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The interaction of aJ-aggregate and surface plasmon polariton modes of a subwavelength hole array have
been studied in detail. By measuring the effects of hole array period, angular dispersion and concentration of
theJ-aggregate on the transmission of the array, the existence of a strong coupling regime is demonstrated with
a Rabi splitting of 250 meV. This large splitting is explained not only by the high oscillator strength of the dye
but also by the high local field amplitudes generated by surface plasmons of the metallic structure.
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I. INTRODUCTION

The ability to texture metals down to the nanoscale has
opened new perspectives in the field of photonics.1 In order
to create new miniaturized devices, surface plasmon-based
photonics or plasmonics take advantage of the particular be-
haviour of the bound waves that exist at the surface of nano-
structured metals such as surface plasmon-polaritonssSPPsd.
Metallic films periodically milled with subwavelength holes
are an example of such a device where coupling of light to
SPPs enhances the optical transmission by orders of magni-
tudessee, for example, Refs. 2–6d. Beyond their fundamental
interest, subwavelength hole arrays are increasingly being
used for spectroscopic and sensor applicationsssee, for ex-
ample, Refs. 7–10d. In such cases, it is important to under-
stand the details of the interaction between the molecules and
the SPPs sustained by the hole arrays. Both the properties of
molecules and those of the SPPs can be strongly affected by
each other. For instance, molecular fluorescence is modified
by proximity to a metal surface11–13and the surface plasmon-
polariton dispersion curves of flat metallic films are changed
by the presence of molecular absorption transitions.14,15

For those reasons, we have studied in detail the interac-
tion of dye molecules with the SPPs of subwavelength hole
arrays. In the process we have found that, under certain con-
ditions, a strong coupling regime between the dye and SPP
modes can be observed as reported in this article. Strong
coupling has been the subject of much research in atomic
and solid state physics16–20 and has been studied more re-
cently with molecular excitons.21–23 The coupling between
the photonic mode and the electronic transition in these sys-
tems is such that new mixed states, termed cavity polaritons,
are formed. The system response is then to oscillate in time
between the two statessempty cavity with excited dye and
cavity photon with relaxed dye statesd, illustrating the peri-
odical exchange of photon energy between the coupled
modes. The period of these so-called Rabi oscillations have
to be shorter than the lifetime of the two states for the system
to be in the oscillatory regime. Typical evidence of the strong
coupling regimesin the static domaind is the anticrossing
behavior in the dispersion curve of the photon mode at the
exciton energy where otherwise the uncoupled modes would
have crossed.

In the present case, the role of the cavity or waveguide
mode is played by the hole array SPP modes and the exciton
is a J-aggregate that has proven to be well suited for strong
coupling studies.22

II. SAMPLE FABRICATION

The samples used in this work were prepared as follows.
A quartz substrate was coated with a 270 nm thick Ag film
after which the hole array was milled with a focused ion
beamsFEI Dual Strata 235d; see Fig. 1. A range of samples
were made with different hole periods between 290 nm and
450 nm, the hole period to diameter ratio being kept at 2.5
whilst the period was varied. A 300 nm thick polyvinyl al-
cohol sPVAd film, both with and without theJ-aggregate
s2,28-dimethyl-8-phenyl-5,6,58 ,68-dibenzothiacarbocyanine
chloride from Hayashibara Biochemical Laboratories, Inc.d
was then spin-coated on the samples. The typical concentra-
tion of the J-aggregate in the dry PVA was 0.5 moles per
dm3.

III. RESULTS AND DISCUSSION

Subwavelength hole arrays in optically thick metal films,
as shown in Fig. 1, are characterized by transmission peaks
with transmittivity far greater than expected for such small
apertures. The enhanced transmission is due to the coupling

FIG. 1. Scanning electron image of a typical hole array milled in
a silver film sthickness=370 nm; period=380 nm; diameter
=150 nmd.
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of light to surface plasmon-polariton modes resulting in large
field amplitudes at the surface which compensate for the oth-
erwise inefficient tunneling process through the apertures.
This event occurs whenever the energy and in-plane momen-
tum of light and the SPP mode are identical. SPPs possess
more momentum than freely propagating light, thus the
matching conditions are provided by the Bragg scattering
induced by the periodicity of the structure as described by
the following equation:3

ukSP
Wu = uki

W + iGx
W + jGy

Wu, s1d

wherekSP is the surface plasmon-polariton wave vector,ki is
the inplane wave vector component of the incident light,Gx
andGy are the reciprocal lattice vectorssuGxu= uGyu=2p /P, P
being the period of the arrayd, and i, j are integers.

For a square array at normal incidence, it can be shown
that the peak positions are then given in a first approximation
by the following equation:

lmax
Îsi2 + j2d = PÎ «1 · «2

«1 + «2
, s2d

where«1 and«2 are the dielectric constant of the metal and
the dielectric media, respectively. Each set of indicessi , jd is
therefore associated with a peak in the transmission spectrum
as shown in Fig. 2. Note that SPP modes appear at both
metal/dielectric interfaces of the film and that these are nor-
mally offset due to the difference in refractive index of the
two dielectric media. The small refractive index contrast be-
tween the quartz substrates1.46d and the PVAsca. 1.52d
coating used here results in the appearance of a single set of
peaks.

The J-aggregate is characterized by a strong and sharp
absorption peak at 693 nms1.78 eVd also shown in Fig. 2.
When it is present at high concentrations in the PVA film on
top of the hole array, the transmission spectrum of the latter
at normal incidence changes dramatically, as illustrated in
Fig. 3. As can be seen, the original peak is split into two

peaks whose positions depend on the SPP mode energy rela-
tive to that of the exciton. We must emphasize here that this
gap does not result simply from the damping of the transmit-
ted light by absorption due to the molecules; similar results
are observed whether or not absorption is taken into account
in plotting the transmission spectra.sFor clarity the data pre-
sented here were not corrected.d

To fully analyze the interaction between the molecules
and the SPP modes, it is instructive to vary in a systematic
way the energy of the SPP mode relative to the dispersion-
less exciton band. In this way, we can probe the response of
the system when the two modes are brought into resonance.
By virtue of Eq.s1d, the resonance and therefore the strong
coupling can be studied by either varying the period of the
hole array or the angle of incidence of the incoming light on
the sample. These two methods provide complementary evi-
dence of the strong coupling regime, as shown next.

A. Dependence of normal incidence transmission spectra
on hole period

Figure 3 shows the splitting of thes1,0d SPP peak in the
presence of theJ-aggregate. In Fig. 4 the peak positions are
plotted for a wide range of array periodssbetween 290 nm
and 450 nmd, and show the typical signature of strong cou-
pling: anticrossing. As can be seen, the original dispersion
curve of thes1,0d SPP modesin whited undergoes anticross-
ing around the exciton energy. The resonance, characterized
by a minimum splitting energy difference, occurs for a pe-
riod of 380 nm. This is slightly lower than the 400 nm indi-
cated by the undoped samples spectra, and is probably due to
the presence of thes1,0d mode at the quartz interface; this
mode induces a slight blue shift of the apparents1,0d peak
compared to a truly symmetric structurestwo PVA/silver in-
terfacesd. In other words, only thes1,0d mode on PVA side is
affected by the close proximity of theJ-aggregate. It should

FIG. 2. Normal incidence transmission spectrum of a silver hole
array speriod=380 nmd covered with a 300-nm-thick PVA film
sblackd, and absorption spectrum of a PVA film doped with the
cyanine dyessdashed gray lined. Markers indicate the wavelengths
of the different SPP modes estimated from Eq.s1d and identified by
the indicessi , jd. FIG. 3. Normal incidence transmission spectra of a hole array

sP=380 nmd covered with undoped PVAsdotted lined and with
J-aggregate doped PVAssolid lined. The vertical line at 693 nm
indicates the peak of theJ-aggregate absorption band.
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also be noted that equal or similar linewidths and intensities
of the two peaks are not observed exactly on resonancesP
=380 nmd but for a slightly positive energy detuning, as a
consequence of the asymmetric inhomogeously broadened
J-aggregate absorption.24,25

The corresponding Rabi splitting measured on resonance
sroughly 250 meVd is in good agreement with the results
obtained with similar dyes in Fabry-Pérot microcavities.22,23

The calculated lifetime of the hybrid polariton from this
width s,3 fsd is indeed shorter than the lifetime of the un-
coupled statesson the order of 10 fs for SPP26,27 and on the
order of ps forJ-aggregates28d.

FIG. 5. sColord SPP dispersion curves, for a silver/PVAsblack
dottedd and silver/J-aggregate doped PVA interfacesblue curvesd.
These plots were done using Eqs.s1d ands2d; the dielectric constant
of silver was taken from Ref. 29 and that of the dye was estimated
from a simple Drude-Lorentz model using its known absorption
properties. The periodP, used for these calculations, was chosen
such that thes1,0d modes of the PVA/silver interface cross the dis-
persionless exciton bandsred lined at normal incidence.

FIG. 6. sColord Measured transmittance ofp-polarized light as a function of angle of incidence and photon energy for different hole
arrays with period 330sad, 380 sbd, and 430scd nm. The data are presented using a grey-intensity scaleswhite stands for high transmission
while black for low transmissiond. White dotted lines represent the theoretical dispersion curves of the SPP mode propagating at the
PVA/silver interface in the absence of dye; the blue and red curves are only guides for the eye to show the two upper and lower polariton
branchessUB and LBd. Note that the data were mainly collected for positive angles and the symmetrical representation is only used for
clarity.

FIG. 4. sColord Energy dispersion curves for undoped samples
swhited and J-aggregate doped samplessred and blued determined
by varying the period of the hole arrays. The blue and red dots
correspond to the two peaks shown in Fig. 3 with an extended range
of period sfrom 290 to 450 nmd, and the red dashed line to the
exciton absorption energy.
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B. Angle dependence of transmission spectra

Using Eq.s1d, one can calculate the SPP dispersion curves
of the hole arrays in the presence of the excitonbut in the
absence of strong coupling. For instance, Fig. 5 shows the
results of such a calculation where the exciton is at resonance
with the s1,0d SPP mode at normal incidence. The wiggle at
the exciton energy is due to the dispersion of the dielectric
constant induced around the exciton absorption, something
we estimated using the Drude-Lorentz model. When the dye
concentration is sufficiently high in the PVA film on the hole
array, the experimentally derived dispersion curves are very
different from such predictions and reveal the expected anti-
crossing due to strong coupling as can be seen in Fig. 6. Data
are shown for 3 different array periods chosen to be nega-
tively detuned, positively detuned and on resonance relative
to the exciton energy at normal incidence. Superimposed on
these experimental data are the calculated dispersion curves
of the SPP modes on the PVA side of the hole arraysfor
clarity in the absence of theJ-aggregated. The colored
dashed lines are schematic dispersion curves as a guide to the
eyes of the changes induced by the strong coupling.

All the experimental dispersion curves shown in Fig. 6
show the opening of a gap at the exciton energy and the
resulting band splitting and bending. The two lower polariton
branchessLB 11 and LB 21d, originating from the modes
s11,0d and s21,0d, are clearly observed below the
J-aggregate band which is centered around 1.78 eV. In the
transmission spectra they appear as a couple of separated
diverging peaks whose progression toward high energies is
blocked by the exciton band. As a consequence the lower
branches are progressively flattened as the period is reduced
owing to this band being closer to the exciton energy, as can
be seen by comparing the curvature of the LBs with decreas-
ing period in Fig. 6. In the case of the two upper polariton
branchessUB 11 and UB21d, the situation is complicated
by the nearby presence of other modes such as the SPPs1,1d
modes and in-plane interference phenomena of the various
SPP modesswhich is beyond the scope of this articled. The
splitting between upper and lower polariton branches, on
resonance, is again ca. 250 meV as expected from the results
of Fig. 4.

C. Dependence of the splitting on concentration

As a final evidence of strong coupling, we measured the
dependence of the Rabi splitting energy with the exciton
density by varying theJ-aggregate concentrations in the PVA

films. The splitting energy is expected to vary as the square
root of the absorbance, which itself is the product of the film
thickness, the concentration and the intrinsic absorption
cross-section of theJ-aggregate. The results plotted in Fig. 7
show very good agreement with the predicted square root
dependence which has also been been observed in the case of
dyes in microcavities.21,23

The above evidence indicates that dye molecules such as
J-aggregates can undergo strong coupling with the surface
plasmon-polariton modes supported by the subwavelength
hole arrays. At appropriate frequencies these modes are
standing waves on the surface of the array and may thus act
in a similar fashion to the cavity in strong coupling experi-
ments involving microcavities. Despite their lowQ factor
sca. 10d, strong coupling is still observed because of the very
large oscillator strength of the dye and the fact that the SPPs
are associated with enhanced electric fields in the immediate
vicinity of the surface where the dye is located.23 This com-
bination also results in the large Rabi splittings250 meVd. In
general, surface plasmon-polaritons which can confine the
electromagnetic energy in very small volumes, should be
very favorable to strong coupling.30 It is possible that peri-
odic metal gratings also allow the observation of strong cou-
pling. Therefore, the possibility of such interactions must be
considered when studying molecule-surface plasmon-
polariton phenomena in nanostructured systems.
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