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We present a study of the electromagnetic field profiles for coupled surface
plasmon-polariton systems. Results for both the symmetrically-clad thin metal
film structure and the metal-clad dielectric cavity are given. We also consider an
asymmetrically-clad thin metal-film structure and show that such a structure may
also support coupled SPP modes under appropriate conditions. We describe our
method for calculating the field profiles in detail. In contrast to previous methods
our approach does not require the introduction of an input field, it allows
straightforward computation of the field profiles associated with the optical
modes of multilayer planar structures.

Keywords: surface plasmon; guided modes; multilayers; polaritons

1. Introduction

Electric and magnetic field profiles are a powerful tool in analysing the optical
response of a multilayer system. A field profile shows how the strength of a particular
field component, usually associated with a resonant mode of the structure, changes as
a function of distance through the structure. Field profiles can be especially beneficial
when looking at guided optical modes, as different types of such modes can have very
different field profiles. Field profile information is valuable in deciding where one
wishes to place absorbers in thin-film structures, for example photovoltaic cells [1], or
where to place emitters, for example in organic light-emitting diodes [2]; it is also
important in other types of more fundamental investigation, for example strong
coupling [3].

There are two methods commonly used to calculate field profiles. The first is based on
a matrix approach, often called the transfer matrix approach. For an outline of the
technique see [4]. For a multilayer stack the field components at a position z1 (z is the
direction normal to the planes of the stack) are related to those at a position z2 by matrices,
see Figure 1. In a multilayer structure the overall matrix for the stack is assembled
by multiplying together matrices that characterise the individual interfaces and layers.
Hence, by starting with a known field incident upon a given structure, the fields
throughout the rest of this structure may be calculated. The second method follows that of

*Corresponding author. Email: w.l.barnes@ex.ac.uk
yPresent address: IOP Publishing, Dirac House, Temple Back, Bristol, UK.

ISSN 0950–0340 print/ISSN 1362–3044 online

� 2008 Taylor & Francis

DOI: 10.1080/09500340802271250

http://www.informaworld.com

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
O
f
 
E
x
e
t
e
r
]
 
A
t
:
 
1
0
:
4
1
 
5
 
D
e
c
e
m
b
e
r
 
2
0
0
8



Kovacs (see the chapter by Kovacs in [5]) in which an iterative process is used to calculate
the fields. Both techniques use the Fresnel reflection and transmission coefficients together
with the electromagnetic (EM) boundary conditions at each of the interfaces to find
relationships between the field components of adjacent layers.

Both of these approaches are usually implemented in a way that limits their
applicability for what we wish to do here, i.e. study guided modes. Specifically, as
usually implemented, only field distributions associated with potentially radiative modes
may be determined – if one wishes to look at guided modes then structures capable of
allowing radiation to couple such modes (e.g. prism couplers) need to be included. If one
is interested in looking at the underlying physics then being able to calculate the field
profile in the absence of any incident field would be an advantage. More specifically, the
inclusion of some kind of input coupler inevitably perturbs the modes that one wishes
to study. One can of course make the perturbation smaller and smaller and look at the
asymptotic limit, but this is often time consuming. We have modified the second method
mentioned above so that no incident field needs to be included in the modelling. Instead,
as will be seen below, all that is required is a knowledge of the in-plane wavevector of
the mode in question. Since our purpose is to look at field profiles rather than discuss
the calculation technique in detail, we omit the details from the main text. However, to
provide a clear and single-source version of the relevant equations, details are presented
in Appendix 1.

Below, in Section 2, we illustrate the power of this technique by presenting results for
various systems which support surface plasmon-polariton (SPP) modes, modes that are
of much topical interest [6,7]. We concentrate on coupled SPP modes [8] and display the
form of their associated field profiles, including an analysis of the previously little
explored coupled modes of asymmetrically-clad thin metal films. Conclusions are drawn
in Section 3.

Figure 1. Showing the multilayer structure considered in the field model, indicating the
nomenclature used.
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2. Surface plasmon-polariton field profiles

We begin by looking at the surface plasmon-polariton mode supported by a simple system
consisting of a metal and a dielectric separated by a planar interface as this helps us to

develop a clearer understanding of the SPP modes of more complicated systems. We then
move on to study the symmetric dielectric–metal–dielectric thin film and metal–dielectric–
metal cavity structures, presenting field profiles in each case. Finally, we consider a metal

film bounded on each side by different dielectric materials.

2.1. Single interface

Surface plasmon-polaritons are guided electromagnetic (EM) modes that propagate along
the interface between a metal and a dielectric [9,10]. They result from coupling between

free surface charges at the surface of the metal and EM radiation. This coupling leads
to both longitudinal surface charge density oscillations that propagate along the

metal–dielectric interface, and to oscillating EM fields that decay in strength exponentially
with distance away from the interface.

Let us now consider an example of such a single-interface system, one that
comprises silver (Ag) and air. Both the metal and air extend semi-infinitely away from

the interface. It is useful at this stage to examine the dispersion relationship for surface
plasmon-polaritons on this interface, i.e. to look at how the wavevector of this mode
(in the plane of the interface on which they propagate) depends on frequency.

A convenient way to do this is by calculating the power dissipated by an oscillating
dipole source placed close (50 nm) to the interface using a classical oscillating dipole

model [11–14] in which the source is considered to be a forced, damped, harmonic
oscillator. Plotting the dissipated power as a function of in-plane wavevector (kx)
(Figure 2(a)) reveals peak(s) indicating that power is coupled from the source to the

modes associated with the structure: plots such as Figure 2(a) are known as power
dissipation spectra [12]. The sharp peak in Figure 2(a) indicates coupling of the source

to the SPP mode associated with the metal–air interface. Whilst the strength of the
coupling depends on the position and orientation of the dipole source, the frequency
and wavevector of the mode are determined solely by the structure. In all of the

simulations reported here the dissipated power has been averaged over all dipole
orientations.

By carrying out such calculations for a range of frequencies a dispersion diagram such
as Figure 2(d) can be built up (the frequency dependent relative permittivity was taken

from [15]: the section by Lynch and Huttner) – data being interpolated with the aid of
a ninth-order polynomial fit. Here the power dissipated is indicated on a grey scale (dark

areas represent significant power coupled from the source and thus indicate the presence of
a mode) as a function of frequency and in-plane wavevector. This technique offers
a convenient way to identify the different electromagnetic modes that a given structure

supports [16], and provides information in a format suitable for comparison with
experiment [17]. The dark feature in Figure 2(d) represents coupling of the emitter to the

SPP mode at the Ag–air interface, the air light-line is also labelled. It should be noted that,
as the SPP lies to the right of the light-line, the SPP mode can not radiate into the air,
instead it remains bound to the interface. Power dissipation spectra for the symmetric
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structures considered later are also shown in Figure 2 to allow easy comparison between
the dispersion diagrams of the different structures.

Taking the power dissipation spectrum (Figure 2(a)), one can calculate the in-plane
wavevector of the SPP mode at the frequency (wavelength, 600 nm) for which this power
dissipation spectrum was calculated, the value is 1.7304 mm�1, where we have normalised
the in-plane wavevector as kx/2�. This value is then entered into the field profile model
(as described above and in Appendix 1) to give the fields associated with the SPP.
The time-averaged field components are shown in Figure 3(a) and the instantaneous value
of the Ez component in Figure 3(d). The time-averaged field distributions are calculated
using Equation (22) (see Appendix 1). The instantaneous normal field component, Ez,
displays the characteristic features of a SPP mode. Firstly, the field is discontinuous at the
boundary and changes sign across it. Secondly, the exponential decay of the field occurs
far more rapidly in the Ag layer than in the air [18].

By introducing a second metal–dielectric interface into the system there is a possibility
that the SPPs associated with each of the separate interfaces may interact to form coupled
SPPs. There are two ways in which this may be done, either by considering a metal-clad
cavity where coupling takes place across the dielectric that separates the two metal
surfaces, or a thin-film system where coupling takes place across the metal film. Both are
discussed below.

Figure 2. Power dissipation spectra (a–c) and dispersion diagrams (d–f) for a single metal–air
interface (left column), an air–metal–air structure (thin metal film) (centre column) and a metal–air–
metal structure (metal-clad cavity) (right column). In the power dissipation spectra the power
dissipated by an isotropic emitter is plotted as a function of in-plane wavevector for a dipole 50 nm
distant from one of the metal interfaces. For the thin metal film the metal was 50 nm thick, for the
metal-clad cavity the cavity (air) was 300 nm thick. For all power dissipation spectra the wavelength
was 600 nm and the permittivity of the metal (silver) was taken as �13.8þ 0.59i. For the dispersion
diagrams the permittivity of silver was based on a ninth-order polynomial fit to experimental
data [15].

2932 L.H. Smith et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
O
f
 
E
x
e
t
e
r
]
 
A
t
:
 
1
0
:
4
1
 
5
 
D
e
c
e
m
b
e
r
 
2
0
0
8



2.2. Coupled SPPs of dielectric–metal–dielectric structures

The structure studied here consists of a thin Ag film bounded on both sides by air.

A power dissipation spectrum and the dispersion diagram are shown in Figures 2(b)

and (e) for the case of a 50 nm Ag film bounded by air. In Figure 4(a) a rather different
dispersion is shown – this time rather than varying the frequency for a given film thickness

(as shown in Figure 2(e)) the frequency is fixed (equivalent to a wavelength of 600 nm) and

the thickness of the silver film is varied. It may be seen from Figure 4(a) that when the
silver is greater than about 80 nm in thickness the two modes, one on each Ag–air

interface, are degenerate. As the thickness is decreased these modes interact giving rise to

two coupled SPP modes (designated SPP1 and SPP2) – the degeneracy is lifted.
The physics here is the same as that found for the way the modes on the inside and outside

of a metallic shell may couple and hybridise [19]. As may be seen from Figure 2(e), SPP1
lies closer to the light-line than SPP2. This means that SPP1 is more like a photon in

character, it corresponds to the lower loss of the two modes. This view is strengthened

from an examination of Figure 2(b) where we see that SPP1 is the sharper of the two
modes. It is often known as the long-range surface plasmon polariton (LRSPP) [20–23].

The charge distributions of the two modes are illustrated in Figure 5, with (a) and (b)

showing the symmetric and antisymmetric charge distributions, respectively. The symmetric
case corresponds to SPP2 and the antisymmetric case to SPP1. Note that the assignment of

Figure 3. Field distributions for the surface plasmon-polariton (SPP) mode of a single metal–air
interface (left column), and the field distributions of the SPP1 and SPP2 modes of the thin metal film
(air–metal–air structure) (middle and right columns). The top row shows the time-averaged field
components, the lower row the instantaneous value of just one component. For all three simulations
the wavelength was 600 nm, and the relative permittivity of the metal (silver) was taken as
�13.8þ 0.59i. All modes are TM polarised. The in-plane wavevectors correspond to the position of
the associated modes in Figures 2(a) and (b). For the single interface SPP mode the in-plane
wavevector is 1.039k0, for the thin metal film system SPP1 is calculated at a wavevector of 1.0225k0
and SPP2 at 1.0644k0. In parts (b), (c), (e) and ( f ), the metal film occupies the region
0 nm� d� 50 nm.
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the asymmetric charge distribution as the SPP1 (long-range) and symmetric as the SPP2

(short-range) is contrary to a previous work [24] – that work was wrong, the error arising

from not properly considering all of the field components. For the SPP modes supported by

a thin metal film it is the electric field parallel to the interfaces that dominates inside the

metal, in judging the relative loss of the modes it is thus important to consider this parallel

component – see Figures 3(b) and (c).

Figure 4. Dispersion diagrams of the surface plasmon-polariton modes associated with
(a) symmetrically-clad thin metal film (air–silver–air) (left), (b) symmetric metal–air–metal cavity
(middle) and (c) asymmetrically-clad thin metal film (air–silver–glass) (right). Here the wavelength is
held fixed at 600 nm and the thickness of the metal film ((a) and (c)) or air cavity (b) is varied.
The relative permittivity of the metal (silver) was taken as �13.8þ 0.59i.

Figure 5. Charge distributions for the modes of a thin metal film (upper) and a metal-clad cavity
(lower). Symmetric distributions are shown on the left, asymmetric on the right. (a) SPP2; (b) SPP1;
(c) TM0; (d) TM�1.
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The values of the in-plane wavevector of the peaks associated with the modes in
Figure 2(b) are used to obtain field profiles, shown in Figures 3(b), (c), (e) and ( f ). For
SPP1 the Ez component keeps the same sign throughout the metal film whilst Ex changes
sign. In the case of SPP2 these roles are reversed, with Ez passing through zero and Ex

remaining the same sign. Integrating under the profiles (with the air regions taken to be
much thicker than those illustrated here) reveals that the short-range mode contains
a greater fraction of its field within the Ag layer than the long-range mode, confirming the
attribution of SPP1 and SPP2 as the long- and short-range surface plasmon-polariton
modes, respectively.

2.3. Coupled SPPs of metal–dielectric–metal structures

The structure we consider now is an air cavity bounded on both sides by silver. If the air
region is very thick, i.e.� �, then the fields corresponding to the two identical SPP modes
on each of the interfaces do not overlap with each other, due to their strength falling off
exponentially with distance into the dielectric, the two modes are thus degenerate.
However, as the thickness of the cavity is decreased the fields associated with the two
modes overlap with each other, the modes interact, and the degeneracy is lifted – a pair of
coupled modes are produced, the properties of which can be tailored rather elegantly, for
example to show an effective negative index [25,26].

The nature of the modes supported by the cavity structure may be seen in Figure 4(b),
a dispersion diagram showing the change in dissipated power as a function of the cavity
(air) thickness and kx. This plot is for an emission wavelength of 600 nm. It may be seen
that as the cavity thickness is increased the two lowest-order TM modes move closer
together. Further results (not shown) indicate that the modes become degenerate for cavity
thicknesses above about 1000 nm. The other modes supported are the TE modes and
higher order TM waveguide modes, with the number of these modes supported by the
cavity rising as the cavity thickness is increased. The mode labelled TM0 has a cut-off at
the same cavity thickness as the TE0 waveguide mode, whilst the mode labelled TM�1 has
no cut-off [27].

We now look at a specific cavity thickness of 300 nm. As may be seen from Figure 4(b)
there are three modes supported by this structure, one TE waveguide mode and a pair of
coupled SPP modes. The dispersion of the modes as ! is changed is shown in Figure 2( f )
with a slice through this plot at 600 nm illustrated in Figure 2(c).

The in-plane wavevectors of the peaks associated with the modes are again used to
obtain field profiles, Figure 6. The instantaneous Ez component of the TM�1 mode does
not fall to zero at the centre of the cavity, Figure 6( f ), suggesting an antisymmetric charge
distribution, Figure 5(d). The Ez component of the TM0 mode, by contrast, does pass
through zero, the field changing sign through the cavity, Figure 6(e). TheHz component of
the TE waveguide mode verifies that this is the zeroth order mode – the cavity contains
approximately half a wavelength, Figure 6(d).

Again, as with the dielectric–metal–dielectric structure, symmetric and antisymmetric
refer to the charge distributions on the two metal surfaces with respect to the midpoint of
the layer. In the symmetric case, Figure 5(c), like-charges are directly opposite and hence
act to repel each other when the metal layers are brought closer together. Hence, this
charge distribution has a cut-off and corresponds to the TM0 mode. By contrast, there is
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no cut-off thickness for the antisymmetric charge distribution, Figure 5(d), which
corresponds to the TM�1 mode; this situation is analogous to a parallel plate capacitor.

We can also consider the relative range (propagation distance) of these two modes. We
can assign the TM0 mode and the TM�1 mode as the short-range and long-range SPP
modes with the assistance of Figure 6. By integrating under the curves we find that the
TM0 has a greater proportion of its fields in the metal than does the TM�1. This means
that the TM0 suffers a greater loss due to damping within the metal layer, hence its
propagation length is shorter. This conclusion is reinforced by looking at Figure 2(c); the
TM�1 mode is sharper than the TM0 mode.

In our final example we consider a thin Ag film bounded on one side by air and on the
other by silica (glass). The interest in this system is that it is one frequently encountered
in experiments [28]. Surprisingly, as we now show, even though this structure is
asymmetrically clad, coupled plasmon modes are still possible.

2.4. Asymmetric thin metal film

Figure 4(c) illustrates a dispersion diagram with the thickness of the Ag layer changing
from 3 to 100 nm, and where we have assumed the dipole source for the calculation to lie in
the air 50 nm from the Ag. There are two modes present and these correspond to SPP
modes, labelled SPP1 and SPP2. From the dispersion diagram it appears that the two
SPP modes adopt a coupled nature when the metal is very thin – apparent from the way

Figure 6. Field profiles of three modes associated with the metal-clad air cavity. Left is the TE0

mode, centre is the TM0 mode, right is the TM�1 mode. The top row shows the time-averaged field
components, the lower row the instantaneous value of just one component. For all three simulations
the wavelength was 600 nm, and the relative permittivity of the metal (silver) was taken as
�13.8þ 0.59i, and the cavity thickness was 300 nm The in-plane wavevectors of the modes, taken
from Figure 2(c), are for the TE0 0.515k0, for the TM0 mode 0.6162k0, and for the TM�1 mode
1.0992k0. In all figures the air cavity occupies the region 0 nm� d� 300 nm.
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SPP2 rapidly increases in in-plane wavevector as the metal film thickness is reduced. This

may be verified by the use of field profiles.
Figure 7 shows the field profiles for this asymmetric thin film system when the metal

has a thickness of 10 nm, data are shown for both the SPP1 and SPP2 modes. It may be

seen that the two modes, SPP1 and SPP2, are very different in character, and that due to

the asymmetry of the system, the field profiles are asymmetric. Knowing that such

asymmetric structures can support coupled surface plasmon-polariton modes is important

when one tries to understand the nature of light–matter interactions such as fluorescence

[28–30]) and energy transfer [31] when these interactions take place across a metal film.

3. Conclusions

We have outlined a method for calculating the field profiles of electromagnetic modes of

planar multilayer structures. The method is based upon that of Kovacs [5], but our

modified version avoids the need to impose an input field. The advantage of this

Figure 7. Time-averaged field distributions for the surface plasmon-polariton modes associated with
an asymmetrically clad thin metal film. The structure considered is a thin metal (silver) film clad on
one side by glass and on the other by air. The top row is for a 10 nm thick silver film, showing the
fields for the SPP2 (in-plane wavevector 1.0443k0) and SPP1 (in-plane wavevector 2.591k0) modes
(see Figure 4(c)). The bottom row is for a 50 nm thick silver film, showing the fields for the SPP2
(in-plane wavevector 1.03939k0) and SPP1 (in-plane wavevector 1.5944k0) modes. For all
simulations the wavelength was 600 nm, and the relative permittivity of the metal (silver) was
taken as �13.8þ 0.59i.
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modification is that it allows us to study easily the field distributions of non-radiative

modes such as surface plasmon-polaritons. We have demonstrated the use of this model to

compute EM field profiles for SPP modes and, by way of example, have presented

a comprehensive field-profile analysis of coupled SPP modes. We have also shown that an

asymmetric thin film system may support coupled SPP modes.
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Appendix 1. Calculating field profiles

Here we present a method for calculating field profiles associated with the optical modes of a planar
multilayer system. We adapt the method of Kovacs [5], adapted to deal with such modes.
The simplest case occurs when the media are isotropic, and we consider this case first, a modification
allowing the modelling of uniaxial materials [32] is discussed later, and is useful in birefringent
devices such as some organic light-emitting diodes [33].

A schematic of a multilayer system is illustrated in Figure 1 and displays the labelling of the
layers and interfaces and shows the direction of propagation of the fields. It should be noted that
medium 0 contains only one wave, propagating in the negative z-direction – there is no incident
wave. This is in contrast to conventional models in which a wave incident from a glass prism is used
to investigate the system. The advantage of the method presented here is that it allows modes with
high in-plane wavevector (kx) values to be probed – such modes are often inaccessible to an incident
wave from a prism.

Here, we deal first with isotropic materials, and provide solutions for electric (E) and magnetic
(H) fields for both TM (p-polarised) and TE (s-polarised) modes. Maxwell’s equations for non-
magnetic media yield the wave equation for the electric field,

r2E ¼
"

c

@2E

@t2
: ð1Þ

With the propagation of plane waves defined to be in the x–z plane. A solution to Equation (1) is
given by

E ¼ E exp iðkxx� !tÞ½ � expðikzzÞðx, y, zÞ, ð2Þ

where kz ¼ ½"ð!=cÞ
2
� k2x�

1=2. E is in the direction of the field, ! is the angular frequency of the plane
waves, " is the relative dielectric permittivity, and kx and kz are the in-plane and normal wavevector
components, respectively, and (x, y, z) defines the direction of the field in terms of Cartesian
components. Below, the two polarisations, TM and TE, are dealt with in turn.

TM-polarisation

Waves which are TM-polarised are characterised by the field components Ex, Ez and Hy. The TM
modes of a structure containing (nþ 1) media are described by Equations (3), where an implicit time
dependence of exp(�i!t) has been assumed. An implicit dependence of exp(ikxx) is also assumed
since kx is conserved throughout the system (it is invariant).

Eð0Þ ¼ Eð0Þ� exp½�ik0zðz� z0Þ�ð1, 0, kx=k0zÞ, z � 0,

Eð jÞ ¼ E
ð jÞ
þ exp½ikjzðz� zj�1Þ�ð1, 0,� kx=kjzÞ,

þ Eð jÞ� exp½�ikjzðz� zjÞ�ð1, 0, kx=kjzÞ, zj�1 � z � zj,

EðnÞ ¼ E
ðnÞ
þ exp½iknzðz� zn�1Þ�ð1, 0,� kx=knzÞ, zn�1 � z,

Hð0Þ ¼
!

c
Eð0Þ� exp½�ik0zðz� z0Þ�ð0,� "

ð0Þ=k0z, 0Þ, z � 0,

Journal of Modern Optics 2939

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
O
f
 
E
x
e
t
e
r
]
 
A
t
:
 
1
0
:
4
1
 
5
 
D
e
c
e
m
b
e
r
 
2
0
0
8



Hð jÞ ¼
!

c
E
ð jÞ
þ exp½ikjzðz� zj�1Þ�ð0, "

ð jÞ=kjz, 0Þ

þ
!

c
Eð jÞ� exp½�ikjzðz� zjÞ�ð0,� "

ð jÞ=kjz, 0Þ, zj�1 � z � zj,

HðnÞ ¼
!

c
E
ðnÞ
þ exp½iknzðz� zn�1Þ�ð0, "

ðnÞ=knz, 0Þ, zn�1 � z, ð3Þ

where kjz ¼ ½"
ð jÞð!=cÞ2 � k2x�

1=2. The components of H are found using Maxwell’s equations in
a source free region, which yield H¼Ek/! (for non-magnetic media) [34]. The subscriptsþ and-
indicate waves travelling in the positive and negative z-directions, respectively, and the superscripts
0, j and n refer to the number of the particular layer in question. The coefficients Eð0Þ� ,E

ð1Þ
þ , . . . ,E

ðnÞ
þ

are amplitude coefficients. We set the x-component of the electric field amplitude to unity; this also
means that for s-polarised waves the y-component of the electric field amplitude is unity. It should be
noted that the H fields have been multiplied by a factor of c to make them comparable in size to the
E fields, this makes numerical computation easier.

To calculate the field profiles, the values of the amplitude coefficients must be determined. This
may be done using an iterative technique with the coefficients calculated in terms of one specific
coefficient whose value is arbitrary and may be chosen. We take this coefficient to be E

ð1Þ
þ which we

set equal to 1. The iterations begin at the nth boundary, where z¼ zn�1. The boundary conditions
require that the tangential components of E and H be continuous across the interfaces. Using these
conditions and performing some algebraic manipulation yields both E

ðnÞ
þ and Eðn�1Þ� in terms of E

ðn�1Þ
þ ,

E
ðnÞ
þ ¼ tn�1,n exp½ikn�1,zdn�1�E

ðn�1Þ
þ , ð4Þ

Eðn�1Þ� ¼ rn�1,n exp½ikn�1,zdn�1�E
ðn�1Þ
þ , ð5Þ

where t and r represent transmission and reflection amplitude coefficients, respectively, and are
given by

tn�1,n ¼
2"n�1kn,z

"n�1kn,z þ "nkn�1,z
, ð6Þ

rn�1,n ¼
"n�1kn,z � "nkn�1,z
"n�1kn,z þ "nkn�1,z

: ð7Þ

By using the boundary conditions, stating that Ex and Hy are continuous across the interfaces, the
coefficients associated with each of the layers down to and including layer 1 may be computed. At
the interface z¼ zn�2, the coefficients Eðn�1Þþ and Eðn�2Þ� are found, in terms of Eðn�2Þþ , to be

Eðn�1Þþ ¼
tn�2,n�1 exp½ikn�2,zdn�2�E

ðn�2Þ
þ

1þ rn�2,n�1rn�1,n exp½2ikn�1,zdn�1�
ð8Þ

and

Eðn�2Þ� ¼ rn�2,n exp½ikn�2,zdn�2�E
ðn�2Þ
þ , ð9Þ

where tn�2,n�1, rn�2,n�1 and rn�1,n are defined by Equations (6) and (7). The term rn�2,n is a more
complicated reflection term taking account of fields reflected from interface z¼ zn�1 which make
their way back through interface z¼ zn�2. This is given by

rn�2,n ¼
rn�2,n�1 þ rn�1,n exp½2ikn�1,zdn�1�

1þ rn�2,n�1rn�1,n exp½2ikn�1,zdn�1�
: ð10Þ

This same procedure is carried out at the interface z¼ zn�3 and so on until interface z¼ z1, where the
following relations apply,

Eð1Þ� ¼ r1,n exp½ik1,zd1�E
ð1Þ
þ ð11Þ
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and

Eð2Þþ ¼
E
ð1Þ
þ t1,2

1þ r1,2r2,n exp½2ik1,zd1�
, ð12Þ

where t12 is defined by Equation (6). The coefficients r2n and r1n are defined as follows,

r2,n ¼
r2,3 þ r3,n exp½2ik3,zd3�

1þ r2,3r3,n exp½2ik3,zd3�
, ð13Þ

r1,n ¼
r1,2 þ r2,n exp½2ik2,zd2�

1þ r1,2r2,n exp½2ik2,zd2�
: ð14Þ

If all of the layers have a known relative dielectric permittivity then it is possible to calculate all of
the reflection and transmission coefficients [Equations (6) and (7)] from r01 and t01 up to rn�1,n and
tn�1,n. These reflection coefficients may then be used to calculate all of the more complex reflection
terms [e.g. in Equations (10)] from rn�1,n to r0n.

The next step is to deal with the first interface of the system, z¼ z0. This is where the method
used here deviates from that of Kovacs [5], as there is no incident field at this boundary. This leads to
a different result for the field amplitude coefficient Eð0Þ� when the boundary conditions are applied.
Some algebraic manipulation gives Eð0Þ� terms of Eð1Þþ . Equation (15) holds for field components
Ex and Ez, with Equation (16) applicable to component Hy.

Eð0Þ� ¼ ½r1,n expð2ik1,zd1Þ þ 1�Eð1Þþ , for Ex,Ez, ð15Þ

Eð0Þ� ¼
"1k0,z
"0k1,z

½r1,n expð2ik1,zd1Þ � 1�E
ð1Þ
þ , for Hy: ð16Þ

It is now possible to compute all of the field amplitude coefficients in terms of E
ð1Þ
þ . For simplicity,

Eð1Þþ is set to unity and an iterative process is used to calculate the coefficients in turn. Once these
have been established they may be substituted into Equations (3) to give full field solutions for
TM-polarised waves.

TE-polarisation

Waves which are TE-polarised are characterised by the field components Ey, Hx and Hz. As for the
TM case, the common harmonic factor of exp[i(kxx�!t)] has been omitted and the fields for
the media are given by:

Eð0Þ ¼ Eð0Þ� exp½�ik0zðz� z0Þ�ð0, 1, 0Þ, z � 0,

Eð jÞ ¼ E
ð jÞ
þ exp½ikjzðz� zj�1Þ�ð0, 1, 0Þ,

þ Eð jÞ� exp½�ikjzðz� zjÞ�ð0, 1, 0Þ, zj�1 � z � zj,

EðnÞ ¼ E
ðnÞ
þ exp½iknzðz� zn�1Þ�ð0, 1, 0Þ, zn�1 � z,

Hð0Þ ¼
c

!
Eð0Þ� exp½�ik0zðz� z0Þ�ðk0z, 0, kxÞ, z � 0,

Hð jÞ ¼
c

!
E
ð jÞ
þ exp½ikjzðz� zj�1Þ�ð�kjz, 0, kxÞ,

þ
c

!
Eð jÞ� exp½�ikjzðz� zjÞ�ðkjz, 0, kxÞ zj�1 � z � zj,

HðnÞ ¼
c

!
E
ðnÞ
þ exp½iknzðz� zn�1Þ�ð�knz, 0, kxÞ, zn�1 � z, ð17Þ
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where, as for the TM case, kjz ¼ ½"
ð jÞð!=cÞ2 � k2x�

1=2, and the H fields have been multiplied by
a factor of c.

By applying the boundary conditions – that Ey and Hx are continuous across the interfaces – the
relationships between the field amplitude coefficients, for interfaces 2 . . . (n� 1), are found to be
identical to those for TM-polarisation, but with the reflection and transmission coefficients
written as

tn�1,n ¼
2kn�1

kn�1 þ kn
, ð18Þ

rn�1,n ¼
kn�1 � kn
kn�1 þ kn

: ð19Þ

The field amplitudes for the first layer are given in terms of E
ð1Þ
þ by

Eð0Þ� ¼ Eð1Þþ r1,n exp 2ik1,zd1
� �

þ 1
� �

, for Ey,Hz, ð20Þ

Eð0Þ� ¼ E
ð1Þ
þ

k1
k0

r1,n exp 2ik1,zd1
� �

� 1
� �

, for Hx: ð21Þ

Substituting the coefficients into Equations (17) gives complete field solutions for TE-polarised
waves.

The field solutions for both TM- and TE-polarised waves are in complex form. By separating
these into real and imaginary parts the fields at an instant in time may be obtained, with the
imaginary component �/2 ahead in phase of the real component. An average value of the fields over
time, known as time-averaged fields, jFj, may be calculated by

jFj ¼
1

2

� �1=2

<ðFÞ2 þ =ðFÞ2
� �

, ð22Þ

where F represents the desired field component, and R and F indicate real and imaginary
components, respectively.

Finally, for completeness, we indicate how this formalism may be extended to include layers that
are optically uniaxial.

Modelling uniaxial materials

Uniaxial materials have the same permittivity in the x- and y-directions ("k), but a different
permittivity in the z-direction ("?). The inclusion of uniaxial materials into the theory can be
accomplished by considering the transmission and reflection coefficients, which were defined for
isotropic media in Equations (6) and (7), respectively, for TM-polarisation and in Equations (18) and
(19), respectively, for TE-polarisation. For a uniaxial medium, TE-polarised light will experience no
change in permittivity, so no adaptations are necessary and Equations (18) and (19) still hold.
However, TM-polarised light will be affected by the two different permittivities. The modified
transmission and reflection coefficients are

tn�1,n ¼
2"k,nkn�1,z

"k,n�1kn,z þ "k,nkn�1,z
, ð23Þ

rn�1,n ¼
"k,n�1kz,n � "k,nkz,n�1
"k,n�1kz,n þ "k,nkz,n�1

, ð24Þ
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where

kz, j ¼ "k, j
!

c

� 	2
�

k2x
"?, j

� �
 �� 1=2

,

and n, n� 1, and j refer to layers of the structure.
Substituting these transmission and reflection coefficients [Equations (23) and (24)] into the

equations defined for isotropic materials yields full field solutions for uniaxial media.
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