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Abstract

We report a theoretical investigation of the spin wave spectrum of a magnonic crystal with a defect. The latter is

considered as either a single or double layer with parameters (the values of the uniaxial anisotropy and/or layer

thickness) different from those of the constituent layers of the magnonic crystal. It is shown that, depending upon the

parameters of the defect, the spectrum may contain either one or several additional discrete (localized) modes within the

magnonic band gaps, or even a mini-band of those.

r 2005 Elsevier B.V. All rights reserved.
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The diversity of interesting phenomena and
practical benefits discovered in the fields of
photonics [1] and semiconductor superlattices [2]
has led to a renewed attention to other materials
possessing spatial periodicity. The band spectrum,
which is the signature of the periodicity, is being
intensively studied in plasmonic crystals [3],
phononic crystals [4], periodic ferroelectric media
[5], and carbon nanotubes in a transverse electric
e front matter r 2005 Elsevier B.V. All rights reserve
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field [6]. The fact that the spectrum of spin waves
(SW) in a periodic magnetic structure contains
band gaps [7] has been known for some time [8,9].
However, the use of such structures for control of
the SW propagation has been demonstrated
relatively recently [10]. By analogy to photonic
crystals and other periodic structures, periodic
magnetic structures are referred to as magnonic

crystals (MCs). Dielectric MCs are of additional
interest because they also support magnetic field-
controlled photonic band gaps [11]. Knowledge of
their SW spectrum is therefore particularly im-
portant if they are to be operated (re-magnetized)
at a high frequency.
d.
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In reality, the presence of structural imperfec-
tions can lead to a break down of the translational
symmetry of a periodic medium. This has been
shown to lead to the presence of localized modes in
the spectra of photonic and phononic crystals
[12–17]. For a MC, Nikitov et al. [18] showed that
a local modification of the thickness of one of the
layers leads to occurrence of one discrete level
within the band gap. The aim of the present work
is investigation of the SW spectrum for a MC with
a defect of a more general form. We assume that
the defect may be represented as either a single or
double layer with parameters (the values of the
uniaxial anisotropy and/or layer thickness) differ-
ent from those of the constituent layers of the MC.
We show that the spectrum may contain more
than one defect modes in a particular band gap,
and study the factors that determine the exact
number of the defect modes.
Let us consider an infinite MC shown in Fig. 1

and consisting of periodically repeated thin film
layers of two types, i.e. yABABABABy. The
layers differ by their thicknesses (a and b) and
values of the uniaxial anisotropy (ba and bb). The
values of the spontaneous magnetization MS and
the exchange parameter a are assumed to be
constant throughout the material. It is also
assumed that the easy axis (EA) of the uniaxial
anisotropy, the internal magnetic field Hint and the
static magnetization direction are all perpendicular
Fig. 1. The composition of the studied MC with a defect is

schematically shown.
to MC’s layers. We consider the internal rather
than external static magnetic field so that, in
addition to the latter, it also includes the static
demagnetizing field due to a particular shape of
the sample [19]. The defect is modeled as a double
layer inserted into the MC. The thicknesses of the
defect constituent layers are c and d, and their
anisotropy values are bc and bd . This model also
allows us to consider two different types of a single
layer defect. When the thickness of one of the
defect layers is equal to zero, the model describes a
‘‘defect of insertion’’, i.e. ABDAB. When the
thickness and anisotropy of one of the defect
layers are identical to those of the MC’s normal
layer that is not adjacent to this particular defect
layer, the model describes a ‘‘defect of replace-
ment’’, i.e. ABDBA. The difference between the
two cases is that a MC with the defect of
replacement possess a center of inversion symme-
try, while a MC with the defect of insertion does
not. The Cartesian coordinate system is defined so
that its Z-axis is parallel to the EA.

The dynamics of magnetization M(r,t) is de-
scribed by the Landau–Lifshitz equation [20]

qM
qt
¼ �g½M�HE�, (1)

where g is the gyromagnetic ratio (g40) and HE is
the effective magnetic field. In the following, we
will restrict ourselves to discussion of SW’s that
propagate parallel to the static magnetization.
Then for the chosen geometry, dynamic magneto-
dipole fields do not contribute to the effective field
[19], and we can write for the latter

HE ¼ ½H int þ bðMnÞ�nþ aDM, (2)

where n is the unit vector parallel to the Z-axis,
and for a thin film geometry H int ¼ H � 4pMS,
where H is the magnitude of the external static
magnetic field.

Let us consider small deviations m (r,t) of the
magnetization from the ground state, i.e. a uni-
form magnetization parallel to the EA. For this
purpose, we represent magnetization as

Mðr; tÞ ¼MSnþmðr; tÞ; where jmj5MS. (3)

Introducing notations m� ¼ mx � imy and seek-
ing solutions in the form of harmonic waves
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Fig. 2. The spectrum of the magnonic crystal with a defect is

shown for H ¼ 0, ba ¼ 0:3, bb ¼ 1:8, bc ¼ 0:8, bd ¼ 1:1,
a=

ffiffiffi
a
p
¼ 1, b=

ffiffiffi
a
p
¼ 2:5, c=

ffiffiffi
a
p
¼ 15, d=

ffiffiffi
a
p
¼ 25. The horizontal

dashed lines denote boundaries of the first band gap in the

spectrum. O�n are the bottom/top boundaries of an nth band. In

(a), 1 and 2 are the first and second bands of the spectrum

plotted by Eq. (7), and 3 are the discrete spin wave modes

localized on the defect. In (b), the frequency dependence of

function DðOÞ is plotted by Eq. (9).
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m�ðr; tÞ ¼ mðzÞ expf�iog, we obtain the following
linearized equation for m(z)

d2mðzÞ

dz2
þ

O� h� bðzÞ
a

� �
mðzÞ ¼ 0, (4)

where O ¼ o=gMS and h ¼ H=MS are the dimen-
sionless frequency and magnetic field. Within each
of the uniform layers of the MC, Eq. (4) admits
solutions

mðzÞ ¼ AðþÞv expfþikvzg þ Að�Þv expf�ikvzg, (5)

where index n denotes different layer types, being
a, b, c, or d. Að�Þv are the SW amplitudes in the
layers. The SW wave number within a particular
layer is given by

kv ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O� h� bv

a

r
. (6)

At interfaces, solutions of Eq. (4) must satisfy the
exchange boundary conditions [21,22] requiring
the continuity of the magnetization mðzÞ and its
derivative dmðzÞ=dz.

As formulated above, the problem of finding the
magnonic spectrum and the defect mode frequen-
cies within the spectral band gaps is similar to that
considered by Tamura in Ref. [14] for a phononic
crystal of composition that is similar to ours.
Following the ‘‘transfer matrix’’ method described
in detail in Ref. [14], we obtain for the SW
spectrum of a MC without defects

2 cosðklÞ ¼ F ¼ lþ m, (7)

where k is the Bloch wave number, l is the period
of the MC, and

l ¼ cosðkaaÞ cosðkbbÞ �
ka

kb

� �
sinðkaaÞ sinðkbbÞ,

m ¼ cosðkaaÞ cosðkbbÞ �
kb

ka

� �
sinðkaaÞ sinðkbbÞ. ð8Þ

The defect mode frequencies are given by
solutions of equation

DðOÞ ¼ g0ðl0 þ m0Þ � g1ðlm0 þ l0m� sz0 � s0zÞ

¼ 0, ð9Þ
where

s ¼
1

ka

sinðkaaÞ cosðkbbÞ þ
1

kb

cosðkaaÞ sinðkbbÞ,

z ¼ �ka sinðkaaÞ cosðkbbÞ � kb cosðkaaÞ sinðkbbÞ,

l0 ¼ cosðkccÞ cosðkddÞ �
kc

kd

� �
sinðkccÞ sinðkddÞ,

m0 ¼ cosðkccÞ cosðkddÞ �
kd

kc

� �
sinðkccÞ sinðkddÞ,

s0 ¼
1

kc

sinðkccÞ cosðkddÞ þ
1

kd

cosðkccÞ sinðkddÞ,

z0 ¼ �kc sinðkccÞ cosðkddÞ � kd cosðkccÞ sinðkddÞ,

g0 ¼ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2 � 4
p ; g1 ¼ g0

F �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2 � 4
p

2

" #
. ð10Þ

Eq. (7) describes a spectrum with band gaps,
which is shown in Fig. 2(a). The Brillouin zone
boundaries are defined by condition jF j ¼ 2.
Within the band gaps, jF j42, and hence k is
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Fig. 4. The dependence of the defect mode frequencies in the

first band gap upon the defect size is shown for H ¼ 0, ba ¼ 0:6,
bb ¼ 1:5, bd ¼ 0:4, a=

ffiffiffi
a
p
¼ 1, b=

ffiffiffi
a
p
¼ 2:5. The dashed and

solid lines correspond to the defect of insertion (c ¼ 0) and the

defect of replacement (bc ¼ ba, c ¼ a), respectively. The

horizontal dash–dotted lines denote boundaries of the band

gap.
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imaginary. In this case, the values of the para-
meters defined in Eqs. (8) and (10) are all real. The
frequency dependence of function DðOÞ is shown in
Fig. 2(b). The numerically obtained solutions of
Eq. (9) define the frequency values of SW modes
localized on the defect.
For different parameter values of the MC and

the defect bilayer, Eq. (9) can have different
number of roots, and hence localized modes. The
dependence of the number and frequencies of the
localized modes upon the anisotropy value and the
thickness of the two types of a single layer defect is
shown in Figs. 3 and 4, respectively. In particular,
one can see from Fig. 3 that, when the anisotropy
value of the defect layer is smaller than that in one
of the MC’s layers, defect modes emerge at
frequencies lying below the lowest frequency of
the first band of the MC spectrum. These modes
are analogous to the localized electron states in a
quantum well [23]. When the defect layer thickness
is increased at a fixed anisotropy value, the
number of the localized modes increases. This
can also be interpreted at a qualitative level [12].
The defect layer in the MC acts as a resonator, and
the defect modes are standing waves localized due
to the reflection from its walls, which in this case
have finite height. It is well known that, in a given
βd

0.5

0.5

1.0 1.5

1.5

2.0

1.0

2.0

2
-Ω

1
+Ω

Ω

1
-Ω

Fig. 3. The dependence of the localized mode frequencies upon

the anisotropy value in the defect layer is shown for H ¼ 0,

ba ¼ 0:6, bb ¼ 1:5, a=
ffiffiffi
a
p
¼ 1, b=

ffiffiffi
a
p
¼ 2:5, d=

ffiffiffi
a
p
¼ 10. The

dashed and solid lines correspond to the defect of insertion

(c ¼ 0) and the defect of replacement (c ¼ a, bc ¼ ba),

respectively. The horizontal dash–dotted lines denote bound-

aries of the band gaps.
frequency interval, the number of modes in a
resonator is proportional to its length [23].

In Fig. 4 for the layer thickness value of the
defect of replacement about 12, the graph of the
dependence of the localized mode frequency upon
the defect layer size is almost vertical. There must
therefore be a value of the defect layer thickness
for which function DðOÞ crosses zero only just. One
may expect that, due to the finite damping [24,25]
and scattering in the values of the parameters
[26–28], which are always present in a real MC, the
frequency at which function DðOÞ intersects with
zero will not be well defined, and so a mini-band of
defect modes will be formed within the band gap.

In conclusion, we have shown that the presence
of a single defect in a MC may lead, depending
upon the defect size and composition, to appear-
ance of either one or several defect modes, or a
mini-band of those, within magnonic band gaps
or below the smallest frequency allowed in a
perfect MC.
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