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Using the transfer-matrix method, we have developed a theory of exchange spin waves in a thin cylindrical
magnonic crystal �periodically layered all-ferromagnetic nanowire� with diffuse interfaces. The magnonic
spectrum and the frequency dependence of the reflection coefficient of spin waves from a junction between a
homogeneous magnetic nanowire and a magnonic crystal have been calculated and compared. Diffuse inter-
faces with linear and sinusoidal profiles of variation in the uniaxial anisotropy value have been considered, also
allowing for asymmetry in the relative thicknesses of either main layers, or interfaces, or both. We have found
that, although the thickness and profile of interfaces have a significant effect on the size and position of the
magnonic band gaps, the smoothing of interfaces does not lead to disappearance of the band gaps. At the same
time, the profiles and relative thicknesses of interfaces might provide additional means by which to design
magnonic crystals with a desired magnonic spectrum.
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I. INTRODUCTION

Magnonic crystals are materials with periodically modu-
lated magnetic parameters and represent spin-wave �magnon�
counterparts of photonic,1 phononic,2 and plasmonic3 crys-
tals. The study of spin waves and magnonic crystals �so-
called “magnonics”� has been intensively growing recently
as a new research field at the interface between nanomag-
netism and electromagnetic metamaterials. So, many excit-
ing results have recently been obtained in magnonics by
experimental,4–9 theoretical,10–17 and computational18–20

means.
Generally, the theory of waves in layered media is well

developed. In particular, a number of exactly solvable mod-
els have been proposed and thoroughly investigated �see,
e.g., Refs. 21 and 22 for review�. In part, the advance in this
and some other research directions has been aided by the
remarkable analogies with the quantum-mechanical theory of
an electron in a one-dimensional �1D� potential. The analogy
can be drawn in some cases of 1D problems of spin-wave
propagation in nonuniform magnetic fields23–25 and also in
the discussion of nucleation fields in composite magnets.26–30

In the latter case, due to the dominating role of the aniso-
tropy field, the analogy holds also for two-dimensional �2D�
and three-dimensional �3D� problems. Nonetheless, in a gen-
eral case, the results obtained for other excitations and qua-
siparticles �e.g., phonons or electrons� are not readily trans-
ferred to the case of magnonic crystals. This is mainly due to
the complicating role of the long rage magnetodipole inter-
action, combined with the increased number of material pa-
rameters that affect the dispersion of magnons in such media.
The situation is even more complicated in the case of 2D and
3D magnonic crystals, for which only few theoretical results
have been published so far,10–13 with strong approximations
often made. Alternatively, the spectra of spin waves in mag-
nonic crystals can be obtained from micromagnetic simula-
tions �with only 1D case having been considered to date18,19�,
or using the dynamical-matrix method,20 which can be
thought of as micromagnetics in the reciprocal space. On the

experimental side, there is a record of studies of periodic
magnetic multilayers31–33 while more recent investigations
concentrated on planar arrays of magnetic elements34–37 and
magnonic crystals.4–9

The studies confirmed that the spectrum of exchange,
magnetostatic, and dipole-exchange spin waves in magnonic
crystals forms band structure, as opposed to the discrete
spectrum observed in systems of noninteracting magnetic
thin films or elements. The next issue to consider is how the
magnonic band structure is affected by various kinds of im-
perfections, which are inevitably present in realistic samples
and devices of magnonics, and how to suppress any destruc-
tive effects of such imperfections. So, in Refs. 38 and 39,
Ignatchenko et al. studied the modification in the magnonic
band spectrum due to random variations in the period of a
magnonic crystal. Localization of spin waves by isolated de-
fects was investigated in Refs. 40 and 41. Here, we again
note the useful analogy between the problem of magnonic
spectrum and the problem of nucleation.29,42 In Refs. 39 and
43, the effects of the presence of damping and of its modu-
lation in magnonic crystals were studied.

In addition, realistic multilayered and planar magnonic
crystals are likely to have diffuse interfaces.44 In other
words, transitions between constituent layers of a magnonic
crystal or between elements made of different materials9 are
likely to have finite thickness. Magnetic properties of such
transition regions are generally different from those of the
two adjacent materials and can continuously vary across the
thickness of the interface. Alternatively, such interfaces
could be created artificially, e.g., aiming to create a particular
magnonic band spectrum. In Refs. 44 and 45, Ignatchenko et
al. investigated propagation of waves in periodic multilayer
materials with diffuse interfaces. The magnonic crystal was
considered as a model magnonic crystal with a periodically
modulated value of the uniaxial anisotropy constant. Both
the spectrum and the scattering parameters �i.e., transmission
and reflection coefficients� of spin waves were found to de-
pend strongly upon the thickness of interfaces. In the model,
the spatial modulation was described by a Jacobian elliptical
sine function. However, the model is not solvable exactly,
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and so the perturbation theory had to be used instead, assum-
ing a small modulation of the anisotropy value. In contrast,
exactly solvable models were used in Refs. 46–48, to study
the effect of diffuse interfaces upon the spectrum of spin
waves propagating in magnonic crystals with an arbitrary
large amplitude of modulation of the anisotropy value. The
difference between results obtained using the two approaches
can be drastic. For example, the first-order perturbation
theory predicts vanishing of all n�1 band gaps for a sinu-
soidal magnonic crystal,48 which is not the case in the exact
solution in terms of Mathieu functions.46,49

Here, we address the question of the effect of the particu-
lar functional form of the variation of interface’s properties
across its thickness upon the magnonic band structure of a
thin cylindrical magnonic crystal �periodically layered mag-
netic nanowire with a circular cross section�. In particular,
we compare models with linear and sinusoidal variations of
the anisotropy value in the transition regions. The aim is to
study the effect of thicknesses of the constituent layers and
interfaces as well as the structure of the interfaces, upon the
spectrum and reflection coefficient of spin waves from a
semi-infinite magnonic crystal. The here presented study of
the reflection of spin waves from a semi-infinite magnonic
crystal will be particularly important for measurements and
practical implementation of propagating spin waves in mag-
nonic devices.

In Refs. 50 and 51, imperfect interfaces were modeled as
regions with increased damping. It was found that the overall
damping of spin-wave modes in magnonic crystals described
by such models can vary from band to band much stronger
than in the case of damping uniformly distributed within
layers, as considered in Ref. 43. However, the damping of
spin waves is beyond the scope of this particular study,
where we focus on the functional profiles of interfaces.

II. MODEL

Due to space constraints, future networks of magnonic
waveguides are likely to consist of waveguides with a nar-
row cross section.15 Hence, we model the magnonic crystal
as an infinitely long wire consisting of periodically alternated
adjacent uniform layers of two types. The latter layer types
differ only by the strength of the uniaxial anisotropy while
the easy axis is parallel to the axis of the wire with the
associated unit vector denoted as n. This assumption is a
reasonable approximation, backed up by the recent progress
in fabrication of multilayered magnetic nanowires.52 So, in
Ref. 52, the authors successfully grew multilayered Co nano-
wires in which only the strength of the uniaxial anisotropy
constant was modulated. The exchange parameter �, the gy-
romagnetic ratio g, and the spontaneous magnetization M0

are assumed to be constant throughout the sample.
Furthermore, we assume that the so called “main” layers

of the magnonic crystal are separated by “transition” layers
in which the strength of the anisotropy varies as

��z� = ��1,3 = ��� �
��

2
z0,2 + lL � z � z1,3 + lL

�2,4 = ��� �
��

2
��z� z1,3 + lL � z � z2,4 + lL ,�

�1�

where ���=
�−+�+

2 and ��= ��+−�−� are the average value and
the amplitude of modulation of the anisotropy, respectively, l
is the number of the period, and z1,2,3,4 are the coordinates of
the layer boundaries within the period, as shown in Fig. 1.
The upper and lower signs in the expression correspond to
the first and second indices, respectively. L is the period of
the magnonic crystal, and d1,3 and 	2,4 are thicknesses of the
main and transition layers, respectively. One can see that the
model allows one to study not only asymmetry in the thick-
nesses of the main layers but also asymmetry in the profiles
of the interfaces, e.g., magnonic crystals in which sharp and
smooth interfaces alternate �	2�4�=0,	4�2��0�. The Z axis is
chosen to be parallel to n.

Equation �1� can describe both interface profiles studied
here. For linear profile, one has

��z� =
z − z2,4

	2,4
. �2�

For sinusoidal profile, one has

��z� = cos�

z − z2,4

	2,4
	 . �3�

III. SPECTRUM

To describe dynamics of magnetization M�r , t� in the
magnonic crystal, we use Landau-Lifshits equation53

FIG. 1. �a� The coordinate dependence of the anisotropy value
in the magnonic crystal is schematically shown for linear �thick
solid line� and sinusoidal �thin solid line� profiles of the interfaces.
�b� The geometry of the problem is schematically shown.
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�M

�t
= − g�M � 
�H + ��Mn��n + hm +

�

�r
�

�M

�r
��	 ,

�4�

where H is the bias magnetic field parallel to n, hm is the
demagnetizing field, g is the gyromagnetic ratio, and � is the
exchange constant. Assuming sufficiently strong bias and an-
isotropy fields, the magnetization in the ground state is uni-
form and parallel to the axis of the wire. To consider small
amplitude spin waves, we can represent magnetization as

M j�r,t� = nM0 + m j�r,t� , �5�

where m j are small deviations of magnetization ��m j��M0�
in layer j=1, . . . ,4 from the ground state, assuming that the
length of the magnetization vector is constant �M j�r , t��
=M0. We assume that the diameter of the wire is smaller than
the exchange length, and so, magnetization dynamics are
uniform in the circular cross section of the wire.54,55 Then, it
is appropriate to describe the nonvanishing components of
the dynamic demagnetizing field, which are perpendicular to
the axis of the wire, in terms of ballistic demagnetizing fac-
tors. The static demagnetizing field in an infinite cylinder
magnetized along its axis is already zero. Hence, one has

hm=−DJM, where DJ is the tensor of ballistic demagnetizing
coefficients that has only two nonvanishing components
Dxx=Dyy=2
.

We linearize Eq. �4� using Eq. �5�, introduce Fourier com-
ponents m j�z , t�=m,j�z�exp�it� where t and  are time and
frequency, respectively, and do a standard substitution of
variables �=mx+ imy. Then, we obtain the following equa-
tion that describes propagation of spin waves in each layer of
the magnonic crystal

d2� j�z�
dz2 + kj

2�z�� j�z� = 0, kj�z� =�� − h − 2
 − � j�z�
�

,

�6�

where �= /gM0 and h=H /M0.
Solutions of Eq. �6� and their derivatives must be continu-

ous at the boundaries of the main and transition layers as
well as everywhere else. This ensures that, first, in the re-
gime of dominating exchange interaction, the magnetizations
on the opposite sides of the boundary are parallel, and sec-
ond, the normal component of the vector of the density of
energy flux is continuous.53 Besides, the solution of Eq. �6�
must satisfy the condition of periodicity, i.e., solutions � j at
the period boundaries z=0 i z=z4=L must differ only by a
phase factor56

��0� = eiKL��L� , �7�

where K is the quasiwave number �Bloch wave number�.
To find the spectrum of spin waves, we use the method of

transfer matrices M̂ j,
56 which link values of the dynamic

magnetization in the beginning and the end of each layer

� ��z�
d��z�/dz

��
zj−1

= M̂ j� ��z�
d��z�/dz

��
zj

. �8�

Using Floquet-Bloch theorem Eq. �7�, it is then easy to
write the spectrum of spin waves in the magnonic crystal
�Fig. 2� in the following form:

cos�KL� = − 2M̃ , �9�

where M̃ =Sp�M̂� �or M̃ =Tr�M̂�� is given in the Appendix.

IV. REFLECTION COEFFICIENT

From the point of view of application of magnonic crys-
tals in magnonic devices, e.g., as spin wave filters, it is im-
portant to know how spin waves are reflected from the
boundary between a semi-infinite magnonic crystal and the
adjacent semi-infinite uniform ferromagnetic medium. To
calculate the coefficient of reflection of spin waves incident
upon the boundary, we use the recurrent method proposed in
Ref. 57 for investigation of scattering of neutrons from a
semi-infinite periodic potential. The semi-infinite magnonic
crystal and the recurrent method are schematically illustrated
in Fig. 3. The magnetic properties of one period of the semi-
infinite magnonic crystal, including the profiles of the tran-
sition layers, are the same as in the case of the infinite mag-
nonic crystal considered in the previous sections. The
uniform ferromagnetic medium has anisotropy value of �−
while the rest of its parameters are equal to those of the
magnonic crystal.

The amplitudes �0 and �r of the incident and reflected
spin waves, respectively, are connected as

FIG. 2. �Color online� The two lowest bands of the spectrum of
spin waves described by Eq. �9� are shown for magnonic crystals
with the linear �black dotted line� and sinusoidal �red dotted line�
interface profiles and for ideal magnonic crystals with sharp inter-
faces �solid black line�, all with �+ /�−=2 and 	2=	4=	. Here and
in the following we assumed the value of the exchange constant of
3�10−12 cm2, which is characteristic for Co.
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�r = R�0,

where R is the coefficient of reflection of spin waves from
the semi-infinite magnonic crystal. The same relation will
hold for spin waves �� n and �� n incident on and reflected from
period n

�� n = R�� n. �10�

Using recurrent relation

�� n = ��� n−1 + ��� n �11�

we obtain

�� n

�� n−1

=
�

1 − �R
,

where � and � are the reflection and transmission coefficients
through a single isolated symmetric period of the magnonic
crystal.

In a similar way, we also obtain

�� n−1 = R�� n−1 = ��� n−1 + ��� n

and hence

R = � +
�2R

�1 − �R�

According to Ref. 57, the solution of this equation is

R =
��� + 1�2 − �2 − ��� − 1�2 − �2

��� + 1�2 − �2 + ��� − 1�2 − �2
. �12�

Here, � and � are the reflection and transmission coefficients
of spherical waves for a single isolated period of the mag-
nonic crystal. Using the method of transfer matrices, one can
obtain explicit expressions for � and � as

� = �1 − 4M̃2, �13�

� = − 2M̃ . �14�

Using the same method, it is possible to express the quasi-
wave number in terms of the coefficients � and �.57 The
typical frequency dependence of the squared reflection coef-
ficient R is shown in Fig. 4 for linear and sinusoidal profiles
of the interface.

V. RESULTS AND DISCUSSION

We begin by discussing general features of the spectra and
scattering of spin waves in the studied magnonic crystals. As
one could see already from Fig. 2, the size of magnonic band
gaps depends markedly upon the thickness and profile of
interfaces. The dependence of the size of the three lowest-
lying magnonic band gaps upon the thickness of interfaces is
plotted in Fig. 5 for both linear and sinusoidal profiles. De-
spite a sizable quantitative difference, the character of the
dependence for the different interface profiles is qualitatively
similar. So, the size of the band gaps first increases and then
decreases as the thickness of the interface increases. In the
limit of infinitely thin interfaces, the size of the band gaps in
magnonic crystals with linear and sinusoidal interface pro-
files becomes equal, as expected. At the same time, it is
important to note that the smeared interfaces do not actually
lead to disappearance of magnonic band gaps in the spec-
trum. Thus, from the point of view of magnonic applications,
such samples should not be considered as “faulty.”

FIG. 3. The recurrent method used for calculation of the reflec-
tion coefficient is illustrated for the case of the semi-infinite mag-
nonic crystal with a linear profile of the interface. The incident and
reflected spin waves are schematically shown by forward and re-
verse arrows.

FIG. 4. �Color online� The frequency dependence of the squared
reflection coefficient is shown for a linear and sinusoidal profiles of
the interface for ��=2, �−=3.0, h=0, and 	2=	4=	. The solid and
dotted lines correspond to magnonic crystals with the linear and
sinusoidal interfaces, respectively, with thicknesses of interfaces
equal to 	 /L=0.01 �thin black lines� and 	 /L=0.45 �thick red
lines�.

FIG. 5. The dependence of the size ��n of the three lowest-
lying magnonic band gaps upon the thickness of interfaces is plot-
ted for linear �solid line� and sinusoidal �dash-dotted line� profiles
of the interfaces and ��=2, �−=3.0, h=0, d1=d3, and 	2=	4=	.
Here, n denotes the number of the band gap with n=1 correspond-
ing to the lowest lying one.
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Figure 6 shows the dependence of the size of the lowest-
lying magnonic band gap �n=1� upon the thickness of inter-
faces for linear and sinusoidal interface profiles. One can see
that, in the cases of “small” and “large” thicknesses of inter-
faces, the dominant role in determining the size of the band
gaps is played by the relative thickness of the main layers
and the structure of interfaces, respectively. Therefore, if the
degree of smearing of interfaces is large, their thickness can-
not be uniquely determined from spin-wave measurements
but a particular functional form of the interface profile has to
be assumed. From the applied point of view, the variation in
the relative thicknesses of the main and/or transition layers
creates an additional means by which to design magnonic
crystal with a desired spectrum.

Generally, the size of the band gap decreases as the fre-
quency at which it occurs increases. In the limit of small
thicknesses of interfaces �	→0�, which corresponds to the
Kronig-Penny model, one obtains

��n =
��

n

d1

d2
+ o��,

d1

d2
,n� , �15�

where ��n is the size of the nth band gap. This equation can
be used to estimate the depth of modulation of the anisotropy
value �or the relative thickness of the main layers� from mea-
surements of the magnonic band gap, provided that the rela-
tive thickness of the main layers �or the depth of modulation
of the anisotropy value ��� is known.

In Fig. 7, we compare the frequency dependence of the
squared reflection coefficient with the spectrum of spin
waves. One readily notices that spin waves are fully reflected
from the semi-infinite magnonic crystal at frequencies corre-
sponding to band gaps in its spectrum, which occurs irre-
spective of the particular profile of the transition layers. As
the period of the magnonic crystal decreases, the size of the
band gaps also decreases. Within the allowed magnonic
bands, there are points of zero reflection, corresponding to
resonant transmission of spin waves through the magnonic
crystal. The corresponding frequencies are likely to be work-
ing frequencies of magnonic devices incorporating both ho-

mogeneous and periodically modulated magnonic
waveguides.

Let us discuss the range of realistic values of the geo-
metrical parameters of such samples. In Ref. 52, the minimal
thickness of nanowires is 10 nm, which is fairly close to the
value of the exchange length in Co. The total length of the
nanowires is 21 �m, which leads to a maximal period of
2 �m, assuming that the magnonic crystal contains at least
ten periods. The smallest possible period is determined by
the precision of the electrodeposition and can be as small as
a few nanometers.58 The thickness of interfaces can also be
vanishingly small, if not atomically sharp, while the interface
roughness could lead to a somewhat increased effective
thickness of interfaces. At the same time, it might turn out to
be more difficult to produce diffuse interfaces of large thick-
ness since the magnetic phase of the deposited material is
likely to vary discontinuously as function of the deposition
parameters. Nonetheless, this should be more easily over-
come in compositionally modulated nanowires. The rough-
ness and more generally disorder can have a strong effect on
the localization of magnonic modes in one dimension41,55

and can strongly affect the size of band gaps.38,39,44 In many
experimental techniques, arrays of nanowires are preferred to
isolated ones. In such arrays, the long-range magnetostatic
interaction, the effect of which is roughly linear with respect
to the packing fraction of the array,59 is likely to modify the
predictions of the present theory and even to lead to forma-
tion of a magnonic metamaterial.60

VI. SUMMARY

We have used the transfer-matrix method to solve the
Landau-Lifshits equation and to develop a theory of ex-
change spin waves in a thin cylindrical magnonic crystal
�periodically layered all-ferromagnetic nanowire� with dif-
fuse interfaces. In particular, we have calculated the mag-
nonic spectrum of the magnonic crystal and the reflection
coefficient of spin waves from a junction between a homo-
geneous magnetic nanowire and the magnonic crystal. Solu-
tions obtained for models in which the diffuse interfaces are
represented by linear and sinusoidal profiles of variation in

FIG. 6. �Color online� The dependence of the size of the lowest-
lying magnonic band gap �n=1� upon the thickness of interfaces is
plotted for linear �solid line� and sinusoidal �dash-dotted line� pro-
files of the interfaces, for two different ratios of the thicknesses of
the main layers, and for two different ratios of the transition layers.
��=2, �−=3.0, h=0.

FIG. 7. �Color online� The frequency dependence of the squared
reflection coefficient �R�2 �black lines� is compared with the spec-
trum �red lines� for a magnonic crystal with linear profile and
��=2 and 	 /L=0.25. The solid and dashed lines correspond to
L=600 nm and L=60 nm, respectively.
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the uniaxial anisotropy value have been compared. An op-
tional asymmetry in the relative thicknesses of either main
layers, or interfaces, or both, has been taken into account and
studied.

The major conclusion of the paper is that the thickness
and profile of interfaces have a significant effect on the size
and position of the magnonic band gaps but the interface
smoothing does not generally lead to disappearance of the
band gaps. In fact, the dependence of the magnonic spectrum
and reflection coefficient on the profiles and relative thick-
nesses of interfaces might provide additional means by
which to design magnonic crystals with a desired magnonic
spectrum. Hence, our results may be useful for the emerging
magnonic technology that will make use of propagating spin
waves and modulated magnonic waveguides with the latter
most likely having the “thin-nanowire” geometry considered
here.
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APPENDIX

Here, we present details of the transfer-matrix formalism
used in the calculations from the main text. The transfer
matrices of the main �uniform� layers �j=1,3� are given by56

M̂ j =  cos�kjdj� − kj
−1 sin�kjdj�

kj sin�kjdj� cos�kjdj�
� .

The transfer matrices of transition �nonuniform� layers
�j=2,4� are obtained in a way similar to that in Refs. 47 and
48

M̂ j =  Pj Qj� j

− P̃j� j
−1 Q̃j

� ,

Here, for the linear profile, one has47

Pj = �Bi��0�Ai�� j� − Ai��0�Bi�� j��, Qj = �Bi�0�Ai�� j�

− Ai�0�Bi�� j�� ,

P̃j = �Bi��0�Ai��� j� − Ai��0�Bi��� j��, Q̃j = �Bi�0�Ai��� j�

− Ai�0�Bi��� j�� ,

� j = −
� j

2

�
�� − h − 2
 − ���, � j = �	 j�/���1/3,

where Ai and Bi are Airy functions,61 and Ai� and Bi� are
their derivatives.

For the sinusoidal profile, one has48

Pi = �ce��0�se��i� − se��0�ce��i��, Qi = �ce�0�se��i�

− se�0�ce��i�� ,

P̃i = �ce��0�se���i� − se��0�ce���i��, Q̃i = �ce�0�se���i�

− se�0�ce���i�� ,

� j = 5	 j��/2� j, � j =� �

� − h − ��

,

where se and ce are Mathieu functions, and se� and ce� are
their derivatives.

The transfer matrix of one period of the magnonic crystal
can then be written as

M̂ = �
j=1

4

M̂ j .

Finally, the trace �spur� of the transfer matrix is

Tr�M̂� = ��cos�k1d1�P2 + ��2k1�−1 sin�k1d1�P2��cos�k3d3�

+ �cos�k1d1�Q2

− ��2k1�−1sin�k1d1�Q2���4k3 sin�k3d3��P4

+ ��cos�k1d1�Q2 − ��2k1�−1sin�k1d1�Q2��cos�k3d3�

− �cos�k1d1�P2 + ��2k1�−1sin�k1d1�P2��

���4k3�−1sin�k3d3��P4� − ���2k1 sin�k1d1�P2

− cos�k1d1�P2��cos�k3d3� + ��2k1 sin�k1d1�Q2

+ cos�k1d1�Q2���4k3 sin�k3d3��Q4

+ ���2k1 sin�k1d1�Q2 + cos�k1d1�Q2��cos�k3d3�

− ��2k1 sin�k1d1�P2 − cos�k1d1�P2��

���4k3�−1 sin�k3d3��Q4�.

This expression contains all structural information about
the magnonic crystal and is used in Eqs. �9� and �12�–�14� to
calculate the spin-wave dispersion in and reflection from the
magnonic crystal, respectively.
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