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Abstract

A thin metal film with corrugations on both surfaces is shown to couple visible photons to both
the long range surface plasmon polariton (LRSPP) and the short range surface plasmon
polariton (SRSPP). It is found that the first harmonic component of the grating shape causes a
significant band gap (an anti-crossing) where the LRSPP and the SRSPP should cross.
Experimental data are compared with model calculations using a multilayer, multishape
differential grating theory. In addition, to clarify the nature of the modes, the time averaged
magnetic field distributions and instantaneous electric field profiles are explored, specifically at

the anti-crossings of the first-order modes.
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1. Introduction

A surface plasmon polariton (SPP) is a fundamental
electromagnetic excitation which may exist at the interface
between a metal and a dielectric [1]. On a flat metal surface,
an SPP mode cannot be directly excited by incident radiation
because the dispersion curve of the SPP is outside the light
cone (the in-plane momentum is greater than that available
for a grazing photon in the adjacent dielectric). In order
to optically excite the SPP mode, the in-plane momentum
of the incident radiation must be suitably increased. This
momentum enhancement may generally be achieved by using a
coupling prism as in the Otto [2] or Kretschmann—Raether [3]
geometry, or employing a surface relief grating [4-6]. In
the case of grating coupling, the wavevector of the incident
light is changed by the addition or subtraction of integer
multiples of the grating wavevector via diffraction, making
direct coupling between the SPP and radiation possible. For a
sufficiently thick (optically opaque) metal film there is only one
SPP mode, described as the single interface SPP (SISPP) [7].
However, for thinner metal layers (<100 nm) bounded by
dielectrics with identical dielectric functions, the SISPPs on
the two interfaces are degenerate and will interfere with one
another to form two coupled SPPs, described as the long
range SPP (LRSPP) and the short range SPP (SRSPP). Thus
at the same in-plane momentum two coupled SPP modes of
different frequencies will be formed which are distinguished
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by having different surface charge density distributions. The
higher frequency LRSPP mode has an asymmetric charge
distribution between the top and bottom surfaces with the
electric field predominantly normal to the surface inside the
metal. Conversely, the lower frequency SRSPP has a charge
distribution which is symmetric between the top and bottom
surfaces with the electric field essentially parallel to the
surface. Over the last 30 years, resonant coupling of incident
photons to LRSPP and SRSPP modes on both planar thin
metal films [8—12] and corrugated thin metal films [13, 14]
has been the subject of several studies. Excitement in this
area of optical research was rekindled by the observation of
substantially enhanced optical transmission through metallic
films with a periodic array of subwavelength size holes by
Ebbesen and co-workers [15-17]. They found unexpectedly
high transmission peaks in their spectra, which may arise due
to the excitation of surface plasmons on either side of the metal
film [15, 16]. This suggests that coupled SPP modes on this
type of structure may be important. Surprisingly there are
rather few detailed experimental studies of simple corrugated
thin metal films. Recently, Hooper et al [18] modelled coupled
SPPs on thin metal slabs corrugated on both surfaces, where
the corrugations on each side had the same pitch, 400 nm, a
fundamental harmonic (ky) amplitude of 10 nm, and a small
first harmonic (2kg) component of 5 nm (this was 90° out
of phase with the k, component). They reported a rather
interesting evolution of the SISPP as the metal film was made

© 2008 IOP Publishing Ltd  Printed in the UK


http://dx.doi.org/10.1088/1464-4258/10/01/015007
mailto:J.R.Sambles@exeter.ac.uk
http://stacks.iop.org/JOptA/10/015007

J. Opt. A: Pure Appl. Opt. 10 (2008) 015007

Z Chen et al

Incident Beam

Reflected Beam

Silica Prism
(1% prism)

Matching Fluid

Silver

——— Matching Fluid

Silica Prism
(2" prism)

Transmitted Beam

Figure 1. Schematic diagram illustrating the sample, coordinate system, and experimental geometry used in this work. Here A, is the grating

pitch, 7 is the thickness of the silver layer, and 6 is the polar angle.

thinner, with the band gap formed from the two standing wave
SISPPs apparently moving away from the Brillouin zone centre
and becoming an anti-crossing between the SRSPP and LRSPP
modes. They noted that the LRSPP and SRSPP evolve directly
from the high energy and low energy branches of the SISPP
band gap modes.

In this study we investigate the SPP resonances of a free-
standing thin silver film with identical corrugations on both
sides.

2. Experiments and discussion

The geometry of the thin silver grating and associated
coordinate system used in this study is shown in figure 1. In
our experiments and modelling, we only consider the case
for transverse magnetic (TM) polarized radiation incident at
the fixed azimuth angle of ¢ = 0° (grating grooves oriented
perpendicular to the plane of incidence). The experimental
sample is prepared by first depositing by thermal evaporation
a 27 nm silver film onto a silica grating formed by optical
lithography such that it contains a 2k, component in addition
to the fundamental k, component with a pitch of 1, = 335 nm.
This structure is then converted into an optically symmetric
system by the use of index matching fluid to couple two
silica prisms symmetrically to the silver grating on its silica
substrate. This forms an optically symmetric silver grating
with respect to the silica medium. For clarity, we label the
silica prism attached to the silica substrate the first prism, and
the other attached to the silver the second prism.

The profile describing the thin silver grating is given by
[yi1(x) = agpsin(kyx) + a; sin(2kgx + ¢)] for the lower silver—
silica interface and [y,(x) = ag sin(kgx)+a; sin(2kgx +¢)+1]
for the upper silver matching fluid interface. Here ¢ is the
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Figure 2. Typical wavelength-dependent absolute reflectivity data
(open squares) together with the model fits (solid lines) when the
light is incident at polar angle 6 = 6.2° from (a) the first prism with a
+1 /2 phase shift between the first harmonic and the fundamental
and (b) the second prism with — /2 phase shift. The density of
experimental data points has been reduced for clarity.

mean thickness between the two surfaces, ag and a; are the
amplitudes of the k, and 2k, components with k; = 271 /A (A4
is the grating pitch) the grating vector, which runs parallel to
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Figure 3. The model band structures for silver gratings having different profiles at an azimuth angle of ¢ = 0°. The profile describing the
structures is given by (a) [20sin(k,x)] nm; (b) [20 sin(kex) + 5 sin(2kex + 7/2)] nm; (c) [20 sin(k,x)] nm for the bottom surface and
[20sin(kyx) + 27] nm for the top surface; (d) [20 sin(kgx) + 5 sin(2kgx + 7/2)] nm for the bottom surface and

[20sin(kyx) + 5sin(2kex + 7 /2) + 27] nm for the top surface. The inset graphs correspond to the gratings that have been used in the
calculations. The dashed line box in the last two graphs indicates the crossing point that arises from scattering of the LRSPP by +k, and

scattering of the SRSPP by —k,.

the x axis. For an unblazed grating, as here, the phase shift
¢ between the 2k, component and the k; component must be
4 /2. Then, dependent on from which side the radiation is
incident, both the cases of ¢ = 4m/2 and —m/2 may be
explored.

It is well known that in reflection the singly diffracted
SPP modes of a single metal grating are shown as reflectivity
minima in the zero-order beam, since the re-radiated light is
in anti-phase with the specularly reflected light [1]. With light
incident on one surface, because of the attenuation through the
film, any re-radiated SPP light scattering from the other surface
is much weaker than that re-radiated from the first surface, and
so both the SRSPP and LRSPP are still seen as reflectivity
minima. Hence, by measuring the reflectivity data as a function
of wavelength (450 nm < Ay < 800 nm) at various fixed polar
angles and noting all the reflectivity minima, the dispersion
diagram of the SPP modes associated with the structure for
¢ = 0° is acquired.

Figure 2 illustrates the typical wavelength-dependent
absolute reflectivity data together with the modelling results
for light incident from the first prism and second prism
respectively at a polar angle of 6 = 6.2°. The theoretical
method employed here is based upon a conical version of
the differential formalism originally developed by Chandezon
et al [19], in which a nonorthogonal curvilinear coordinate

transformation is used to allow for easy matching of
the electromagnetic boundary conditions at the corrugated
interfaces. This computational approach has been shown
to agree well with experimental data in the past [20-22].
To model the silver across the visible spectrum both the
real and imaginary parts of its permittivity are described by
polynomials fitted to experimentally derived values [23]:

& = —255.3185 + 198.63w — 60.7940” + 8.381w°
—0.430 040",

& = 83.2575 — 132.79w + 90.474w* — 32.88w° + 6.6591w*
—0.708 93w’ 4 0.030913w°,

where w = [2¢/A]x 10713 57!, These polynomials inevitably
pertain to somewhat different silver from that explored here in
thin film form, but they are a good enough approximation to
allow adequate modelling. Because of this, and for simplicity
in fitting data to a model, the refractive index of the bounding
silica is treated as non-dispersive with n 1.459. In
figure 2(a) (incident from the first prism), the best comparison
between the model and the experimental data is achieved when
the profiles of the two surfaces are set to [20sin(kex) +
5sin(2kgx + m/2) + 27] nm for the incident interface and
[20sin(kgx) + 5sin(2kgx + 7/2)] nm for the transmitting
interface. When the light is incident from the second prism
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the phase shift ¢ between the 2k, and k, components changes
sign from + /2 to —m /2. Then using the profiles described as
[20sin(kgx) + 5sin(2kgx — 7/2) + 27] nm for the incident
interface and [20 sin(kgx) + 5sin(2kex — 7/2)] nm for the
transmitting interface the theoretical modelling also agrees
well with the experimental reflectivity data, as shown in
figure 2(b).

For grating structures, due to the introduction of the
periodicity, all of the modes in momentum space are
‘reflected” at the Brillouin zone (BZ) boundary (Bragg
scattering), resulting in crossing points between the different
branches.  Figure 3 shows the model band structures
computed by inspection of the scattering matrices of the
systems at an azimuth angle ¢ = 0° over a range
of frequencies and in-plane wavevectors (k,) for silver
gratings of different profiles. The profiles describing the
structures in figures 3(a)—(d) are as follows: figure 3(a)
[20sin(kgx)] nm, figure 3(b) [20sin(kgx) + 5sin(2kgx +
7/2)] nm, figure 3(c) [20 sin(kgx)] nm for the bottom surface
and [20sin(kgx) + 27] nm for the top surface, and figure 3(d)
[20 sin(kgx)+5 sin(2kgx +7 /2)] nm the for bottom surface and
[20 sin(kgx) + 5 sin(2kgx + 7 /2) + 27] nm for the top surface.
In this work the focus of interest is the crossing points that arise
through scattering of one wave by —k, and the other by +k,.
At these crossing points it is the 2k, component of the profile
which plays the primary role in producing any band gap [24].
Second-order scattering from the k, component can also have a
similar effect; however, this second-order process is very weak
for the small amplitudes of the primary component used here
and need not be considered in the present study. As shown in
figures 3(a) and (b), the self-crossing point which arises from
scattering by 4k, only occurs at k, = 0 (normal incidence).
For a pure sinusoidal profile thick grating of the amplitude used
here there is no significant splitting at this crossing point, as
shown by the absence of a band gap in figure 3(a). However,
if a 2k, component is added to the profile, a band gap is
observed at this crossing point, as shown in figure 3(b). The
different energy SISPPs at the band edges are associated with
the different positions of the surface charge density maxima
(and hence optical field density distributions) with respect to
the 2k, component of the grating profile. The extrema of both
the normal field component and the surface charge distribution
for the higher energy SISPP mode occur at the troughs of the
2k, component, whereas for the lower energy SISPP mode they
are located at the peaks of the 2k, component [24]. In the case
of a thin film corrugated on both sides, the SISPP will split
into two coupled LRSPP and SRSPP modes, and both of these
might then be expected to be scattered by the 2k, component,
forming band gaps. As shown in figures 3(c) and (d), there are
two crossing points at k, = 0: one arises from the scattering of
SRSPPs (at lower frequency) by %k, while the other (at higher
frequency) arises from the scattering of LRSPPs. In addition
to the self-crossing points, an additional third crossing point
occurs in the BZ between k, = 0 and k, = ky/2, as indicated
by the dashed line box in figures 3(c) and (d). This arises from
scattering of the LRSPP by +k, and scattering of the SRSPP
by —k,. In figure 3(c), because there is no 2k, component there
is no significant splitting at the crossing points. By contrast, as
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Figure 4. The model TM reflectivity as a function of frequency and
in-plane wave vector with light incident from (a) the first prism and
(b) the second prism. The open white squares are the mapped
reflection dips that are taken from the experimental reflectivity
spectra. The dashed straight line indicates the first-order diffracted
light line. The dashed line box indicates the crossing point between
the LRSPP and the SRSPP.

already indicated, when the 2k, component is finite one expects
band gaps to open up. Figure 3(d) clearly shows that at the
third crossing point an anti-crossing occurs, while at the two
self-crossing points at k, = 0 no similar band gap appears, in
stark contrast to figure 3(b). This is somewhat surprising. Later
in this paper, we will discuss the splitting of the third crossing
point and explain the reason for the lack of band gaps at the
two self-crossing points (occurring at k, = 0) even when there
is a 2k, component present in the structure.

In addition to the wavelength-dependent absolute reflec-
tivity data taken at polar angle & = 6.2° as shown in figure 2,
reflectivity data were also taken at 12 other polar angles (0 =
5.2°,5.5°,7.0°,7.8° 8.6°9.5°,10.4°, 11.3°, 12.3°, 13.3°,
18.9°, and 25.0°) for both ¢ = +7x/2 and —x/2. Figure 4
shows the model reflectivity as a function of frequency and
in-plane wave vector, with the experimental data (correspond-
ing to the positions of the reflection minima) indicated as open
white squares mapped onto this plot. The anti-crossing be-
tween the LRSPP and the SRSPP that occurs at 2k, / k, ~ 0.29
is confirmed directly by the experimental data, as indicated by
the dashed line boxes in figures 4(a) and (b). As expected, the
LRSPP has approached the diffracted order light line, while
the SRSPP has reduced in frequency with reduction in film
thickness. These two effects are observed in figure 4 with
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Figure 5. Time averaged H, component of the fields of (a) the SRSPP and (b) the LRSPP modes that can be excited at normal incidence,
together with the instantaneous E, vector fields for (c) the SRSPP and (d) the LRSPP modes on the same structure as described in figure 4(a)
(incident from the first prism with ¢ = +7/2). The continuous black lines represent the thin metal grating.

the first-order LRSPP modes (scattering from +k,) being close
to the diffracted light line (indicated as a dashed straight line)
and the first-order SRSPP modes being further away from the
diffracted light line.

We now turn our attention to the physics of the three
crossing points mentioned previously. The lack of band gaps
at the crossings of the forward and backward propagating
LRSPPs and SRSPPs at normal incidence is a special case, and
it will be discussed in detail later. The anti-crossing behaviour
evident when the LRSPP and SRSPP cross at finite k, on the
other hand is readily understandable. Typically, when any two
modes of appropriate symmetry cross each other anti-crossing
behaviour is likely since the interaction strength between the
two modes, caused by their field overlap, is rarely zero. Thus
it is not surprising that an interaction, and hence a band gap, is
evident in this case.

An explanation of the lack of band gaps at the crossings of
the forward and backward propagating LRSPPs and SRSPPs at
k, = 0 is somewhat more complicated, however. In this case
it is helpful to investigate the time averaged H, component of
the field distributions and the instantaneous E,, vector fields
for these two coupled SPP modes. In figure 5 we plot the H,
profiles together with the instantaneous E,, vector fields of the
SRSPP (f = 0.467 x 10'> Hz) and the LRSPP (f = 0.579 x
10" Hz) modes excited at normal incidence (§ = 0°) on the
structure as described for figure 4(a) (incident from the first
prism with ¢ = 47 /2). First note the different surface charge

density distributions for the SRSPP and the LRSPP. As shown
in figure 5(c), for the SRSPP, the spatial variation of the surface
charge density distribution along the bottom surface is in phase
with that on the top surface (symmetric distribution), while for
the LRSPP in figure 5(d), the bottom surface has the opposite
surface charge density to the top surface. Also note that, as
shown in figures 5(a) and (b), the H, component has a region of
zero value inside the thin metal film for the SRSPP, while there
is no such region for the LRSPP. By comparing figures 5(c) and
(d), we can also see that the maximum surface charge density
for both the SRSPP and the LRSPP occur on the sides of the
grating grooves. This is because at normal incidence there will
be no component of the electric field normal to the surface
where the surface has zero gradient; hence only the modes
with surface charge density maxima on the sides of the grating
grooves may couple to the incident light. The key issue here
is then the position of these surface charge density maxima
relative to the 2k, component of the grating. We know that for
a single interface grating, the 2k, component opens up a band
gap where the modes cross each other, with the higher energy
(w™) band edge having its surface charge density maxima at
the troughs of the 2k, component, and the lower energy (w™)
band edge having its surface charge density maxima located
at the peaks of the 2k, component. Now we should consider
the role that the 2k, component plays in the thin metal grating
structure at normal incidence. As mentioned above, at k, = 0
there are two self-crossing points caused by two LRSPP modes
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Figure 6. Schematics showing the positions of maximum surface charge density of the possible standing wave coupled modes for normal
incidence that may be excited on the structure. The black lines represent the thin metal grating. The dashed lines indicate the 2k, component

of the grating.

and two SRSPP modes respectively. Figure 6 schematically
shows the positions of maximum surface charge density of
these four possible solutions relative to the 2k, component
of the grating (indicated as dashed lines). For one possible
solution of the lower frequency self-crossing point (the SRSPP
self-crossing point), as shown in figure 6(a), the positions of
maximum surface charge density occur at the peaks of the 2k,
component (low energy, ™), while equivalent positions on
the bottom surface occur at the troughs of the 2k, component
(high energy, ™). Figure 6(b) shows that another possible
solution with the correct symmetry is that on the top interface
the surface charge density maxima occur at the troughs of
the 2k, component (high energy, w™) and the surface charge
density maxima occur at the peaks of the 2k, component (low
energy, w~ ). From this it is apparent that the two possible
solutions for SRSPP modes will have the same energy. Hence,
at the SRSPP self-crossing point, even with the existence of a
2k, component in the profile, we should expect that no band
gap arises. For the same reason, as shown in figures 6(c)
and (d), the two possible solutions for the LRSPP modes will
also have the same energy. This explanation can also be used to
explain the lack of band gap at the LRSPP self-crossing point.
Figure 7 shows the H_ profiles together with the instantaneous
E., vector fields for the SRSPP (f = 0.475 x 10" Hz) and
the LRSPP ( f = 0.581 x 10> Hz) excited at normal incidence
on the structure as described for figure 4(b) (incident from
second prism with ¢ = —m/2). The same discussions and

arguments as given for figure 5 can be applied to the case of
figure 7.

Now we have seen that even with the existence of a 2k,
component in the profile of a conformal thin silver grating there
are no band gaps at normal incidence for both the SRSPP and
the LRSPP modes. It is worth investigating how to open up the
band gaps at normal incidence for thin silver gratings. Figure 8
shows the model band structure of a thin silver grating with
non-identical corrugations on each of interfaces; the modes are
indicated by white dashed lines. The profile describing the
structure is given by [20 sin(kgx) + 5 sin(2kgx — 7/2)] nm for
the bottom surface and [20 sin(kgx) + 5 sin(2kgx7/2) +27] nm
for the top surface. Note that the phase shifts ¢ on the top and
bottom surfaces are —m /2 and +m /2 respectively. Obviously
in figure 8 two band gaps open up at normal incidence for the
SRSPP and the LRSPP modes respectively.

Again by investigating the positions of maximum surface
charge density of possible solutions relative to the 2k,
component of the grating we can explain why the band
gaps open up for the SRSPP and the LRSPP modes at
normal incidence for non-conformal thin silver gratings.
Figure 9 schematically shows the surface charge density
maxima positions of two possible SRSPP solutions. For one
possible solution, as shown in figure 9(a), the positions of
maximum surface charge density occur at the peaks of the 2k,
component (low energy, @™ ), and equivalent positions on the
bottom surface also occur at the peaks of the 2k, component
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(low energy, w™). Similarly, for another possible solution,
as shown in figure 9(b), the surface charge density maxima
occur at the troughs of the 2k, component (high energy, w™)

on both the top and bottom interfaces. Thus the two possible
solutions for SRSPP modes will have different energies, w™
for low energy branch and w™ for the high energy branch, and
a band gap arises at the SRSPP self-crossing point. For similar
reasons, at the LRSPP self-crossing point a band gap will also
open up.

If we examine the thin silver grating shown in figure 8
carefully, one can see that the width of the vertical cross section
of the grating is modulated in the x-direction. This leads to
the question is this thickness modulation the only required
condition to open up the band gaps at normal incidence for
the SRSPP and the LRSPP modes. Figure 10 shows the model
band structure of a non-conformal thin silver grating, in which
the SRSPP and the LRSPP modes scattering from =k, are
indicated by white dashed lines. The profile describing this
structure, as shown in the inset graph of figure 10, is given by
[10sin(kgx)] nm for the bottom surface and [—10sin(kgx) +
27] nm for the top surface. Obviously in such a thin grating
which has no 2k, component the thickness of the silver film
is also modulated in the x-direction. However, as shown
in figure 10, no such band gaps are opened up at normal
incidence for SRSPP and LRSPP modes. This implies that two
conditions, non-identical corrugations on each side of the thin
grating and the existence of a 2k, component, must be fulfilled
to open up band gaps at normal incidence for the SRSPP and
LRSPP modes.
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Figure 9. Schematics showing the positions of maximum surface charge density of the possible short range SPP modes for normal incidence
that may be excited on the structure. The black lines represent the thin metal grating. The dashed lines indicate the 2k, component of the

grating.
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Figure 10. The model band structure for a non-conformal thin silver
grating having the profiles [10 sin(k,x)] nm for the bottom surface
and [—10sin(kyx) + 27] nm for the top surface at an azimuth angle
of ¢ = 0°. The inset graph corresponds to the grating that has been
used in the calculations.

3. Summary

In this study the two coupled surface plasmon polaritons (the
SRSPP and the LRSPP) on a thin symmetrically surrounded
silver film (27 nm thick) have been investigated experimentally
and modelled theoretically in the visible range. Wavelength-
dependent absolute reflectivity data for TM polarized incident
radiation at different polar angles in the ‘classical” mount leads
to a mapping of the dispersion curve of the various SPP modes
as a function of frequency and in-plane wavevector. It is
shown that the 2k, component in the grating profile is the
key factor leading to the appearance of band gaps in these
relatively shallow gratings. Interestingly, the band gap which
would appear on a single metal surface (supporting just the
SPP mode) for normal incidence radiation does not appear
in the two self-crossing points of the LRSPP modes and the
SRSPP modes at normal incidence. This is because of the
symmetry of the standing wave states of the expected two

modes relative to the 2k, component of the grating. However,
a band gap does appear within the Brillouin zone, formed
by the anti-crossing of the LRSPP scattered by +k, and the
SRSPP scattered by —k,. Finally we considered the case where
the two corrugations on each surfaces are not conformal, and
we focused on the self-crossing points at k, = 0 (normal
incidence). We found that only when two conditions that
the structure is non-conformal and has a 2k, component are
fulfilled, so the band gaps open at k, = 0 for both the LRSPP
and the SRSPP modes.
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