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Abstract 

In this paper a modelling study of the optical response of sinusoidally corrugated 

dielectric grating structures is presented. Both single and dual interface structures are 

investigated for the case of TM polarised light normally incident upon gratings oriented in the 

classical mount. In the case of the dual interface structures the optical response of the 

structure as a function of the phase difference between the corrugations on the two interfaces 

is investigated. The amplitudes and phases of the diffracted orders produced from a single 

interface dielectric grating are obtained, and the results of this analysis are then used to 

explain the results obtained for the dual interface structures. There are three main results from 

the analysis of the dual interface structures: the suppression of the transmitted diffracted 

orders when the corrugations on the two interfaces are conformal, a blazing effect when there 

is a phase difference between the corrugations on the two interfaces, and the possibility of 

having almost all of the incident energy distributed between the ±1 transmitted diffracted 

orders when the two corrugations are in anti-phase. 
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1. Introduction 

 Over recent years there has been a resurgence of interest in the optical response of 

structured metal surfaces while, to some measure, structured dielectrics have been 

overlooked. However, the optical response of textured dielectric surfaces has actually been a 

subject of interest for decades. Originally as a curiosity into the origin of diffraction, and more 

recently due to their many applications, large numbers of grating structures have been 

investigated, and many unexpected phenomena observed and explained. With the advent of 

increased computational power it has become possible to model the optical response of 

complex grating structures in order to more accurately design structures for specific 

applications, and to predict phenomena which may be subsequently investigated 

experimentally and utilized for new applications. This paper is such a model study and 

investigates the optical responses of both single and dual interface dielectric grating structures 

with, to the authors’ knowledge, several previously unobserved phenomena being predicted 

for the first time. 

In the first section of this paper, the optical properties of the simplest surface relief 

grating structure possible, that of the shallow dielectric grating in the classical mount with 

normally incident light, will be investigated. The analysis of non-blazed single interface 

dielectric structures appears to have been relatively ignored in the literature, presumably 

because the efficiencies of the diffracted orders are very small compared to those obtained 

from metallic gratings, therefore limiting their applications potential. The work which has 

been performed has tended to be based on developing computational methods to determine 

the efficiencies of the orders from such structures
1-3

. 

The efficiencies and phases of the zeroth and ±1 reflected and transmitted diffracted 

orders will be calculated for the case of TM polarised light normally incident from a lower 

index medium to a higher index medium, and from a higher index medium to a lower index 

medium. There are two main results from this analysis, which will be of use in the second 
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section of this paper. Firstly, the phase of the ±1 diffracted order (either reflected or 

transmitted) with respect to the incident light may be either 0° or 180° (when the order is real 

and propagating) and this depends upon whether the light is incident from the high index 

medium or the low index medium. Also, when both reflected and transmitted diffracted orders 

are evanescent their phase is the same as when both orders are real and propagating, and in 

the case where only one of the reflected or transmitted diffracted orders is evanescent the 

phases of the diffracted orders vary depending upon the frequency of the incident light.  

Secondly, when a diffracted order in the semi-infinite medium which has a lower refractive 

index becomes evanescent, the intensity of the corresponding diffracted order in the higher 

refractive index medium (which is still a real propagating diffracted order) becomes zero. 

Correspondingly when the diffracted order in the higher index medium becomes evanescent 

the magnitude of the amplitude coefficient of the evanescent diffracted order in the lower 

refractive index medium becomes zero. 

In the second section of the paper thin dielectric grating slabs, which are corrugated on 

both interfaces, are investigated. For dual interface structures, which are of major use in the 

communications industry, the majority of previous work has involved the behaviour of 

waveguide modes in the dielectric material of which the slab is made
4-7

.  Rather than 

investigate the waveguide modes of the system, in this paper the effect of the corrugated slab 

structure on the diffracted orders is investigated, which, though they are affected by the 

waveguide modes, predominantly depend upon the interaction of the diffracted orders from 

the two interfaces. Even though the focus of this paper will be on the diffracted orders the 

effects of the corrugations of the two interfaces on the waveguide modes will be evident in the 

numerical results, although these will not be commented upon. 

 From the analysis on these slab structures it will be shown that, if the two surfaces are 

corrugated conformally, the transmitted diffracted order fields are reduced to almost zero. 

However, if the phase of the lower interface grating is changed relative to the grating on the 
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top interface this is no longer the case, and the system behaves as if it is effectively blazed. 

Previous work has only considered this blazing effect on the waveguide modes
8,9

 and not on 

the diffraction efficiencies of the system. A further unexpected phenomenon occurs when the 

corrugations on the two surfaces are in anti-phase with each other, and under these conditions 

it is possible for almost all of the incident energy to be distributed equally between the ±1 

transmitted diffracted orders, with the intensity of the reflected and transmitted zeroth orders, 

and of the reflected diffracted orders being reduced to almost zero. 

 

2. Single Interface Dielectric Gratings 

 The efficiencies and phases of the orders from a single interface dielectric structure 

can be calculated using various methods. In this paper the two methods which will be used are 

the Iterative Series Solution (ISS) method
10,11

, and a differential method based upon a co-

ordinate transformation first developed by Chandezon
12,13

. Though the Chandezon method is 

more exact and flexible than is the ISS method (due to the fact that the ISS method is based 

upon the Rayleigh hypothesis and is only developed to calculate the optical response of single 

interface grating structures), the ISS method is useful since it allows the phase and magnitude 

of evanescent orders to be determined which will be of use later in this paper. A 400 nm pitch 

(λg), 25 nm amplitude, sinusoidal grating will be studied, with the two dielectrics on either 

side of the grating interface described as air and SiO2 (which is considered to be non-

absorbing). The frequency dependent dielectric function of the SiO2 is described by a 

polynomial fitted to experimentally determined values
14

: 

 

0   ,1085533.81002511.144561.1 23418 =×+×+= −− kn ωω  

 

  The efficiencies and phases of the zero and +1 orders for reflection and transmission 

for light incident from the air side of the interface are shown in figure 1, and for light incident 
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from the SiO2 side in figure 2. (The results for the -1 orders are the same as for the +1 orders 

since only normally incident light is being considered). 

It should be noted here that in both figures 1 and 2 the intensity of the orders is plotted 

for the case where the order is real and propagating, whereas the magnitude of the complex 

amplitude coefficient is plotted when it is evanescent. This means that in the case where the 

order is real and propagating the intensity falls to zero as the order becomes evanescent even 

though the magnitude of the complex amplitude coefficient does not. This is the cause of the 

suddenly discontinuous nature of the magnitude / intensity plots in these figures (for example 

at f ≈ 0.5 x 10
15 

Hz in figure 1(d)).  

There are three main regions in figures 1 and 2: above f ≈ 0.75 x 10
15 

Hz the diffracted 

orders in both the air and the silica are real propagating orders, between f ≈ 0.5 x 10
15

 Hz the 

diffracted order in the SiO2 is real and propagating, whereas in the air it is evanescent, and for 

below f ≈ 0.5 x 10
15

 Hz the diffracted orders in both the air and the SiO2 are evanescent.  

The approximate phases of the various orders for the case where all the orders are real 

and propagating (and, therefore, also when they are all evanescent) are shown in table 1. 

 Zeroth Order +1 Diffracted Order 

 Air / SiO2 SiO2 / Air Air / SiO2 SiO2 / Air 

Reflection 0 180 180 0 

Transmission 0 0 0 180 

 

Table 1 The phases of the zeroth and +1 reflected and transmitted orders from 

both Air / SiO2 and SiO2 / Air single interface diffraction gratings 

 

The origin of the differences in the phases can be seen by examination of the 

expressions used in the ISS method for the diffracted order amplitude coefficients. To first 

order these are, 
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for the +1 transmitted diffracted order, and  
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Eqn 2 

for the +1 reflected diffracted order. In these equations a is the amplitude of the grating, 1ε  is 

the dielectric function of the incident medium, 2ε is the dielectric function of the transmission 

medium, 0k is the wavevector of the incident light, gk is the grating vector ( gλπ /2= ), rγ and 

tγ are the wavevector components of the reflected and transmitted diffracted orders normal to 

the average plane of the grating, and )0(0

tpe is the amplitude coefficient for transmission 

through a planar dielectric interface given by Fresnel’s equations. The full iterative equations, 

as used in the numerical calculations contained within this paper, may be found in reference 

11.  

 Though table 1 shows the phases of the orders for the cases where both the reflected 

and transmitted orders have the same character, in the region where one of the orders is 

evanescent, and one real and propagating, the phases do not remain nearly constant, but rather 

vary by approximately ± 90° as a function of the frequency throughout this region. 

 An interesting phenomenon occurs in the intensity / magnitude of the amplitude 

coefficient when the orders become evanescent. In the case of the air / SiO2 interface, when 

the diffracted order in the air (the reflected diffracted order) becomes evanescent its amplitude 

coefficient does not become zero since evanescent fields still remain. However, the amplitude 

coefficient of the transmitted diffracted order in the SiO2 (which is still real and propagating) 

reduces to zero at this point before increasing again as the frequency is lowered further. 

Similarly, when the transmitted diffracted order becomes evanescent the amplitude coefficient 
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of the reflected diffracted order reduces to zero before increasing once more as the frequency 

is lowered further.  

 In figure 3 a series of field profiles for the air / SiO2 system for different frequencies is 

shown (obtained by using the numerical code based upon the method of Chandezon). The 

time averaged Hz component of the fields (the z direction is into the page) are plotted since 

the z component of the H-field is the only component existing for TM polarised light with the 

grating in this orientation. Since the time averaged fields are plotted the propagating fields are 

averaged out. This leaves the beating between the incident and reflected zeroth order, and also 

the diffracted orders which are still observed since they form a beating with the propagating 

zeroth and incident / reflected orders. 

 Initially the reflected fields will be considered, starting with figure 3(f). At this 

frequency (f = 0.9 x 10
15 

Hz) the reflected diffracted order is real and propagating, and the 

beating between the diffracted order and the incident and reflected zeroth orders is clear in the 

plot. When the frequency is reduced (figure 3(e), f = 0.75 x 10
15 

Hz), the diffracted order 

becomes evanescent. However, the magnitude of the amplitude coefficient does not reduce to 

zero, even though the intensity of the diffracted order does, and for this reason the fields due 

to the diffracted order are still present (although they decay exponentially away from the 

interface this is not clear in this figure since the decay length is very long). Below this 

frequency (figures 3 (d), (c), (b), and (a), f = 0.7, 0.6, 0.514, 0.4 x 10
15 

Hz) the reflected 

diffracted order remains evanescent and, as the frequency is reduced, the maximum 

magnitude of the evanescent diffracted order fields (at the surface) reduces (as would be 

expected from figure 1). It is also clear that the rate at which the evanescent order decays 

away from the surface increases. This is because the distance at which the evanescent orders 

have reduced to 1/e of their original value is proportional to rγ/1 , and as rγ becomes larger 

(more imaginary) with reducing frequency, this distance reduces. 
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 Similar behaviour is observed for the transmitted diffracted order, although in this case 

it is only the lowest frequency plot (figure 3 (a). f = 0.4 x 10
15 

Hz) where the order is 

evanescent. However, in figure 3(e) the magnitude of the fields are much lower than for the 

other plots. This is the point at which the reflected diffracted order becomes evanescent and 

the reduction in these transmitted fields confirms the results of figure 1 which showed that the 

transmitted diffracted order amplitude coefficient reduces to zero at this point. Similar results 

have also been obtained for a SiO2 / air interface with the only difference being that the 

behaviour of the diffracted orders is reversed due to the reversed refractive indices. 

 

3. Thin Corrugated Dielectric Slabs 

 In this section the optical response of thin corrugated dielectric slabs will be 

considered. Initially the case of a conformally corrugated slab will be discussed where the 

corrugations on the two interfaces are identical and in phase with each other. Following this, 

the case of the asymmetric slab, where the corrugations on the two interfaces have some 

phase difference between them, will be considered. Throughout this section the optical 

response of the diffracted orders will generally be considered in terms of interference between 

the diffracted orders created at the top and bottom interfaces. However, it must be noted that 

this is only an approximation since it neglects the multiple reflections within the dielectric 

slab, but is useful for understanding the processes involved. 

 

3.1 Conformal structure 

 The conformal system studied in this section is corrugated identically on both 

interfaces with a grating of pitch λg and amplitude a, has a thickness d, and phase difference 

between the corrugations of 0° (figure 4, but without the phase difference ∆φ). In all of the 

remaining work in this paper the gratings will have a λg of 400 nm and an amplitude of 25 nm 

unless otherwise stated. The refractive indices of the media are such that all the media are 
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considered as non-absorbing with the refractive index of the slab being described as SiO2 and 

that of the bounding media as air. Only TM polarised light normally incident upon the 

structure will be considered. The modelling throughout the rest of this paper has been 

obtained using the numerical modelling code based upon the method of Chandezon unless 

otherwise stated. 

The intensities of the reflected and transmitted zeroth orders, as well as the reflected 

and transmitted +1 orders, as a function of the thickness of the dielectric slab and of the 

frequency of the incident light are shown in figure 5.  

 There are two different types of feature evident in figure 5.  The sharp features (for 

example that which originates at f ≈ 0.75 x 10
15

 Hz for a slab thickness of zero) are the result 

of the waveguide modes in the system redistributing energy between the different propagating 

orders, and these will not be discussed any further in this paper. The broader modes which 

disperse to lower frequencies as the slab thickness is increased are a result of interference. For 

reflection, the light which is reflected from the first interface may interfere with the light 

reflected from the second interface, and this interference may be either constructive or 

destructive (depending upon the thickness of the slab). In reflection the condition for 

constructive interference to occur is that the light reflected from the bottom interface must be 

in phase with the light reflected from the top interface. Since (from table 1) the reflection 

from the top air / SiO2 interface is 180° out of phase with respect to the incident light, and that 

reflected from the bottom interface is in phase with respect to the incident light, a phase 

change due to propagation of the light in the slab is required for the two reflected zeroth 

orders from the two interfaces to be in phase with each other and interfere constructively. This 

occurs first when the slab thickness is a quarter of the internal wavelength, since the light 

reflected from the bottom interface will then have to traverse half of the internal wavelength 

before it exits the system (in other words ndNcf 4/= , where f is the frequency of the 

incident light, N is an integer, c is the speed of light, d is the slab thickness, and n  is the 
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refractive index. More generally we require )12(
4

+= N
nd

c
f ). The same condition is 

required for destructive interference between the light which is directly transmitted through 

the structure, and the light which is reflected from the bottom interface, then reflected by the 

top interface, before propagating through the bottom interface. It is destructive interference in 

this case since there is a 0° phase change with respect to the incident light for transmission 

through both interfaces, and a 180° phase change for the light reflected from the bottom 

interface and then reflected from the top interface due to its additional propagation length of 

twice the slab thickness. Therefore, these two contributions to the transmitted zeroth order are 

out of phase with each other resulting in destructive interference. 

These interference effects can also be observed in the reflected diffracted order plot, 

since the reflected diffracted orders created at the top interface may undergo interference with 

the reflected diffracted order created at the bottom interface in the same way as the reflected 

zeroth order (even though the phase changes upon diffraction for the two interfaces is the 

opposite to that of the zeroth order reflection the result is the same). However, these features 

will disperse differently with changing frequency, since they depend upon the incident angle 

of the diffracted order upon the bottom interface which will define the distance it traverses 

within the dielectric slab before exiting the system. Therefore, the slab thickness at which 

constructive interference may occur is different to that for the zeroth orders (particularly 

noticeable close to the critical edge), which are always propagating normal to the average 

plane of the surface. 

The transmitted diffracted order is slightly different. In this case interference may 

occur between the transmitted diffracted order created at the top interface, and that created at 

the bottom interface. From table 1, the transmitted diffracted order created at the top interface 

is in phase with the incident light, whereas that created at the bottom interface is 180° out of 

phase with the incident light. Therefore, destructive interference will occur for a very thin slab 
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resulting in almost no intensity in the transmitted diffracted orders. The condition for 

constructive interference to occur is that the light diffracted at the top interface must travel 

half the wavelength of the internal light further than the light diffracted at the bottom 

interface. However, the only difference in the distance travelled by the two orders is due to 

the diffraction angle for the light diffracted at the top interface. Therefore, constructive 

interference can only occur when the diffraction angle at the top interface is very large, or 

when the frequency is very high (for a slab of thickness of the order investigated here). Of 

course, the phase difference between the light diffracted at the top interface and that diffracted 

at the bottom interface will change continuously as the slab thickness is increased and 

therefore there will be increasing diffraction from the system when this is the case. This can 

be clearly seen in figure 6, in which the time averaged fields for the system for incident light 

of frequency 1 x 10
15

 Hz for various slab thickness are plotted. 

 The analysis presented above is only for the region in which the diffracted orders are 

real and propagating. The other two possibilities; the case where diffraction in the SiO2 slab is 

real and propagating, but the diffracted order in the air is evanescent, and the case where the 

diffracted order in both media are evanescent will now be considered. In figure 7 the field 

distributions for these two cases are shown for a slab of thickness 60 nm. 

 It is clear from figure 7(b) that when both diffractive orders are evanescent there are 

no transmitted diffracted fields, whereas when the transmitted diffracted order is real and 

propagating in the SiO2 only (figure 7(a)) there is an evanescently decaying transmitted field. 

The same analysis method used previously (considering the two diffraction processes from 

the two interfaces individually and seeing how they interfere with each other) can be used to 

explain this. By using the ISS method used in the previous section and considering the two 

processes as: 1) the light is diffracted at the top interface and then transmitted through the 

bottom interface, and 2) the light is transmitted through the top interface and then diffracted 

by the bottom interface, the total transmitted diffracted order amplitude coefficient can be 
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obtained. For the 1
st
 process the real and imaginary parts of the amplitude coefficient for the 

transmitted diffracted order created from the top interface, and also for light incident upon the 

bottom interface with kx = kg (since the light is normally incident this will be the wavevector 

of the +1diffracted order for any frequency) are calculated. By combining these two results 

the total +1 diffracted field in the exit medium due to the two interfaces for light diffracted 

from the top interface can be obtained. The transmitted diffracted order fields due to 

diffraction from the bottom interface can also be calculated in a similar way, except that the 

zeroth order amplitude coefficient for light propagating through the top interface is calculated 

and combined with the amplitude coefficient for the diffracted order created at the bottom 

interface. These two results are then combined to give the total diffracted order fields for the 

two interface system, ignoring multiple reflections within the dielectric slab, and assuming 

that the slab thickness is zero since no account of the phase change due to propagation of the 

diffracted order within the slab thickness is incorporated within the model. The results of this 

are shown in figure 8.  

 It is clear from figure 8(c) that there are no transmitted diffracted order fields when the 

diffracted orders in the two media are real and propagating, and also when they are both 

evanescent. However, in the middle region, where the diffracted order is real and propagating 

in the SiO2 only, evanescent diffraction in the exit medium of the system is evident. This 

result agrees with the results of the field distributions shown in figure 7. It is also evident that 

the lack of diffracted fields when the diffracted orders are both real and propagating, or both 

evanescent, is due to the fact that in these regions the phases of the two diffraction processes 

are approximately 180° out of phase with each other. This is not the case in the region where 

only the diffraction in the SiO2 is real and propagating, and therefore transmitted diffracted 

order fields are observed.  
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3.2 Non-conformal structure 

 Having discussed the thin dielectric slab in a conformal geometry the case where the 

two gratings have identical modulations, but where the bottom corrugation is phase shifted 

with respect to the corrugation on the top interface, will now be considered. The system is 

shown in figure 4. 

 When the optical response of this structure is investigated both the +1 and –1 

diffracted orders in reflection and transmission must be considered since the phase shift of the 

lower interface with respect to the top interface has broken the symmetry of the system. The 

optical response of a 60nm thick slab as a function of the phase difference between the 

corrugations on the top and bottom surfaces, and of the frequency of the incident light, is 

shown in figure 9. The grating parameters describing the two corrugations are the same as for 

the previously studied structures. 

 

3.2.1 Antiphase grating 

 Initially the optical response when the two corrugations are in anti-phase will be 

considered. (When this is the case the structure is symmetric and the +1 and –1 diffracted 

orders will therefore be identical). The diffracted order intensities as a function of frequency 

for this case are shown in figure 10 (taken from figure 9) 

 It is clear that there is a very peculiar phenomenon occurring for this structure. For 

high frequencies almost all of the energy of the incident light is being transferred in to the ±1 

transmitted diffracted orders. The fact that the reflected zeroth and diffracted orders are very 

weak is no surprise since this will, in general, be the case from a dielectric grating structure. 

However, the reflected diffracted order is even smaller than would be expected when 

compared to those of the conformal case. Also, the reduction of the transmitted zeroth order to 

near zero intensity is somewhat unexpected. 
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 Previously, the way in which the transmitted diffracted fields created from the top and 

bottom interfaces of a conformally modulated thin dielectric slab were out of phase with each 

other was discussed, and that due to this phase difference the total transmitted diffracted field 

from the structure was near zero (depending upon the slab thickness). When the two gratings 

are in anti-phase the diffracted orders created from the bottom surface are 180° out of phase 

as compared with those in a conformal geometry. This is because the position of the fields in 

the x-direction (parallel to the grating vector kg) of a diffracted order are ‘locked’ relative to 

the corrugation from which it originates such that the maxima and minima will always occur 

at the same position at the grating surface. In fact, this may be somewhat altered when there 

are two diffracting surfaces close to each other but is, in general, true. If the phase of the 

bottom corrugation is then altered with respect to the corrugation on the top interface this 

causes the phase of the diffracted orders created at the bottom interface with respect to the 

incident light to alter by the same amount as the phase difference between the corrugations. 

Thus, if the two corrugations are in anti-phase the diffracted orders created at the bottom 

interface will be 180° out of phase with those created at the bottom interface of the 

conformally corrugated structure. 

 For the reflected diffracted order in a conformal geometry, for the slab thickness 

considered here, the diffracted orders created from the two interfaces interfere constructively. 

For the anti-phase structure the opposite is true, and the diffracted orders created at the top 

and bottom interfaces cancel each other reducing the total reflected diffracted order fields 

from the system. The zeroth order reflected light is unaffected by the change in phase of the 

bottom surface corrugation but, since the zeroth order reflection is always going to be small 

(away from any possible waveguide modes of the system) the majority of the energy will be 

contained within the transmitted orders. 

 By the same arguments above, the transmitted diffracted order created at the bottom 

interface is also changed in phase by 180° when compared to that created at the bottom 
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surface for the conformally corrugated system. For the conformally modulated system the 

transmitted diffracted order fields from the top and bottom surfaces cancel, whereas for the 

anti-phase structure they interfere constructively. 

 It is interesting to consider the effect of the slab thickness, and of the grating 

amplitude, for an anti-phase grating in order to determine whether this property of almost all 

of the incident energy being transferred to the transmitted diffracted orders is a general 

property of anti-phase corrugated thin dielectric slabs, or whether it only happens to occur for 

the parameters investigated here. Therefore, the intensities of the various orders from the 

system as a function of frequency and slab thickness (figure 11), and also of the transmitted 

orders as a function of frequency and grating amplitude for a 150 nm thick dielectric slab 

(defined as the distance between the average planes of the gratings on the two interfaces) 

(figure 12) have been modelled.  

 Firstly, it is clear from figure 11 that the slab thickness has relatively little effect on 

the intensity of the transmitted diffracted order, except for a small periodicity as a function of 

slab thickness. This is caused by an increased propagation length within the dielectric slab.  

Therefore, this phenomenon seems to be relatively independent of the thickness of the grating 

slab. 

 However, the real key to the origin of the large transmitted diffracted order intenities 

is figure 12. The periodic nature of the diffraction efficiency into the ±1 orders is clear from 

this figure, and it is well known that the diffraction efficiency from a single interface grating 

is also periodic. As stated previously the vast majority of the energy will be contained within 

the transmitted orders, and the two channels for each of the diffracted orders are in phase with 

each other due to the 180° phase difference between the corrugations on either side of the 

structure, whilst the two channels resulting in the transmitted zeroth order (from direct 

propagation through the interfaces and from diffracted orders from the first interface being 

diffracted back into the zeroth order at the second interface) will be out of phase. All that is 
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required for the effect described here is for the diffraction efficiency to be such that the two 

channels contributing to the zeroth transmitted order cancel to near zero, which will 

automatically result in a maximum in the ±1 diffracted orders. Since the reflected zeroth order 

is bound to be small, and the reflected ±1 orders are also small because they are the result of 

the cancellation of two out of phase diffraction processes, the ±1 transmitted diffracted orders 

will each contain approximately 50% of the incident energy. 

 

3.2.2   Arbitrary phase grating 

 The case where the phase of the bottom surface corrugation is out of phase with the 

top surface corrugation by some angle ∆φ will now be considered. From figure 9 it is clear 

that, for a particular frequency and ∆φ, the intensity of the +1 and –1 reflected diffracted 

orders are different, even though the light is normally incident upon the structure. Therefore, 

the structure exhibits the same type of behaviour as a blazed grating. However, the 

transmitted diffracted order intensities for the +1 and –1 orders are almost the same, which 

would not be expected from a blazed grating structure. This is shown in figure 13. 

 Using the simple ray model for the diffraction properties of these two interface 

systems with no multiple reflections within the dielectric slab this phenomenon may be 

understood. The contributing phase changes of the transmitted and reflected diffracted orders 

created at the top and bottom surfaces are shown in table 2. 

 

 Diffraction From +1 −−−−1 

Reflected Top Surface tφ  
tφ  

 Bottom Surface udb

11 ++ ∆+∆+ φφφ  
udb

11 −− ∆+∆+ φφφ  

Transmitted Top Surface dt

1+∆+ φφ  dt

1−∆+ φφ  
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 Bottom Surface db φφ ∆++1  db φφ ∆+−1  

 

Table 2: The phase effects which need to be considered when determining the total ±1 reflected and transmitted 

diffracted order fields from a thin corrugated dielectric slab (ignoring multiple reflections). 

 

 In table 2 the following notation has been used. If there is any difference in the phase 

between the +1 and –1 diffracted orders then the diffracted order has been added as a 

subscript. The t superscript denotes diffraction from the top surface, the b superscript denotes 

diffraction from the bottom surface, and the u and d superscripts denote any phase change due 

to propagation in the dielectric slab in the upward and downward going directions. 

 Firstly, the transmitted diffracted orders will be considered. The only terms which are 

different for the +1 and –1 transmitted diffracted orders are the b

1±φ  and d

1±φ terms. The b

1+φ and 

b

1−φ terms are in fact ±∆φ (the phase difference between the corrugations on the two 

interfaces). Since these must be symmetric about 0°, and for this situation tφ = 0° (table 1) 

they are also symmetric about tφ . Therefore, when the top and bottom diffraction processes 

are combined to give the total transmitted diffracted order, the b

1±φ  terms will not cause any 

difference between the ±1 orders. Similarly, the d

1±φ  terms are approximately symmetric about 

dφ and will also have no effect upon the total transmitted diffracted field. Therefore, since 

both b

1±φ and d

1±φ  are symmetric about terms occurring in the other diffraction process it would 

be expected that the +1 and –1 transmitted diffracted order intensities would be very similar 

even for a non-symmetric grating system.  

Unlike the transmission case, in reflection the terms occurring in the bottom surface 

corrugation diffraction process which are different for the ±1 diffracted orders ( b

1±φ and u

1±φ ) 

are not symmetric about terms occurring in the top surface corrugation diffraction process. In 
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this case the b

1±φ  terms are symmetric about tφ (as in the transmission case) but the u

1±φ  terms 

are not, and this results in a different phase difference between the top and bottom surface 

diffraction processes for the +1 and –1 reflected diffracted orders, and thus a blazing effect 

results. Also, since this difference is a result of the propagation of the light in the dielectric 

slab for the bottom surface diffraction process, it would be expected that it would be 

frequency dependent. This agrees with the results given in figure 9. 

 

4. Conclusions 

In this paper an investigation into the optical response of single and dual interface 

sinusoidally corrugated dielectric structures has been presented. In the first section the zeroth 

and ±1 diffracted order intensities / magnitudes and phases for the diffracted orders has been 

described. It was found that when either the reflected or transmitted diffracted order becomes 

evanescent the amplitude coefficient of the other diffracted order reduces to zero even though 

the amplitude coefficient of the diffracted order which has become evanescent still has some 

magnitude. It has also been shown that the phase of the diffracted orders depend upon 

whether the light is incident from the air side of the structure, or the SiO2 side of the structure. 

In the second section the results obtained on single interface structures have been used 

to explain results obtained from thin dielectric slabs corrugated on both interfaces. There were 

three main results from this investigation: 1) That there is virtually no transmitted diffracted 

order from a conformally corrugated structure, 2) Almost all of the incident energy may be 

equally distributed between the ±1 transmitted diffracted orders when the corrugations on the 

two interfaces are in anti-phase, and 3) An effective blazing effect occurs in the reflected 

diffracted orders when there is a phase difference between the two corrugations which is 

neither 0° or 180°. 
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Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 The optical response of a 400 nm pitch, 25 nm amplitude, sinusoidally corrugated air / SiO2 grating 

interface for TM polarised normally incident light. The four orders presented are: a) the zeroth reflected, b) the 

zeroth transmitted, c) the +1 reflected diffracted, and d) the +1 transmitted diffracted. When the order is real and 

propagating the intensity of the order is shown, whereas when it is evanescent the magnitude ( 22 )Im()Re( pp rr ++++ ) 

is shown. 
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Figure 2 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 The optical response of a SiO2 / Air grating interface, with the same parameters as for the air / SiO2 

interface considered in figure 1. The four orders presented are: a) the zeroth reflected, b) the zeroth transmitted, 

c) the +1 reflected diffracted, and d) the +1 transmitted diffracted 
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Figure 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Time averaged Hz component of the fields for the air / SiO2 interface used for figure 1 for six different 

frequencies: a) f = 0.4 x 10
15 

Hz, b) f = 0.514 x 10
15 

Hz, c) f = 0.6 x 10
1 5 

Hz, d) f = 0.7 x 10
15 

Hz, e) f = 0.75 x 

10
15 

Hz, and f) f = 0.9 x 10
15 

Hz. 
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Figure 4 

 

 

 

 

 

 

 

 

Figure 4.  A schematic of the system under consideration 
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Figure 5 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 The optical response of a conformally corrugated thin SiO2 slab, with air as the bounding media (λg = 

400 nm, a = 25 nm), as a function of the frequency of incident TM polarised light and of the slab thickness. a) 

the zeroth order reflectivity, b) the zeroth order transmisivitty, c) the +1 order reflectivity, and d) the +1 order 

transmissivity. 
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Figure 6 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Time averaged Hz component of the fields for the system considered in figure 5 for  f = 1.0 x 10
15 

Hz 

with different slab thickness. a) d = 25 nm, b) d = 75 nm, c) d = 150 nm, and d) d = 300 nm.  
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Figure 7 

 

 

 

 

 

 

 

Figure 7 Time averaged Hz component of the fields for the system considered in figure 5 for a slab thickness of 

60nm. a)  f = 0.732 x 10
15

 Hz (diffractive in SiO2 only), and b) f = 0.492 x 10
15 

Hz (non-diffractive in both 

media). 
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Figure 8 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 The magnitude and phase of the amplitude coefficient for the system considered in figure 7 obtained 

using the ISS method by considering the two diffraction processes separately (as described in the text), for a) 

diffraction from the top interface, b) diffraction from the bottom interface, and c) the total transmitted fields for 

the system obtained by combining a) and b). 
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Figure 9 

 

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 The optical response of a 60nm thick dielectric slab corrugated on both surfaces with gratings of λg = 

400 nm, and amplitude of 25 nm, as a function of the phase between the corrugations on the two interfaces, and 

of the frequency of the incident light. a) the reflected zeroth order, b) the transmitted zeroth order, c) the 

reflected +1 diffracted order, d) the transmitted +1 diffracted order, e) the reflected –1 diffracted order, and f) the 

transmitted –1 diffracted order. 
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Figure 10 

Figure 10 The intensities of the zeroth reflected and transmitted orders, and of the transmitted and reflected ± 

diffracted orders for a 60 nm thick dielectric slab corrugated on both surfaces with antisymmetric sinusoidal 

corrugations on each surface of 400 nm pitch and 25 nm amplitude. 
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Figure 11 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 The intensities of the various orders from the anti-phase dual interface system considered in figure 

10as a function of frequency and slab thickness. a) the zeroth order reflected, b) the zeroth order transmitted, c) 

the +1 diffracted reflected, and d) the +1 diffracted transmitted. 
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Figure 12 

 

 

 

 

 

 

Figure 12 The intensities of the transmitted orders for the system considered in figure 10 as a function of 

frequency and grating amplitude for a 150 nm thick dielectric slab. a) the zeroth order, and b) the +1 diffracted 

order. 
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Figure 13 

 

 

 

 

 

 

Figure 13 The intensities as a function of frequency for a two interface corrugated system of thickness 60nm, 

amplitude 25 nm, and phase difference between the two corrugations of 90°. a) the reflected ±1 diffracted orders, 

and b)  the transmitted ±1 diffracted orders. 
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