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ABSTRACT 

 

A comparison is presented of a number of simulation techniques which are used to compute 

the scattering of electromagnetic radiation by metallic nanostructures.  The simulation 

techniques considered here are Mie theory, the T-Matrix null-field method, the discrete-

dipole approximation, the finite-element method and the finite-difference time-domain 

method.  The suitability of each technique is compared in terms of the accuracy, computation 

time and the range of geometries to which it can be applied.  Using each technique, we 

perform example calculations by simulating the optical response of a 80 nm diameter Au 

sphere in vacuum.  Our main conclusions are summarised in tabulated form, so that the 

findings presented in this article may serve as a useful reference guide to those looking for 

suitable numerical tools to model the optical response of metallic nanostructures.   
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I.  INTRODUCTION 
 

Controlling and manipulating light at the nanoscale is a rapidly expanding field of research, 

enabled by advances in both fabrication techniques and improved capabilities in numerical 

simulation.  Good simulations are valuable in developing a better understanding, in guiding 

experiments, and in exploring realms not easily accessed by experiment.  For those entering 

this area and wishing to carry out their own simulations, or better appreciate the simulations 

of others, there appears to be a wide and rather confusing array of techniques on offer.  It is 

the purpose of the present contribution to give an introduction to the numerical simulation 

techniques, particularly with reference to the scattering of light by a simple metallic 

nanostructure, a gold nanosphere in vacuum.   

 

A comprehensive review is beyond the scope of the present contribution.  Instead, we focus 

our attention on five common techniques, these being Mie Theory, the Transition Matrix 

‘null-field’ method (T-Matrix), the discrete-dipole approximation (DDA), the finite-element 

method (FEM) and the finite-difference time-domain (FDTD) method.  Our simulations 

were conducted using a Dell Vostro 200 computer, with a dual-core processor (each having a 

clock speed of 2.19 GHz) and 2 Gb of RAM.   

  

II.  SIMULATION TECHNIQUES 

 

Here we give a very brief outline of the different techniques.  References are provided which 

contain a more detailed description of each approach, and a good comparison is set out by 

Kahnert [1].  

 

a) Mie Theory 

Mie Theory (Mie) is a solution of the Maxwell equations applicable to the scattering of an 

incident plane wave by a spherical, isotropic and non-magnetic particle in a non-absorbing 

isotropic medium [2,3].  Assuming that in the region of interest there are no sources (charges 

or currents) then the Maxwell equations can be written as, 
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        (1) 

 
        (2) 

 
         (3) 

 
         (4) 

         

From the Maxwell equations one can in turn show that a time-varying electromagnetic-field 

(E, H) in an isotropic medium must satisfy the Helmholtz wave equations (equations 5 and 

6).   

 

                 (5) 

                (6) 

 

where 

        (7) 

 

The essence of Mie theory is to consider the scattering of light by a spherical object.  Taking 

advantage of the symmetry of the sphere, the scattered fields are expressed in terms of vector 

spherical harmonics.  In this approach the field vectors E and H are replaced by the vectors 

Mn and Nn.  The subscript n indicates that different vector spherical harmonics are used to 

describe dipolar (n = 1), quadrupolar (n = 2) etc. contributions to the scattered field.  The 

scattered fields are related to these vector spherical harmonics through, 

 

 

         

 

 

In equations 8 and 9, , E0 being the incident field.  In the subscripts of M 

and N, ‘o’ and ‘e’ represent the odd and even branches of the azimuthal solution to the vector 

form of the Helmholtz wave-equation, 1 denotes the m = 1 terms of the Legendre and Bessel 

(9) 

(8) 
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series. The an, and bn terms are referred to as the Mie coefficients, which determine the 

relative amplitudes of the vector spherical harmonics when excited with a particular 

wavelength of light, these are given by: 

 

 

 
 

 
 

where  n1 / n2 is the relative refractive index (n1 is the complex refractive index of the 

particle, n2 is the refractive index of the surrounding medium),  = µ1 / µ2  (µ1 is the complex 

relative magnetic permeability of the particle, µ2 is the complex relative magnetic 

permeability of the surrounding medium),  is the size parameter (a is the radius 

of the sphere and λ is the wavelength in vacuum), and are the spherical Bessel functions 

and spherical Hankel functions of order n respectively.  The primed terms in equations 10 and 

11 indicate differentiation of the functions with respect to their argument.   It is thus in the an, 

and bn terms that the size and relative permittivity and permeability of the sphere are 

included. 

 

When evaluating the electromagnetic scattering response of metallic nanoparticles, the 

magnitudes of the scattering cross-section, σsca, and scattering efficiency, Qsca, are often used.  

The scattering cross-section is defined as the integral of the modulus of the scattered electric-

field squared across a spherical surface in the far-field, which is subsequently normalised by 

the incident irradiance  (equation 12).  The scattering efficiency is equal to the scattering 

cross-section normalised by the geometrical cross-sectional area of the scatterer (equation 

13). 

 

 

      
 
 

(12) 

(10) 

(11) 
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One can easily calculate the an and bn coefficients using computer codes, from which the 

scattered field can be derived using equations 8 and 9.  Mie Theory can also be extended to 

simulate other spherically symmetric geometries such as dielectric particles with metallic 

coatings [2,3].   

 

b)   The ‘T-Matrix’ null-field method  

As we have previously seen in discussing Mie Theory, the linearity of the Maxwell equations 

ensures a direct relationship between the coefficients of the vector spherical harmonics of the 

incident and scattered electric- and magnetic-fields.  In the matrix representation (equation 

14), the operator which relates the coefficients is termed the Transition Matrix (the T-

Matrix). 

     

 

 

The ‘T’ terms in equation 14 correspond to elements of the T-Matrix, (an
scattered, bn

scattered) and 

(an
incident, bn

incident) are the coefficients of the scattered- and incident-field respectively.  The 

elements of the T-Matrix depend only on the relative refractive index of the particle m = n1 / 

n2 (n1 is the complex refractive index of the particle, n2 is the refractive index of the 

surrounding medium), the size parameter  (a is the radius of the sphere and λ is 

the wavelength in vacuum), and the orientation of the particle with respect to the coordinate 

system] [4-8].   

 

For a spherical scatterer, the an and bn terms in equation 14 are equal to the weighting 

coefficients of the vector spherical harmonics in equations 10 and 11.  A number of 

techniques may be used to compute the T-Matrix, very often the ‘null-field’ method is used.  

Here the incident plane wave is expanded into a series of spherical harmonics, and the 

coefficients of the incident- and internal-fields are matched at the particle boundary.  To 

simplify the mathematical analysis, the internal polarization currents are described by an 

equivalent distribution of electric and magnetic currents across the surface of the particle [9].  

(14) 

(13) 
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The surface of the scatterer is discretised into a finite number of point sources, at which both 

the internal field and surface current density are determined.  Each point source radiates a 

spherical electromagnetic wave which arises from the tangential components of the electric 

and magnetic currents at the surface of the particle.  The scattered-field is the wave-front 

which is obtained by summing the partial waves from all sources over the particle surface.   

 

There are several T-Matrix codes which are available as open-source applications for use on 

Unix and Windows operating systems (http://www.t-matrix.de). A rigorous derivation of the 

T-Matrix ‘null field’ method can be found in the literature [4].  The key advantage of the T-

Matrix technique is that the T-Matrix is the property of a particle.  Once it has been 

determined the scattered fields may be computed for any particle orientation without having 

to solve the problem from scratch.  The T-Matrix method can also be used to model the 

optical response of arrays of symmetric particles.  

 

c) The discrete-dipole approximation (DDA) 

In the discrete-dipole approximation (DDA) each particle is modeled as an assembly of finite 

cubic elements. Each of these elements is considered sufficiently small that only dipole 

interactions with the incident electric-field and the induced-fields in neighboring elements 

need to be considered. This reduces the solution of the Maxwell equations to an algebraic 

problem of many coupled dipoles [10].   Each of the dipoles within a continuous assembly 

acquires a dipole moment in response to both the external electric-field, and the electric-fields 

from neighbouring dipoles.  The radiated electric-field of an individual dipole may be 

approximated as [11,12]: 

 

 

 

Here  is a unit vector associated with a vector r which is taken from the dipole to the 

location at which the electric-field is sampled, d is the distance to the sampling point, p is the 

vector associated with the induced dipole moment, ω is the angular frequency of the scattered 

radiation and ε0 is the permittivity of free space.  In solving for the scattering characteristics 

of the continuous assembly, each dipole in the cubic array has an induced dipole moment Pi = 

αiElocal.  Here αi is the polarizability of the material associated with the dipole element – it is 

(15) 
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through the polarizability of the element that the materials parameters enter the problem. 

Elocal is the electric-field at ri due to the incident wave (Einc,i), plus a contribution Ej from all 

other dipoles (j), and: 

 

 
 

The interaction matrix (Aij), shown in equation 17 characterises the sum of the retarded fields 

from all other dipoles, hence the summation in equations 17 and 18 is performed over all j, 

with the exception of i = j.   

 

 
 

 
where i = 1,2....N , j = 1,2....N and i ≠ j. 

 

In equation 18, rij and pj represent the positions and induced dipole moments of each element 

within the array.  The  terms represent the projection along the unit vector of the dipole 

moment pj.  As previously discussed, once the scattered electric-field associated with the 

collection of dipoles has been determined, the scattering efficiency (Qsca) may be calculated 

by performing the integral in equation 12.   Very efficient methods for solving the matrix 

equations have been developed which utilize fast-Fourier-transform and complex-conjugate-

gradient methods, and as a result it is possible to employ thousands of dipoles in routine 

calculations [13].  DDSCAT [14] is an open-source Fortran-based code which uses the DDA 

to compute the optical response of both metallic and dielectric nanostructures.   

 

d) Finite-element method (FEM) 

The finite-element method (FEM) is based on solving the scattering problem in the 

frequency domain by modelling by discretising Helmholtz’ equation (equations 5 and 6) in 

(17) 

(18) 

(16) 
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space and then solving numerically to find fields that satisfy the boundary conditions: these 

are (i) that the tangential field components are continuous across the surface of the particle, 

and (ii) (the radiation condition) that fields decay into the far-field no slower than 1/r for 

large r).  Material parameters enter through the wavevector (equation 7).  The overall 

problem space is discretised into many smaller regions, the grid mesh, which very often are 

tetrahedral.  The electric- and magnetic-fields inside each region are described by a local 

function.  Since the tetrahedra have flat faces they cannot exactly represent the surface of a 

sphere, but by using enough of them a sufficiently accurate polyhedral approximation is 

possible [15]. A key point in the FEM approach is that one has to avoid the scattered fields 

being reflected at the boundary of the computational domain (for the case of an isolated 

particle anyway) – such reflections would provide spurious artefacts in the computation. 

 

It is possible to assess the accuracy of the numerical solution by comparing results from a 

sequence of successively refined meshes.  The solutions often have geometric features such 

as localized regions of high field-gradient.  In this case it is more economical to refine the 

mesh selectively, (i.e., only where these high gradients occur).  Such adaptive refinement 

procedures generate a sequence of solutions on successively finer meshes, at each stage 

selecting and refining those elements at which the gradient of E or H is largest between 

adjacent elements. In practice, the process is terminated when the gradient of the fields 

between adjacent tetrahedra falls below a preset limit, or if the total number of elements are 

such that the computation time for the simulation exceeds a specified duration (both of these 

constraints are chosen by the user).  Ansoft’s High Frequency Structure Simulator (HFSS)TM, 

and ComsolTM are examples of commercial FEM modelling software.  The Free Finite-

element Package (http://www.ffep.sourceforge.net) is an example of an open-source 

application.   

 

e) Finite-difference time-domain method (FDTD) 

Finite-difference time-domain (FDTD) computations involve discretisation of time and 

space, i.e. all spatial and temporal derivatives in the Maxwell curl equations (equations 1 and 

2) are replaced by finite difference quotients.  Typically a Cartesian volume element of sides 

Δx, Δy, Δz,  is used for the space discretisation (there are several methods used for 

discretisation, the most common being the Yee scheme [18-19]), and a time step Δt for the 

time discretisation [20].   The essence of the FDTD approach is to inject a plane wave at 
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some initial time and compute new field components from differences calculated using the 

field components that applied during the previous time interval.  In fact the electric field 

vector components in the volume element are solved at a given instant in time, then the 

magnetic field vector components in the same volume element are solved at the next instant 

in time and so on.  This process is continued iteratively until the transient solution for the 

fields has converged to a steady-state solution.  The near-field solution that one obtains for 

the fields inside the computational domain is then Fourier transformed into the frequency 

domain and subsequently propagated into the far-field, using either a surface integration 

technique or a volume integration technique.  As discussed with the FEM approach,  when 

simulating individual particles using the FDTD method one has to avoid the scattered fields 

being reflected at the boundary of the computational domain.. 

 

Since the FDTD method is solved in the time-domain, dispersion information must be 

specified over a much wider range of frequencies than simply the range of interest.  It is 

therefore necessary for the permittivity of metallic structures to be approximated using a 

frequency-dependent permittivity model, as opposed to using experimental values, which 

may not necessarily cover the required range.  FDTD simulations conventionally use a 

Drude-Lorentz model (equation 19) to represent permittivity values, ω is the angular 

frequency of the incident radiation and the parameters ε∞, ωd, γd, Γl, Ωl and ∆  are constants 

which are fitted against experimental relative permittivity values [21-22]. 

 

 

The optical response in the frequency domain is determined by taking a Fourier transform of 

the time-domain signal associated with the scattered electric- and magnetic-field 

distributions.   Commerical FDTD software packages include Lumerical FDTD SolutionsTM 

and Remcom XfdtdTM.  The MIT Electromagnetic Equation Propagation (http://ab-

initio.mit.edu/wiki/index.php/Meep) package is an example of an open-source FDTD 

application. 

 

 

 

(19) 
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III.  SUITABILITY OF EACH TECHNIQUE 

 

Mie theory is the preferred option for simulating the optical response of metallic nanospheres 

since in principle it offers an exact solution for the scattering of electromagnetic radiation by 

spherical geometries which is limited only by the truncation order of the solution [3].  In 

contrast to DDA, FEM modeling or the FDTD method, the accuracy of the Mie Theory 

solution does not depend on resolution-limited parameters such as the inter-dipole spacing or 

element length.	  	  It was previously shown that the scattered-field can be represented as a sum 

of vector spherical harmonics.  If this sum is performed over an infinite number of harmonics 

(equations 8 and 9) the result would constitute an exact solution for the case of the interaction 

between an incident plane wave and a spherical scatterer.  In practice, however, the sum is 

truncated at a finite number of terms, and the accuracy of the solution will therefore depend 

on the truncation order.  The T-Matrix method can also be used to simulate spherical particles 

since for a spherical particle the scattered electric- and magnetic-fields simplify to those 

obtained using Mie Theory.  Both Mie Theory and T-Matrix methods can be used to compute 

the scattered-field more rapidly in comparison to the other approaches (the DDA, FEM and 

FDTD methods), with the computation time being proportional to (r / λ), where r is the 

sphere radius and λ is the incident wavelength [6].  However, for spheres with radii less than 

1µm which are simulated at visible frequencies, the computation time is extremely rapid and 

the dependence on the size of the sphere often goes unnoticed.  To evaluate the scattering 

efficiency (Qsca) for a 80 nm diameter Au sphere at one particular frequency takes 

approximately 1.0 × 10−3 seconds using both Mie Theory and T-Matrix methods.  A 

comparison between the measured and simulated optical response of a metallic nanosphere is 

discussed elsewhere [23,24].   

 

If the particle under consideration is non-spherical, but has planar symmetry, or is axially 

symmetric, it is possible to use the T-Matrix method to compute the scattering characteristics.   

The majority of T-Matrix codes contain embedded routines which are specifically adapted to 

match the boundary conditions relating the internal-, incident- and scattered-fields for various 

geometries such as spheres, cylinders, cones and stratified particles.  As with Mie Theory, the 

computation time also scales according to the ratio between the particle size and the incident 

wavelength.  The truncation of the field expansions can introduce rounding errors, which for 

the T-Matrix method may be significant for sufficiently elongated or flattened objects.  



11	  
	  

Mischenko has conducted an extensive study into the effects of particle size on the 

convergence of the solutions which are derived from the T-Matrix method [4].   

 

The DDA can also be utilised to evaluate the scattering properties of isotropic non-spherical 

particles which are axially-symmetric or posses other planes of symmetry.  The fundamental 

concept of this approach is that a solid particle is replaced by an array of N point dipoles on a 

cubic lattice which has a period that is significantly smaller than the wavelength of the 

incident radiation. The computation time of the simulation is therefore heavily dependent on 

the inter-dipole spacing and the total number of dipoles which are used to replicate the 

original scattering object.    For example, the time to evaluate the scattering efficiency of a 80 

nm diameter Au sphere using an inter-dipole spacing of 3 nm is approximately 48 seconds for 

one particular frequency of light.  This is significantly longer than the Mie Theory solution, 

which takes only 10−3 seconds per frequency.  If the inter-dipole spacing is increased to 4 nm 

the computation time using the DDA is halved to 24 seconds.  The limiting factors which 

affect the computation time of the DDA are the CPU speed and RAM of the workstation 

used.  The RAM requirement, as specified by the program, is given by equation 20 where Nx, 

Ny, and Nz are the number of dipoles which are distributed across the scattering particle in the 

x, y and z directions respectively [14].   

 

Minimum RAM = (1690 + 0.764( (Nx × Ny × Nz))) × 103 bytes         (20) 

 

From equation 20 one can show that in order to simulate a cuboid with side of length 80 nm 

using an inter-dipole spacing of 1 nm, a minimum of 0.5 Gb of RAM is required.  Whilst the 

DDA solution converges to the Mie theory result as the inter-dipole spacing approaches zero, 

there is a compromise between the accuracy of the simulation and the computation time. 

There is thus a significant disadvantage in terms of computation time associated with using 

the DDA as opposed to the more rapid T-Matrix method for simulations where the 

restrictions of the T-Matrix approach are not an issue.  Where such restrictions are an issue 

the DDA is often the preferred approach for evaluating the scattered-field distribution of 

arbitrarily shaped objects, as one can specify a series of dipole locations in tabulated form.   

 

For some particle or sample geometries, Mie Theory, the T-Matrix method and the DDA are 

not appropriate techniques for simulating the electromagnetic response.  For example, these 
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techniques cannot be used to simulate the optical response of a two-dimensional periodic 

array of metallic particles which are not rotationally or axially symmetric.  This is because 

Mie Theory computes the scattered electric- and magnetic-field distributions associated with 

an individual spherical particle and does not consider the effects of electromagnetic coupling 

which may occur between particles in a periodic array -.  Similarly, the T-Matrix method can 

become numerically unstable for geometries which are not rotationally or axially symmetric, 

for reasons discussed previously.   

Whilst the DDA may be used to evaluate the optical response of two or more interacting 

particles of arbitrary shape, it is impractical for simulating periodic arrays of particles.  To 

simulate even a small two-dimensional array of particles using the DDA requires a hardware 

specification exceeding that which was available here, since the total number of dipoles is 

directly proportional to the number of particles in the array.  By referring to equation 20, one 

sees that a minimum of 4.5 Gb of RAM is required to simulate the optical response of a 3 × 3 

array (nine) metallic cuboids, each with side of length 80 nm using an inter-dipole spacing of 

1 nm.     

When such limitations restrict the use of Mie Theory, the T-Matrix method or DDA, it is 

preferable to use either FEM modelling or the FDTD method.  In these techniques, the 

electromagnetic field distribution is computed within an individual unit cell of the array, and 

periodic boundary conditions (PBCs) are applied along the edges and faces of the unit cell.  

The PBCs equate both the magnitude and direction of the electric- and magnetic-fields 

associated with tetrahedral elements which lie on parallel boundaries across the unit cell.  The 

implementation of PBCs is advantageous, since the scattered electric- and magnetic-field 

distributions need only be computed for a single unit cell rather than for every lattice site 

within the array.  This significantly reduces both the computation time and the required 

hardware specification for both FEM modelling and the FDTD method when compared to the 

DDA.   

When using FEM modelling or the FDTD method to compute the optical response of a single 

particle, PBCs are not required.  Instead, perfectly matched layers (PMLs) are used to absorb 

the radiation which is scattered by the structure.  The refractive index of the PML is 

optimised such that radiation which impinges on the interface of the PML experiences a 

transmission coefficient which is equal to unity.  Beyond the interface, the imaginary 

component of the complex refractive index is gradually increased as a function of depth into 
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the PML, so as to absorb the scattered radiation as it propagates into the medium.  The range 

of frequencies and incident angles for which the PML absorbs radiation is specified by the 

user [20].  

 

When computing the optical cross-sections of individual nanoparticles, Mie Theory, the T-

Matrix method and the DDA may be extended in order to consider the effects of a substrate 

interaction [25-27].  However, it is less straightforward to perform these simulations using 

FEM modeling or the FDTD method, as these techniques cannot distinguish between the 

scattered electric- and magnetic-fields which are associated with the individual particle, and 

those which are associated with the substrate.  This inability to distinguish between the 

scattered-fields leads to the magnitude of the simulated optical cross-sections being scaled 

according to the size of the unit cell.   

 

Whilst the FEM or FDTD techniques may be used to determine the scattered electric- and 

magnetic-field distributions of both individual particles and periodic arrays of particles, they 

are the most time consuming of all the approaches considered.  The time to compute the 

scattering efficiency using FEM modelling for an 80 nm diameter Au sphere at one particular 

frequency of light is 144 seconds (using a tetrahedral mesh with a minimum element length 

of 3.11 nm).  To compute 100 frequency points across the visible range therefore requires a 

total simulation time of approximately 4 hours.  When using the FDTD method, the time to 

compute the scattering efficiency across the visible frequency region is approximately 3 

hours (using a mesh with a minimum element length of 3 nm).   

 

As was previously discussed in relation to the DDA, when using the FEM and FDTD 

techniques a compromise has also to be made between the computation time and the level of 

discretisation.  In considering the effects of workstation specification, the required 

computation time for FEM modelling and the FDTD method is limited in order of importance 

of CPU speed, RAM and hard drive space.  The computation time which is required to solve 

the matrices for each tetrahedron (FEM) or cubic element (FDTD) is heavily dependent on 

CPU speed, and a direct correlation exists between the CPU speed and computation time.  

The software utilises RAM as a temporary storage area for the rapid reading / writing of 

matrix elements in regions where the vector-field quantities are being solved.  Once the field 

quantities for a particular tetrahedron (FEM) or cubic element (FDTD) have been determined, 

they are written permanently to disk.  Problems can occur if the RAM of the system is 
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limited, as the hard drive is then used as an alternative storage facility.  This considerably 

lengthens the computation time as the read/write speed of the hard drive is significantly 

slower than that of the RAM module.   

 

IV. EXAMPLE CALCULATIONS 

In this section, each technique is used to simulate the scattering efficiency (Qsca) of a 80 nm 

diameter gold (Au) sphere in vacuum, which is illuminated with an incident plane wave.  In 

these simulations, we also ignore any non-local contributions to the response [23,28].  For 

Mie Theory, T-Matrix, DDA and FEM techniques, the Au permittivity values are obtained 

from data published by Johnson and Christy [22].   The permittivity values used for FDTD 

simulation are derived from a Drude-Lorentz model using parameters from reference sources 

[21,22]. 

Figure 1 shows the real and imaginary components of the permittivity values of gold as a 

function of wavelength obtained from data published by Johnson and Christy [22] (used for 

the Mie Theory, T-Matrix, DDA and FEM simulations) and a Drude-Lorentz model with 

parameters ε∞ = 5.9673, ωd = 1.32 × 1016 Hz, γd_=_1.00 × 1014 Hz, Γl  = 6.60 × 1014 Hz, 

Ωl_=_4.10_×_1015_Hz and ∆  = 1.09 [21,22] (used for the FDTD simulation).  In Figure 2 

the simulated Qsca values are plotted as a function of wavelength for a 80 nm diameter Au 

sphere in vacuum using Mie Theory (www.iap.unibe.ch/publications/download/201/en/), the 

T-Matrix method (http://www.t-matrix.de), the DDA (DDSCAT [14] version 6.1), FEM 

modelling (Ansoft HFSSTM version 11.0) and FDTD (Lumerical FDTD SolutionsTM version 

5.0).  The DDA and FDTD methods use a 3.00 nm inter-dipole spacing and element length 

respectively, whilst the minimum element length for the FEM simulation is 3.11 nm. For 

each of the simulation techniques considered, the scattering efficiency curves exhibit maxima 

at a wavelength of 525 nm. These maxima are associated with the excitation of the localized 

surface-plasmon resonance of the structure [3,9,28].   

 

The Mie Theory and T-Matrix methods both show good agreement across the frequency 

range studied.  These methods in principle offer an exact solution for the scattering of 

electromagnetic radiation from spherical geometries and are limited only by the truncation 

order used to obtain the solution. For the structure considered here, the maximum 

recommended truncation order (nmax) is 8 for both Mie Theory and T-Matrix methods [2].  
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The relative error of the truncated solution is less than 0.001% when compared to the exact 

solution.  It is impractical to continue the summation beyond n = 8 as the magnitudes of the 

field quantities become extremely small, such that they are comparable to the numerical 

rounding errors which are introduced by the mathematical modelling software.  Unlike the 

other techniques, the errors associated with Mie Theory and the T-Matrix method arise from 

numerical rounding, and not the level of discretisation used for the calculation.   

 

The scattering efficiency curves in Figure 2 for the DDA, FEM and FDTD methods are for 

comparable levels of discretisation.  Figures 3 and 4 show simulated Qsca obtained using an 

exact Mie Theory solution compared with those obtained using DDA and FEM approaches 

respectively.  The element length and inter-dipole spacing have been varied so as to 

determine the relative error in the scattering efficiency when compared to the Mie Theory 

solution, shown in the inset of each figure.  In the limit that either the mesh element length or 

inter-dipole spacing approach zero, the scattering efficiencies from the DDA, FEM and 

FDTD are found to approach the Mie theory solution.   As has already been discussed, the 

numerical accuracy of the techniques depends on the resolution of these parameters.  

However, a compromise has to be made which takes into account the computation time of the 

simulation and the specification of the available hardware.  Simulations were conducted 

using a Dell Vostro 200 computer, with a dual-core processor (each having a clock speed of 

2.19 GHz) and 2 Gb of RAM.  The curves shown for each of the techniques in Figure 2 

represent the minimum element-length or inter-dipole separation which may be used in order 

to achieve a computation time which does not exceed 4.5 hours.   

 

From figures 3 and 4 it can be seen that the sources of maximum error when using the DDA 

and FEM methods occur close to the wavelength associated with excitation of the localized 

surface-plasmon resonance (LSPR).  The scattering behavior at the LSPR wavelength is 

dominated by the resonant field enhancement that occurs at the surface of the metallic 

particle.  Any resolution-limited factors therefore lead to errors in the field matching 

conditions at the surface, and to discrepancies when the simulated scattering response is 

compared against that of the Mie Theory solution.  For the DDA there is also a discrepancy at 

longer wavelengths, away from the resonant frequency.  This residual error in the long-

wavelength limit has also been observed elsewhere [14], and can be explained through local-

field effects which lead to the dipoles near the surface of the sphere having a different 

effective polarizability from those away from the surface [29].  The error is a lattice effect 
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which arises as a consequence of using a discrete collection of volume elements with 

identical polarisabilities to represent a continuous medium.  The magnitude of this error 

decreases significantly as a function of inter-dipole separation, see the inset of figure 3.   

 

The discrepancy between the FDTD method and the other techniques occurs through the use 

of permittivity values based on a Drude-Lorentz model.  In order to investigate just the role 

of FDTD mesh element size, a different comparison is considered in Figure 5 in which 

permittivity values based on the Drude-Lorentz model parameters are used for both FDTD 

and Mie Theory calculations.   In Figure 5, simulated scattering efficiency values Qsca for an 

80 nm diameter Au sphere in vacuum obtained using the FDTD technique are directly 

compared against Mie Theory using permittivity values calculated using a Drude-Lorentz 

model for Au (ε∞ = 5.9673, ωd_=_1.32_×_1016 Hz, γd_=_1.00 × 1014 Hz, Γl = 6.60 × 1014 Hz, 

Ωl = 4.10 × 1015 Hz and ∆ _=_1.09) [21,22].  As the element-length of the mesh is reduced, 

the simulated values of Qsca from the FDTD method are also shown to approach the 

equivalent Mie Theory solution.  For simulations which use comparable discretisation (~3 

nm), it can be seen that the relative error between Mie Theory and the FDTD method at the 

frequency of the localized surface-plasmon resonance (4.1%) is significantly greater than that 

which is observed when using FEM modelling (0.4%) and the DDA (1.6%).  This is in 

agreement with previous work [30] and arises from the use of a regular Cartesian mesh for 

the FDTD simulation, which is not an accurate representation for the surface curvature of the 

sphere.  A sufficient mesh size refinement is required in order to ensure convergence of the 

solution, particularly in regions close to the surface of the sphere where there is strong 

confinement of the electric- and magnetic-field.  Other studies have also shown that when a 

cubic mesh is used to simulate spherical geometries, a minimum element length of 0.25 nm is 

required in order to achieve a relative error of less than 1.0% [30].  Conversely, the use of a 

non-regular tetrahedral adaptive mesh for the FEM simulation allows for a more accurate 

approximation of curved surfaces, and a smaller relative error is observed.   

 

V. CONCLUSION 

 

In conclusion, we have compared five techniques used to simulate the scattering of 

electromagnetic radiation by metallic nanoparticle structures.  Using the example of an 80 nm 

diameter Au sphere in vacuum, the simulated scattering efficiency obtained using a Mie 
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theory solution has been compared with those obtained using other numerical techniques (the 

T-Matrix method, DDA, FEM and FDTD methods).  We have shown that when parameters 

which govern the resolution of these alternative methods (such as inter-dipole spacing for the 

DDA, or element length for FEM and FDTD methods) approach zero, the results of the 

simulations approach those of the Mie Theory solution.  It has also been shown that the use of 

a non-regular tetrahedral adaptive mesh for the FEM simulation allows for a more accurate 

approximation of curved surfaces, leading to a smaller relative error between Mie Theory and 

FEM than the equivalent comparison for the cubic-mesh-based FDTD method.   

There are many factors which should be considered when choosing an appropriate simulation 

technique, and the significant advantages and disadvantages of each approach are 

summarised in Table 1. It is hoped that the findings presented here may serve as a useful 

reference guide for future calculations.   
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Method  Computation Time for 

Au sphere with radius << 
λ 

Advantages  Disadvantages  

Mie Theory Rapid –   
a few milliseconds per 
individual frequency 

• Rapid computation time. 
• Can also be used to 

compute the optical 
response of coated spheres. 

• Applicable only to 
spherically symmetric 
particles. 

• Not possible to include a 
substrate interaction, 
therefore difficult to 
replicate many experiments. 

T-Matrix Rapid –  
a few milliseconds - per 
individual frequency.   

• Rapid computation time. 
• Wide range of geometries 

supported. 
• Also possible to include a 

substrate interaction 

• Computations are 
numerically unstable for 
elongated or flattened 
objects. (the matrices are 
truncated during 
computation– rounding 
errors become significant 
and accumulate rapidly) 

DDA Moderate –  
depends on number of 
dipoles, and separation.  
Typically 50s per 
individual frequency. 

• Can be used to evaluate 
any arbitrary shaped 
particle by specifying a 
tabulated list of dipole 
locations 

 

• Convergence criterion: 
 n  kd < 1 
n = complex refractive 
index 
k = wavevector 
d = inter-dipole separation 
(Not possible to solve for 
high aspect ratio / elongated 
particles or those having a 
large refractive index) 

FEM Lengthy –  
typically 150s per 
individual frequency when 
using an element length of 
3nm.   A compromise is 
made between the 
computation time and 
element length.   

• Can be used to evaluate 
the scattered field-
distribution of any 
arbitrary shaped particle. 

• The use of a non-regular 
tetrahedral adaptive mesh 
for the FEM simulation 
allows for a more accurate 
approximation of curved 
surfaces.  
 

 

• Computation time is lengthy. 
 

FDTD  Lengthy –  
a broadband response is 
computed across a wide 
frequency range, typically 
taking ≈ 3 hours to cover 
visible frequencies.  
A compromise is made 
between the computation 
time and element length.   

• Can be used to evaluate 
scattering parameters from 
any arbitrary shaped 
particle. 
 

 

• Computation time is lengthy. 
• Permittivity values have to 

be specified over much 
wider frequency range than 
just the range of interest.  
The Drude-Lorentz model 
may not be an accurate 
representation of 
experimental data. 

 
 

Table 1: Comparison of computation time, advantages and disadvantages computational 

techniques (Mie Theory, the T-Matrix method, the DDA, FEM modelling and the FDTD 

method) used to simulate the scattering of electromagnetic radiation from metallic 
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nanostructures.  Computations were performed on a Dell Vostro 200 personal computer, 

having a dual-core processor (each with a clock speed of 2.19 GHz) and 2 Gb of RAM. 
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List of Figures: 

 

Figure 1:  The real and imaginary components of the permittivity values of Au for 

wavelengths in the range 450 – 750 nm.  Curves (a,b) show the real and imaginary 

components of the experimental permittivity values published by Johnson and Christy [22] 

(used for the Mie Theory, T-Matrix, DDA and FEM simulations) and (c,d) show those 

obtained using a Drude-Lorentz model with fitted parameters ε∞ = 5.9673, ωd = 1.32 × 1016 

Hz, γd_=_1.00 × 1014 Hz, Γl = 6.60 × 1014 Hz, Ωl = 4.10 × 1015 Hz and ∆  = 1.09 [21,22], see 

equation 19 in the main text (used for the FDTD simulation).   

 

Figure 2: Scattering efficiency (Qsca) plotted as a function of wavelength for an 80 nm 

diameter Au sphere in vacuum, based upon simulation data obtained using Mie Theory 

(www.iap.unibe.ch/publications/download/201/en/) – solid line, the T-Matrix method 

(http://www.t-matrix.de) – open circle, the DDA (DDSCAT [14] version 6.1) –open square, 

FEM modelling (Ansoft HFSSTM version 11.0) – cross, and FDTD (Lumerical FDTD 

SolutionsTM version 5.0) – open triangle.  For Mie Theory, T-Matrix, DDA and FEM 

techniques, the permittivity values for Au are obtained from data published by Johnson and 

Christy [22].   The permittivity values used for FDTD simulation are derived from a Drude-

Lorentz model with parameters ε∞ = 5.9673, ωd = 1.32 × 1016 Hz, γd_=_1.00 × 1014 Hz, 

Γl_=_6.60_×_1014_Hz, Ωl = 4.10 × 1015 Hz and ∆  = 1.09 [21,22], see equation 19 in the main 

text. 

 

Figure 3: DDA vs Mie:  Simulated Qsca values obtained using Mie Theory for a 80 nm Au 

sphere in vacuum are compared with those obtained using the DDA (DDSCAT [14] version 

6.1).  The symbols show the effect of varying the inter-dipole spacing across a 2 nm to 5 nm 

range.  The permittivity values used for Au are obtained from data published by Johnson and 

Christy [22].   Inset - The relative error is plotted as a function of wavelength for inter-dipole 

separation from 2 nm to 6 nm.   

 

Figure 4: FEM vs Mie: Simulated Qsca values obtained using Mie Theory for a 80 nm Au 

sphere in vacuum are compared with those obtained using a finite-element method (Ansoft 

HFSSTM version 11.0).  The symbols show the effect of varying the mesh element length.  
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The permittivity values used for Au are obtained from data published by Johnson and Christy 

[22].   Inset - The relative error is plotted as a function of wavelength for element lengths of 

3.1 nm, 4.5 nm and 5.1 nm.     

 

Figure 5: FDTD vs Mie: Simulated Qsca values obtained using Mie Theory for a 80 nm Au 

sphere in vacuum are compared with those obtained using a finite-difference time-domain 

method (Lumerical FDTD SolutionsTM version 5.0).  The symbols show the effect of varying 

the mesh element length.  The permittivity values for both techniques are derived from a 

Drude-Lorentz model with parameters ε∞ = 5.9673, ωd_=_1.32_×_1016_Hz, γd_=_1.00 × 1014 

Hz, Γl  = 6.60 × 1014 Hz, Ωl = 4.10 × 1015 Hz and ∆ _=_1.09 [21,22], see equation 19 in the 

main text.  Inset – relative error is plotted as a function of wavelength for different mesh 

sizes.   


