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Abstract

The frequency dependence of the coefficient of spin wave reflection from a semi-infinite magnonic crystal with a periodically
modulated value of the uniaxial anisotropy and a finite thickness of interfaces has been investigated, assuming a linear distribution
of the anisotropy value in the interfaces. The analysis shows that the performance of magnonic devices employing magnonic crystals
as a filtering element can degrade as the thickness of interfaces increases, e.g. due to the process of diffusion between constituent
layers of the magnonic crystals.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Superlattices are artificial structures with a peri-
odic modulation of one or several material parameters.
Superlattices with periodically modulated magnetic
parameters show magnonic band structure and are called
magnonic crystals (MCs) when the spin wave (SW)
wavelength of interest is comparable to their period of
the MCs [1]. For SWs with wavelength much greater
than the period of the MC, magnetic superlattices behave
as magnetic meta-materials with properties different to
those of the constituent layers [2]. Thus, the study of SWs
in MCs (so-called magnonics [3]) is an intensively devel-
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oping direction in the physics of magnetic phenomena
and meta-materials.

The primary source of interest to magnonics is the
opportunity to use SWs propagating in MCs as data car-
riers within elements of SW logic devices. In particular,
it was suggested that the use of MC instead of continu-
ous SW wave guides could help to decrease dimensions
of such SW logic devices while maintaining their con-
trollability by applied magnetic field [4]. In the context
of electromagnetic meta-materials, MCs could offer a
way of designing magnonic resonances so that regions
of negative magnetic permeability and possibly of neg-
ative refractive index [5,6] could be created near the
resonances, which could be tailored to reach frequencies
of several THz [4].

As materials having spatial modulation of magnetic
parameters, one can use yttrium–iron garnets grown
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using different chemical and physical methods, e.g. using
liquid phase epitaxy with variable temperature regime
[7], alloys of Fe100–x–Nix and Co100–x–Px [8], and many
other magnetic alloys with spatially varied concentration
of the magnetic ions in layers, thus allowing for differ-
ent values of magnetic parameters in layers with different
x.

A great number of works has been dedicated to inves-
tigations of wave multilayered materials with infinitely
thin interfaces [9–15]. However, in many cases, the
assumption of infinitely thin interfaces is a severe
idealization, since diffusion normally occurs between
homogeneous layers of a multilayered structure, which
can manifest itself, e.g. in formation of magnetically
“dead layers” at the interface between magnetic and
non-magnetic layers [16]. The diffusion is proportional
to the concentration gradient at the interface and hence
is fastest in multilayers prepared with sharp interfaces.
On the other hand, multilayers could be prepared with
smeared interfaces from the beginning, thus reducing the
speed of subsequent inter-diffusion, provided of course
that such multilayers retain their useful functionality, e.g.
the magnonic band spectrum in the case of MCs. That
is why models of MCs with finite thickness of inter-
faces have attracted an increasing interest of researchers
recently.

For example, in Refs. [17–19] the influence of the
interface thickness on the spectrum of spin waves (SW)
in MC has been investigated, with a conclusion that the
spectrum of waves depends significantly on the thickness
of the interface. In Ref. [18], a possibility of recover-
ing the magnetic structure of a multilayer material from
its SW spectral characteristics has been demonstrated,
assuming standing waves. However, measurements of
scattering of propagating SWs from such samples might
provide additional information regarding the MCs. So,
in Ref. [20], the reflection coefficient of SWs from a MC
with ideal interfaces was calculated. In Ref. [21], the
authors investigated MCs with an imperfect exchange
interaction between its adjacent layers. The main aim of
the present work is to investigate the effect of the inter-
face thickness on the coefficient of SW reflection from
MCs.

2. Model of the material

Let us consider a semi-infinite MC represented by a
system of two types of alternating homogeneous ferro-
magnetic layers of equal thicknesses. Each of the layer
types is described by a different value of the uniax-
ial anisotropy. The direction of the easy axis of the
anisotropy is assumed to be perpendicular to the plane

Fig. 1. The coordinate dependence of the anisotropy value β is
schematically shown for a semi-infinite MC with interfaces of finite
thickness and with a linear variation of the anisotropy value within the
interfaces. The inset shows the same for a single period of the magnonic
crystal.

of the layers. Also, it is assumed that the homogeneous
“basic” layers of the MC are separated by inhomoge-
neous “transition” layers of finite thickness in which the
value of the uniaxial anisotropy varies as

β(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β1,5 = 〈β〉 − �β

2
z0,4 + nL < z < z1,5 + nL

β3 = 〈β〉 + �β

2
z2 + nL < z < z3 + nL

β2,4 = 〈β〉 ± �β

2

z − z2,4

δ
z1,3 + nL < z < z2,3 + nL

(1)

where L is the period of the MC. Fig. 1 schematically
shows the coordinate dependence of the anisotropy in
the MC.

For the purpose of this calculation, the dynamics
of the magnetization �M (�r, t) can be described by the
Landau–Lifshitz equation [22]:

∂ �M
∂t

= −g[ �M × �Heff], (2)

where �Heff is the effective magnetic field.

�Heff = (H + β
( �M�n)) �n + �hm + ∂

∂�r

(
α

∂ �M
∂�r

)
, (3)

where α and g are the values of the parameter of the
exchange interaction and the gyromagnetic ratio, respec-
tively. Н is the value of the external magnetic field,
which is applied parallel to the easy axis direction, and
�n is the unit vector in the direction of the external mag-
netic field, �hm is demagnetizing field determined from
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the magnetostatic Maxwell equations

rot (�hm) = 0, div(�hm) = −4π div( �M). (4)

In a general case, �hm is coordinate-dependent and
has a constant value only in a limited class of samples,
namely in samples of ellipsoidal shape [23]. Here, we
consider the case when the lateral dimensions of the
sample are much greater than its total thickness in z direc-
tion and when the magnetization dynamics are uniform
in the plane of the layers, i.e. the in-plane component
of the SW wave vector is equal to zero. Furthermore,
we assume that the saturation magnetization is constant
throughout the sample Mj,0 = M0 where j is the number
of a particular layer. In this case, the demagnetizing field
is constant and leads to the so-called shape anisotropy
equal to −4πM0 and with axis perpendicular to the layers
of the MC and hence parallel to the easy axis. Hence, for
the sake of brevity, we assume that the shape anisotropy
is accounted for in function β(z), and therefore in equa-
tion (3) �hm = 0.

If the absolute value of the magnetization was differ-
ent in the two basic layers and varied continuously within
the transition layers, hm,z would vary so that the normal
component of the magnetic flux density hm,z − 4πMz was
constant. Again, this could be accounted for by assuming
that function β(z) also includes this contribution, making
the same approximation that the variation of hm,z in the
transition layers could be described by a linear function.

Let us consider small deviations �mj (j = 1, . . . , 5)
of the magnetization from the ground state, which is a
uniform magnetization parallel to the easy axis,

�Mj(z, t)=�nM0+�mj(z, t), | �Mj(�r, t)|=M0, | �mj| � M0.

(5)

Linearizing Eq. (2) with respect to Eq. (5), intro-
ducing the temporal Fourier components �mj (z, t) =
�mj,ω (z) exp {iωt} and then introducing variable μ =
mx,ω + imy,ω, we obtain the following equation that
describes propagation of SWs in each layer of the MC

d2μj(z)

dz2 + k2
j (z)μj(z) = 0, j = 1, . . . , 5, kj(z)

=
√

Ω − h − βj(z)

α
. (6)

where we introduced dimensionless frequency
Ω = ω/gM0 and magnetic field h = H/M0. This allows us
to avoid assuming any particular value of M0, which for
a wide range of magnetic materials of interest has values
M0 ≈ (10 to 103)Gs. In the following calculations,
for the sake of brevity, we assumed that the period

of the MC is L = 5 m km, the exchange parameter is
α = 10−8 cm2, and the value of the external magnetic
field is h = 0. Yet, the formulae derived are more general
and can be applied to a much wider range of samples.

At the interfaces, the solution of Eq. (6) must sat-
isfy the boundary conditions of the continuity of the
magnetization and its derivative [15].

In Ref. [24], Ignatovich developed an original recur-
rence method by which to derive the dispersion in
and scattering of particles from a semi-infinite periodic
potential. Here, we apply this method to the problem of
SW scattering from a semi-infinite MC shown in Fig. 1.

Let us consider a spin wave incident on the boundary
of the MC. The amplitudes of the incident wave μ0 and
of the reflected wave μr are connected as

μr = Rμ0,

where R is the coefficient of SW reflection from the MC.
Using the method proposed in Ref. [24], one can

obtain

R =
√

(ρ + 1)2 − τ2 −
√

(ρ − 1)2 − τ2√
(ρ + 1)2 − τ2 +

√
(ρ − 1)2 − τ2

. (7)

here ρ and τ are the reflection and transmission coeffi-
cients of SWs for a single period of the MC. Using the
same method, it is also possible to obtain the Bloch wave
vector in terms of the latter scattering coefficients

exp (iKL)=
√

(τ + 1)2−ρ2−
√

(τ − 1)2 − ρ2√
(τ + 1)2 − ρ2+

√
(τ − 1)2 − ρ2

. (8)

Using the method of transfer matrices [25], one can
obtain explicit expressions for scattering coefficients ρ

and τ. According to this method, transfer matrix Mj is
put in correspondence to each layer of the MC. This
matrix connects the values of the magnetization and its
derivative at the beginning and the end of that layer:(

μ (z)

dμ (z) /dz

)∣∣∣∣∣
zj−1

= Mj

(
μ (z)

dμ (z) /dz

)∣∣∣∣∣
zj

. (9)

For the basic layers, these matrices are [26]:

M1,5=

⎛
⎜⎜⎝

cos

(
k1d

2

)
−k1 sin

(
k1d

2

)

k−1
1 sin

(
k1d

2

)
cos

(
k1d

2

)
⎞
⎟⎟⎠

M3 =
(

cos (k3d) −k3 sin (k3d)

k−1
3 sin (k3d) cos (k3d)

) , (10)
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For the transition layers the transfer matrices are

M2,4 =
(

P2,4 Q2,4�

−P ′
2,4�

−1 Q′
2,4

)
, (11)

where for the linear profile of the interface considered
here [26]:

Pj = Γ

(
1

3

)
3−1/3

[
Ai(ζj)31/2 − Bi

(
ζj

)]
,

Qj = Γ

(
2

3

)
3−1/2

[
Ai(ζj)31/2 − Bi

(
ζj

)]
,

P ′
j = Γ

(
1

3

)
3−1/3

[
31/2 dAi(ζj)

dz
− dBi(ζj)

dz

]
,

Q′
j = Γ

(
2

3

)
3−1/2

[
31/3 dAi(ζj)

dz
− dBi(ζj)

dz

]
,

ζ2,4 (z) = −�2

α
(Ω − β∓) ± δ

�
,

Ai(ζ) and Bi(ζ) are the Airy functions, and � =
(δα/�β)1/3.

The transfer matrix for one period of the MC and its
trace can be written as

M =
5∏

j=1

Mj, M̃ = Sp M, (12)

Then the explicit expressions for the reflection and trans-
mission coefficients will be

ρ =
√

1 − 4M̃2 (13)

τ = −2M̃, (14)

where

M̃ = {
[
cos (k1d) P2 + (�k1)−1 sin (k1d) P ′

2

]
cos (k3d)

+
[
cos (k1d) Q2 − (�k1)−1 sin (k1d) Q′

2

]
× �k3 sin (k3d)}P4 +

{ [
�k1 sin (k1d) Q2

+ cos (k1d) Q′
2

]
cos (k3d) −

[
cos (k1d) P2

+ (�k1)−1 sin (k1d) P ′
2

]
(�k3)−1 sin (k3d)

}
P ′

4

−{[�k1 sin (k1d) P2 − cos (k1d) P ′
2

]
× cos (k3d) + [�k1 sin (k1d) Q2+cos (k1d) Q′

2

]
× �k3 sin (k3d)

}
Q4 +

{ [
�k1 sin (k1d) Q2

+ cos (k1d) Q′
2

]
cos (k3d) − [�k1 sin (k1d) P2

− cos (k1d) P ′
2

]
(�k3)−1 sin (k3d)

}
Q′

4. (15)

Fig. 2. The thick and thin lines show reflection coefficients |R|2(Ω)
and |ρ|2(Ω), respectively for �β = 2 and β− = 2.0. The solid and dot-
ted lines correspond to MCs with the thickness of interfaces equal to
δ/L = 0.01 and δ/L = 0.45, respectively.

This allows us to investigate the intensity SW reflec-
tion coefficient |R|2(Ω) in detail. The corresponding
graph is shown in Fig. 2 for the earlier mentioned typi-
cal values of the magnetic parameters. For comparison,
function |ρ|2(Ω) is also shown in the same graph.

One can see that the intensity of the SW reflected from
a semi-infinite MC with interfaces of finite thickness
varies significantly as a function of the SW frequency,
which is similar to the case of ideally sharp interfaces
[20]. The frequency dependence reveals points of total
transmission of the spin wave through the MC, as was
also found in Ref. [21]. The presence of regions with
|R|2 = 1 indicates that at these frequencies the SW wave
vector calculated from Eq. (8) is purely imaginary, which
corresponds to band gaps in the magnonic spectrum of
the MC. The origin of the band gaps can be traced back
to maxima in the reflection from a single period of the
MC. One can also see that the width of the band gaps and
their positions depend on the thickness of the interface.
At the same time, zeros of function |R|2(Ω) again coin-
cide with the zeros of |ρ|2(Ω). The stacking of several
periods of the MC leads to increasing the SW reflection
coefficient and broadening of the regions of small and
high reflection of SWs.

Fig. 3 shows the dependence of the frequency at which
the total transmission of SWs through a MC is observed
upon the thickness of interfaces. It is easy to see that the
frequency varies sensitively with variation of the thick-
ness of the transition layers. This demonstrates that the
performance of magnonic devices containing MCs as a
filtering element can vary significantly with time if the
thickness of interfaces increases, e.g. due to the process
of inter-diffusion between the constituent layers of the
MCs [16].
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Fig. 3. Function Ω(δ/L) for a total transmission of SWs through a MC
is shown for �β = 2 and β− = 2.0.

3. Summary

We have used the transfer matrix method to investi-
gate the coefficient of SW reflection from a semi-infinite
MC with diffuse interfaces. The interfaces have been
modeled by a linear distribution of the anisotropy
value in transition layers between the main constituent
layers of the MC. We have found that the coeffi-
cient of SW reflection from the boundary between the
uniform ferromagnet and the semi-infinite MC varies
non-monotonically with the SW frequency. In particular,
regions of total reflection and points of total transmis-
sion have been observed. Although similar results have
been previously obtained for ideal MCs, we find that the
width and position of the regions of total reflection and
the points of total transmission of spin waves depend
sensitively upon the interface thickness. This fact has to
be taken into account in the design of future magnonic
devices.
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