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Spin-wave spectrum of a magnonic crystal with an isolated defect
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Real magnonic crystals—periodic magnetic media for spin-wave �magnon� propagation—may
contain some defects. We report theoretical spin-wave spectra of a one-dimensional magnonic
crystal with an isolated defect. The latter is modeled by insertion of an additional layer with
thickness and magnetic anisotropy values different from those of the magnonic crystal constituent
layers. The defect layer leads to appearance of several localized defect modes within the magnonic
band gaps. The frequency and the number of the defect modes may be controlled by varying
parameters of the constituent layers of the magnonic crystal. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2164419�
The translational symmetry �spatial periodicity� is one of
the most important notions in the modern understanding of
nature. It determines the conservation of momentum of a
material body in the free space and of the quasimomentum of
electrons in crystals. Most of electronic, magnetic, and opti-
cal properties of solids are directly determined by their band
structure, which directly results from the electron quasimo-
mentum conservation. The spectrum of electrons in solids
splits into so-called bands—energy regions in which electron
propagation is allowed. There exist also band gaps—energy
regions in which there are no available electronic states, and
so the electron propagation is prohibited. Structures with ar-
tificial translational symmetry have been created to design
objects with properties that otherwise do not exist in nature.
The examples of these include photonic crystals,1 semicon-
ductor superlattices,2 and plasmonic3 and phononic crystals.4

The band spectrum appears to be important even for such
exotic objects as carbon nanotubes in a transverse electric
field.5

Magnetic materials with periodically modulated proper-
ties �magnetic superlattices� are known to possess such
unique properties as giant magnetoresistance �GMR�,6 large
out-of-plane magnetic anisotropy,7 resonant absorption of
microwaves,8 and magnetic-field-controlled photonic band
gaps.9 These materials have also been used as retardation
lines in which magnetostatic waves10 are used as carriers of
signal.11 Such periodic magnetic structures considered as a
medium of magnon �spin-wave� propagation have been
called magnonic crystals. Similarly to the above-mentioned
artificial crystals, the spectrum of a magnonic crystal is
strongly influenced by the presence of magnonic band gaps
in which magnon propagation is forbidden.12

In real magnonic crystals, the presence of defects can
lead to a local modification of the values of such parameters
as magnetic anisotropy, exchange stiffness, saturation mag-
netization, and hence can break the translational symmetry of
the magnonic crystal and affect its spectrum. Nikitov et al.
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showed that a local modification of the thickness of one of
the layers of a magnonic crystal leads to occurrence of a
discrete level within the band gap.13 In more detail, the de-
fect modes have been studied for the photonic and phononic
crystals.14–16 In this work, we investigate the spectrum of a
magnonic crystal that contains an isolated defect of the mag-
netic anisotropy value. The graphical method developed in
Ref. 12 is modified for analysis and control of the defect
modes within an arbitrary band gap as well as in the spectral
region below the spin-wave activation frequency.

Let us consider an infinite magnonic crystal that consists
of periodically repeated thin-film layers of two types, i.e.,
. . .ABABABAB. . ., as shown in Fig. 1. The layers differ by
their thicknesses �a and b� and values of the uniaxial aniso-
tropy ��a and �b�. The values of the spontaneous magnetiza-
tion MS and the exchange parameter � are assumed to be
constant throughout the material. It is also assumed that the
easy axis of the uniaxial anisotropy, the internal magnetic
field Hi,

10 and the static magnetization direction are all per-

FIG. 1. Schematic of a one-dimensional magnonic crystal with a defect is

shown.
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pendicular to layers of the magnonic crystal. The defect is
modeled as a layer with thickness d and an anisotropy value
�d inserted into the magnonic crystal. The Cartesian coordi-
nate system is defined so that its Z axis is parallel to the easy
axis.

The dynamics of magnetization M�r , t� is described by
the Landau-Lifshitz equation,10

�M

�t
= − g�M � HE� , �1�

where g is the gyromagnetic ratio �g�0� and HE is the ef-
fective magnetic field. In the following, we will restrict our-
selves to discussion of spin waves that propagate parallel to
the static magnetization. Then for the chosen geometry, dy-
namic magnetostatic fields do not contribute to the effective
field,10 and we can write for the latter,

HE = �H + ��Mn��n + ��M , �2�

where H is the magnitude of the internal magnetic field10 and
n is the unit vector parallel to the Z axis.

Let us consider small deviations m�r , t� of the magneti-
zation from the ground state, i.e., a uniform magnetization
parallel to the easy axis. For this purpose, we represent mag-
netization as

M�r,t� = MSn + m�r,t� where �m� � MS. �3�

Introducing notations m±=mx± imy and seeking solutions
in the form of harmonic waves m±�r , t�=m�z�exp�±i�t�, we
obtain the following linearized equation for m�z�:

d2m�z�
dz2 + �� − h − ��z�

�
	m�z� = 0, �4�

where �=� /gMS and h=H /MS are the dimensionless fre-
quency and magnetic field. Within each of the uniform layers
of the magnonic crystal, Eq. �4� admits solutions

m�z� = A	
�+� exp�+ ik	z� + A	

�−� exp�− ik	z� , �5�

where index 	 denotes the different layer types, being a, b, or
d. A	

�±� are the spin-wave amplitudes in the layers. The wave
number of the spin wave within a particular layer is given by

k	 =
� − h − �	

�
. �6�

At interfaces, functions �5� must satisfy the exchange bound-
ary conditions17 requiring the continuity of the magnetization
m�z� and its derivative dm�z� /dz.

As formulated above, the problem of finding the mag-
nonic spectrum and the defect mode frequencies within the
spectral band gaps is similar to that considered by Tamura in
Ref. 15 for the case of a phononic crystal. Following the
“transfer matrix” method described in detail in Ref. 15, we
obtain for the spin-wave spectrum of a magnonic crystal
without defects,

2 cos�
l� = F = � + � , �7�

where 
 is the Bloch wave number, l is the period of the

magnonic crystal, and
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� = cos�kaa�cos�kbb� − � ka

kb
�sin�kaa�sin�kbb� ,

�8�

� = cos�kaa�cos�kbb� − � kb

ka
�sin�kaa�sin�kbb� .

The defect mode frequencies are given by solutions of
equation,

���� = 20�0 − 1��0F − ��0 − �0�� = 0, �9�

where

� =
1

ka
sin�kaa�cos�kbb� +

1

kb
cos�kaa�sin�kbb� ,

� = − ka sin�kaa�cos�kbb� − kb cos�kaa�sin�kbb�
�10�

�0 = cos�kdd�, �0 =
1

kd
sin�kdd�, �0 = − kd sin�kdd� ,

0 = −
1


F2 − 4
, 1 = 0�F − 
F2 − 4

2
	 .

Equation �7� describes a spectrum with band gaps, such
as shown in Fig. 2�a�. The Brillouin-zone boundaries are
defined by condition �F�=2, and are independent of the pa-
rameters of the defect. As shown in Fig. 3, this facilitates
mapping of the allowed bands �black� and the band gaps
�white� on the ��ka

2 ,�kb
2� plane in a manner similar to Ref.

12. Using coordinates ��ka
2 ,�kb

2� instead of �ka ,kb� helps to
consider the frequency region where either ka, or kb, or both,
is purely imaginary. Also, in these coordinates, the “lines of
spectra” ���a ,ka�=���b ,kb� �Ref. 12� are straight lines at

FIG. 2. �a� SW spectrum of a one-dimensional magnonic crystal with a
defect is shown for H=0, �a=0.5, �b=1.5, �d=0.8, a /
�=b /
�=2.5, and
d /
�=40. The horizontal dashed lines represent the boundaries of the first
band gap. �n

−/+ are the boundaries of the allowed bands 1 and 2. The defect
modes are 3. �b� Function ���� is plotted for the same parameter values.
The points of intersection of ���� with 0 determines the frequencies of the
defect modes in �a�.
45° to the axes, and the width of the band gaps is simply
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equal to the distance between the points of intersection of the
lines of spectra with the Brillouin-zone boundaries �the
boundaries between the black and white�.

Within the band gaps, �F��2, and hence 
 is imaginary.
In this case, the values of the parameters defined in �8� and
�10� are all real. The frequency dependence of function ����
is shown in Fig. 2�b�. The solutions of Eq. �9� define the
frequency values of spin-wave modes localized on the de-
fect. While Eq. �9� is easily solved numerically, this does not
allow one to predict how the spectrum, such as that shown in
Fig. 2�a�, changes when some or all of the parameters of the
magnonic crystal are varied. The diagram in Fig. 3 can again
be used to circumvent this problem. Let us note that Eq. �9�
does not contain the frequency explicitly, which allows us to
draw the “defect lines,” in which ����=0, on the same dia-
gram in Fig. 3. Again, the points of intersection of the lines
of spectra with the defect lines within the band gaps corre-
spond to the defect modes. For example, one can clearly
identify the four defect modes within the first band gap
shown in Fig. 2. Different depths of modulation of the an-
isotropy parameter will result in different lines of spectra.
For example, if the depth of modulation of the anisotropy
parameter is decreased, the line of spectra will shift towards
the diagonal of the diagram in Fig. 3. It is easy to see that
this will result in a decrease in the size of the band gaps and
the number of defect modes within them.

Technically, magnonic crystals with nearly constant satu-
ration magnetization and exchange parameter values but with

FIG. 3. �Color online� The diagram for determination of the defect mode
positions within the band gaps in the spectrum of a magnonic crystal is
presented with the band gaps shown by white and the allowed bands shown
by black. The “defect lines” are shown by thin solid lines, and the thick line
at 45° is one of the “lines of spectra.” The defect lines and the line of
spectrum are plotted for the parameter values from Fig. 2.
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the anisotropy constant modulated could be made of Co–P
alloy.18,19 In the more general case of the modulation of sev-
eral magnetic parameters, this graphical technique can be
used for investigation of the associated effects in the manner
described in Refs. 12 and 17. We also expect this technique
to be applicable for studying effects caused by the presence
of the interface anisotropy between the defect and the
superlattice,20 by the defect-superlattice symmetry/
asymmetry �ABDAB as opposed to ABDBA�,24 by the pres-
ence of the spin-wave damping,21,22 and many other effects,
which are, however, beyond the scope of the present paper.
Finally, we note that our method could perhaps be applied to
fields of physics other than magnetism, in particular, to those
discussed in Refs. 1–5.

In summary, we have developed a graphical technique
by which to study defect spin-wave �magnon� modes within
imperfect magnonic crystals. The technique may be espe-
cially useful in design of magnonic crystals for use in spin-
wave magnetic logic devices, such as those proposed in Ref.
23, in which a defect is created artificially to induce a phase
shift to propagating spin waves.
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