc�=dn
2,

where the correlation energy per particle Ec is computed
according to Ref. [24]. As the carrier density decreases,
�dex and �dcor cause a change in the sign of d from
positive to negative—the effect seen experimentally
[3,5,7]. Disorder, however, brings a positive contribution,
�ddis, responsible for the upturn of ��1 at low densities
[13]:

�ddis �
3
���
2
p

32�2

�0:3	 ��s

0:036�	 0:12�2 	 �3 exp��4��2�; (2)

where � � ns=
�����
ni
p

, s is the spacer, and ni is the effective
2D concentration of dopants (an adjustable parameter, see
below).

Equation (2) was derived assuming that disorder is
produced by a �-doped layer of uncorrelated dopants
with a two-dimensional concentration ni [13]. The samples
in this work have three-dimensional doping. It can be
shown that the impurities closest to the 2D layer have the
greatest effect on �, and therefore Eq. (2) is still valid
provided one uses an effective ni. Unfortunately, ni cannot
be determined in a simple way because not all impurities
can be ionized and also because of existing correlations in
their positions [25]. Both factors reduce the effective ni
[11] compared to a naı̈ve estimate based on the total
number of impurities known from the growth conditions
(denoted here by nGi ). A better estimate of ni is deduced
from the quantum lifetime �q. We have found �q�n� from
the analysis of the Shubnikov–de Haas effect and deter-
mined the effective concentration n�i according to
Ref. [20]—it turns out to be 3–5 times smaller than nGi .

The dotted line in Fig. 2 is the best fit by Eq. (1) for
structure E01, with ni found to be close to n�i . Good
agreement with Eq. (1) where ni is close to n�i has also
been obtained for E02 —the inset compares the results for
the two 2DEG structures. The latter has a larger spacer and
in agreement with the NST the ��1�n� minimum, nm �
0:38n1=2

i =s, is shifted to lower n. The position of the
minimum in ��1�n�, indicated by an arrow, is found
from the fitted curve with an error of & 2%. (Inaccuracy
of the calculation of �dsub has an even smaller effect on the
position of nm.) The range of densities where @R=@T
changes its sign is indicated in Fig. 2 by nc. It is seen
that the crossover in R�T� occurs at higher densities than
the minimum in ��1�n�.
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Figure 3 shows the results for 2DHG samples H03 (two
cooldowns) and H05. The dotted lines are best fits to
Eq. (1) with parameters ni consistent with our analysis of
�q�n�. In the second cooldown the upturn of d� occurs at
higher densities and the obtained ni is also larger, i.e., the
sample in this cooldown is more disordered. This supports
the notion of correlations among the impurities since these
are known to depend on thermal cycling [25]. As in the
2DEG structures, the apparent MIT region nc does not
overlap with nm, although here nc < nm. This is not sur-
prising because of the difference in the contributions to
R�T� of electrons and holes that determine the position of
nc. The same conclusion that nc < nm was drawn for
another studied 2DHG sample (H06, not shown).

To understand the relation between the apparent MIT
and percolation in 2DHGs, we have attempted to extract
the percolation threshold n	p from the fit of the conductance
to 	�n� � 
�n� n	p �t following the procedure in
[14,15,18]. Figure 4 shows the results with the exponent
t � 2:1� 0:1 at T � 0:26 K for both electrons and holes,
which is close to that in works [15,18]. For the 2DHGs the
exponent decreases with decreasing temperature to t �
1:6� 0:1, which is close to t � 1:31 expected for classical
percolation [26]. Notably, the value of the percolation
threshold is significantly lower than nc: nc=n	p � 2:9 for
H03 and nc=n	p � 2:1 for H05. Therefore, we surmise that
the apparent MIT is not due to percolation but, similar to
2DEGs [19], is due to an interplay of the ‘‘metallic’’ T
dependence caused by phonon scattering and Fermi-liquid
corrections to impurity scattering, and the ‘‘insulating’’
dependence caused by localization [16,17,20,21].
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FIG. 4 (color online). (a) Fits of the conductance to 	�n� �

�n� n	p �

t. (b) An example of the temperature dependence of
the resistivity of H03 structure. The range of nc in this cooldown
is indicated by the dotted line.
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We want to stress, however, that using the percolation
scaling in a quantum system requires justification. One can
rationalize this procedure by arguing that the percolation
concept can apply in some intermediate range of T, high
enough to preempt localization at n > n	p yet low enough
to inhibit thermal activation at n < n	p . Another point of
concern is that the scaling is observed over a broad range of
densities [up to n=n	p  2, similar to [14,15] ], while it is
expected to work only near the critical point [27].
However, our combined transport and compressibility
measurements allow us to examine directly the applicabil-
ity of the scaling procedure and demonstrate its validity.
Using the NST prediction [11,13], we obtain indepen-
dently np � 0:12

�����
ni
p

=s � nm=3 and compare it with n	p .
We have established that the percolation thresholds derived
from both methods are very close: np � 0:76� 1010 cm�2

and n	p � 0:7� 1010 cm�2 for H03, and np �
1:2� 1010 cm�2 and n	p � 1� 1010 cm�2 for H05.
(This comparison is done at T � 0:26 K and even better
agreement is obtained at T � 30 mK as n	p increases with
decreasing T by about 20%.)

In summary, our combined conductance and compressi-
bility measurements suggest that the apparent MIT in
2DHGs with rs up to 30 is neither an interaction-driven
phase transition nor a percolation transition. The behavior
of the compressibility at low hole densities is well de-
scribed by the nonlinear screening theory. This indicates
that the upturn in ��1�n� is due to depletion regions in the
channel, with total area less than 3.5%, caused by disorder.
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