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Abstract

The spectrum of exchange spin waves in a magnonic crystal (periodic magnetic multilayer) with diffuse interfaces is derived for a model

with a cosine-like profile of the uniaxial anisotropy value at the interfaces. The dependence of the band gap size upon the interface

thickness and the depth of modulation of the anisotropy value is analyzed. In particular, it is shown that diffuse interfaces may lead to a

magnonic spectrum in which band gaps have size equal to or even larger than those in the model with sharp (infinitely thin) interfaces

(Kronnig–Penney model).

r 2006 Elsevier B.V. All rights reserved.
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Due to the wealth results of investigations of photonic
crystals [1] and other similar objects with artificially created
periodicity [2–6], periodic magnetic structures have re-
ceived a renewed attention. Such structures could be used
to control the propagation of spin waves (SW) [7,8]. By
analogy to photonic crystals, periodic magnetic media are
referred to as magnonic crystals (MCs). The knowledge of
the SW spectrum of magneto–photonic crystals (dielectric
MCs that support magnetic field controlled photonic band
gaps [9]), is also required if they are to be used within
devices operated at a GHz clock rate.

While most of the theoretical efforts have been devoted
to investigation of MCs with infinitely thin interfaces
[10–14], interfaces of realistic samples always have a finite
thickness. For example, resonant X-ray magnetic scattering
analyses show that the magnetic interface can be thicker
than the corresponding chemical interface [15]. On the
basis of the full Ginzburg–Landau free energy functional,
Schwenk et al. [16] considered the effect of finite
temperatures upon both statics and dynamics of magneti-
zation in an all-ferromagnetic periodic multilayer. In
particular, they showed that, even when multilayer inter-
- see front matter r 2006 Elsevier B.V. All rights reserved.
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faces are chemically sharp, the static magnetization
magnitude profile is always smooth so that magnetic
‘‘transition’’ layers are formed between the basic constitu-
ent layers. In addition, the interfaces can contain some
roughness, which was predicted to significantly modify SW
spectrum in the case of thin magnetic films [17,18].
Therefore, a question arises whether the realistic multi-
layers can efficiently act as MCs.
Gorobets et al. [19] used a harmonic function to

approximate the coordinate dependence of magnetic
parameters of a MC with diffuse interfaces. A similar
model was used for the investigation of a planar metallic
MC by Kolodin and Hillebrands [20]. Ignatchenko et al.
[21,22] used a model based upon the Jacobian elliptic sine
function, which can describe interfaces of arbitrary
thickness, to demonstrate a strong dependence of the
magnonic spectrum and coefficients of reflection and
transmission of SWs upon the thickness of interfaces.
Although being more realistic than that of Gorobets et al.,
the model of Ignatchenko et al does not allow one to
obtain an exact solution, and so is based upon the
perturbation theory in the limit of small modulation of
the parameters of the MC. At the same time, the theory of
waves in inhomogeneous media is well developed [1,2,4],
and can be used to build an exactly solvable model for
investigation of SWs in a MC in which both the thickness
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Fig. 1. The coordinate dependence of the anisotropy constant is shown
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of interfaces and the amplitude of modulation of the MC
parameters have finite (maybe quite large) values [23]. In
the present work, such a model is developed for a one-
dimensional MC in which the distribution of the value of
the uniaxial anisotropy constant at the interfaces is
approximated with a cosine function, while the anisotropy
value is assumed to be constant within the basic constituent
layers of the MC.

Let us consider an infinite one dimensional MC
represented by a system of alternating uniform magnetic
layers of two different types but of the same thickness d.

The layers have different values b� and b+ of the uniaxial
anisotropy constant b, while the values of the exchange
interaction parameter a, gyromagnetic ratio g, and the
saturation magnetization M0 are assumed to be constant
throughout the sample. We assume that the ‘‘basic’’ layers
of the MC are separated by ‘‘transition’’ regions of
thickness d in which the value of the uniaxial anisotropy
constant changes continuously between values b� and b+.
The OZ axis is chosen to be perpendicular to the plane of
the layers. The easy axis (EA) and the internal magnetic
field H both lie parallel to the OZ axis. n is the unit vector
in the direction of the internal magnetic field H. Here, we
neglect magnetic damping. The effects associated with
its presence were considered in Refs. [19,20,24–26]. In
particular, the case of an interface dominated SW damping
was discussed in Refs. [25,26].

To describe the dynamics of the magnetization M(r,t),
we use the Landau–Lifshitz equation

@M

@t
¼ �g M� H þ b Mnð Þð Þnþ

@

@r
a
@M

@r

� �� �� �
. (1)

For the present geometry, the dynamic magneto-dipole
field is absent [7]. Magnonic crystals properties of which
are dominated by the magneto-dipole interaction are
studied, for example, in Ref. [8].

Let us consider small deviations mjðj ¼ 1 . . . 4Þ of the
magnetization of each layer from the ground state given by
a uniform magnetization parallel to the EA

Mj r; tð Þ ¼ nM0 þmj r; tð Þ; mj

�� ���M0. (2)

Linearizing Eq. (1) with respect to mj, and introducing
Fourier components mjðr; tÞ ¼ mjðrÞ exp{iot} and then
variable m ¼ mx þ imy, we obtain the following equation

d2mðzÞ
dz2

þ k2
ðzÞmðzÞ ¼ 0, (3)

where k zð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O� h� b zð Þð Þ=a

p
, O ¼ o=gM0, and h ¼

H=M0.
We have to find such a function bðzÞ that function kðzÞ is

periodic with period L, is continuous, and has continuous
derivatives. In addition, function bðzÞ (and hence kðzÞ )
must be constant within the main layers of the MC, and it
must be possible to find an analytical solution of equation
(3) in the transition layers. These conditions are satisfied by
the following function

bðzÞ

¼

b1 ¼ b� ¼ b
	 

�

Db
2

z0 þ nLozoz1 þ nL;

b2 ¼ b
	 

þ

Db
2
cos p

d z� z2ð Þ
� �

z1 þ nLozoz2 þ nL;

b3 ¼ bþ ¼ b
	 

þ

Db
2

z2 þ nLozoz3 þ nL;

b4 ¼ b
	 

�

Db
2
cos p

d z� z4ð Þ
� �

z3 þ nLozoz4 þ nL;

8>>>>>>><
>>>>>>>:

ð4Þ

where b
	 

¼ bþ þ b�
 �

=2, Db ¼ bþ � b�. zjðj ¼ 1 . . . 4Þ are
the coordinates of the boundaries between the basic and
transition layers (z0 ¼ 0, z1 ¼ d, z2 ¼ d þ d, z3 ¼ 2d þ d,
z4 ¼ 2d þ 2d ¼ L), n ¼ 0;�1;�2; . . ., and L is the period
of the MC. The graph of function bðzÞ is shown in Fig. 1.
At the interfaces zj, the solution of Eq. (3) must satisfy

the boundary conditions that in the exchange limit [12] are

mj

��
zj
¼ mjþ1

��
zj
;
@mj

@z

����
zj

¼
@mjþ1

@z

����
zj

; j ¼ 1 . . . 4. (5)

The physical meaning of the first of them is that, in
the exchange-dominated regime, the directions of the
magnetization on both sides of the interfaces are parallel.
The second condition ensures that the normal to the
interface component of the energy flux density vector is
continuous [12].
Furthermore, the solution of Eq. (3) must satisfy the

periodicity condition, i.e., the dynamic magnetization at
the boundaries of the period z ¼ z0 ¼ 0 and z ¼ z4 ¼ L can
differ only by a phase factor [2]

m 0ð Þ ¼ exp iKLf gm Lð Þ, (6)

where K is the Bloch wave number.
Let us find solution mjðzÞ ¼ mðzj�1ozozjÞ for each layer.

In the basic layers (for z0ozoz1 and for z2ozoz3), the
solution of Eq. (3) has the form of the plane waves

mj zð Þ ¼ mþj exp þikjz
� �

þ m�j exp �ikjz
� �

; j ¼ 1; 3, (7)

where mþj and m�j are the wave amplitudes. In the transi-
tion layers (for z1ozoz2 and for z3ozoz4), Eq. (3)
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Fig. 2. The first two bands of the SW spectrum are shown for MCs with

two different values of the interface thickness. ðDb ¼ 2, b� ¼ 2:0, h ¼ 0Þ.
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transforms into

d2mjðzÞ

dz2
þ

O� b
	 

� h

a
þ �1ð Þj=2

Db
a

cos
p
d

z� zj

 �� �� �
mjðzÞ

¼ 0; j ¼ 2; 4. ð8Þ

The substitution of the independent variable transforms
Eq. (8) into the Mathieu equation [27,28]

d2mjðtÞ

dt2
þ a� 2qjcos 2tð Þ
� �

mjðtÞ ¼ 0, (9)

where a ¼ 4d2 O� b
	 

� h

 �
=ap2, qj ¼ �1ð Þ

j=2�1d2Db=ap2.
Eq. (9) has solution

mj zð Þ ¼ mþj s t; qj

� �
þ m�j c t; qj

� �
; j ¼ 2; 4, (10)

where cðt; qjÞ and sðt; qjÞ are the general Mathieu functions.
In order to find the spectrum of SWs in the sample, we

use the method of the transfer matrix [2,29]. If applied to
individual atomic layers, as for example in Refs. [12,17,18,]
this method can be used to calculate numerically SW
spectrum of a MC with arbitrary interface profile, while
here an analytical solution is obtained.

Let us introduce the following two-component column-
vector

U zð Þ ¼
mðzÞ

sðzÞ

 !
; sðzÞ ¼

dm zð Þ

dz
. (11)

The values of the magnetization and its derivative in the
beginning of each layer are expressed via their values in the
end of the layer using the transfer matrix Mj

U zj�1

 �
¼MjU zj

 �
. (12)

For the basic layers ðj ¼ 1; 3Þ, the transfer matrices are

M1;3 ¼
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 �
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 �
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 !
, (13)
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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.

For the interface layers ðj ¼ 2; 4Þ, the transfer matrices are
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q
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Due to the boundary conditions (5), vector U(z) must
be continuous at the layer boundaries. Consequently,
values in the beginning and end of the period must be
connected as

U 0ð Þ ¼MU Lð Þ,

where M ¼
Q4

j¼1Mj is the transfer matrix for one period of
the MC. Let us determine the eigenvalues l of this matrix
corresponding to eigenvectors U(0).

lU 0ð Þ ¼MU 0ð Þ, (14)

Eq. (14) coincides with the periodicity condition (6), if
we assume that

l ¼ exp iKLf g. (15)

The eigenvalues l are determined from the equation

l2 þ 2l ~M þ 1 ¼ 0, (16)

where
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� �
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� k�sin k�dð ÞP2 � cos k�dð ÞP02
� �

kþð Þ
�1sin kþdð Þ

8<
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where k� ¼ k�= kh i.
Solving Eq. (16) and substituting the solution into

Eq. (15), we find the SW spectrum of the MC

cos KLð Þ ¼ � ~M=2. (17)

Fig. 2 shows the SW spectrum calculated from Eq. (17)
for MCs of two different thicknesses. As expected, the
spectrum has a band structure with magnonic band gaps at
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the Brillouin zone boundaries corresponding to KL ¼

p� 2pn. The width of the nth band gaps OnðKÞ was
determined numerically. In Fig. 3, the dependence of the
width of the band gaps upon the depth of modulation of
the anisotropy constant is presented for different (fixed)
values of the interface thickness. The zero value of the
interface thickness corresponds to the known Kronnig–
Penney model [30] One can see that the band gap size for
the different thicknesses of the interface is very similar to
that in the Kronnig–Penney model at all depths of
modulation of the anisotropy constant. Moreover, there
are points in which the size of a particular band gap is
identical in the models with smooth and sharp interfaces.
Such points are also observed in Fig. 4 in which the ratio of
the band gap width to the depth of modulation of the
anisotropy constant is plotted as a function of the interface
thickness. In Fig. 5, the depth of modulation of the
anisotropy constant at which the width of the first band
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Fig. 3. The dependence of the width of the first three band gaps upon the
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gap in the present model (interfaces of finite thickness)
coincides with that in the Kronig–Penney model (infinitely
thin interfaces) is shown for different interface thicknesses.
It is interesting to note that this equality can only take
place for a certain range of the depth of modulation of the
anisotropy constant, and is not observed if the depth of
modulation is either too small or too large.
In Refs. [21,22], Ignatchenko et al. showed that the size

of the first band gap must increase when the interface
thickness increases. In contrast, our Figs. 3 and 4 show
that, depending upon the depth of modulation of the
anisotropy constant, the band gap size can both decrease
and increase when the interface thickness increases. We
therefore conclude that, in order to determine the interface
thickness from the spectral measurements of the size of the
first and the third band gaps as it was proposed by
Ignatchenko et al, one has to assume a particular
coordinate dependence of the anisotropy constant at the
interface, which may turn out to be quite arbitrary in
practice.
In summary, the main conclusions of the present

work are:
1.
 The smoothing of the magnetic interfaces often present
in real MC modifies but does not destroy the magnonic
band gap (stop band).
2.
 The size of the magnonic band gap depends not only
upon the depth of modulation of the magnetic
parameters and the thickness of the magnetic interface
and but also upon the particular coordinate dependence
of the magnetic parameters in the interface.

Finally, the authors acknowledge many fruitful discus-
sions of the manuscript with Prof. Yu.I. Gorobets.
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