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Abstract 
 

 

 Controlling the optical response of surfaces by patterning the interface with a 

surface-relief periodic corrugation has been established for various applications for 

many years. The primary use concerns the creation of diffracted orders produced by the 

periodic corrugation. In addition, this surface patterning may allow the excitation of 

electromagnetic modes of the systems (either waveguide or surface modes). In this 

thesis original investigations of several corrugated surfaces are presented, some of 

which possess strongly coupled surface modes, and others which show only weak 

diffraction effects. Studies are presented of the influence of surface profile, depth, and 

phase on the optical responses. 

 There are two main sections to the work presented. In the first section the optical 

response of two-interface corrugated dielectric and metal slabs is investigated, with 

particular attention paid to the effect of altering the phase between the corrugations on 

the two surfaces. For a non-zero phase difference the dielectric structures exhibit 

effective ‘blazing’ behaviour in the reflected orders. Also, an extraordinary distribution 

of energy between the diffracted orders is found to occur for certain grating profiles, 

with almost all of the energy of the incident light channelled into the +1 and -1 

transmitted diffracted orders. On the two-interface metal structures SPPs can be excited 

on both interfaces, or coupled SPPs may be excited. It will be shown that, by changing 

the phase difference between the corrugations, the optical response of the system can be 

precisely controlled, with it being possible to either enhance or suppress the 

transmission through the structure. 

 In the second section the effect of grating profile on the optical response of 

short-pitch single-interface metal gratings is explored. For deep gratings SPPs are 

excited even in the zero-order region of the spectrum, which was previously not thought 

possible. These SPP modes are broad and extremely flat-banded for gratings consisting 

of narrow grooves, but are relatively sharp features, with complex dispersion, if the 

grating peaks are narrow. These SPP modes are also observed experimentally for the 

first time. 
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List of Figures 

Figure 2.2.1.1 A schematic diagram of light with incident wavevector k1 incident 

on an interface bounded by two media described by complex 

refractive indices n1 and n2. 

 

Figure 2.2.1.2 The SPP dispersion curve for a planar silver / vacuum interface 

using a Drude model to describe the frequency dependent dielectric 

function of the silver with ωp = 1.36 x 10
14

Hz, and τ = 1.4 x 

10
14

Hz. Also shown are the light-line, and the high kx asymptotic 

limit of ωsp. 

 

Figure 2.2.2.1 The penetration length of the SPP fields into the vacuum for a 

planar silver / vacuum system. The frequency dependent dielectric 

function for the silver is modelled using the Drude model with ωp 

=1.36 x 10
16

Hz, and τ = 1.4 x 10
14

s. 

 

Figure 2.2.2.2 The penetration length of the SPP fields into the silver for a planar 

silver / vacuum system. The frequency dependent dielectric 

function for the silver is modelled using the Drude model with ωp 

=1.36 x 10
16

Hz, and τ = 1.4 x 10
14

s. 

 

Figure 2.2.3.1 A representation of the polarisation surface charge density and 

associated electric field for the SPP mode. The electric field decays 

exponentially into both the metal (ε1) and dielectric (ε2). 

 

Figure 2.3.1.1 A Schematic showing the grating system under consideration and 

the terms used in order to define it. 

 

Figure 2.3.1.2. The SPP dispersion curve for a shallow monograting. The full black 

lines are the SPP dispersion curves, and the faint black lines are the 

diffracted and non-diffracted light lines. Due to the scattering from 

the grating vector (kg) the SPP dispersion curve may be folded 
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inside the light lines and may be coupled to by incident radiation. 

 

Figure 2.3.1.3 The dispersion curve of a SPP on a grating structure in the ω-kz 

plane with kx = 0. The SPP dispersion curve centred at the origin is 

shown (always outside of the lightline) as is the SPP dispersion 

curve scattered from +kg. The form of this scattered SPP dispersion 

curve arises from taking a slice through the SPP ‘horn’ shape 

centred at kx = kg. 

 

Figure 2.3.1.4 The thickly drawn circle of radius k0 centred upon the origin 

describes the maximum wavevector available to a photon in the 

plane of the grating surface. At a slightly greater radius than this is 

the SPP circle (dotted line) corresponding to the dispersion curve 

described in the text. Both of these circles have been scattered by 

kg, which results in the two circles occurring at the reciprocal 

lattice points. The angle ψ is the propagation angle of the SPP with 

respect to the kx direction. 

 

Figure 2.3.2.1 The zero-order TM reflectivity as a function of frequency for a 

1µm pitch 30nm amplitude sinusoidal silver grating (with the 

dielectric function of the silver described with a Drude model with 

ωp = 1.32x10
16

s
-1

, and τ = 1.4x10
14

s), for normal incidence and φ = 

0°. Three features are evident; at f = 0.36x10
15

Hz a SPP minimum 

due to the first order SPP, at f = 0.37x10
15

Hz a pseudo critical edge 

due to the 1
st
 diffracted order becoming evanescent, and at f = 

0.735x10
15

Hz a small reflectivity maximum due to the second 

order SPP. 

 

Figure 2.3.2.2 The zero-order TM reflectivity for the same system as in figure 

3.3.2.1, but with changing amplitude of the grating. 

 

Figure 2.3.3.1 A sketch of the standing waves in a dielectric stack. The shaded 

regions correspond to a dielectric with a higher refractive index 
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than the unshaded regions. The standing wave with field extrema 

concentrated in the high index medium has a lower energy than the 

standing wave with field extrema in the low index medium 

 

Figure 2.3.3.2 Numerically modelled zero-order TM reflectivity of a grating 

structure comprising two Fourier components. The first harmonic 

component produces a band-gap at the intersection of the +1 and-1 

SPP branches (at normal incidence). The parameters used in the 

modelling were λg = 634nm, a0 = 5nm, a1 = 2nm and the 

permittivity of the metal is εr = -17.5 and εi = 0.7. The two 

components of the grating profile are in phase with each other. 

 

Figure 2.3.3.3 The electric field and surface charge distribution for the two 

standing wave solutions on the 2kg component of the grating 

profile. The field lines in the lower sketch are more distorted, and 

therefore this is the higher energy mode. 

 

Figure 2.3.3.4 Numerical modelled zero-order TM reflectivity plots showing the 

influence of the phase difference between the fundamental and first 

harmonic components of the grating profile. The grating 

parameters are otherwise the same as for figure 4.3.3.2. 

 

Figure 2.3.3.5 The kg and 2kg components of a distorted sinusoidal grating with 

relative phase between the two components of –90°, +90° and 0°. 

 

Figure 2.3.4.1 Numerically modelled polarisation conserved and polarisation 

converted reflectivities for TM and TE polarised light of frequency 

0.474 x 10
15

Hz incident upon a 1µm pitch, 40nm amplitude silver 

grating as a function of kx and kz. a) Polarisation conserved for TM 

polarised incident light, b) Polarisation converted for TM incident 

light, c) Polarisation conserved for TE polarised incident light, and 

d) Polarisation converted for TE polarised incident light. 
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Figure 3.4.2.1 The multi-layer system. 

 

Figure 3.4.4.1 The multi-shape grating system. 

 

Figure 3.4.4.2 Orientation of the field components at the j+1
st
 interface. 

 

Figure 3.5.1 A comparison between the codes based upon the ISS method and 

the Chandezon method. TM reflectivity from a 7.5 nm amplitude, 

600nm pitch, sinusoidal silver grating as a function of frequency 

(normal incidence, classical mount). a) the specularly reflected 

order, and b) the +1 diffracted order. 

 

Figure 3.5.2 A comparison between the codes based upon the ISS method and 

the Chandezon method. TM reflectivity from a 7.5 nm amplitude 

600nm pitch sinusoidal silver grating as a function of the in-plane 

wavevector for light of frequency. 

 

Figure 4.2.1.1 The system under consideration in this section. TM polarised light 

incident upon an interface between two dielectrics with dielectric 

functions 1ε for the upper (incident) medium, and 2ε for the lower 

(transmitted) medium. The light is normally incident in the 

classical mount (the azimuthal angle is 0°). 

 

Figure 4.2.1.2 The optical response of an air / SiO2 grating interface. The four 

orders presented are: a) the zeroth reflected, b) the zeroth 

transmitted, c) the +1 reflected diffracted, and d) the +1 transmitted 

diffracted. 

 

Figure 4.2.1.3 Time averaged Hz component of the fields for the air / SiO2 

interface used for figure 3.2.1.2 for six different frequencies: a) f = 

0.4 x 10
15

Hz, b) f = 0.514 x 10
15

Hz, c) f = 0.6 x 10
15

Hz, d) f = 0.7 

x 10
15

Hz, e) f = 0.75 x 10
15

Hz, and f) f = 0.9 x 10
15

Hz. 
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Figure 4.2.1.4 The optical response of a SiO2 / Air grating interface, with the 

same parameters as for the air / SiO2 interface considered above. 

The four orders presented are: a) the zeroth reflected, b) the zeroth 

transmitted, c) the +1 reflected diffracted, and d) the +1 transmitted 

diffracted. 

 

Figure 4.2.1.5 Time averaged Hz component of the fields for the SiO2 / Air 

interface used for figure 3.2.1.4 for six different frequencies: a) f = 

0.4 x 10
15

Hz, b) f = 0.514 x 10
15

Hz, c) f = 0.6 x 10
15

Hz, d) f = 0.7 

x 10
15

Hz, e) f = 0.75 x 10
15

Hz, and f) f = 0.9 x 10
15

Hz. 

 

Figure 4.3.1.1 The planar dielectric waveguide. 

 

Figure 4.3.2.1 A schematic of the system under consideration. 

 

Figure 4.3.2.2 The optical response of a conformally corrugated thin SiO2 slab, 

with air as the bounding media (λg = 400nm, a = 25nm), as a 

function of the frequency of incident TM polarised light and of the 

slab thickness. a) the zeroth order reflectivity, b) the zeroth order 

transmisivitty, c) the +1 order reflectivity, and d) the +1 order 

transmissivity. 

 

Figure 4.3.2.3 Schematic showing that the transmitted diffracted order from the 

top interface propagates further than the zeroth transmitted order 

from the top interface. 

 

Figure 4.3.2.4 Time averaged Hz component of the fields for the system shown 

in figure 3.3.2.1 for  f = 1.0 x 10
15

Hz with different slab thickness. 

a) d = 25nm, b) d = 75nm, c) d = 150nm, and d) d = 300nm.  

 

Figure 4.3.2.5 Time averaged Hz component of the fields for the system shown 

in figure 3.3.2.1 for a)  f = 0.732 x 10
15

 Hz (diffractive in SiO2 

only), and b) f = 0.492 x 10
15

Hz (non-diffractive in both media). 
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Figure 4.3.2.6 The magnitude and phase of the amplitude coefficient for the 

system shown in figure 3.3.2.1, obtained from the ISS method by 

considering the two diffraction processes separately (as described 

in the text), for a) diffraction from the top interface, b) diffraction 

from the bottom interface, and c) the total transmitted fields for the 

system obtained by combining a) and b). 

 

Figure 4.3.3.1 A schematic of the system under consideration. 

 

Figure 4.3.3.2 The optical response of a 60nm thick dielectric slab corrugated on 

both surfaces with gratings of λg = 400nm, and amplitude of 25nm, 

as a function of the phase between the corrugations on the two 

interfaces, and of the frequency of the incident light. a) the 

reflected zeroth order, b) the transmitted zeroth order, c) the 

reflected +1 diffracted order, d) the transmitted +1 diffracted order, 

e) the reflected –1 diffracted order, and f) the transmitted –1 

diffracted order. 

 

Figure 4.3.3.3 The intensities of the zeroth reflected and transmitted orders, and 

of the 1
st
 diffracted transmitted and reflected orders for a 60nm 

thick dielectric slab corrugated on both surfaces with 

antisymmetric sinusoidal corrugations on each surface of 400nm 

pitch and 25nm amplitude. 

 

Figure 4.3.3.4 The intensities of the various orders from the anti-phase two 

interface system as a function of frequency and slab thickness. a) 

The zeroth order reflected, b) the zeroth order transmitted, c) the 

+1 diffracted reflected, and d) the +1 diffracted transmitted. 

 

Figure 4.3.3.5 The intensities of  the transmitted orders as a function of frequency 

and grating amplitude for a) a 60nm thick dielectric slab, and b) a 

150nm thick dielectric slab. 
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Figure 4.3.3.6 Time averaged Hz field profiles for succesive maxima and 

minima in the 1
st
 order transmitted difracted order for an incident 

frequency of 1.75 x 10
15

Hz. a) a = 18.35nm, b) a=37.2nm, c) a = 

53.75nm. A red line has been drawn onto the plots at the tops of 

the bottom surface corrugation in order to demonstrate the way the 

field maxima fit within the grating grooves. 

 

Figure 4.3.3.7 The intensities as a function of frequency for a two interface 

corrugated system of thickness 60nm and amplitude 25nm for a) 

the reflected ±1 diffracted orders, and b)  the transmitted ±1 

diffracted orders. 

 

Table 4.3.3.1 The phase effects which need to be considered when determining 

the total ±1 reflected and transmitted diffracted order fields from a 

thin corrugated dielectric slab (ignoring multiple reflections). 

 

Figure 5.2.1 Reflectivity of TM polarised light for normal incidence in the 

classical mount as a function of frequency, for a 40nm thick silver 

film corrugated with a 600nm pitch sinusoidal grating of 10nm 

amplitude. a) corrugated on both sides, b) corrugated on the bottom 

surface only, and c) corrugated on the top surface only. 

 

Figure 5.2.2 Transmissivity and absorption of TM polarised light for normal 

incidence in the classical mount for a thin silver film with the 

parameters used to obtain figure 5.2.1(a). 

 

Figure 5.2.3 Schematic showing the origin of the possible transmitted orders 

due to diffraction from a thin metal slab corrugated on both 

surfaces. The dotted lines indicate the evanescently decaying fields 

due to diffraction at the top interface. 

 

Figure 5.2.4 The magnitude and phase of the 1
st
 order transmitted diffracted 
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field around the SPP excitation frequency from a conformally 

corrugated structure for a) diffraction from the top surface, b) 

diffraction from the bottom surface, and c) the total 1
st
 order 

transmitted diffracted field. 

 

Figure 5.2.5 Results from a dual corrugated silver film as a function of 

frequency and the phase between the corrugation on the two 

interfaces. a) zero-order reflection, b) zero-order transmission (log 

scale), and c) the magnitude of the first diffracted order (log scale). 

 

Figure 5.2.6 The zeroth order transmission, and absorption in the metal slab, for 

the same structures as used for figure 5.2.1. 

 

Figure 5.3.1.1 The charge distributions for a) the short range SPP, and b) the long 

range SPP. 

 

Figure 5.3.1.2 Instantaneous electric field profiles (parallel and perpendicular 

components) for the LRSPP (a) and SRSPP (b) 

 

Figure 5.3.2.1 The optical response as a function of  frequency and slab thickness 

for kx = 0 on a conformal, sinusoidally corrugated silver slab of 

10nm amplitude and 400nm pitch, in the classical mount. 

 

Figure 5.3.2.2 The optical response of the same system described for figure 

5.3.2.1 as a function of frequency and in-plane wavevector. a) The 

dispersion of the modes obtained from the scattering matrices, b) 

the reflection, c) the transmission, and d) the absorption for the 

system. 

 

Figure 5.3.2.3 The optical response of the same system as figure 5.3.2.1, but with 

an additional 2kg component in the grating profile description of 

5nm amplitude, as a function of frequency and slab thickness. a) 

the position of the modes obtained from the scattering matrices (z 
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axis units are arbitrary), b) the reflection and c) the transmission of 

the system. 

 

Figure 5.3.2.4 The dispersion curves of the SPPs of the system for a conformally 

corrugated thin metal slab with a pitch of 400nm, and a grating 

profile described by a 10nm amplitude kg component, and a 5nm 

2kg component, with the phase of the 2kg component being +90° 

out of phase with the kg component. a) d = 70nm, b) d = 50nm, and 

c) d = 30nm (z axis units are arbitrary). 

 

Figure 5.3.3.1 The zeroth order reflectivity (a), transmissivity (b), and absorption 

of the system (c), for a 30nm thick silver slab corrugated on both 

surfaces with a 400nm pitch, 10nm amplitude, sinusoid as a 

function of frequency and phase between the corrugations on the 

two surfaces. 

 

Figure 5.3.3.2 The reflectivity, transmissivity, and absorption of the system, as a 

function of frequency and in-plane wavevector for the case where 

the two gratings are in anti-phase with each other for the same 

grating parameters as the system described previously. 

 

Figure 5.3.3.3 The band structure (a), reflectivity (b), and transmissivity (c) of the 

zeroth order, for normally incident light as a function of frequency 

and slab thickness for a metal slab corrugated on both sides when 

the corrugations on the two surfaces are in anti-phase (the gratings 

have a 10nm amplitude kg component, a 5nm 2kg component, and a 

pitch of 400nm). 

 

Figure 6.2.1 Reflectivity as a function of frequency and in-plane wavevector for 

TM polarised light incident on a 300nm deep, 50nm wide 

Gaussian-grooved, 200nm pitch silver grating held at a zero degree 

azimuthal angle. The bands are very flat for a large range of 

incident wavevectors 
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Figure 6.3.1 An example of the type of grating structure investigated. The 

profile is made up of a series of Gaussian grooves so that the depth, 

width and pitch of the grating may be altered independently, and so 

that in deep structures the SPP modes in neighbouring grooves will 

be largely isolated from each other. 

 

Figure 6.3.2 Dispersion curves for 200nm pitch, 50nm wide, Gaussian-grooved  

silver gratings for kz = 0, with  a) d = 10nm, b) d = 25nm, c) d = 

50nm, and d) d = 75nm. 

 

Figure 6.3.3 |Hz| for the second order SPP resonance for a) d = 10nm, f = 1.36 x 

10
15

Hz, b) d = 25nm, f = 1.3 x 10
15

Hz, and c) d = 50nm, f = 1.19 x 

10
15

Hz. 

 

Figure 6.3.4 Dispersion curves for 200nm pitch, 50nm wide, Gaussian-grooved  

silver gratings for kz = 0, with  a) d = 100nm, b) d = 150nm, and c) 

d = 300nm. 

 

Figure 6.3.5 |Hz| for the first four SCSPPs on a 300nm deep, 50nm wide, 

Gaussian grooved grating with kz = 0. a) f = 0.19 x 10
15

Hz, b) f = 

0.44 x 10
15

Hz, c) f = 0.66 x 10
15

Hz, and d) f = 0.85 x 10
15

Hz. 

 

Figure 6.3.6 |Hz| for the second order SCSPP resonance on a 300nm deep, 50nm 

wide, Gaussian grooved grating with 2kx / kg = 0.5 (f = 0.46x10
15

 

Hz). 

 

Figure 6.3.7 Mode frequency as a function of grating depth for 200nm pitch, 

50nm wide, Gaussian-grooved gratings at kz = 0. a) 2kx / kg = 0.0, 

b) 2kx / kg = 0.1, c) 2kx / kg = 0.5, and d) 2kx / kg = 1.0. Dotted lines 

are light-lines. 

 

Figure 6.4.1 The dispersion curve for a 200nm pitch, 300nm deep, 50nm wide 
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Gaussian-grooved grating with kx = 0 and varying kz . 

 

Figure 6.5.1 Polarisation conserved (a) and polarisation converted (b) 

reflectivities as a function of frequency and in-plane wavevector 

for TM polarised light incident upon a 300nm deep, 40nm wide, 

Gaussian grooved grating oriented at a 45° azimuthal angle. 

 

Figure 6.5.2 The frequency of maximum absorption due to the excitation of the 

second order SCSPP on a 200nm pitch, 300nm deep, 50nm wide 

Gaussian-grooved grating for varying kx and kz. 

 

Figure 7.2.1 An example of the type of grating structure investigated. The 

profile is made up of a series of Gaussian peaks defined by the 

grating pitch, peak height, and peak width (FWHM). 

 

Figure 7.2.2 TM reflectivity as a function of frequency and in-plane wavevector 

for a 200nm pitch silver grating consisting of a series of 400nm 

high and 40nm wide (FWHM) Gaussian peaks with light incident 

at a 0° azimuthal angle. 

 

Figure 7.2.3 Time averaged Hz component of the fields of the SPP mode 

excited on a 200nm pitch silver grating consisting of a series of 

400nm high and 40nm wide (FWHM) Gaussian peaks, with 

radiation of f = 0.88x10
15 

Hz incident at a 0° azimuthal angle and 

at 2kx / kg = 0.1. 

 

Figure 7.2.4 Mode frequency as a function of grating peak height for a 200nm 

pitch grating consisting of 40nm wide (FWHM) Gaussian peaks at 

a 0° azimuthal angle. a) 2kx / kg = 0, and b) 2kx / kg = 1.0. 

 

Figure 7.2.5 Time averaged Hz component of the fields of SPP modes excited 

on a 200nm pitch silver grating consisting of a series of 50nm high 

and 40nm wide (FWHM) Gaussian peaks at a 0° azimuthal angle. 
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a) f = 1.22x10
15 

Hz and 2kx / kg = 0, and b) f = 1.16x10
15 

Hz and 

2kx / kg =1.0. 

 

Figure 7.2.6 Time averaged Hz component of the fields of the SPP mode 

excited on a 200nm pitch silver grating consisting of a series of 

350nm high and 40nm wide (FWHM) Gaussian peaks, with 

radiation of f = 1.26x10
15 

Hz incident at a 0° azimuthal angle and at 

2kx / kg= 1.0. 

 

Figure 7.2.7 TM reflectivity as a function of frequency and in-plane wavevector 

for a 200nm pitch silver grating, consisting of a series of 40nm 

wide (FWHM) Gaussian peaks, and peak heights of a) 10nm, b) 

75nm, c) 150nm, and d) 250nm. 

 

Figure 7.3.1 The zeroth order reflectivity from a 200nm pitch silver grating 

consisting of a series of 10nm deep 40nm wide Gaussian peaks, 

oriented at a 90° azimuthal angle, as a function of frequency and 

in-plane wavevector. a) TM polarised radiation, and b) TE 

polarised radiation. 

 

Figure 7.3.2 The TM reflectivity from 200nm pitch silver gratings consisting of 

a series 40nm wide Gaussian peaks, oriented at a 90° azimuthal 

angle, as a function of frequency and in-plane wavevector. a) d = 

50nm, b) d = 100nm, c) d = 200nm, and d) d = 300nm. 

 

Figure 7.3.3 The 
z

H  component of the fields (the component along the 

grooves) of the four lowest energy modes on the structure 

described for figure 7.3.2(c), and with kz = 0.4. a) f = 0.721 x 

10
15

Hz, b) f = 0.833 x 10
15

 Hz, c) f = 1.008 x 10
15

Hz, and d) f = 

1.148 x 10
15

Hz. 

 

Figure 7.3.4 The z
H  component of the fields in the x-z plane through the 
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middle field maximum shown in figure 7.3.3(c) (y = 110nm). 

 

Figure 7.3.5 The band structure for a 200nm pitch silver grating consisting of a 

series of 40nm wide 50nm deep Gaussian peaks. The first and 

second order SPPs are shown as well as the light line and the SPP 

dispersion curve centred at the origin. 

 

Figure 7.3.6 Zeroth order TM reflectivities for 200nm pitch silver gratings 

consisting of a series of 40nm wide Gaussian grooves oriented at a 

45° azimuthal angle as a function of frequency and in-plane 

wavevector. a) 10nm deep polarisation conserved, b) 10nm deep 

polarisation converted, c) 50nm deep polarisation conserved, d) 

50nm deep polarisation converted, e) 100nm deep polarisation 

conserved, f) 100nm deep polarisation converted, g) 200nm deep 

polarisation conserved, h) 200nm deep polarisation converted. 

 

Figure 7.4.1 Reflectivity from a 200nm pitch silver grating consisting of a 

series of 60nm wide Gaussian peaks at a 45° azimuthal angle as a 

function of frequency and peak height. a) Polarisation conserved, 

and b) polarisation converted. 

 

Figure 7.4.2 Reflectivity from a 200nm pitch silver grating consisting of a series 

of 40nm wide Gaussian peaks at a 45° azimuthal angle as a 

function of frequency and peak height. a) Polarisation conserved, 

and b) polarisation converted. 

 

Figure 7.4.3 x and z components of the E fields at three points on the plot in 

figure 7.3.2(a). a) d = 100nm, f = 1.37 x 10
15

Hz, b) d = 250nm, f = 

0.97 x 10
15

Hz, and c) d = 250nm, f = 0.41 x 10
15

Hz. 

 

Figure 7.4.4 Reflectivity from a 300nm pitch silver grating consisting of a 

series of 60nm wide Gaussian peaks at a 45° azimuthal angle. a) 

Polarisation conserved reflectivity as a function of frequency and 
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peak height, b) polarisation converted reflectivity as a function of 

frequency and peak height, and c) reflectivity as a function of 

wavelength for d=265nm. 

 

Figure 7.4.5 Reflectivity from a 250nm pitch silver grating consisting of a series 

of 50nm wide Gaussian peaks at a 45° azimuthal angle. Silver 

permittivity described by a polynomial fitted to experimentally 

determined values. a) Polarisation conserved reflectivity as a 

function of frequency and peak height, b) polarisation converted 

reflectivity as a function of frequency and peak height, and c) 

reflectivity as a function of wavelength for d=240nm. 

 

Figure 7.4.6 Reflectivity from a 300nm pitch aluminium grating consisting of a 

series of 232.5nm high, 60nm wide Gaussian peaks at a 45 degree 

azimuthal angle of 45°. 

 

Figure 8.2.1.1 A schematic of the interferometer system used to manufacture the 

surface relief gratings. 

 

Figure 8.2.1.2 SEM image of a typical photoresist grating produced by the 

method described in this section. 

 

Figure 8.2.1.3 A schematic of the Reactive Ion Etcher (RIE) system 

 

Figure 8.2.1.4 SEM image of the etched grating produced by reactive ion etching 

of a photoresist grating into the SiO2 substrate. 

 

Figure 8.2.1.5 A schematic of the vacuum deposition equipment used to coat the 

grating in silver. 

 

Figure 8.2.2.1 A schematic of the system used to measure the wavelength 

dependent reflectivities of the samples. 
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Figure 8.3.1.1 The wavelength dependent reflectivity for various angles of 

incidence of a 150nm deep 170nm pitch silver grating oriented at 

an azimuthal angle of 0° with TM polarised incident light. The 

light is incident through the SiO2 substrate. 

 

Figure 8.3.1.2 The wavelength dependent reflectivity for various angles of 

incidence of a 150nm deep 170nm pitch silver grating oriented at 

an azimuthal angle of 0° with TM polarised incident light. The 

light is incident through a 45° SiO2 prism which is index matched 

to the  SiO2 substrate of the sample. 

 

Figure 8.3.1.3 The dispersion of the reflectivity minima obtained from figure 

8.3.1.1 and 8.3.1.2. The light line and diffracted order light line are 

also shown. 

 

Figure 8.3.2.1 The wavelength dependent reflectivity for various angles of 

incidence of a 150nm deep 170nm pitch silver grating oriented at 

an azimuthal angle of 90° with TE polarised incident light. The 

light is incident through the SiO2 substrate. 

 

Figure 8.3.2.2 The wavelength dependent reflectivity for various angles of 

incidence of a 150nm deep 170nm pitch silver grating oriented at 

an azimuthal angle of 90° with TE polarised incident light. The 

light is incident through a 45° SiO2 prism which is index matched 

to the  SiO2 substrate of the sample. 

 

Figure 8.3.2.3 The dispersion of the reflectivity minima obtained from figure 

8.3.2.1 and 8.3.2.2 

 

Figure 8.3.3.1 The polarisation conserved and converted wavelength dependent 

reflectivities for various angles of incidence of a 150 deep 170nm 

pitch silver grating oriented at an azimuthal angle of 45° with TM 

polarised incident light. For a) to c) the light is incident through the 
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SiO2 substrate, whereas for d) to h) it is incident through a 45° 

SiO2 prism which is index matched to the  SiO2 substrate of the 

sample. a) sinθ = 0.1, b) sinθ = 0.2, c) sinθ = 0.3, d) sinθ = 0.4, e) 

sinθ = 0.5, f) sinθ = 0.6, g) sinθ = 0.7, h) sinθ = 0.8. 

 

Figure 8.3.3.2 The dispersion of the reflectivity minima obtained from the total 

reflectivity plots of figure 8.3.3.1 
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Chapter 1 
 

Introduction 

 
1.1 Aim of Thesis 

 
 When this project first started the aim was to experimentally investigate high 

aspect ratio zero-order metal mono-gratings, zero-order hole arrays (in metal films) and 

metal island arrays. It was believed that the mono-grating structures would be of interest 

due to previous work by Sobnack et al (1998) and Tan et al (1999) in which very flat 

absorption bands were observed even in the zero-order region of the spectrum, and this 

work showed that these absorption bands were due to the excitation of Surface Plasmon 

Polaritons (SPPs). This result was somewhat surprising since it had previously been 

thought that SPPs could not be excited on zero-order gratings. However, after an 

extensive effort was made to manufacture such samples it became clear that, with the 

equipment available, it was not possible to make these structures of a sufficiently high 

quality, and it was at this point that the direction of the work changed somewhat. 

Similar problems were encountered when attempts were made to manufacture the hole 

and island arrays, and due to these problems this area of the project was not pursued. 

 During the experimental efforts the optical response of the mono-grating 

structures was modelled extensively for both narrow grooved (similar to the structure 

previously investigated) and narrow ridged structures, and it became clear that 

understanding the results obtained was, in fact, a significant piece of work in itself. 

Therefore, the modelling obtained, and the analysis, make up a large part of the work 

contained within this thesis, along with a chapter describing the experimental results 

which were obtained. 

 The remaining work for this thesis arose due to a paper by Schröter and 

Heitmann (1999) in which they observed that the SPP on the transmission side of a 

conformally corrugated thin metal slab could not be excited. During attempts to 

understand this work it was realised that their explanation of the results was incomplete, 

and it was in relation to the formulation of a more complete understanding of the optical 

response of these structures that the remaining work in this thesis was performed. It was 

noticed that, on these thin metal slabs, the role of the phase between the two 

corrugations on the two interfaces had a dramatic effect on their optical responses, and 
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that this subject had never before been investigated. This logically resulted in the 

question of what effect this phase issue would have on coupled SPPs, and on simple 

dielectric slab structures. It is the results of this work which makes up the remainder of 

this thesis. 

 It is clear that the aims of this thesis are dramatically different to those envisaged 

at the beginning of this project, but the general intention to increase the understanding 

of the role of periodic microstructures in the optical response of surfaces has been 

maintained. 

 

1.2 Outline of Thesis 

 

 The work in this thesis can be generally categorised into three main sections. 

The first section (chapters 2 and 3) deals with the background theory needed to 

understand the remaining work and gives an extensive discussion on the nature of SPPs, 

and on the modelling methods used throughout this thesis to calculate the optical 

responses of the structures investigated. The second section (chapters 4 and 5) 

investigates the optical response of two-interface grating structures for both metals and 

dielectrics when both interfaces are corrugated, and the final section (chapters 6, 7 and 

8) proceeds to investigate the effect of increasing the corrugation depth on the nature of 

the SPPs excited at a single air / metal interface. A brief outline of the contents of each 

chapter is given below. 

 

In chapter 2 the surface plasmon polariton (SPP) is introduced, and its nature on 

shallow metal gratings is described. This chapter provides the basis for all of the 

following chapters which involve metal layers, and describes such phenomena as band 

gaps in the SPP dispersion curves, and polarisation conversion. 

 

In chapter 3 the methods by which the optical response of grating structures may 

be calculated are described. A brief outline of the various possible methods is given, 

with detailed descriptions of the two methods used throughout the remainder of the 

thesis: the iterative series solution, and the differential method of Chandezon et al. This 

chapter is not needed to understand the remaining work, but is presented to describe the 

methods used extensively throughout this thesis. 
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In chapter 4 the optical response of shallow dielectric grating structures is 

described. Initially the case of a single air / dielectric interface is explored, before 

proceeding to discuss the optical response thin slab dielectric structures which are 

bounded by air and corrugated on both surfaces. The effect of the phase between the 

two corrugations is investigated, with several unexpected results occurring. 

 

In chapter 5 the same type of structures as in chapter 4 are explored, but with the 

slab material consisting of a metal rather than a dielectric. For this reason SPPs may be 

excited on both surfaces when the thickness of the slab is very small. Two situations are 

studied. Firstly, the case when the two bounding dielectrics have different refractive 

indices, so that the SPPs on the two surfaces are excited at different frequencies of the 

incident light. And secondly, the case where the two bounding dielectrics have identical 

refractive indices, with the result of coupled SPPs. Both conformal geometries, and the 

effect of the phase difference between the corrugations on the two surfaces, are studied 

for both cases. 

 

In chapter 6 there is a change of focus from shallow two interface structures, 

concentrating upon the effect on the optical response of single interface metal gratings 

of making the corrugation depth very large. In this chapter the case of a grating 

consisting of a series of narrow Gaussian grooves is examined, and it is shown that there 

are a family of flat-banded standing wave SPP resonances, which can be excited even in 

the zero-order region of the spectrum (in other words, when the grating is non 

diffractive). The mechanism by which these SPP resonances occur is described. 

 

In chapter 7 once again deep, single interface metal gratings are explored, but in 

this chapter the gratings consist of a series of narrow Gaussian peaks. The dispersion of 

the modes with changing in-plane wavevector is shown to be considerably different to 

those of the Gaussian grooved structures described in chapter 6, and the reason for this 

is described. 

 

In chapter 8 an experimental study of deep single interface metal gratings is 

reported. Reflectivity minima are recorded which are probably due to the excitation of 
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the flat banded SPP resonances described in chapter 6. The methods of fabrication and 

data acquisition are described before the results for varying wavelength and in-plane 

wavevector. 

 

Finally, in chapter 9 the general conclusions from the thesis, possible 

applications for the structures investigated, and ideas for future studies are presented. 
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Chapter 2 

 

Surface Plasmon Polaritons on Shallow Gratings 

 

2.1 Introduction 

 

The study of surface plasmon polaritons (SPPs) has been of interest for the last 

century. In fact it was Wood [1902] who, investigating the optical properties of ruled 

metallic gratings, first observed anomalies (a series of light and dark bands) in their 

wavelength dependent reflectivities (some of which were, many years later, attributed to 

the excitation of SPPs). These anomalies consisted of high and low regions of intensity 

in the spectrum obtained when illuminated with a continuous light source. At the time 

there was no theory which could account for these ‘Wood’s anomalies’. 

It was not until Rayleigh [1907] published his Dynamical Theory of Diffraction 

Gratings that the bright bands were explained. He showed that these were pseudo 

critical edges caused by a diffracted order becoming evanescent and its energy becoming 

redistributed among the other propagating orders. However, Strong [1935] demonstrated 

that the angular position of the reflection minima depended upon the metal of which the 

grating was made, and therefore they could not be solely due to the geometry of the 

system as were the pseudo-critical edges. It was not until Fano [1941] published a 

seminal paper on the subject that the nature of the dark bands was explained.  He 

described these dark bands in terms of the diffracted order becoming evanescent and 

producing a pair of ‘superficial’ waves which were unable to leave the surface.  

Due to further understanding of metals, and the development of the plasma 

concept for describing the free electrons, Ferrell [1958] predicted that a beam of 

electrons incident upon a metal film would emit radiation at the plasma frequency. 

Steinmann [1960] observed this to be the case, and Ritchie and Eldridge [1961] showed 

that the emitted radiation had characteristic energies of πω 2/ph  and 22/ πω ph , 

where pω is the plasma frequency, and 2/pω is the surface plasma frequency which 

will be described later in the chapter. It was this work which lead to the superficial 

waves described by Fano becoming known as surface plasmon polaritons. 
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In this chapter we shall introduce the SPP for a planar surface and briefly 

describe its properties. We shall then explain how a shallow grating may be used to 

couple light to this surface mode producing resonant absorption. We shall also explain 

two of the phenomena of SPPs on shallow gratings which shall be needed in order to 

understand some of the work later in this thesis: band gaps, and polarisation conversion. 

Some of the plots contained within this chapter are obtained using the modelling 

methods described in the next chapter. 

 

2.2 The Surface Plasmon Polariton on a Planar Surface 

 

 Fano [1941] investigated the Wood’s anomalies by considering the case in 

which there is a glass overlayer on a metal substrate through which a trapped EM wave 

is travelling by total internal reflection. He produced an equation which connected the 

thickness of the glass overlayer to the normal and tangential components of the 

wavevector of the trapped wave solutions. He found that if the thickness of the glass is 

reduced to the point where it vanishes there is only one solution to this equation. This 

solution depends upon the trapped EM wave being TM polarised, and upon the real part 

of the permittivity of the substrate being negative (i.e. a metal) giving a large 

concentration of surface charge from the inversion of the direction of the normal 

component of the electric field. From this start the study of SPPs has progressed to the 

point where the phenomenon is now well understood. 

The Surface Plasmon (SP) is a longitudinal oscillation of the surface charge at 

the interface between a metal and a dielectric. Typically it is excited with EM radiation 

and when this is coupled to the surface charge oscillation the resultant surface wave is 

known as a Surface Plasmon Polariton (SPP), and has mixed transverse and longitudinal 

character. This mode is a ‘trapped’ surface wave which decays exponentially away from 

the interface into both bounding media. If TM polarised light is incident upon an 

interface between a metal and a dielectric with a non-zero incident angle there is an E 

field component normal to the surface. This field is not continuous across the interface, 

and therefore a surface charge is induced upon it. For TE polarised light, however, there 

is no component of E normal to the surface for any incident angle, and no charge is 

induced at the surface. Therefore, since the SPP is the result of the surface charges, it 

may, on flat surfaces, only be excited by TM polarised light. In this section we shall 
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derive the dispersion relation for the SPP mode on a planar surface, and also discuss its 

properties. 

 

2.2.1 The Dispersion Relation 

 

 We shall now derive the dispersion relation for the SPP surface mode from 

Maxwell’s equations (Raether [1988]), and also show that it is equivalent to the 

Brewster mode for a metal / dielectric boundary. 

For TM polarised light propagating with wavevector )0,,( yx kk=k the electric 

and magnetic fields have the forms: 

[ ] ( )( )tykxkiEE yxyx ω−+= ˆˆexp0,,E  2.2.1.1 

[ ] ( )( )tykxkiH yxz ω−+= ˆˆexp,0,0H  2.2.1.2 

 For light incident upon an interface a reflected and a transmitted beam are 

produced as in figure 2.2.1.1 (z direction is into the page). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.1.1 A schematic diagram of light with incident wavevector k1 incident on an interface bounded 

by two media described by complex refractive indices n1 and n2. 

 

 By applying Maxwell’s equation: 
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−==  

2.2.1.4 

and by combining equations 2.2.1.1,2 with equation 2.2.1.4 we obtain the following 

expressions for the incident, reflected and transmitted fields: 
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2.2.1.5 

Since the SPP is a trapped surface wave we are able to set either the incident or 

reflected field to zero (we set the incident field to zero), and we also have the boundary 

condition at a dielectric / metal interface that the tangential components (x and z 

directions) of the electric and magnetic fields must be continuous across the interface. 

Therefore, 

21 xx EE =  2.2.1.6 

and, 

2

2
2

1

1
1

y
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y

xz
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E
k

EH
ωεωε +− =−=  

2.2.1.7 

 By combining equations 2.2.1.6 and 2.2.1.7 we then obtain: 

2

2

1

1

yy kk

εε
−=  

2.2.1.8 

 We may also obtain the y component of the wavevector of the reflected and 

transmitted fields in terms of the total wavevector and the in-plane wavevector of the 

fields: 



Chapter 2 Surface Plasmon Polaritons on Shallow Gratings 

 

 32 

( ) 2
1

22

0 xjyj kkk −= ε  2.2.1.9 

where the j subscript corresponds to the medium in which the field is propagating. By 

substituting equation 2.2.1.9 into equation 2.2.1.8 the SPP dispersion relation is 

obtained: 

2
1

21

21
0 









+
=

εε

εε
kk x  

2.2.1.10 

 We shall now show that the SPP is, in fact, the manifestation of the Brewster 

mode on a metal dielectric interface.  

 

Consider light incident upon a planar interface between two media with 

refractive indices n1 and n2 respectively. The tangential component of the incident 

wavevector must be conserved upon transmission through the interface: 

jjxx knkk θsin021 ==  2.2.1.11 

where the j subscript corresponds to the medium in which the light is propagating. This 

is a form of Snell’s law, which is more frequently written as: 

2211 sinsin θθ nn =  2.2.1.12 

 The Brewster angle is the angle at which TM polarised light is totally transmitted 

through an interface between two dielectrics. In the reflecting medium the plane of 

oscillation for the charges form an angle θ2 with the normal to the surface. The 

proportion of light reflected from the surface depends upon the angle between the 

direction of propagation of the reflected light and that of the plane of oscillation of the 

charges. If this angle is 90° then there will be no reflected light since there can be no re-

radiation from an oscillator in the direction orthogonal to the plane of oscillation, and 

therefore all of the light will be transmitted. This occurs at an angle θB =  90°- θ2 and 

equation 2.2.1.12 then becomes: 

( ) BBB nnn θθθ cos90sinsin 221 =−=  2.2.1.13 

which can be simplified to the more common form for the Brewster angle: 

1

2tan
n

n
B =θ  

2.2.1.14 

 Equation 2.2.1.13 can be used in order to determine the dispersion relation for 

the Brewster mode: 
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and combing this with equation 2.2.1.11 we then obtain: 
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2.2.1.16 

 Equation 2.2.1.16 is identical to equation 2.2.1.10 and therefore it is clear that 

the SPP represents the Brewster mode on a metal / dielectric interface. 

Figure 2.2.1.2 The SPP dispersion curve for a planar silver / vacuum interface using a Drude model to 

describe the frequency dependent dielectric function of the silver with ωp = 1.36 x 10
14

Hz, and τ = 1.4 x 

1014Hz. Also shown are the light-line, and the high kx asymptotic limit of ωsp. 

 

 The dispersion relation is shown in figure 2.2.1.2 for an air / silver planar 

interface with the dielectric function of the silver described by a Drude model of the 

form: 
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The SPP dispersion curve is shown, along with the light-line (which corresponds 

to the maximum in-plane wavevector an incident photon may have for a particular 

frequency - in other words, the wavevector of a grazing photon as a function of ω).  
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The SPP dispersion curve has two asymptotic limits. For high frequencies the 

SPP dispersion curve becomes asymptotic to the surface plasmon frequency at 

( )2

11/ εωω += psp  which is the frequency at which the real part of the dielectric 

function of the silver is equal, but opposite in sign, to the real part of the dielectric 

function of the dielectric. This limit arises since, from equations 2.2.2.10,16, it is clear 

that at frequencies above ωSP and below ωp, kx is purely imaginary, and above ωp, ky 

(given by 22

01

2

xy kkk −= ε ) is real indicating that it is no longer a trapped surface wave. 

In the region of the dispersion curve where it is close to ωSP the SPP is ‘plasmon like’. 

The second asymptote is the low frequency limit where the SPP dispersion curve 

approaches the light line. At this limit the SPP is like a grazing photon. These two limits 

will be discussed further in section 2.2.2. 

We have assumed here that the incident radiation is incident in the x-y plane. 

Since the surface is planar the dispersion curve obtained above is valid for radiation 

incident in any plane since the polarisation of the incident radiation is defined relative to 

the plane of incidence. Therefore, the full dispersion curve, which takes into account the 

z component of the wavevector of the incident radiation, has a horn shape, formed by 

rotating the dispersion curve shown in figure 2.2.1.2 around the y-axis.  

It is clear that the SPP dispersion curve is always at higher values of the in-plane 

wavevector than that obtainable by incident photons. For this reason the SPP may not be 

excited on a planar dielectric / metal interface without some coupling mechanism to 

enable the incident photon to gain enough in-plane wavevector for the wavevector 

matching condition to be satisfied.  

Coupling to a SPP may be achieved optically by two main methods: prism 

coupling, and grating (roughness) coupling. Otto [1968] first used a prism to couple to a 

SPP on a smooth planar surface by placing a flat metal surface a small distance from the 

prism. Light is incident in the prism at past the critical angle so that it is totally 

internally reflected. An evanescent wave is created at the reflecting surface which 

decays into the dielectric gap between the prism and metal surface. This evanescent 

wave may have increased wavevector when compared to that available to light in the air 

gap, and therefore the wavevector matching condition between the exciting fields and 

the SPP may be satisfied, and the SPP excited. The coupling strength to the SPP 

depends upon the width of the air gap between the prism and metal surface, with ideal 
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coupling occurring when the air gap is of the order of the incident radiation wavelength. 

Due to the fact that this gap is very small for visible radiation it is difficult to use this 

method in practice. 

A second prism coupling technique was developed by Kretschman and Raether 

[1968]. This method utilises a thin metal film evaporated directly on the reflecting prism 

surface. Since the refractive index of the metal is lower than that of the prism an 

evanescent wave is created when the radiation is incident at past the critical angle. This 

evanescent wave decays through the metal film and excites the SPP on the lower surface 

of the metal film. For ideal coupling to the SPP the metal film thickness should be of the 

order of 45nm at visible wavelengths. 

The method of interest throughout the remainder of this thesis is that of grating 

coupling, and this will be described in some detail in section 2.3. 

 

2.2.2 Penetration Depth 

 

 When a SPP is excited at the surface between a dielectric and a metal its fields 

decay exponentially away from the surface into both media. A useful measure of this 

decay is the penetration length Ly, which is the distance at which the field strength has 

decayed to 1/e of its maximum value at the surface. In order to obtain this it is necessary 

to have expressions of the form E0 exp(i(a+ib)) where the decay in the y direction is due 

to the [ib] term introduced by the complex part of the wavevector ky. Therefore it is 

necessary to obtain an expression for the imaginary part of ky: 
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where the  subscript j denotes the medium in which yk is being determined ( 2,1=j ). 

 The upper (incident) medium is a dielectric with complex dielectric function 

such that ε1r > 0 and ε1i = 0, and the lower medium has complex dielectric function such 

that ε2r < 0, and ε2i > 0. If medium 2 is a good metal, ( 12 >>rε  and ir 22 εε >> ) 

equation 2.2.2.1 becomes: 
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From equation 2.2.2.2 it is clear, for the condition on the dielectric functions 

described above, that kyj is purely imaginary, and therefore the penetration length Ly is 

given by: 
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2.2.2.3 

 Figure 2.2.2.1 shows the penetration depths for a planar silver / vacuum interface 

with the frequency dependent dielectric function described by a Drude model as 

described in section 2.2.1 with a plasma frequency of 1.32 x 10
16

Hz, and a relaxation 

time of 1.4 x 10
-14

s. The frequency range shown is for a region where the condition that 

ir 22 εε >> , used to derive the penetration depth in equation 2.2.2.3, is obeyed for the 

Drude model. 

 

 

 

 

 

 

 

 

Figure 2.2.2.1 The penetration depth of the SPP fields into the vacuum for a planar silver / vacuum 

system. The frequency dependent dielectric function for the silver is modelled using the Drude model with 

ωp =1.36 x 10
16

Hz, and τ = 1.4 x 10
14

s. 

 

 

 

 

 

 

 

 

 

Figure 2.2.2.2 The penetration depth of the SPP fields into the silver for a planar silver / vacuum system. 

The frequency dependent dielectric function for the silver is modelled using the Drude model with ωp 

=1.36 x 10
16

Hz, and τ = 1.4 x 10
14

s. 
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It is clear from equation 2.2.2.4 and from figure 2.2.2.1 that in the limit 

−∞→r2ε , in other words a perfect metal, the decay depth in the dielectric becomes 

infinite. This agrees with the discussion in section 2.2.1 about the nature of the SPP for 

different regions of the dispersion curve. The conditions required for this situation 

correspond to those of the dispersion curve at very low frequencies where most metals 

can be considered as near perfect metals. At these low frequencies the SPP dispersion 

curve asymptotically approaches the lightline, indicating that the SPP is very much like 

a grazing photon. At the other limit of rr 12 εε = (at ωsp) figure 2.2.2.1 shows that the 

decay length of the fields in both media have reduced to zero, indicating that there are 

no longer exponentially decaying fields present. The dispersion curve at this point has 

infinite kx (kSPP), and since 222

0 ySPP kkk += , ky must equal minus infinity which 

corresponds to a decay length of zero. Other effects involving retardation then need to 

be taken into account. 

 

2.2.3 Propagation Length 

 

 The propagation length is defined in a similar manner to the penetration depth in 

the last section. The imaginary part of kx is given by: 
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and therefore the propagation length is given by: 
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 For silver at 632.8nm ( )67.06.17( iag +−=ε ) the propagation length is 42.6µm. 

 

From these results we now have a picture of the SPP on a planar metal surface. It 

is a longitudinal surface charge oscillation coupled to incident EM radiation which, at 

optical frequencies, is propagating along the surface. This surface charge oscillation 

causes field loops in the two media and the SPP is trapped at the surface since the total 
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fields of the SPP decay exponentially away from the surface into both media. This is 

shown schematically in figure 2.2.3.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.3.1 A representation of the polarisation surface charge density and associated electric field for 

the SPP mode. The electric field decays exponentially into both the metal (ε1) and dielectric (ε2) 

 

The localised nature of the fields associated with SPPs means they are ideally 

suited for probing surface properties. They may be used to determine the optical 

constants of metals and overlayers (Tillin and Sambles [1988], Watson and Sambles 

[1991], Hibbins, Sambles and Lawrence [1998]). They may also be used to determine 

the profile of gratings (section 2.3) by fitting experimentally obtained reflectivity data to 

grating theories, and for sensor applications (Jory, Bradberry, Cann and Sambles [1995], 

Nylander, Liedberg and Lind [1982]). 

 

2.3  Grating Coupling to Surface Plasmon Polaritons 

 

In this section we shall described the method of coupling to, and the properties 

of, SPPs on metal diffraction gratings. 

 

2.3.1 The Dispersion Relation 

 

 A schematic of the system discussed and the terms used in this and following 

sections is shown in figure 2.3.1.1 
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Figure 2.3.1.1 A Schematic showing the grating system under consideration and the terms used in order to 

define it. 

 

 A photon incident upon a grating surface can be scattered by subtracting or 

adding an integer multiple of the grating vector kg ( ggk λπ /2= , where gλ is the grating 

pitch). This is the origin of the diffracted orders produced by such a surface. If the 

grating is oriented such that it is in the classical mount (where the plane of incidence 

contains the grating vector - the azimuthal angle φ = 0) and the frequency of the incident 

light and the incident polar angle are such that the diffracted order is evanescent, then 

their enhanced momentum is available to couple radiatively to SPPs according to the 

equation: 

gSPP Nkkk ±= θsin0  2.3.1.1 

 The mechanism for grating-coupling to the SPP is best described by considering 

the effect upon the SPP dispersion curve (equation 2.2.1.10, figure 2.2.1.2) of 

corrugating the interface. In reciprocal space the periodicity of the surface is represented 
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by a line of points separated by the grating vector kg, and the SPP dispersion curve, as 

well as the incident light, may be scattered from these lattice points. The resulting 

dispersion curve is shown in figure 2.3.1.2. Since the dispersion curve of the diffracted 

SPP now lies between the light lines (the region of ω - k space which is available to 

incident radiation – the shaded region in figure 2.3.1.2), the SPP may be directly 

radiatively coupled to the incident radiation.  

 

 

 

 

 

 

 

 

Figure 2.3.1.2.  The SPP dispersion curve for a shallow monograting. The full black lines are the SPP 

dispersion curves, and the faint black lines are the diffracted and non-diffracted light lines. Due to the 

scattering from the grating vector (kg) the SPP dispersion curve may be folded inside the light lines and 

may be coupled to by incident radiation. 

 

 If the frequency of the incident radiation is chosen such that the SPP can be 

excited at normal incidence then the resulting SPP is a combination of the two SPPs 

scattered from ±kg and since the wavevectors of the SPPs are in opposite directions the 

resulting SPP is a standing wave (in fact there are two possible standing wave solutions 

which produce a band-gap, but this will be discussed in more detail in section 2.3.2) 

Unlike the planar system case the dispersion curve is not identical in all 

directions in reciprocal space since the periodicity is in the x direction only, and 

therefore the scattering lattice points only occur in the x direction. When the light is 

incident at non-zero azimuthal angles (the conical mount) the SPP is still coupled to by 

diffraction caused by scattering from the periodicity in the x direction. Therefore the 

SPP propagates at close to the direction of the evanescent diffracted order (when the 

SPP wavevector is close to that of the maximum wavevector available to the diffracted 

order), and the dispersion curve of the SPP is given by taking a slice through the 

scattered SPP dispersion curve in the (kx, kz)–ω plane, with the values of kx and kz given 

by: 
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φθ cossin0kk x =  2.3.1.2 

φθ sinsin0kk z =  2.3.1.3 

 An example of how the SPP dispersion curve appears in one of these planes is 

shown in figure 2.3.1.3, for the kz-ω plane with kx = 0 (a 90° azimuthal angle). 

 

 

 

 

 

 

 

 

Figure 2.3.1.3 The dispersion curve of a SPP on a grating structure in the ω-kz plane with kx = 0. The SPP 

dispersion curve centred at the origin is shown (always outside of the lightline) as is the SPP dispersion 

curve scattered from +kg. The form of this scattered SPP dispersion curve arises from taking a slice 

through the SPP ‘horn’ shape centred at kx = kg. 

 

 Previously we mentioned that the SPP propagates at close to the direction of 

propagation of the evanescent order which excites it. In order to show this it is useful to 

plot out the dispersion curve in the kx-kz plane for constant ω (figure 2.3.1.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3.1.4 The thickly drawn circle of radius k0 centred upon the origin describes the maximum 

wavevector available to a photon in the plane of the grating surface. At a slightly greater radius than this is 
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the SPP circle (dotted line) corresponding to the dispersion curve described in the text. Both of these 

circles have been scattered by kg, which results in the two circles occurring at the reciprocal lattice points. 

The angle ψ is the propagation angle of the SPP with respect to the kx direction. 

 

 The light circle and SPP dispersion curve originating at the origin, and those 

scattered by the lattice point at ±kg, are shown, including the mechanism for coupling to 

the SPP for a non-zero azimuthal angle. The SPP circle scattered from –kg is inside the 

light circle originating at the origin, which corresponds to the maximum wavevector 

available to the incident radiation. θsin0k is the in-plane wavevector of the incident 

light for the conditions required for SPP excitation from the –kg scattering process, 

where the coupling condition (previously equation 2.3.1.1 for the classical mount) is, by 

simple trigonometry, now:  

φθθ cossin2sin 0

22

0

22

ggSPP kkkkk −=−  2.3.1.4 

The scattering by kg then gives the wavevector of the SPP at the equivalent point 

on the SPP circle originating at the origin. With the propagation angle of the SPP with 

respect to the kx axis, ψ, given by  
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2.3.1.5 

 For an example, if we use equations 2.3.1.4 and 5 to determine the propagation 

angle for 400nm wavelength light incident at a 45° azimuthal angle on a 2µm pitch 

silver grating the propagation angle is ψ = 40.6° with respect to the kx axis.  

It is clear from figure 2.3.1.4 that if we use the same method for determining the 

propagation angle for light incident in the kz-ω plane with kx = 0 (a 90° azimuthal angle) 

the resulting SPP is a product of the two SPPs scattered from ±kg. The two contributing 

SPPs are propagating at: 
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2.3.1.6 

which is clearly not in the plane of the incident light. The resulting SPP is, therefore, a 

standing wave in the x direction (produced since the x-component of the wavevectors of 

the two SPPs are of equal magnitude and in opposite directions) which is propagating in 

the z direction. 

 Previously, for the planar interface case (section 2.2), the polarisation of the 

incident light was defined with respect to the plane of incidence of the light, and only 
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TM polarised light was capable of exciting the SPP since a component of the electric 

field normal to the surface was necessary. Now that the surface of the metal has been 

patterned with a grating structure the symmetry of the surface has been broken, and the 

incident light may now have components of its electric field normal to the surface for 

both linear polarisations depending upon the orientation of the grating grooves with 

respect to the plane of incidence. If the light is incident in the classical mount only TM 

polarised light may excite the SPP since TE polarised light has its electric field parallel 

to the grating grooves, and is therefore never normal to the surface for any polar angle. 

However, at a 90° azimuthal angle TE polarised light has an electric field component 

perpendicular to part of the surface and may be used to excite the SPP, whereas TM 

polarised light may not under most circumstances. (TM polarised light does have a 

component of its electric field normal to the surface for non-zero polar angles, but in 

general may no excite a SPP. However, there is a special case where TM polarised light 

may excite the SPP, but it requires a very deep grating with a specific type of profile 

(Watts, Preist and Sambles [1997]) and this will be discussed in chapter 7). 

 The SPP dispersion curves for these two planes in reciprocal space (shown in 

figures 2.3.1.2 and 3) can only be excited with TM and TE polarised light respectively. 

For azimuthal angles between 0° and 90° both TM and TE polarised light may excite the 

SPP, though due to the difference in the magnitude of the electric field component 

normal to the surface for the two polarisations the coupling strength to the SPP will be 

different for each. In general, the maximum coupling possible by TM polarised light is 

at φ = 0° and reduces monotonically as φ is increased until it disappears at φ = 90°. For 

TE polarised light this behaviour is reversed. 

 

2.3.2 Coupling Strength to SPPs 

 

 A plot of the zero-order TM reflectivity as a function of frequency for a 1µm 

pitch 30nm amplitude sinusoidal silver grating (with the dielectric function of silver 

described with a Drude model (as described in section 2.2) with ωp = 1.32 x 10
16

s
-1

, and 

τ = 1.4 x 10
14

s), for normal incidence and φ = 0° is shown in figure 2.3.2.1 (obtained 

numerically using the computer code based upon the method of Chandezon described in 

Chapter 2 – as will be the rest of the modelling in this chapter). 
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Figure 2.3.2.1 The zero-order TM reflectivity as a function of frequency for a 1µm pitch 30nm amplitude 

sinusoidal silver grating (with the dielectric function of the silver described with a Drude model with ωp = 

1.32x10
16

s
-1

, and τ = 1.4x10
14

s), for normal incidence and φ = 0°. Three features are evident; at f = 

0.36x10
15

Hz a SPP minimum due to the first order SPP, at f = 0.37x10
15

Hz a pseudo critical edge due to 

the 1
st
 diffracted order becoming evanescent, and at f = 0.735x10

15
Hz a small reflectivity maximum due to 

the second order SPP. 

 

There are three main features to be seen in figure 2.3.2.1. Firstly there is a 

critical edge at f = 0.37x10
15

Hz which correspond to the frequency at which the 1
st
 

diffracted order has become evanescent and redistributed its energy to the remaining 

propagating orders. Secondly there are two features at f = 0.36x10
15

Hz and f = 

0.735x10
15

Hz which are the frequencies at which the SPPs corresponding to the 1
st
 and 

2
nd

 order diffraction processes occur. First we shall discuss the form of the reflectivity 

feature for the 1
st
 order SPP. 

 The reflectivity feature for the SPP corresponding to the 1
st
 order diffraction is 

clearly manifested as a reflectivity minimum in the zero-order reflection from the 

structure. This reflection minimum arises due to a combination of the specularly 

reflected light, and the re-radiated light from the SPP. 

The incident light is scattered into a diffracted order which, when the coupling 

condition is satisfied (equation 2.3.1.1), excites the SPP which propagates along the 

surface. The SPP may then undergo a second scattering process which results in it being 
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re-radiated into the specularly reflected order, having had some of its energy lost due to 

Joule heating in the metal (caused by the oscillatory motion of the surface charges). The 

phase of the evanescent 1
st
 diffracted order is 90° out of phase with respect to the 

incident light and, since the SPP is resonant as a forced damped oscillator, there is a 

second 90° phase change into the SPP. Therefore, the SPP is 180° out of phase with the 

incident light. Upon coupling of energy out of the SPP back into the specularly reflected 

order this process is repeated so that the re-radiated light is in phase with the incident 

light. However, the specularly reflected light is 180° out of phase with the incident light 

since the electric field is reversed upon reflection from a metal surface. Therefore, since 

the specularly reflected light and the re-radiated light are 180° out of phase, they cancel 

to produce a reflectivity minimum. 

The shape of the resonance is given by the combination of the strength of 

coupling into and out of the SPP, and the absorption of energy from the SPP into the 

metal. The re-radiation and absorption of energy are the damping terms and, as with 

other resonance phenomena, the width of the resonance is due to the total damping of 

the oscillator. The absorptive part of the damping is relatively independent of the depth 

of the grating, whereas the re-radiation term increases as approximately a
2
 (similar to the 

intensity of a diffracted order). Also, the depth of the resonance is given by the ratio of 

the radiative part of the damping to the absorptive part of the damping, with a maximum 

depth ( 0=R ) when absrad ωω ∆=∆ (where radω∆ is the broadening due to the radiative 

part of the damping, and absω∆ is the broadening due to the absorptive part of the 

damping). Therefore, for a very shallow grating the SPP resonance is manifested as a 

narrow, but shallow resonance and, with increasing depth, the resonance widens and 

deepens until, when the radiative part of the damping is equal to the absorptive part of 

the damping, the minimum of the resonance is at a reflectivity of zero. On increasing the 

depth further the width of the resonance continues to increase, but the depth of the 

minimum decreases so that, for very deep gratings, a very broad and shallow minimum 

results. This is shown in figure 2.3.2.2, which shows the change in the zeroth order 

reflection from a grating around the frequency at which the 1
st
 order SPP is excited with 

changing amplitude of the grating, with the grating described by the same parameters as 

those for figure 2.3.2.1 (for a fuller description of the effect of the grating profile on the 

optical response of gratings see Watts, Hibbins and Sambles [1999]). 
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Figure 2.3.2.2 The zero-order TM reflectivity for the same system as in figure 2.3.2.1, but with changing 

amplitude of the grating. 

 

The SPP corresponding to 2
nd

 order diffraction from the grating shows as a small 

maximum in figure 2.3.2.1. The reason that this feature is a maximum, rather than a 

minimum as for the SPP corresponding to the 1
st
 order diffraction, is that the phase of 

the re-radiated light is now in-phase with the specularly reflected order, rather than in 

anti-phase with it. This is because the scattering processes which lead both to the 

excitation of the SPP, and the re-radiation out of the SPP, is a 2kg process, which on a 

purely sinusoidal grating can only arise through two scattering processes. Therefore, 

there is an extra 90° phase shift with respect to the incident light into the SPP, and upon 

re-radiation, which leads to the re-radiated light being 180° out of phase with the 

incident light as opposed to in-phase from the single scattering process required for the 

1
st
 order SPP. Therefore it is in-phase with the specularly reflected light and adds 

constructively to it. 

The fact that it is a two scatter process is also the reason that the feature is much 

smaller than that for the 1
st
 order SPP, since a two scatter process has a much smaller 

probability of occurring than does a one scatter process. 
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For gratings which are not purely sinusoidal, but which have higher harmonic 

components, the processes which lead to higher order SPP excitation can occur due to 

single scattering processes which will then mean that the features are a) much larger 

since single scattering processes are more likely to occur, and b) appear as minima since 

the single scattering process leads to the re-radiated light being in anti-phase with the 

specularly reflected light. 

The addition of higher harmonics in the grating profile also affects the lower 

order SPP features. A two scatter process comprising of scattering from the 2kg 

component in the +kx direction, followed by a scattering from the kg component in the –

kx direction, produces an effect in the 1
st
 order SPP reflectivity feature in the specularly 

reflected order. However, since this is a multiple scattering process it is much weaker 

than the single scattering process from the fundamental component of the grating 

profile, and therefore the effect is relatively small.  

This sensitivity of the optical response of gratings to the grating profile, and the 

accuracy of theoretical models, allows the profile of a grating described by a Fourier 

series to be accurately determined (Wood, Sambles, Cotter, and Kitson [1995], 

Pockrand [1974], Pipino and Schatz [1994]). 

 

2.3.3 Band-Gaps in the Dispersion of SPPs on Gratings 

 

 In order to introduce the concept of band gaps in the SPP dispersion 

relation we shall first consider the simplest optical system which exhibits band-gaps: 

The quarter-wave multilayer dielectric stack consisting of alternate layers of two 

dielectrics of refractive indices n1 and n2 (figure 2.3.3.1). The thickness of the two 

differing slabs are chosen to be:  
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Figure 2.3.3.1 A sketch of the standing waves in a dielectric stack. The shaded regions correspond to a 

dielectric with a higher refractive index than the unshaded regions. The standing wave with field extrema 

concentrated in the high index medium has a lower energy than the standing wave with field extrema in 

the low index medium 

Consider light propagating at normal incidence onto a dielectric stack such that 

its optical wavevector is equal to half of the Bragg vector (corresponding to the stack 

periodicity). If this is the case, Bragg scattering occurs resulting in both forward and 

backward propagating waves, which may interact to produce a standing wave. By simple 

symmetry arguments the standing wave produced must have its maxima and minima at 

the mid-points of the high index dielectric medium, or at the mid-points of the low 

index medium. These two possible standing wave solutions have different energies since 

the optical field at the midpoints of the media will be altered due to the refractive index 

of the medium in which it occurs. Therefore, the two possible standing wave modes 

have different energies (frequencies) but the same wavevector, and a band gap in the 

dispersion of the mode will occur.  

The situation of a SPP propagating in the direction normal to the grating grooves 

is similar (Barnes, Preist, Kitson and Sambles [1996], Barnes, Kitson, Preist and 

Sambles [1997]). When the wavevector of the SPP is equal to half that of the grating 

vector a band gap occurs (at kx = kg/2) with the high and low energy solutions 

corresponding to different field distributions with respect to the grating grooves. If a 
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longer pitch component is added to the grating profile this band-gap is scattered into the 

region of ω-kx space in which it may be coupled. In fact if the longer pitch component is 

exactly twice that of the original grating the band gap will occur at normal incidence. 

Conversely, therefore, if a 2kg component is added to a grating profile then a band-gap 

at the crossing point of the SPP at normal incidence is opened. Another way of looking 

at this is that the kg component of the grating scatters two SPPs (from +kg and from –kg) 

so that they cross at normal incidence and are counter propagating. The 2kg component 

then couples these two SPPs together forming the band-gap (figure 2.3.3.2). 

 

Figure 2.3.3.2 Numerically modelled zero-order TM reflectivity of a grating structure comprising two 

Fourier components. The first harmonic component produces a band-gap at the intersection of the +1 and-

1 SPP branches (at normal incidence). The parameters used in the modelling were λg = 634nm, a0 = 5nm, 

a1 = 2nm and the permittivity of the metal is εr = -17.5 and  εi = 0.7. The two components of the grating 

profile are in phase with each other. 

 

In fact it is possible for the kg component to produce both these effects 

(scattering of the two SPPs, and coupling them together). However, the coupling 

together of the two SPPs requires a two scatter process which is far weaker than the one 

scatter process from a 2kg component of the grating profile. Therefore the 2kg scattering 

process is the dominant one. 

 One of the main methods used to create diffraction gratings for the optical 

region of the spectrum is through the use of holographic lithography. Due to non-

linearities in the exposure and development characteristics of photoresist (the material 

used in which the grating profile is recorded) higher harmonic components tend to 
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+++ +++ --- 

+++ +++ --- 

appear in the resulting grating profile. Therefore, band-gaps are frequently observed in 

the dispersion of SPPs on gratings. 

So far we have only considered the case of the band gap caused by the 2kg 

component of the grating which is scattered by the kg component into the region of ω-kx 

space where it may be excited by incident radiation. Of course, similar arguments hold 

for the other SPP crossing points at normal incidence. The two counter propagating 

SPPs at the crossing point which results from the 2kg scattering process must be coupled 

together by a 4kg component of the grating profile and so on. There are also SPP 

crossing points which occur at all half integer values of kg (see figure 2.3.1.2). In order 

to couple these two SPPs together to form a band-gap a component of the grating profile 

with (n+m)kg is required (where n and m correspond to the kg components of the grating 

producing the two interacting SPPs). The case of band-gaps at these half integer values 

of the grating vector will be discussed in more detail in chapter 7.  

We shall now investigate the origin of the energy gap in terms of the field 

distributions between the two standing wave solutions. For the bandgap corresponding 

to the crossing of the SPPs scattered from +kg and -kg the two possible standing waves 

on either side of the band-gap are, by simple symmetry arguments: 

( ) ( ) ( )xkxikxik ggg cos2expexp1 =−+=Ψ  2.3.3.1 

( ) ( ) ( )xkixikxik ggg sin2expexp2 =−−=Ψ  2.3.3.2 

One of these solutions has its nodes at the peaks of the 2kg component of the 

grating, and the other at the troughs of the 2kg component of the grating (figure 2.3.3.3). 

The high energy solution has its extrema of the normal field component and surface 

charge distribution in the troughs of the 2kg component, whereas in the low energy 

solution they occur on the peaks of the 2kg component. This is due to the increased 

compression of the field lines leading to a higher stored energy for the high energy 

solution. 
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Figure 2.3.3.3 The electric field and surface charge distribution for the two standing wave 

solutions on the 2kg component of the grating profile. The field lines in the lower sketch are more 

distorted, and therefore this is the higher energy mode. 

 

An analytical form for the size and central frequency of the band gap has been 

sought by, for example, Mills [1977], Seshadri [1985] and Barnes, Preist, Kitson and 

Sambles [1996]. All of these analytical methods can only describe the band gap for 

shallow grating structures. The basic results obtained by Barnes et al using the method 

of Chandezon are that the gap width ω∆  is, to first order, given by: 
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2.3.3.3 

where a2 is the amplitude of the 2kg component, and ω0 is the frequency at which the 

SPP would have been excited were it not for the opening of the band gap.  

The central frequency of the bandgap ω  is given by: 
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2.3.3.4 

The bandgap in the classical mount always occurs at this central frequency since 

the SPP is propagating in the direction of kg, however if the SPP is propagating at an 

angle ψ  with respect to kg (the azimuthal angle is non-zero) this is no longer the case 

and the gap will instead occur when 

ψ
ψ

cos
)(

g

SPP

k
k =  

2.3.3.5 

(from consideration of the requirements to excite the SPP (see figure 2.3.1.4)), and 

therefore the frequency of the centre of the gap increases as 1/cosψ . 

 As mentioned earlier this analytical form for the bandgap is only valid for 

shallow gratings and results for the case where the amplitude of the 2kg component is 

large will be discussed in chapters 6 and 7. 

Finally we shall discuss the effect of the relative phase between the kg and 2kg 

components in the description of the grating. The relative phase between the 

fundamental and first harmonic determines the coupling strength to the band edges 
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around the Brillouin zone boundaries (occurring at half integer values of the grating 

vector, and set up due to the periodicity of the structure), which in the case considered 

here is for normal incidence. If the phase of the 2kg component is in phase with the kg 

component then both band edges are coupled to equally (in this case the profile is 

blazed, or non-symmetric). However, if the phase between them is ±90° (the grating 

profile is symmetric) then only one of the band edges is coupled to (Weber and 

Mills[1985], Nash,Cotter, Wood, Bradberry and Sambles[1995]). This is shown in 

figure 2.3.3.4. 

 

Figure 2.3.3.4 Numerical modelled zero-order TM reflectivity plots showing the influence of the phase 

difference between the fundamental and first harmonic components of the grating profile. The grating 

parameters are otherwise the same as for figure 2.3.3.2. 

 

 As mentioned previously a component of the incident electric field must be 

normal to the surface for excitation of a SPP to occur. For the standing waves which 

form the band edges of the bandgap the electric field must be normal to the surface at 
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the point on the grating profile where the surface charges are oscillating. The kg and 2kg 

components of the surface profile for the three cases considered in this section (the two 

components are 0°, +90°, -90° out of phase with each other) are shown schematically in 

figure 2.3.3.5. 

Φ = 90°2 -

Φ =+90°2

(a)

Φ =0°2(c)

(b)

 

Figure 2.3.3.5 The kg and 2kg components of a distorted sinusoidal grating with relative phase between 

the two components of –90°, +90° and 0°. 

 

We shall first consider the case where the two components are –90° out of phase 

with each other (figure 2.3.3.5(a)). For normally incident radiation the electric field has 

no normal components at the peaks and troughs of the kg component of the grating, 

which is the component which enables the incident radiation to couple to the SPP. The 

charge distribution for the two standing waves relative to the 2kg component are shown 

in figure 2.3.3.3. For the low energy mode the charges are located on the peaks of the 

2kg component, and from figure 2.3.3.5(a) these occur at the peaks and troughs of the kg 

component. Since there is no normal component of the electric field at these points there 

can be no coupling to the SPP. However, the high energy solution has its charges 

located at the troughs of the 2kg component, and these correspond to the sloping sides of 

the grating peaks of the kg component. Therefore, there is a normal component of the 

incident electric field in this case, and coupling can occur. The reverse is true for the 

case where the 2kg component of the grating profile is +90° out of phase with the kg 

component since the peaks of the 2kg component now occur on the sides of the peaks of 

the kg component. If the phase between the two components is 0° then equal coupling to 

the two modes occurs. These results agree with the reflectivity plots of figures 2.3.3.2 

and 2.3.3.4. 
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2.3.4 Polarisation Conversion from Gratings 

 

There are two mechanisms by which linearly polarised incident radiation upon a 

grating may be converted to the orthogonal linear polarisation state. The first of these is 

mediated by SPP excitation (Inagaki, Goudonnet, and Arakawa [1986], Bryan-Brown, 

Sambles and Hutley [1990], Elston, Bryan-Brown and Sambles [1991], Depine and 

Lester [2001]). As discussed in section 2.3.1, when the orientation of the grating is such 

that the azimuthal angle is non-zero both TM and TE polarised light may be used to 

couple to SPPs. Since this is the case it is clear that when light is re-radiated out of the 

SPP both TM and TE polarised light may be emitted. If TM polarised light is used to 

excite the SPP then in this situation both TM and TE polarised light will be re-radiated 

so that when the specularly reflected light is investigated it consists of both 

polarisations. Therefore, some of the incident light has been polarisation converted. For 

shallow gratings the maximum in this polarisation converted signal occurs when the 

grating is oriented at an azimuthal angle of 45°, since it is at this orientation that the 

coupling strength to SPPs by TM and TE polarised light for a particular polar angle is 

most nearly equal. (Remember that the coupling strength to the SPP reduces 

monotonically from a maximum at a φ = 0° to zero at φ = 90° for TM polarised light, 

and vice versa for TE polarised light). For shallow gratings the φ dependence of the 

polarisation converted signal goes approximately as sin
2
(2φ), which can be shown by 

considering the electric field components relative to the grating profile (see Bryan-

Brown et al (1990)). It should also be noted that there are a second set of polarisation 

conversion maxima which occur when the propagation direction of the SPPs is at 45° to 

the direction of the grating vector in the plane containing the grating (Depine and Lester 

[2001]). The polarisation conserved and converted reflectivities as a function of kx and 

kz for TM and TE polarised light incident upon a 1µm pitch 40nm amplitude silver 

grating for incident light of frequency 0.474 x 10
15

Hz is shown in figure 2.3.4.1.  
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Figure 2.3.4.1 Numerically modelled polarisation conserved and polarisation converted reflectivities for 

TM and TE polarised light of frequency 0.474 x 1015Hz incident upon a 1µm pitch, 40nm amplitude silver 

grating as a function of kx and kz. a) Polarisation conserved for TM polarised incident light, b) 

Polarisation converted for TM incident light, c) Polarisation conserved for TE polarised incident light, 

and d) Polarisation converted for TE polarised incident light. 

 

The second method by which a grating produces polarisation conversion also 

involves the rotation of the grating by some azimuthal angle φ, and is cyclically 

dependent upon the grating depth (Watts and Sambles [1997]). It may cause polarisation 

conversion even when the grating pitch is so short that the structure is no longer 
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diffractive (it is zero-order). The mechanism by which this polarisation conversion 

occurs is as follows.  

The electric field of the incident light may be separated into two components: 

one parallel to the grating vector (Ex) and one parallel to the grating grooves (Ez). 

Assuming that the light is incident in a region of ω-k space in which the structure is non 

diffractive the Ez component, since it does not cut across the grating grooves, will reflect 

from the grating as if it were reflected from a planar surface at the average plane of the 

grating. However, the Ex component does cut across the grating grooves and may 

produce circulating fields within the grating grooves, which alters the effective average 

plane of the grating for the Ex component. The difference in the mean positions of these 

‘effective mirrors’ for the two electric field components produces a phase difference 

between them and this rotates the plane of polarisation. The phase difference between 

the two components depends upon the difference between the mean positions of these 

effective mirrors, and therefore the polarisation converted signal depends upon the depth 

of the grating with a maximum occurring when the phase difference between them is 

180°. It is cyclic as a function of depth since it is possible to produce more than one 

circulating field loop within the grating grooves, it is also dependent upon φ since the 

polarisation conversion will depend upon the ratio of Ex to Ez, with a maximum 

occurring when they are of equal magnitude (φ = 45°). 

 

2.4 Summary 

 

 In this chapter we have introduced the surface plasmon polariton as an 

oscillation of the surface charge density at the boundary between a metal and a dielectric 

with mixed longitudinal and transverse character. We have derived the dispersion of the 

SPP mode for a planar interface, and shown that it propagates along the surface with 

fields which decay exponentially away from the interface into both bounding media. It is 

not possible to couple to the SPP on a planar surface since its momentum is greater than 

that available to incident EM radiation and, therefore, mechanisms to enhance the 

momentum of incident photons are required. We have described in some detail the 

mechanism by which a grating allows coupling to the SPP by adding or subtracting 

integer values of the grating vector to the wavevector of the incident light. We have then 
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determined the dispersion of the SPP on gratings, including a discussion on the 

formation of band-gaps at the points where two branches of the SPP dispersion curve 

cross. Finally, the phenomenon of polarisation conversion from gratings has been 

explained. 
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Chapter 3 

 

Calculating the Optical Response of Grating Structures 

 

3.1   Introduction 

 

In this chapter the ways in which the optical response of grating structures may 

be calculated is described. This problem has been studied for nearly a century, ever 

since Rayleigh [1907] first treated the interface as a perturbation of a planar surface and 

hypothesised that the reflected fields could be considered as a superposition of plane 

waves. Implementation of these methods are inadequate for describing the optical 

response of all but very shallow gratings as they do not accurately describe the fields 

within the grooves, only in the half spaces above and below the grating profile maxima 

and minima. 

 The modelling of the optical response of grating structures tends to be 

computationally very intensive, and the majority of methods to calculate this response 

have therefore been developed relatively recently. A brief, non-mathematical, 

description of the most common methods will be presented in this chapter including 

their main advantages and disadvantages, followed by more detailed descriptions of the 

two methods utilised throughout this thesis. These two methods are the Iterative Series 

Solution (ISS) (Greffet and Maassarani [1990]), which is based upon the Rayleigh 

method, and a co-ordinate transformation method based upon the differential formalism 

of Chandezon Dupuis, Cornet and Maystre [1982]. 

 The contents of this chapter are not necessary for understanding the remainder of 

this thesis, but are presented to describe the methods which have been extensively used.  
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3.2 Overview of Methods 

 

3.2.1 The Perturbation Methods 

 

 The Rayleigh method treats the grating surface as a perturbation of a planar 

surface, and the fields reflected or transmitted from the structure as a superposition of 

the plane waves created via the interaction of the incident light with the grating (the 

Rayleigh hypothesis).  

The total field is required to be quasi-periodic (from the Floquet theorem), and 

therefore it may be expanded as a Fourier series. In the two homogeneous regions 

outside of the grating grooves Maxwell’s equations lead to a Helmholtz equation which 

is then used as a boundary condition for the problem. By combining the expanded 

representation of the fields with the Helmholtz equation an analytical expression for the 

field components is obtained, and therefore the optical response of the system may be 

calculated. 

 The main problem with the method is that it assumes that the expression for the 

field components is valid within the grating groove region. This is not generally the case 

since the Helmholtz equation is valid only for homogeneous regions of space (it is not 

specified on the grating surface). However, for very shallow gratings it produces results 

which agree with experiments. 

 There are also other forms based upon this method which use different field 

matching conditions such as the point matching method, the Fourier series method, and 

the variational method. However, they tend to suffer from the same limitations. 

 The simple perturbative methods can cope with gratings of a wide variety of 

materials, both metal and dielectric, although since the Rayleigh assumption breaks 

down for deeper structures, its use is relatively limited. However, due to the fact that the 

method is very simple in its analytical form it is very easy to implement and is useful as 

an illustrative tool. 
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3.2.2 The Integral Methods 

 

 The integral methods are more complex than both the perturbative methods and 

the differential methods. They are rigorous and do not suffer from the same limitations 

inherent in the methods based upon the Rayleigh assumption, meaning that the optical 

response of most grating systems can be calculated. 

 The integral methods define the fields at any point in space in terms of integrals 

on the grating surface. A set of unknown functions P are contained within these integrals 

and are defined at the surface. These functions are of physical properties and must be 

chosen very carefully since they must be capable of defining the fields at any point in 

space. The problem then becomes one of determining the P functions. In order to solve 

the boundary conditions several mathematical techniques may be employed such as 

Green’s functions (Wirgin [1964], Neureuther and Zaki [1969]), the theory of 

distributions (Schwartz [1965,1966]), and the formalism of potentials (Dumery and 

Filippi [1970]). The fields are then determined from these functions by using the 

integral expressions for the fields to express the limit values of the field and its normal 

derivative on both sides of the interface in terms of the P functions. The optical response 

of the grating may then be obtained. 

 These methods are extremely complicated for the case of metallic gratings or 

multi-layered gratings, but have been utilised since they are stable for most situations 

(e.g. Maystre [1978]). Due to their complexities the computation times can also become 

much longer than for the other methods. 

 

3.2.3 The Differential Methods  

 

 Maxwell’s equations may also be solved directly in order to calculate the fields 

from a grating. If this is performed in Cartesian co-ordinates a set of coupled partial 

differential equations is obtained, and by utilising a point matching method in order to 

solve these (Moaveni, Kalhor and Afrashteh [1975], Moaveni, [1988]) the optical 

response of the grating may be calculated. Though this method is simple to implement it 

may only be used for shallow gratings since it is inherently unstable. 
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 By using a curvilinear co-ordinate transformation in order to map the grating 

surface onto a flat plane these problems can be overcome. It is far simpler to solve 

Maxwell’s equations in the transformed co-ordinate frame, and, by applying the 

appropriate boundary conditions, a set of ordinary differential equations are obtained 

(Neviére, Cerruti-Maori, Cadilhac [1971]). By solving these the optical response of the 

structure can then be calculated. The Chandezon method described later in this chapter 

is of this class, and this method will be described in more detail then. 

 A final differential method involves the projection of the propagation equations 

for the system onto a suitable basis of functions. A set of coupled ordinary differential 

equations are then produced, which can be solved numerically (Petit [1966], Numata 

[1982]). 

 In general the differential methods are applicable to a wide variety of grating 

systems being able to handle metallic or dielectric materials (Neviére, Maystre, and 

Vincent [1977], Hutley, Verill, Mcphedran, Neviére and Vincent [1975]) and being able 

to model multi-layered and multi-shaped systems (Plumey, Granet and Chandezon 

[1995], Preist, Cotter, and Sambles [1995]). They have also been used to calculate the 

optical response of gratings in the conical mount (Vincent, Neviére, and Maystre [1978], 

Popov and Mashev [1986], Elston, Bryan-Brown and Sambles [1991]), and have even 

been used for bigrating structures (Vincent [1978], Harris, Preist, Sambles, Thorpe and 

Watts [1996]) (though the computation times in this case are very large). 

 

3.2.4 The Modal and Coupled Wave Methods 

 

 The classical modal method was developed by Botten, Craig, McPhedran, 

Adams and Andrewartha [1981a,b] and is well-suited to step-like grating profiles (e.g. 

rectangular gratings). In this method it is not necessary to use a Fourier expansion to 

describe the fields since Maxwell’s equations can be found in a closed form inside the 

grating grooves and peaks. The boundary conditions are then applied on the vertical 

groove walls, and a set of ‘modal constants’ are obtained. The total field is then 

represented as a sum over all the modes of the system, and the coefficients of the modal 

expansion are obtained through applying the appropriate boundary conditions between 

the region containing the grooves and the homogeneous media on either side. 
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 The main disadvantage of this method is that it is generally highly specialised to 

particular grating profiles, however Li [1993] has proposed a generalisation to the 

method which enables it to be used for arbitrary profiles. 

 An adaptation of this method was proposed by Mohoram and Gaylord 

[1977,1982,1986], and is sometimes referred to as rigorous coupled-wave theory. They 

differentiate between the two homogeneous regions above and below the grating and the 

region containing the grating, and they then expand the dielectric function within the 

grating region as a Fourier series. The fields in the two homogeneous media are 

expanded as a sum of plane waves, and in the grating region they expand the fields in 

terms of their space harmonic components (where the space harmonic components are 

phase matched with the plane wave sums in the two homogeneous media). By the use of 

the Helmholtz equation with the Fourier series description of the dielectric function, an 

infinite set of second-order coupled differential equations are obtained. These are 

reduced to two infinite sets of first-order differential equations which, on application of 

the appropriate boundary conditions, may be solved using an eigenvalue/eigenvector 

technique. 

 Though originally developed for rectangular grating profiles the method has 

been generalised to arbitrary profiles which are described in a ‘staircase’ approximation, 

and it then appears to be very similar to the classical differential method. Rigorous 

coupled wave theory is widely used since it is very powerful and relatively simple to 

implement, however the extension to arbitrary profiles suffers the same limitations as 

the classical differential theory. 

 

3.3 The Iterative Series Solution Method 

 

 The Iterative series solution is a simple method which utilises the Rayleigh 

hypothesis. Though very limited in its use due to the fundamental limitations inherent in 

methods using the Rayleigh hypothesis, it produces a very simple result for simple 

grating profiles. Therefore, it is easy to implement a very fast computer code to calculate 

the efficiencies and phases of the diffracted orders from gratings. The method was first 

developed by Maradudin [1983] for p-polarised light incident upon a sinusoidal grating 

in the classical mount, his work being in turn based upon the development of a method 
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derived by Lopez, Yndurain and Garcia [1978] for the scattering of atoms from a 

periodically corrugated hard wall. The method was then extended by Greffet [1988] in 

order to calculate the optical response of a rough interface for both s and p-polarised 

incident light for any orientation, and this was simplified by Greffet and Maassarani 

[1990] for the case of a sinusoidal grating. In this section we shall derive the general 

result for a rough interface using the method and notation of Greffet, and show the 

simplified results of Greffet and Maassarani. 

Firstly we shall consider the case of an electromagnetic wave impinging upon a 

rough surface described by the equations, 

( )ρSz = , and ( )zx,=ρ  3.3.1 

where the medium in the upper half space is described by a dielectric function ε1, and 

the medium in the lower half space is described by a dielectric function ε2. The field in 

the lower medium will be designated Et, and that in the upper medium will be the sum 

of the incident field Ei, and the reflected field Er. All of the fields have a temporal 

dependence exp(-iωt). 

 The transmitted field must satisfy the Helmholtz equation: 

02

02 =+∇ tt EE kε  3.3.2 

where k0 = ω /c. 

 If the Rayleigh expansion is assumed valid then the transmitted field may be 

written in the following form: 

( ) ( ) ( )[ ]yid tγ−= ∫ ρρρρ⋅⋅⋅⋅κκκκκκκκκκκκ exptt erE  3.3.3 

where 

2

02

22
kt εγ =+ κκκκ ,  and  ( ) 0Im >tγ  3.3.4 

with γt being the component of the transmitted field with wavevector κκκκ in the direction 

perpendicular to the average plane of the surface (the y-direction). 

 Similarly the incident and reflected fields can be represented by: 

( ) ( ) ( )[ ]yid iγ−= ∫ ρρρρ⋅⋅⋅⋅κκκκκκκκκκκκ expii erE  3.3.5 

with 

2

01

22
ki εγ =+ κκκκ ,  and  ii k θγ cos0=  3.3.6 

and 
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( ) ( ) ( )[ ]yid rγ−= ∫ ρρρρ⋅⋅⋅⋅κκκκκκκκκκκκ exprr erE  3.3.7 

with 

2

01

22
kr εγ =+ κκκκ ,  and  ( ) 0Im >rγ  3.3.8 

where γi and γr are the components of the incident and reflected fields wavevector in the 

y direction. 

 The extinction theorem appears as a boundary condition (also known as the 

Green’s function method) and we use this in order to determine the coefficients et(κκκκ): 

( ) ( ) ( ) ( )
( )


⌡

⌠
′








′

′∂
′−

′

′∂
′×∇×∇−= Sd

n
G

n

G

k

t

ti
δδπ

rE
rr,

rr,
rErE

2

04

1
 

3.3.9 

where r lies in the medium, r’ is a point on the surface S, n′∂∂ / denotes differentiation 

along the normal to the surface S in the outward direction, and 

( )
( )

rr

rr
rr,

′−

′−
=′ 0exp ik

G  
3.3.10 

is the free space Green’s function. 

 To determine the amplitudes et(κκκκ) we substitute equation 3.3.3 into equation 

3.3.9. To do this it is convenient to introduce the spectral representation of the free 

space Green’s function into equation 3.3.9: 

( )[ ]
⌡

⌠ ′−+′⋅=′ yyii
di

G r

r

γ
γπ

ρρρρ−−−−ρρρρκκκκ
κκκκ

exp
2

)( rr,  
3.3.11 

 Also, the following relations allow the integral in equation 3.3.9 to be performed 

over the x-z plane: 

( )∇⋅′=
′

n̂
nδ

δ
,  with  

( )[ ]
( )1,

1

1
ˆ

2
1

2
S

S
n ∇−

∇+
=′  

3.3.12 

( )[ ] 2
1

2
1 SzdxdSd ∇+′′=′  

3.3.13 

Integrating by parts using the identity: 

( ) ( ) ( )[ ]{ }

( )[ ] ( ) ( ) ( )[ ]ρρρρρρρρκκκκ−−−−κκκκκκκκ−−−−κκκκ

ρρρρρρρρκκκκ−−−−κκκκ

′′−+′⋅′×∇′−+′=

−′′−+′⋅′∇

SiiSi

Sii

trtr

tr

γγγγ

γγ

exp

1exp
 

3.3.14 

an integral equation for the transmitted field is obtained 

( ) ( ) ( )∫ ′′′××
−

= −− κκκκκκκκκκκκκκκκκκκκ ,
2

1

4

12 Iekke trr

r

i d
πγπ

εε
 

3.3.15 
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where the scattering potential I(κκκκ,κκκκ’)  is 

( ) ( )[ ] ( ) ( )[ ]

tr

tr Si
id

γγ

γγ

′−

′′−
×′⋅′′=′ ∫

ρρρρ
ρρρρκκκκ−−−−κκκκρρρρκκκκκκκκ

exp
exp,I  

3.3.16 

and γ is a function of κκκκ, γ’ is a function of κκκκ’, and  

( )trtr ,, , γ±=± κκκκk  3.3.17 

Before solving the integral equation 3.3.15 we will introduce a method for 

separating the s and p components of the field, and in order to do this a local basis is 

introduced which depends upon κκκκ. Due to the transverse nature of the field the spectral 

components may be written in the following form: 

( ) ( ) ( ) ( ) ( )−− += tptptstst kaekaee ˆˆ κκκκκκκκκκκκ  3.3.18 

where ( )−
ts kâ  and ( )−

tp kâ  are two unit vectors perpendicular to −
tk , and are defined as: 

( ) κκκκ̂ˆˆ ×=− yka ts
 3.3.19 

 

( ) ( )
−

−
−− ×=

t

t

tstp
k

k
kaka ˆˆ  

3.3.20 

and we then introduce ets and etp as the s and p components of the field respectively. 

 Using this basis the product, which appears as a linear operator, may be written 

in matrix form as: 
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3.3.21 

and we obtain a form of equation 3.3.15 for the s and p components of the transmitted 

field: 

( )
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πγπ

εε
 

3.3.22 

 It is this result which allows us to obtain an iterative series in order to obtain the 

ets and etp coefficients. Solutions for the generalised case of a rough surface described by 

the function S (defined in equation 3.3.1) are initially described, followed by the 

simplified case of a grating described by a purely sinusoidal profile. 

 Firstly the fields and the function I(κκκκ,κκκκ’) are expanded as follows: 
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( )
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3.3.23 
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3.3.24 

with 

( ) ( )[ ] ( )∫ ′′⋅′′=′ ρρρρρρρρκκκκ−−−−κκκκρρρρκκκκ−−−−κκκκ nn
SidS exp  3.3.25 

and where n is a number corresponding to an order which contributes to )(κκκκte , so that 

the sum over all n takes into account all possible orders (with wavevectors  κκκκ). The total 

)(κκκκte is therefore a sum over all of the plane waves, corresponding to all possible 

scattering events from the surface, in the half-space being investigated. In the iterative 

series below this n is used as a truncation parameter in the calculation, where only a 

sufficient number of orders are used to achieve convergence. 

By introducing equations 3.3.24 and 3.3.25 into equation 3.3.22 and equating 

terms of the same order one obtains (for n > 0): 

( )
( )

( )

( ) ( ) ( ) ( )
( )
( )∫ ∑

=
−

−
−

−













′

′
′′−








′′×

′
−

=












n

q
qn

tp

qn

tsqq

tr

q

rt

n

tp

n

ts

e

e
i

q

n
d

e

e

1
)(

)(

1

1

2

,

,
4

κκκκ

κκκκ
κκκκ−−−−κκκκκκκκκκκκκκκκ

κκκκκκκκ
κκκκ

κκκκ

SR

R

γγ

π

γγ

 

3.3.26 

where 
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q
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3.3.27 

and the zero order contribution is given by  
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3.3.28 

which are the Fresnel coefficients for transmission through a planar surface. 

 The scattered fields in reflection can also be obtained using equations 3.3.10-15: 
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3.3.29 

 Using the operator P(κκκκ,κκκκ’): 
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3.3.30 

which is the equivalent operator for the reflected fields to R(κκκκ,κκκκ’) for the transmitted 

fields, the reflected field coefficients are given by: 
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3.3.31 

for all values of n. 

 If the profile of the surface is defined as a pure sinusoid these equations are 

simplified and the iterative solutions are then given by 
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3.3.32 

for the transmitted fields, with h being the amplitude of the grating,  
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3.3.33 

and 

( )
izgix m κκκ ,+=κκκκ ,  and  ( )[ ]izgix kqm κκκ ,2−++=′κκκκ  3.3.34 

where m corresponds to the diffracted order of interest and κg is the grating vector 

defined as  



Chapter 3 Calculating the Optical Response of Grating Structures 

 

 

 67 

g

g
λ

π
κ

2
=  ,  and λg is the grating pitch  

 

 The corresponding iterative series for the reflected fields is: 
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3.3.35 

With  
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3.3.36 

 

 [Note in equations 3.3.32 and 3.3.35 the q
i and qi)(−  factors respectively. These 

will be of importance to the work in following chapters] 

 From these simple results the amplitude coefficients for whichever diffracted 

order is required can be simply obtained by using: 
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3.3.38 

and the efficiencies are then obtained from: 
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3.3.41 

  

 Therefore, in calculating the efficiency of any order from a sinusoidal grating 

these simple steps must be followed: 

1) The coefficients ers, erp, ets, and etp are obtained iteratively from equations 

3.3.32 and 3.3.35 to some desired order n, where the order required for 

convergence is dependent upon the grating profile, the dielectric function of 
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the media on either side of the interface, the polarisation of the incident light, 

and the orientation of the grating with respect to the incident light. 

2) The sum of these coefficients for the diffracted order m being investigated is 

then obtained from equations 3.3.37 and 3.3.38. 

3) The efficiency of the order is obtained from equations 3.3.39 and 3.3.41. 

 

It is also simple to obtain the phase of these orders with respect to the incident 

light by taking the inverse tan of the imaginary part of the amplitude coefficient divided 

by the real part.  

This model has been developed into a computer code and will be used 

throughout chapters 4 and 5. 

 

3.4  The Differential Method of Chandezon 

 

3.4.1  Introduction 

 

 The method of Chandezon et al [1980, 1982] is a differential method whose 

basic feature is that it uses a co-ordinate transformation that maps the interfaces of a 

multi-layer system onto parallel planes, thereby enabling the expression of the boundary 

conditions to be made much simpler, though at the same time making the solutions of 

Maxwell’s equations more complex. This method is extremely flexible and can be used 

to model complex grating profiles such as multi-shaped multi-layer systems (Plumey, 

Granet and Chandezon [1995], Preist, Cotter, and Sambles [1995]) and also bigrating 

structures (though the computation times for these are prohibitive for all but very 

shallow gratings).  

This method was first demonstrated in 1980 (Chandezon, Maystre, and Raoult 

[1980]) where the system was a single corrugated interface separating vacuum and a 

perfectly conducting metal, and was extended in 1982 to a multi-layer system with 

absorbing media (Chandezon, Dupuis, Cornet, and Maystre[1982]). This multi-layer 

method was based upon the use of transfer matrices in order to associate the eigenmodes 

across the interfaces. However, this method can become numerically unstable when the 

layer thickness become large, and therefore the use of scattering matrices was 
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introduced by Preist, Cotter, and Sambles [1995] in order to overcome this limitation 

(simultaneously an R-matrix technique was developed by Li [1995], which is almost 

identical to the scattering matrix method). 

In this section the scattering matrix approach to the method of Chandezon et al 

will be described. This method has been developed and used within the research group 

for a number of years and, though some minor changes have been made for the work in 

this thesis, the general method has remained unchanged. For this reason, and the fact 

that a complete description of the method is beyond the scope of this work, the 

description will not be exhaustive. The description will be limited to the general process 

needed to describe the case of light incident in the classical mount, and for single shaped 

multi-layer structures. Brief descriptions of the extensions to the theory needed to 

describe gratings in the conical mount, and those for describing multi-shaped systems, 

will also be given. 

 

3.4.2   The Method 

 

 The system to be solved is shown below: 

 

 

Figure 3.4.2.1 The multi-layer system 
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 It consists of a series of Q layers (labelled j = 1,2…,Q) with relative permittivity, 

permeability, and mean thickness j

rε , j

rµ , and ej respectively. The lower semi-infinite 

medium has relative permittivity and permeability 0

rε  and 0

rµ , and the corresponding 

values for the upper semi-infinite medium are denoted as 1+Q

rε  and 1+Q

rµ . By choosing 

the origin of y to be at the upper interface the equations for any interface j is given by 

( )xfdy jj +=  3.4.2.1 

and 

∑
=

−=
Q

jn

jj ed  
3.4.2.2 

where the function )(xf  is the profile of all the interfaces. 

 A monochromatic polarised plane wave is incident on the system in the plane 

containing the grating vector (with polar angle θ, and azimuthal angle φ = 0º) 

 The co-ordinate frame used to solve the problem maps the grating profile onto a 

planar surface producing a new co-ordinate system ),,( wuv  defined as: 

xv = ,   ( )xfyu −= ,   zw = . 3.4.2.3 

and two functions, C and D, are defined as 

( )2
1

1

vf
C

′+
=  

 

( )
( )2

1 vf

vf
D

′+

′
= . 

3.4.2.4 

 Maxwell’s equations are then obtained in the new co-ordinate system: 
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3.4.2.8 
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3.4.2.10 

where E1, H1, E3, and H3 are the tangential components of the fields, and E
2
 and H

2
 are 

the normal components of the fields. 

 Since only the tangential field components must be continuous across the 

interfaces the normal field components can be eliminated from these equations, 

producing four coupled equations: 
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3.4.2.14

 Since only the system in the classical mount is being described there is no z- 

components of the fields meaning that the partial derivatives w∂∂ /  are equal to zero. 

Therefore these equations become: 
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3.4.2.18 

where the surface shape is contained explicitly in the functions C and D.  

By introducing the notation : 

TM: 3HF = , 1
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0

0
0 EkG rε

µ

ε
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3.4.2.19 

TE: 
3EF = , 1

2/1

0

0
0 HkG rµ
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µ
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



=  

3.4.2.20 

for the two polarisations (obtained due to the fact that E3 = 0 and H1 = 0 for TM 

polarisation, and H3 = 0 and E1 = 0 for TE polarisation) equations 3.4.2.15-18 may 

simplify to 

iCG
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∂
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3.4.2.22 

which are valid for both polarisations. 

 It is possible to expand the fields by performing a Fourier expansion in the 

variable v  due to the periodicity of the fields in this direction. This Bloch wave 

expansion takes the form: 

( ) ( ) ( )viuFuvF m

m

m αexp, ∑=  3.4.2.23 

( ) ( ) ( )viuGuvG m

m

m αexp, ∑=  3.4.2.24 

where αm is the in-plane wavevector given by: 

mKkm += θα sin  3.4.2.25 

The functions C and D (equation 3.2.4.2) are also periodic and can be expanded 

in a fourier series: 

( ) ( )∑=
p

p ipKvCvC exp  3.4.2.26 
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( ) ( )∑=
p

p ipKvDvD exp  3.4.2.27 

 When these four expansions (equations 3.4.2.24-27) are substituted into 

equations 3.4.2.21,22 they become: 

( )∑∑∑ ++=
m p

vi

mpmpm

m

vim pmm eGCFDie
du

dF αα α  
3.4.2.28 

( ) ∑∑∑∑ +−= +

+
m

vi

mrr

m p

v

mpmmppm

m

vim mpmm eFikeFCGDie
du

dG ααα µεαα
2

0 . 
3.4.2.29 

 These equations can then be simplified to a double infinite set of 1
st
 order 

differential equations: 

( )∑ −− +=−
m

mmnmmnm
n GCFD

du

dF
i α  

3.4.2.30 

( )[ ]∑ −− ++−=−
m

mmnnmnmrrmnmn
n GDFkC

du

dG
i αδµεαα 2

0
. 

3.4.2.31 

where the calculation is performed by truncating the infinite sums to a range ±N. 

 It is now desirable to find the field coefficients Fm and Gm in a form which lends 

itself to matching through the boundaries between layers. In order to do this a field 

vector ξ(u) is introduced, defined as: 

ξξξξ=

T

NN
NN

GG
FF 







 −
−

ρρ
,...,,,...,  

3.4.2.32 

where ρ is given by ( ) rk εµε 2/1

000−  or ( ) rk µεµ 2/1

000  for TM or TE polarisation 

respectively. Using this field vector equations 3.4.2.30,31 can be written as an 

eigenvalue equation 

du

d
i− ξξξξ(u)=Tξξξξ(u) 

3.4.2.33 

where T is a square matrix constructed from four square sub-matrices: 










+−
=

−−

−−

mnnnmrrmnmn

mnmnm

DkC

CD
T

αδµεαα

α
2

0

. 
3.4.2.34 

The truncated equations have eigensolutions of the form 
uir

q

qev , where qr  and 

qv  are the eigenvalues and eigenvectors of matrix T respectively. The field vector may 

then be expanded as a linear combination of these eigenmodes, and therefore: 



Chapter 3 Calculating the Optical Response of Grating Structures 

 

 

 74 

ξξξξ ( ) ( )buMu φ=  3.4.2.35 

where M is a square matrix composed of the eigenvectors qv  

( )( )12221 ,...,, += NM vvv  3.4.2.36 

( )uφ  is a diagonal matrix of components 

( ) ( )
pqqpq uiru δφ exp=  3.4.2.37 

and b  is a column vector of eigenmode amplitudes. For a given eigenmode, the 

corresponding eigenvector gives the relative electric and magnetic field strengths while 

the eigenvalue gives the field spatial dependence. 

 The corresponding equivalent to equation 3.4.2.35 for any j layer is: 

ξξξξ ( ) ( ) jjjj duMu b−= φ  3.4.2.36 

 The eigenmodes are then sorted as upward or downward going (either decaying 

or propagating) away from their interface of origin as follows: 

( )−+= MMM ,  







=

−

+

φ

φ
φ

0

0
,  








=

−

+

b

b
b  

3.4.2.37 

where + denotes upward and – denotes downward propagation or decay.  

The field coefficients Fm and ρmG  are now in a form to be matched across the 

interfaces since matching the field coefficients at the interfaces is equivalent to 

matching the field components tangential to the surface at the interfaces. 

The concept of the scattering matrix is now introduced. In the original method 

proposed by Chandezon et al a transfer matrix approach was used in order to relate the 

fields in the upper and lower media by a recursive product of individual transfer 

matrices across each layer. The problem with a transfer matrix method is that there are a 

large number of evanescent decaying and growing fields across a layer, which leads to 

instabilities when the layer thickness becomes large. Cotter et al [1995] altered the 

method to use scattering matrices which are used in many fields of study which involve 

multi-layered systems. 

The scattering matrix approach relates the incident fields to the output fields by a 

scattering matrix product, and avoids the instabilities inherent within the transfer matrix 

method, however the scattering matrix method does involve a few extra calculations and 

so the increase in stability is gained at a slight cost to the calculation time. 
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A scattering matrix S(0,Q+1) is introduced in order to relate the  incident field 

eigenmodes amplitudes 1+Q

-b  to the output field eigenmode amplitudes for the reflected 

and transmitted fields 1+
+
Qb  and 0

-b : 

( ) 
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−

+
+

1

0

0
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1,0
Q

Q
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b

b

b

b
. 

3.4.2.38 

 

and also a transfer matrix associated with the eigenmode amplitudes on either side of an 

interface bounded by the layer j, and j+1: 
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3.4.2.39 

where I(j+1) is given by: 

( ) ( )[ ] ( ) 111
1 +−−

=+ jj

j

j
MMejI φ . 3.4.2.40 

which is obtained by matching the components of the fields tangential to the j+1
st
 

interface in the bordering media. 

 The definitions for the scattering matrix and the transfer matrix between the j+1
st
 

and j
th

 media can be written as: 
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3.4.2.42 

  In fact the components of the scattering matrix S11, S12 , S21, S22 can be obtained 

from those of the transfer matrix I11, I12, I21, I22 using the following relations: 

( ) 1

1111

−
= IS  3.4.2.43 

( ) 12

1

1112 IIS
−

−= . 3.4.2.44 

( ) 1

112121

−
= IIS  3.4.2.45 

( ) 12

1

11212222 IIIIS
−

−= . 3.4.2.46 

 In a similar way the scattering matrix S(0,j+1) can be obtained from the 

scattering matrix S(0,j) and the transfer matrix I(j+1) using the following relations: 

( ) ( ) ( ) ( )[ ] ( )jSjIjSjIjS ,01,011,0 11

1

21121111

−
+−+=+  3.4.2.47 
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( ) ( ) ( )[ ] ( ) ( ) ( )[ ]11,01,01)1,0( 122212

1

21121112 +−++−+=+
−

jIjIjSjIjSjIjS . 3.4.2.48 

( ) ( ) ( ) ( ) ( )jSjSjIjSjS ,01,01,01,0 2111212221 +++=+  3.4.2.49 

( ) ( ) ( ) ( ) ( ) ( )1,01,01,01,0 222212212222 ++++=+ jIjSjSjIjSjS . 3.4.2.50 

 Therefore, by induction, the scattering matrix for the whole system S(0,Q+1) 

may be generated from an initial unit matrix S(0,0). A method for relating the 

eigenmode amplitudes at each end of the system as in equation 3.4.2.28,42 has now 

been obtained, but this can actually be simplified further since 00 =+b  leaving only: 

1

12

1 +
−

+
+ = QQ S bb  3.4.2.51 

1

22

0 +
−− = QS bb . 3.4.2.52 

 The reflection and transmission amplitude coefficients now need to be obtained. 

In order to do this the eigenmode expansion of the incident field is determined, which is 

needed to obtain the eigenmode amplitudes of the reflected and transmitted orders using 

equations 3.4.2.51,52. Only a general explanation of the method will be described here 

and the results needed for the calculation of the reflection and transmission amplitude 

coefficients as it is rather complex. 

The incident field is defined as a plane propagating wave with a field of unit 

amplitude (Hz for TM polarised, and Ez for TE polarised) which is then transformed into 

the co-ordinate frame used to describe the grating system. Due to the periodicity of the 

incident field in the x-direction it may be expanded as a Fourier series and the 

eigenmode expansion of the incident field is obtained. A relationship between the 

eigenmode amplitudes and the plane wave amplitudes can then be found: 

Lb =+
−

+
−

11 QQM . 3.4.2.53 

where L is a column vector composed of two column vectors L’, and L’’ which 

themselves contain: 

( )βmL  3.4.2.54 

( )β
β

α
β mLmK 
















−−  

3.4.2.55 

 The propagating reflected fields are also expanded in the same way and the 

relationship between the propagating reflected eigenmode amplitudes and the 

propagating reflected plane wave amplitudes are given by: 
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rb MM Q

a

Q

a
′=+

+
+

+
11 . 3.4.2.56 

where the subscript a+ describes the fact that the fields are asymptotic (propagating) and 

that they are upward going. M ′  is a column vector which contains two column vectors 

M’’, and M’’’ which contain: 

( )1+
− − Q

nnmL β  3.4.2.57 

( ) ( )1

1

1 +
−+

+ −



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


−





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
− Q

nnmQ

n

nQ

n LKnm β
β

α
β  

3.4.2.58 

 The evanescent fields are then incorporated and the relationship between the 

total reflected field  eigenmode amplitudes and their amplitudes is obtained: 

L
R

b +







=++

0

11
MM

QQ  
3.4.2.59 

where  









=

+
+

1Q

eb

r
R  

3.4.2.60 

and r is a column vector containing the complex reflection amplitude coefficients of the 

propagating reflected orders, and 1+
+

Q

eb are the eigenmode amplitudes of the upward 

going evanescent orders. 

 Since equation 3.4.2.59 contains only square matrices it may be simply 

decomposed to give: 

LRbb ′+=+ +
−

++
+

+
11

11

12

11

11 MMM QQQQ  3.4.2.61 

LRbb ′′+=+ +
−

++
+

+
21

11

22

11

21 MMM QQQQ . 3.4.2.62 

and from equations 3.4.2.51,52 these may be described in terms of the scattering matrix 

element S12: 

LRb ′+=+
− 11

1

1 MA Q  3.4.2.63 

LRb ′′+=+
− 21

1

2 MA Q  3.4.2.64 

where 

12

1

11

1

121 SMMA QQ ++ +=  3.4.2.65 

12

1

21

1

222 SMMA QQ ++ +=  3.4.2.66 

Elimination of 1+
−
Qb  in equations 3.4.2.63,64 leads to 
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( ) ( )LL
b

r
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e

 
3.4.2.67 

 Therefore, the field amplitudes r can be calculated, and from these the 

reflectivity R is given by: 

θ

θ

cos

cos2
nnn

rR = . 
3.4.2.68 

where the n superscript corresponds to the reflected order being investigated, θn is the 

polar angle of the reflected order, and θ is the polar angle of the incident light. 

 The phase of the reflected order is given by: 









= −

)Re(

)Im(
tan

1

R

R
φ  

3.4.2.69 

 The transmitted field is treated in a similar way and in this case a third A 

coefficient is found which is given by: 

223 SA = . 3.4.2.70 

The equivalent result to equation 3.4.2.67 for the transmission amplitude 

coefficients is: 

( ) ( ) ( )LR
b

t
T ′+=








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−−

−

11
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120
MAAMm

e

. 
3.4.2.71 

where the transmissivities are given by: 
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3.4.2.73 

and the phases are given by the equivalent to equation 3.4.2.69 with only the 

transmission coefficient substituted for the reflection coefficient.  

 

3.4.3   Extension to the Conical Mount 

 

 The extension of the theory necessary to convert the method described in section 

3.4.2 to consider light incident upon a multi-layer grating system with non-zero 

azimuthal angles (the conical mount) is relatively simple, and has been described by 
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Popov and Mashev [1986],  Elston, Bryan-Brown and Sambles [1991], and Plumey, 

Granet, and Chandezon [1995]. 

 Firstly, Maxwell’s equations in the transformed space are different to those in 

section 3.4.2 (equations 3.4.2.5–10). In the conical mount the partial derivatives w∂∂ /  

are set to zero, whereas in the conical mount they must be set to iγ, where γ is the 

component of the incident light wavevector in the z-direction. Once this is performed 

the method is analogous to that of the classical mount except that all four tangential 

field components are required (in the classical mount some components are zero 

depending upon the polarisation). This means that four coupled equations are obtained 

rather than the two necessary for the classical mount case (equations 3.4.2.21,22), and 

this means that all of the matrices involved in the solution have twice the dimensions of 

those used to describe gratings in the classical mount. The solution is then essentially 

the same as in section 3.4.2 with the reflection and transmission coefficients obtained 

from equations 3.4.2.67,71. 

 

3.4.4   Extension to a Multi-Shape, Multi-Layer, Grating Theory 

 

There are two main methods which have been developed in order to extend the 

differential theory of Chandezon to enable it to calculate the optical response of  multi-

layer systems comprising of layers with different surface shapes. The method of Granet 

Plumey, and Chandezon [1995] was the first to be published and involves matching the 

field components in the j
th

 layer to those in the j+1
st
 layer at the j+1

st
 interface where the 

eigensolutions of both layers are expressed in terms of the j+1
st
 co-ordinate system 

(associated with their partitioning interface). Closely following this Preist, Cotter, and 

Sambles [1995] suggested a second method which involved a single direct step in the 

field matching. The method of Granet is more rigorous and has better convergence 

properties than that of  Preist et al, however it is not as well suited for implementation in 

existing multi-layer codes. For this reason the method of Preist et al has been 

implemented in the modelling code used throughout this thesis and will be reviewed 

here. Only a general review of the method will be given followed by the results obtained 

since a full review is beyond the scope of this work. 

Consider a multi-shaped multi-layer structure such as that in figure 3.4.4.1: 
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Figure 3.4.4.1 The multi-shape grating system. 

For each layer j the calculation of the eigenvalues is performed in a co-ordinate 

system in which the j
th

 interface is defined by:  

xv =  3.4.4.1 

( )xfyu jj −=  3.4.4.2 

zw =  3.4.4.3 

except for the 0
th

 medium which is dealt with in the 1
st
 interface co-ordinate system. The 

eigen solutions from each medium are expressed in the co-ordinate system in which its 
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lower interface is transformed into a planar surface. Therefore each co-ordinate system 

corresponds to an interface. 

 The multi-shape method of Preist et al involves matching the field components 

in an arbitrary layer j to those in the j+1
st
 layer across the interface between them. Since 

the field components E3 and H3 (those tangential to the surface but orthogonal to the 

grating vector) are independent of the co-ordinate systems these are by far the easiest to 

match across the boundaries, and the matching condition is simply: 

jj
EE 3

1

3 =+  3.4.4.4 

jj
HH 3

1

3 =+ . 3.4.4.5 

 The problem arises in matching the components E1 and H1 since these are the 

components tangential to the surface and in the plane containing the grating vector, and 

therefore are different for each interface. Therefore, it is necessary to include the 

components E
2
 and H

2
 (which are normal to the surface), which were discarded in our 

previous description where each interface had the same profile (section 3.4.2). 

 

 

Figure 3.4.4.2 Orientation of the field components at the j+1st interface. 

 

 The θ in figure 3.4.4.2 is the angle between the tangents to the j
th

 and j+1
st
 

interfaces. This can be accounted for in the first derivatives of the grating profiles, and if 

this is done the matching condition at the j+1
st
 interface becomes: 

( )[ ]jjjj

j

jj EDECEE 1

2

1

1

1 +∆′+=+  
3.4.4.6 

where 

( ) ( ) ( )vfvfv jjj −=∆ +1  3.4.4.7 
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( ) ( ) ( ) ( )vfvfv
dv

d
v jjjj

′−′=∆=∆′
+1  

3.4.4.8 

and 

( )
( )[ ] 2/12

1

1

vf
vC

j

j

′+
=  

3.4.4.9 

( )
( )

( )[ ] 2/12
1 vf

vf
vD

j

jj

′+

′
=  

3.4.4.10 

The H1 component can be treated in exactly the same way giving: 

( )[ ]jjjj

j

jj HDHCHH 1

2

1

1

1 +∆′+=+ . 
3.4.4.11 

 

 Having obtained these it is necessary to obtain the matching conditions in terms 

of the eigenmode representation. 

 By substituting the Bloch wave expansions into the matching conditions of the 

field components E3 and H3, and substituting the eigenmode expansions of the field 

coefficients, the matching condition for these components is obtained: 

( ) ( ) ( )∑∑ =++

q

j

qj

j

q

j

mq

q

j

q

j

mq
beirXbM exp2

11

2  3.4.4.12 

( ) ( ) ( )∑∑ =++

q

j

qj

j

q

j

mq

q

j

q

j

mq
beirXbM exp4

11

4  3.4.4.13 

where the matrix of the eigenvectors M
j
 is defined as : 

( )
( )
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




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3.4.4.14 

with (M1)
j
 corresponding to the field component E1, (M2)

j
 corresponding to the field 

component E3, (M3)
j
 corresponding to the field component H1, (M4)

j
 corresponding to 

the field component H3, and  

( ) ( ) ( ) ( )[ ]∑ −
+
− +−=

m

j

q

j

mn

j

q

j

mn

j

mq

j

nq
rLrLMX

1

ηη  3.4.4.15 

with η=2,4 and 

( ) ( )[ ]∫ −−=
g

dvnKvvsfisL j

g

j

n

λ

λ
0

exp
1

. 
3.4.4.16 
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with  all other terms in equations 3.4.4.12,13,15,16 defined in the same way as in 

section 3.4.2. 

 The matching condition for the E1 and H1 field components must now be 

considered. In the same manner in which the matching condition for the field 

components E3 and H3 were performed, but incorporating the relations in equations 

3.4.4.6,11: 

( ) ( ) ( )∑ ∑=++

q q

j

qj

j

q

j

mq

j

q

j

mq
beirXbM exp1

11

1  3.4.4.17 

for the E1 component, and 
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q q
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for the H1 component with 
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and 
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  The four matching conditions for the four field components (equations 

3.4.4.12,13,17,18) can be written as a single matrix equation: 

( ) j

j

jjjj
eXM bb φ=++ 11  3.4.4.21 

where 
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3.4.4.22 

from which a transfer matrix )1( +jI  may be calculated: 

( ) ( )[ ] ( ) 111
1 +−−

=+ jj

j

j MXejI φ  3.4.4.23 

 This transfer matrix may then be used to obtain the scattering matrix for the 

system, and from this the reflectivities and transmissivities. The way in which this may 

be done is the same as that described in 3.4.2. 

 

3.4.5 Calculating the Dispersion of the Modes of the System  

 

 In the previous sections the way in which the reflectivities and transmissivities 

of systems can be calculated was described. It is also useful to be able to calculate the 

dispersion of the various electromagnetic modes of the systems, and though the 

reflectivities and transmissivities can give information regarding these, they may only be 

calculated within the region of ω-k space available to the incident radiation.  

Another way to obtain the dispersion curves of the optical modes is to directly 

investigate the scattering matrices of the system as a function of ω and k, since the 

information regarding the dispersion of the optical modes will be contained within them, 

and these will give the desired information for all values of ω and k, and not just those 

available to the incident radiation. If the sum of the scattering matrices is plotted for 

each point a peak will be observed when the optical modes are excited, and therefore by 

plotting these the dispersion of the modes may be obtained 

 

3.5 Testing the Codes 

 

 The computer code based upon the differential method of Chandezon has been 

used for fitting experimental data obtained on metal grating structures in the optical 

region of the spectrum for a number of years, and has also been fully tested for a number 

of other systems (Watts, Sambles and Harris [1997], Watts, Sambles, Hutley, Preist and 
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Lawrence [1997], Watts, Sambles and Hutley [1998], Hibbins, Sambles and Lawrence 

[1998]). The parameters describing the system which are fitted to are; the real and 

imaginary parts of the dielectric functions for the layers, and the profiles (described by a 

truncated Fourier series) of the interfaces. 

 Since these tests have confirmed the validity of the Chandezon method it will 

not be tested here. However, the Iterative Series Solution (ISS) method has not been 

used in this way, and therefore some comparisons between the ISS code and that based 

on the Chandezon method will be performed to show that, within its region of 

convergence, the two methods produce the same results. 

The most stringent test for shallow grating structures is to use a metal as the lower 

semi-infinite medium in the region where a surface plasmon polariton (see chapter 4) is 

excited. Therefore, to demonstrate the accuracy of the ISS method the optical response 

of single interface metal structures will be investigated. Figure 3.5.1 shows the zero-

order and 1
st
 diffracted order reflected intensities as a function of frequency for TM 

polarised light normally incident upon a 7.5nm amplitude sinusoidal grating with a 

grating pitch (λg) of 600nm (classical mount). The top semi-infinite medium is 

described as vacuum (εr = 1.0, εi = 0.0), and the lower semi-infinite medium is described 

as silver, where the frequency dependent dielectric function of the silver is described 

with separate polynomials for the real and imaginary parts, which were obtained by 

fitting to experimentally determined values (see Palik [1985]). 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.1 A comparison between the codes based upon the ISS method and the Chandezon method. 

TM reflectivity from a 7.5 nm amplitude 600nm pitch sinusoidal silver grating as a function of frequency 

(normal incidence, classical mount). a) the specularly reflected order, and b) the +1 diffracted order. 
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The zero-order reflectivity clearly shows that the two codes produce the same 

answers for this structure. However, the +1 diffracted order only agrees above a 

frequency of 0.5 x 10
15

Hz. This is the frequency above which the diffracted order is a 

real propagating wave and not an evanescent order. Since the ISS code is based upon the 

Rayleigh hypothesis, which treats the evanescent orders in the same way as the 

propagating ones, intensities of the evanescent orders are found which have no physical 

meaning. However, the fact that the magnitudes and phases of the complex amplitude 

coefficient of the evanescent waves can also be determined from the ISS code will be 

used later in chapters 3 and 5. 

A comparison of the zero-order reflectivity as a function of in-plane wavevector is 

shown in figure 3.5.2 for the same system as used in figure 3.5.1, and with incident light 

of frequency 0.4 x 10
15

Hz. This shows that the two codes produce the same results for 

non-normal angles of incidence. 

Figure 3.5.2 A comparison between the codes based upon the ISS method and the Chandezon method. 

TM reflectivity from a 7.5 nm amplitude 600nm pitch sinusoidal silver grating as a function of the in-

plane wavevector for light of frequency 0.4 x 1015Hz. 

 

3.6  Summary 

 

In this chapter the main methods used in calculating the optical response of grating 

structures have been described. The Iterative Series Solution (ISS) method based upon 

work by Greffet and Massaranni [1990] has then been described in some detail. This 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

 ISS Code

 Chandezon Code

R
p
p

2k
x
/k

g



Chapter 3 Calculating the Optical Response of Grating Structures 

 

 

 87 

method may only be used for single interface structures, and is limited to only very 

shallow corrugations due to its use of the Rayleigh method for describing the reflected 

and transmitted orders in terms of plane wave expansions. However, it is used due to its 

simplicity, and due to the fact that it is a powerful tool in understanding some of the 

phenomena observed on such systems. 

This has been followed by a description of the differential method of Chandezon et 

al [1982] for multi-layer grating systems. This has been covered in some detail for the 

case of gratings oriented in the classical mount, and with identical profiles for all the 

interfaces. The way in which this method may be extended to the conical mount, and 

also how it may be extended to describe systems where the profiles of the interfaces in 

the multi-layer system are no longer all identical (multi-shape) has then been described 

in a general way.  

The code based upon the method of Chandezon has been stringently tested 

previously, and therefore no additional testing of this method was performed. However 

the ISS method has not been tested before, and in order to do this it has been shown that, 

within the region of convergence of the ISS code, it produces the same answers as the 

Chandezon code. 
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Chapter 4 

 

The Optical Response of Shallow Dielectric Gratings and of 

Thin Dielectric Grating Slabs 

 

4.1 Introduction  

 

 Having described the methods for modelling the optical response of grating 

structures in chapter 3, in this chapter these computer codes will be used to calculate the 

optical response of dielectric grating structures. In the first section, the optical properties 

of the simplest surface relief grating structure possible, that of the shallow dielectric 

grating in the classical mount with normally incident light, will be investigated. The 

efficiencies and phases of the various reflected and transmitted diffracted orders 

(produced using the computer code based upon the ISS method) will be calculated for 

the case of TM polarised light incident from a lower index medium to a higher index 

medium, and from a higher index medium to a lower index medium. The analysis of 

non-blazed single interface dielectric structures for normally incident light appears to 

have been relatively ignored in the literature, presumably because the efficiencies of the 

diffracted orders are very small compared to those obtained from metallic gratings. The 

work which has been performed has tended to be based on developing computational 

methods to determine the efficiencies of the orders from such structures (see, for 

example, Knop [1978(a)], Pai and Awada [1991]), or on orientations whereby effective 

blazing can occur (Moharam and Gaylord [1982]). Also extensive work has been 

devoted to the possible applications of dielectric gratings, such as: beam-coupling to 

guided waves (described later in this chapter), in displays (Knop [1978(b)]), optical 

filtering (Tibuleac and Magnusson [1997], Kim and Fonstad (1979)), in 

monochromators (Flodstrom and Bachrach [1976]), and in laser applications such as Q-

switching (Chesler, Karr and Geusic [1970]), and mode locking (Johnson [1973]). For a 

full review of the possible applications of dielectric gratings see Gaylord and Moharam 

[1985]. 
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There are two main results from our analysis, which will be of use in the second 

section of this chapter, and also in chapter 5. Firstly, the phase of the ±1 diffracted order 

(either reflected or transmitted) with respect to the incident light may be either 0° or 

180° (when the order is real and propagating) and that this depends upon whether the 

light is incident from the high index medium, or the low index medium, and that when 

both reflected and transmitted diffracted orders are evanescent their phase is the same as 

when both orders were real and propagating. Secondly, when a diffracted order in the 

semi-infinite medium which has a lower refractive index becomes evanescent, the 

intensity of the corresponding diffracted order in the higher refractive index medium 

(which is still a real propagating diffracted order) becomes zero. Correspondingly when 

the diffracted order in the higher index medium becomes evanescent the magnitude of 

the amplitude coefficient of the evanescent diffracted order in the lower refractive index 

medium becomes zero. 

 In the second section of the chapter thin dielectric grating slabs, which are 

corrugated on both interfaces, are investigated using the computer code based upon the 

method of Chandezon. For these structures, which are of major use in communications, 

the majority of previous work has involved the behaviour of waveguide modes in the 

dielectric material of which the slab is made (Dakss, Kuhn, Heidrich and Scott [1970], 

Tamir [1979], Avrutsky, Svakhin and Sychugov [1989], Li [1995], for a review of 

waveguide modes and their applications see Tien [1977]). Rather than investigate the 

waveguide modes of the system, the effect of the corrugated slab structure on the 

diffracted orders is investigated, which, though they are affected by the waveguide 

modes, will predominantly depend upon the interaction of the diffracted orders from the 

two interfaces. For this reason waveguide modes will only be described in a brief and 

general way.  

It will be shown that, if the two surfaces are corrugated conformally, the 

transmitted diffracted order fields are reduced to almost zero. However, if the phase of 

the lower interface grating is changed relative to the grating on the top interface this is 

no longer the case, and the system may in fact be described as effectively blazed. 

Previous work has only considered the blazing effect on the waveguide modes 

(Yamasaki [1995], Peng and Tamir [1974]), and not on the diffraction efficiencies of 

the system. A further unexpected phenomenon occurs when the corrugations on the two 

surfaces are in anti-phase with each other, and under these conditions it is possible for 
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almost all of the energy to be distributed equally between the ±1 transmitted diffracted 

orders, with the intensity of the reflected and transmitted zeroth orders, and of the 

reflected diffracted orders, reduced to almost zero. 

 

4.2 Single Interface Dielectric Gratings 

 

 In this section the optical response of single interface dielectric diffraction 

gratings will be investigated, the applications of which are briefly discussed in the 

introduction. Though it is the two interface systems described later in this chapter which 

are of most interest, the optical response of single interface dielectric gratings are of use 

in introducing the concepts which will be necessary for discussing the optical responses 

of these more complex grating systems. 

 

4.2.1 The Efficiencies and Phases of the Diffracted orders from Single Interface 

Dielectric Gratings 

 

 When light is incident upon a grating it may gain (or lose) integer values of the 

grating vector ( ggk λπ /2= ) in the x direction via scattering from the surface, and this 

is the origin of the diffracted orders. If light is incident at a polar angle θi in the classical 

mount (the incident light is in the plane containing the grating vector) the grating 

equation is 

0)sin(sin λθθλ mimg =−  4.2.1.1 

where m is an integer which corresponds to the diffracted order of interest, mθ is the 

angle at which the diffracted order propagates and 0λ is the wavelength of the incident 

light. In this chapter the study will be limited to the case of normally incident light, 

where θi = 0. The system is shown in figure 4.2.1.1. 
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Figure 4.2.1.1 The system under consideration in this section. TM polarised light incident upon an 

interface between two dielectrics with dielectric functions 1ε for the upper (incident) medium, and 2ε for 

the lower (transmitted) medium. The light is normally incident in the classical mount (the azimuthal angle 

is 0°) 

 

 The efficiencies and phases of the various orders may be calculated using the 

methods described in chapter 3, although in this section only the zeroth and +1 orders 

(the –1 diffracted orders are identical to the +1 diffracted orders since we are 

considering normal incidence) will be considered. The ISS method is used since, in 

addition to the efficiencies and phases of the real propagating orders, it can also give us 

information about the evanescent orders (due to the fact that it utilises the Rayleigh 

hypothesis). A 400nm pitch (λg), 25nm amplitude, sinusoidal grating, will be studied, 

with the two dielectrics on either side of the grating interface described as air and SiO2 

(which is considered to be non-absorbing), with the frequency dependent dielectric 

function of the SiO2 described by a polynomial fitted to experimentally determined 

values. The efficiencies and phases of the zero and +1 orders for reflection and 

transmission for light incident from the air side of the interface are shown in figure 

4.2.1.2.  
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Figure 4.2.1.2 The optical response of an air / SiO2 grating interface. The four orders presented are: a) the 

zeroth reflected, b) the zeroth transmitted, c) the +1 reflected diffracted, and d) the +1 transmitted 

diffracted. When the order is real and propagating the intensity of the order is shown, whereas when it is 

evanescent the magnitude ( 22 )Im()Re( pp rr ++++ ) is shown. 

 

The first points to note from figure 4.2.1.2 are the phases of the diffracted 

orders. There are three main regions: above f ≈ 0.75 x 10
15

Hz the diffracted orders in 

both the air and the silica are real propagating orders, between f ≈ 0.5 x 10
15

 Hz the 

diffracted order in the SiO2 is real and propagating, whereas in the air the diffracted 

order is evanescent, and for below f ≈ 0.5 x 10
15

 Hz both the diffracted orders in the air 

and the SiO2 are evanescent. In the region where both diffracted orders are real and 

propagating the reflected diffracted order is 180° out of phase with the incident light, 

but the transmitted diffracted order is in phase with the incident light. The origin of this 

difference can be seen by examination of the expressions used in the ISS method for the 

diffracted order amplitude coefficients which, to first order, are, 
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for the +1 transmitted diffracted order, where a is the amplitude of the grating, ε1 is the 

dielectric function of the incident medium, and ε2 is the dielectric function of the 

transmission medium. The remaining variables are defined in the same way as in 

chapter 3. The corresponding equation for the reflected 1
st
 diffracted order amplitude 

coefficient is: 
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4.2.1.3 

 (Note: The first term inside the square brackets is always positive, or negative 

and less than 1, and therefore the value of the expression inside the square brackets is 

always positive).  

These expressions can be used to explain all of the features in the calculations of 

the efficiencies of the diffracted orders shown in figure 4.2.1.2. We shall first discuss 

the transmitted diffracted order. In the region in which both transmitted and reflected 

diffracted orders are real and propagating all of the variables in equation 4.2.1.2 are real 

and positive. Therefore the amplitude coefficient is purely real with its sign given by 

the )( 12 εε − factor, which in the case of an air / SiO2 interface is positive, so it appears 

that the phase of the transmitted diffracted order should be +90° due to the i  factor. 

This is not, in fact, the case since these expressions are for a grating profile 

described by a cosine, and therefore at y = 0, x = π/2. If the phase of the incident light is 

defined as zero at y = 0 then the phase of the diffracted orders requires a correction of 

90° in order for it to be with respect to the incident light (in practice the i  factor in 

equation 4.2.1.2 can be ignored). However, this is only true of the ±1 diffracted orders. 

For higher orders the i  factor becomes important in calculating the phase, and it is also 

important when considering the effect of higher order contributions in the iterative 

series. This is all taken into account in the modelling code, and therefore the phases 

shown in figure 4.2.1.2 are correct. Later in this chapter, and also in chapter 5, the 

expressions for the diffracted order intensities shown above will be used in order to 

describe the diffraction processes, and in all these cases this 90° change is necessary. 

At the low frequency limit of this region the reflected diffracted order becomes 

evanescent, and therefore 0=rγ . It is clear from equation 4.2.1.2 that at this frequency 

the amplitude coefficient for the transmitted diffracted order reduces to zero. At lower 

frequencies we enter the region where the reflected order is evanescent, but the 

transmitted diffracted order is real and propagating. When this occurs γr becomes purely 

imaginary which results in a discontinuous shift in the phase of the transmitted 

diffracted order, with the amplitude coefficient being almost totally imaginary. 

However, the amplitude coefficient is no longer zero, meaning that the transmitted 

diffracted order increases in intensity once more. As the frequency is lowered further 
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the amplitude coefficient becomes progressively more real, since rγ becomes larger and 

tγ becomes smaller as the transmitted diffracted order nears the horizon. The phase 

lowers towards 0° again as a result of this. The intensity of the diffracted order reduces 

to zero as tγ becomes zero, however this is not due to the amplitude coefficient 

becoming zero, but is rather due to the area factor needed to correct the intensity (which 

is given by the ratio of the z components of the wavevector of the diffracted and 

incident orders). 

For lower frequencies this area factor is no longer required as we can no longer 

discuss the intensity of the diffracted order. In figure 4.2.1.2 we show the magnitude of 

the amplitude coefficient for these lower frequencies and this is the reason that there is a 

discontinuity when the transmitted order becomes evanescent. 
tγ becomes imaginary in 

this final region where both diffracted orders are evanescent. Therefore the denominator 

in equation 4.2.1.2 becomes purely imaginary, and since the numerator is also purely 

imaginary the result is that the diffracted order is purely real and positive, and the phase 

of the diffracted order is 0° with respect to the incident light. 

The reflected diffracted order case is somewhat different. The first term in the 

square brackets in equation 4.2.1.4 is always either positive, or negative and less than 

one (depending upon the ratio of rγ to tγ , which in turn depends upon the ratio of 

2ε to 1ε ), and therefore the total expression inside the square brackets is always positive. 

The phase of the reflected diffracted order when both rγ and tγ are positive (when the 

transmitted and reflected diffracted orders are real and propagating) is therefore 

dependent upon the )( 21 εε − term since all of the other parameters are real and positive. 

For the case of an air / SiO2 interface this term is negative, and therefore the reflected 

diffracted order is 180° out of phase with the incident light.  

 We shall now consider the region where both diffracted orders are evanescent. 

The tγ and rγ factors are then purely imaginary, and since both the denominator and 

numerator are purely imaginary this produces a purely real amplitude coefficient. The 

same discussion as before means that the phases of the diffracted orders in this region 

are the same as in the region where both diffracted orders are real and propagating. 

 Finally, there is the region where the diffracted order in the air is evanescent, but 

the diffracted order in the SiO2 is real and propagating. The phase of the reflected 
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diffracted order changes throughout the frequency region in which this is the case, from 

the amplitude coefficient being purely imaginary (the diffracted order is 90° out of 

phase with the incident), to the case where it is purely real and gives the same result as 

in the other two regions where the two diffracted orders have the same character. This is 

because the factors 
rt γγ + and

rt γγ −  are complex with both real and imaginary parts, 

and therefore the amplitude coefficient changes from being purely imaginary at the 

point in which the reflected order becomes evanescent ( rγ is imaginary, and 
tγ is zero), 

to purely real when both orders become evanescent. Having discussed the phases of the 

diffracted orders it is important to note that the discussion using equations 4.2.1.2, 4 is 

only to first order and neglects the contribution to the diffracted order fields due to the 

higher orders. This is the reason that the phases shown in figure 4.2.1.2 are not exactly 

the values described in the discussion, but are slightly altered due to these higher order 

contributions. 

 We shall now proceed to discuss the magnitude of the complex amplitude 

coefficient (which in the case of the order being real and propagating corresponds to the 

intensity of the diffracted order). Again the plots can be divided into the three main 

regions described above. In the case of the reflected diffracted order it is only a real 

propagating diffracted order above f ≈ 0.75 x 10
15

Hz, and below this the order is 

evanescent. For the transmitted diffracted order the mode is real and propagating above 

f ≈ 0.5 x 10
15

 Hz, and for lower frequencies it is evanescent. The surprising result from 

figure 4.2.1.2 is that the nature of the diffracted order in one of the media has a strong 

effect on the diffracted order in the other medium. The intensity of the reflected 

diffracted order reduces to zero at the point at which it becomes evanescent, however, 

the magnitude of the amplitude coefficient is not zero (as described above). The 

interesting point to note is that at the frequency at which the reflected diffracted order 

becomes evanescent the magnitude of the transmitted diffracted order, which is still real 

and propagating, reduces to zero. Correspondingly the intensity of the transmitted 

diffracted order reduces to zero when it becomes evanescent, and at this frequency the 

magnitude of the complex amplitude coefficient of the evanescent reflected diffracted 

order also reduces to zero. 

 This behaviour is clear from equations 4.2.1.2,3 but these do not give a physical 

interpretation for why this phenomenon occurs. The reason is relatively simple. We 
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previously described the process of diffraction in terms of an integer multiple of kg 

being added to, or subtracted from, the wavevector of the incident light. Another way of 

looking at this is the way in which the diffraction grating problem is solved 

computationally. The boundary conditions at the surface (that the relevant field 

components are continuous across the boundary) demand that diffracted orders exist in 

order for them to be satisfied. The diffracted order whose intensity / magnitude reduces 

to zero when the diffracted order in the other half space becomes evanescent is no 

longer needed to satisfy the boundary condition, and this is the reason this phenomenon 

occurs. In fact it is clear from figure 4.2.1.2 that this is the case. If we consider the 

phase of the various orders relative to the incident light at the frequency at which one of 

the diffracted order become evanescent we see that the zeroth orders and the order 

which becomes evanescent are all in phase or out of phase with the incident light. In 

other words they all have their maximum field magnitude at the same point at the 

surface. The diffracted order in the other half space at this frequency is 90° out of phase 

with all of these components at this frequency, and therefore would have no field 

magnitude at the point at which the others go through a maximum even if the amplitude 

coefficient were not zero at this point. 

 In figure 4.2.1.3 we show a series of field profiles for the system described 

above for different frequencies. We show the time averaged Hz component of the fields 

(the z direction is into the page) since the z component of the H-fields is the only 

component for TM polarised light. Since we are using the time averaged fields the 

propagating fields are averaged out of the plots. This leaves the beating between the 

incident and reflected zeroth order, and also the diffracted orders which are still 

observed since they form a beating with the propagating zeroth and incident / reflected 

orders. 
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Figure 4.2.1.3 Time averaged Hz component of the fields for the air / SiO2 interface used for figure 

4.2.1.2 for six different frequencies: a) f = 0.4 x 10
15

Hz, b) f = 0.514 x 10
15

Hz, c) f = 0.6 x 10
15

Hz, d) f = 

0.7 x 10
15

Hz, e) f = 0.75 x 10
15

Hz, and f) f = 0.9 x 10
15

Hz. 

 

 We shall first discuss the reflected fields, starting with figure 4.2.1.3(f). At this 

frequency (f = 0.9 x 10
15

Hz) the reflected diffracted order is real and propagating, and 

the beating between the diffracted order and the incident and reflected zeroth orders is 

clear in the plot. When the frequency is reduced (figure 4.2.1.3(e), f = 0.75 x 10
15

Hz), 

the diffracted order becomes evanescent. However, the magnitude of the amplitude 

coefficient does not reduce to zero, even though the intensity of the diffracted order 

does, and for this reason the fields due to the diffracted order are still present. Below 

this frequency (figures 4.2.1.3 (d), (c), (b), and (a), f = 0.7, 0.6, 0.514, 0.4 x 10
15

Hz) the 

reflected diffracted order is evanescent, and this can be seen in the fact that the 
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magnitude of the fields due to diffraction reduce with distance from the surface. In fact, 

as the frequency is reduced the maximum magnitude of the evanescent diffracted order 

fields (at the surface) reduces (as is obvious from figure 4.2.1.2), but also the rate at 

which the evanescent order decays away from the surface increases. This is because the 

distance at which the evanescent orders have reduced to 1/e of their original value is 

proportional to rγ/1 , and as rγ becomes larger and more imaginary as this distance 

reduces. 

 We shall now consider the case of light incident upon an identical profile to that 

considered above, but with light incident from the SiO2 side of the system. (figure 

4.2.1.4) 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.1.4 The optical response of a SiO2 / Air grating interface, with the same parameters as for the 

air / SiO2 interface considered above. The four orders presented are: a) the zeroth reflected, b) the zeroth 

transmitted, c) the +1 reflected diffracted, and d) the +1 transmitted diffracted 

 

 The results for this system are very similar to those for the air / SiO2 interface. 

There are two main differences to note. Firstly, the behaviour of the magnitude / 

intensity of the diffracted orders are reversed. (In other words, the frequencies at which 

the diffracted orders for reflection and transmission become evanescent are reversed due 

to the reversal of the media). Otherwise the behaviour is the same as before in that when 

one of the diffracted orders becomes evanescent the amplitude coefficient of the other 

diffracted order reduces to zero. The other point to note is that the phases of the 
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diffracted orders are also reversed. This is due to the changing in sign of the )( 21 εε −  

and )( 12 εε − factors in equations 4.2.1.2 and 4.2.1.3 respectively. 

 The phase of the reflected zeroth order has also changed from 0° to 180°. 

However, the transmitted zeroth order is identical to the air / SiO2 case. For 

completeness the fields of the same points determined for the air / SiO2 interface case 

are shown for the SiO2 / air case in figure 4.2.1.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2.1.5 Time averaged Hz component of the fields for the SiO2 / Air interface used for figure 

4.2.1.4 for six different frequencies: a) f = 0.4 x 10
15

Hz, b) f = 0.514 x 10
15

Hz, c) f = 0.6 x 10
15

Hz, d) f = 

0.7 x 1015Hz, e) f = 0.75 x 1015Hz, and f) f = 0.9 x 1015Hz. 

 

 The results shown in figure 4.2.1.5 mirror those of the air / SiO2 case shown in 

figure 4.2.1.3. The differences are all due to the reversing of the media, and therefore 

the reversing of the frequencies at which the reflected and transmitted diffracted orders 

become evanescent. 
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 Having investigated the optical response of simple single interface dielectric 

gratings, we shall now proceed to investigate thin corrugated dielectric slabs, where the 

results obtained in this section will be used to explain the optical responses obtained 

from such systems. 

 

4.3 Thin Corrugated Dielectric Slabs 

  

 In this section we shall describe the optical response of thin corrugated dielectric 

slabs, and some surprising results which, we believe, have not been reported in the 

literature before. 

 Typically, thin dielectric slabs are used because of their waveguiding properties, 

and are especially useful for communications applications (for further applications and 

references see the introduction to this chapter). However, we will not be describing the 

waveguiding properties of these structures in any detail, but will rather discuss the effect 

of having the two interfaces close together upon the diffracted orders of the system. 

Therefore, we shall only give a brief introduction to waveguide modes, since the effects 

of these modes on the optical response of the structure will be evident in our results. 

 Following this we shall describe the case of the corrugated dielectric slab in a 

conformal geometry (both interfaces are corrugated identically), before discussing the 

asymmetric corrugated slab, where both interfaces are corrugated, but the corrugations 

are phase shifted in the x-direction with respect to each other. 

 Throughout this section we shall investigate the diffraction efficiencies by 

considering the two grating interfaces separately. The phases for the diffracted orders 

from the two interfaces are given in figures 4.2.1.2,4. 

 

4.3.1 Waveguide modes 

 

 A waveguide is a structure which confines electromagnetic waves to a certain 

region of space. The simplest waveguide is that of the planar dielectric slab, and in this 

section we shall briefly describe this waveguide system followed by the way in which a 

grating allows coupling to the waveguide modes of a thin corrugated dielectric slab for 

normally incident light. 
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 The simplest model of guided waves in a planar dielectric slab is that of the ‘Ray 

model’ as first described by Tien, Ulrich and Martin [1969]. The system under 

consideration is shown in figure 4.3.1.1. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.1.1 The planar dielectric waveguide. 

  

 A light ray inside the guiding medium is incident upon the upper planar interface 

where the dielectric above the interface has a refractive index lower than that of the 

guiding medium If it is incident at an angle beyond the critical angle (given by 

21 /sin nnc =θ ) it is totally internally reflected. This reflected ray is then totally 

internally reflected at the lower interface if it is incident at beyond the critical angle 

determined from the refractive index of the lower medium. Repeated reflections lead to 

the wave propagating along the waveguiding medium. 

 This description is very much simplified, since there are other factors to be 

considered. The fields of the wave propagating in the positive y-direction within the 

guiding medium will interfere with the fields propagating in the negative y-direction, 

and these may interfere either constructively or destructively with each other. In the ray 

model constructive interference will occur when an integer number of wavelengths are 

traversed between the reflection from one interface and the reflection from the other 

interface, and it is under these circumstances that power may resonantly propagate 

along the waveguide. For this reason a propagating mode will only occur at certain 

values of the incident angle θ beyond the critical angle. The values which θ can take are 
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given by a phase matching condition which can be shown to be (e.g. Lorrain, Corson 

and Lorrain [1988]): 

πφφθ mnk =−− 232120 cos  4.3.1.1 

where k0 is the wavevector of the light, m is an integer, and the two φ factors are phase 

changes upon reflection at the interfaces. 

 Since light may not escape from this mode it is also true that light may not 

couple into the mode. This is essentially due to a momentum mismatch between the 

incident light and the waveguide mode. There are various methods for overcoming this  

momentum mismatch, but the one of interest to the work in this chapter is that of 

grating coupling.  

By periodically corrugating one of the surfaces, normally incident light from 

above the structure may be scattered directly into the waveguide mode if the corrugation 

period is chosen such that the momentum matching condition is obeyed for the 

transmitted scattered (diffracted) order. The diffracted order which gives rise to the 

guided mode is, in fact, evanescent, since this is the way in which the momentum is 

sufficiently increased in order for the excitation criteria to be satisfied. However, the 

light may, of course, also couple out via the reverse process. For this reason, if we 

observe the zeroth order reflection and transmission from the structure we observe 

resonant features which are the result of interference between the light which has been 

directly reflected from, or transmitted through, the structure, and that of the light which 

has been re-scattered from the waveguide mode back into the reflected and transmitted 

zeroth orders. The shape of these features depend upon the phase difference between the 

directly reflected / transmitted light and that of the re-radiated light which has coupled 

out of the waveguide, and also the intensity of the light which is coupled out of the 

waveguide. It is these features which will be observed in the results obtained in the 

following sections. 

 

4.3.2 The Conformal Thin Dielectric Slab 

 

The system which will be studied in this section is that of a thin corrugated wave 

guide of thickness d, corrugated identically on both interfaces with a grating of pitch λg 

and amplitude a. The refractive indices of the media are such that all the media are 

considered as non-absorbing with the refractive index of the slab having a higher 
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refractive index than that of the bounding media. We shall consider only TM polarised 

light normally incident upon the structure (figure 4.3.2.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.2.1 A schematic of the system under consideration. 

 

In figure 4.3.2.2 we show the intensities of the reflected and transmitted zeroth 

orders, as well as the reflected and transmitted +1 orders (the –1 order is identical since 

we are only considering normal incidence), as a function of the thickness of the 

dielectric slab, and of the frequency of the incident light. The grating pitch is 400nm, 

the amplitude of the gratings is 25nm, and the bounding dielectrics are considered as air, 

with the slab described as SiO2 (whose frequency dependent dielectric function is 

described by a polynomial fitted to experimentally derived values). 
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Figure 4.3.2.2 The optical response of a conformally corrugated thin SiO2 slab, with air as the bounding 

media (λg = 400nm, a = 25nm), as a function of the frequency of incident TM polarised light and of the 

slab thickness. a) the zeroth order reflectivity, b) the zeroth order transmisivitty, c) the +1 order 

reflectivity, and d) the +1 order transmissivity. 
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structure. 
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 Hz for a 

slab thickness of zero) are results of the waveguide modes in the system redistributing 

energy between the different propagating orders. 

 The broader modes which disperse to lower frequencies as the slab thickness is 

increased are a result of interference. For reflection, the light which is reflected from the 

first interface may interfere with the light reflected from the second interface, and this 

interference may be either constructive or destructive (depending upon the thickness of 

the slab). In reflection the condition for constructive interference to occur is that the 

light reflected from the bottom interface must be in phase with the light reflected from 

the top interface. Since (from section 4.2) the reflection from the top air / SiO2 interface 
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is 180° out of phase with the incident light, and that reflected from the bottom interface 

is in phase with the incident light, a phase change due to propagation of the light in the 

slab is required for the two reflected zeroth orders from the two interfaces to be in phase 

with each other and interfere constructively. This occurs when the slab thickness is an 

integer value of a quarter of the incident wavelength, since the light reflected from the 

bottom interface will then have to traverse half of the incident wavelength before it exits 

the system (in other words dncf 4/= , where f is the frequency of the incident light, n 

is an integer, c is the speed of light, and d is the slab thickness). The same condition is 

required for destructive interference between the light which is directly transmitted 

through the structure, and the light which is reflected from the bottom interface, and 

then reflected by the top interface before propagating through the bottom interface. It is 

destructive interference in this case since there is a 0° phase change with respect to the 

incident light for transmission through both interfaces, and a 180° phase change for the 

light reflected from the bottom interface and then reflected from the top interface due to 

its additional propagation length of twice the slab thickness. Therefore, these two 

contributions to the transmitted zeroth order are out of phase with each other resulting in 

destructive interference. 

The depth / height of these features is surprisingly large. However, this can be 

simply attributed to the possibility of multiple reflections within the grating slab. The 

criteria necessary for these features to occur is that the reflected zeroth order from the 

bottom interface is in phase with the reflected zeroth order from the top interface. 

Therefore, the fields will be at a maximum at the same point on the top interface, which 

will in turn change the boundary conditions for the creation of all possible orders at the 

top interface. This alters the magnitude of the various orders, which will in turn mean 

that the reflection from the bottom interface is different, changing the boundary 

conditions once again. This is analogous to a feedback loop, and therefore our simple 

model which only considers the two corrugated surfaces separately is obviously flawed. 

However, it is still able to give some physical insight into the processes which give rise 

to the effect for these two interface grating systems, even though it cannot account for 

the intensities of the different orders. 

These interference effects can also be observed in the reflected diffracted order 

plot, since the reflected diffracted orders created at the top interface may undergo 

interference with the reflected diffracted order created at the bottom interface in the 
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same way as the reflected zeroth order (even though the phase changes upon diffraction 

for the two interfaces is the opposite to that of the zeroth order reflection the result is the 

same). However, these features will disperse differently with changing frequency, since 

they depend upon the incident angle of the diffracted order upon the bottom interface 

which will define the distance it traverses within the dielectric slab before exiting the 

system. Therefore, the slab thickness at which constructive interference may occur is 

different to that for the zeroth orders (particularly noticeable close to the critical edge) 

which are always propagating normal to the average plane of the surface. 

The transmitted diffracted order is slightly different. In this case interference 

may occur between the transmitted diffracted order created at the top interface, and that 

created at the bottom interface (to first order, disregarding the possibilities of multiple 

reflections within the SiO2 slab). From section 4.2 we know that the transmitted 

diffracted order created at the top interface is in phase with the incident light, whereas 

that created at the bottom interface is 180° out of phase with the incident light. 

Therefore, destructive interference will occur for very thin slab thickness. The condition 

for constructive interference to occur is that the light diffracted at the top interface must 

travel half the wavelength of the incident light further than the light diffracted at the 

bottom interface. However, the only difference in the distance travelled by the two 

orders is due to the diffraction angle for the light diffracted at the top interface (figure 

4.3.2.3).  

 

 

 

 

 

 

 

 

Figure 4.3.2.3 Schematic showing the transmitted diffracted order from the top interface propagates 

further than the zeroth transmitted order from the top interface. 

 

 So the condition we have is that the distance a must be equal to the slab 

thickness d +λ/2, where λ is the wavelength of the incident light. This can clearly only 

occur when the diffraction angle, θ, is very large, or when the frequency is very high, 
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for a slab of thickness of the order investigated here. This is the reason why there is no 

real propagating diffracted order for the conformally corrugated system at low slab 

thickness. Of course, the phase difference between the light diffracted at the top 

interface and that diffracted at the bottom interface will change continuously as the slab 

thickness is increased and therefore there will be increasing diffraction from the system 

when this is the case. This can be clearly seen in figure 4.3.2.4, in which we plot the 

time averaged fields for the system for incident light of frequency 1 x 10
15

 Hz for 

various slab thickness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.2.4 Time averaged Hz component of the fields for the system shown in figure 4.3.2.1 for  f = 

1.0 x 10
15

Hz with different slab thickness. a) d = 25nm, b) d = 75nm, c) d = 150nm, and d) d = 300nm.  

 

 The analysis presented above is only for the region in which the diffracted 

orders are real and propagating. We shall now consider the other two possibilities: the 

case where diffraction in the SiO2 slab is real and propagating, but the diffracted order 

in the SiO2 is evanescent, and the case where the diffracted order in both media are 

evanescent. In figure 4.3.2.5 we show field distributions for these two cases. 
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Figure 4.3.2.5 Time averaged Hz component of the fields for the system shown in figure 4.3.2.1 for a)  f 

= 0.732 x 1015 Hz (diffractive in SiO2 only), and b) f = 0.492 x 1015Hz (non-diffractive in both media). 

 

 It is clear from figure 4.3.2.5 that when both diffractive orders are evanescent 

there are no transmitted diffracted fields, whereas when the transmitted diffracted order 

is real and propagating in the SiO2 only there is an evanescently decaying transmitted 

field. We shall now use the same analysis method which we used before (considering 

the two diffraction processes from the two interfaces individually and seeing how they 

interfere with each other). We shall do this by using the ISS method used in section 4.2 

and considering the two processes as: 1) the light is diffracted at the top interface and 

then transmitted through the bottom interface, and 2) the light is transmitted through the 

top interface and then diffracted by the bottom interface. We shall do this by using the 

ISS method twice for each process. For the 1
st
 process we shall calculate the real and 

imaginary parts of the amplitude coefficient for the transmitted diffracted order created 

from the top interface, and also for light incident upon the bottom interface with kx = kg 

(since the light is normally incident this will be the wavevector of the diffracted order 

for any frequency). By combining these two results in the appropriate way we can then 

obtain the total diffracted field in the exit medium of the system due to the two 

interfaces for light diffracted from the top interface. We will also calculate the 

transmitted diffracted order fields due to diffraction from the bottom interface in a 

similar way except that we shall calculate the zeroth order amplitude coefficient for 

light propagating through the top interface and combine this with the amplitude 

coefficient for the diffracted order created at the bottom interface. We shall then 
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propagation of the diffracted order within the slab thickness is incorporated within the 

model. The results of this are shown in figure 4.3.2.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.2.6 The magnitude and phase of the amplitude coefficient for the system shown in figure 

4.3.2.1 obtained from the ISS method by considering the two diffraction processes separately (as 

described in the text), for a) diffraction from the top interface, b) diffraction from the bottom interface, 

and c) the total transmitted fields for the system obtained by combining a) and b). 
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(see figures 4.3.2.6(a) and (b)). This is not the case in the region where only the 
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diffraction in the SiO2 is real and propagating, and therefore transmitted diffracted order 

fields are observed.  

 

4.3.3 The Asymmetric Thin Dielectric Slab 

 

 Having discussed the thin dielectric slab in a conformal geometry we shall now 

consider the case where the two gratings have identical modulations, but where the 

bottom corrugation is phase shifted with respect to the corrugation on the top interface. 

The system is shown in figure 4.3.3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3.1. A schematic of the system under consideration 

 

 When the optical response of this structure is investigated we must now 

investigate the +1 and –1 diffracted orders in both reflection and transmission since the 

phase shift of the lower interface with respect to the top interface has broken the 

symmetry of the system. In figure 4.3.3.2 we show the optical response of a 60nm thick 

SiO2 slab bounded by air on both sides, and with both surfaces having a corrugation of 

400nm pitch and 25nm amplitude, as a function of the phase difference between the 

corrugations on the top and bottom surfaces, and of the frequency of the incident light. 

 

λ
g

a

d

∆ϕ



Chapter 4 The Optical Response of Shallow Dielectric Gratings and of Thin 

Dielectric Grating Slabs 

 

 

 111 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3.2 The optical response of a 60nm thick dielectric slab corrugated on both surfaces with 

gratings of λg = 400nm, and amplitude of 25nm, as a function of the phase between the corrugations on 

the two interfaces, and of the frequency of the incident light. a) the reflected zeroth order, b) the 

transmitted zeroth order, c) the reflected +1 diffracted order, d) the transmitted +1 diffracted order, e) the 

reflected –1 diffracted order, and f) the transmitted –1 diffracted order. 

 

 We shall begin by describing the optical response when the two corrugations are 
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diffracted orders will therefore be identical). The diffracted order intensities as a 

function of frequency for this case are shown in figure 4.3.3.3 (taken from figure 

4.3.3.2) 

Figure 4.3.3.3 The intensities of the zeroth reflected and transmitted orders, and of the 1
st
 order diffracted 

transmitted and reflected orders for a 60nm thick dielectric slab corrugated on both surfaces with 

antisymmetric sinusoidal corrugations on each surface of 400nm pitch and 25nm amplitude. 
 

 It is clear that there is a very peculiar phenomenon occurring for this structure. 

For high frequencies almost all of the energy of the incident light is being transferred in 

to the +1 (and, therefore, also the –1) transmitted diffracted orders. The fact that the 

reflected zeroth and diffracted orders are very small is no surprise since this will, in 

general, be the case from a dielectric grating structure. However, the reduction of the 

transmitted zeroth order to near zero intensity is somewhat unexpected. 

 In fact the reflected diffracted orders are very small indeed for the thickness slab 

investigated here. In section 4.3.2 we discussed the way in which the transmitted 

diffracted fields created from the top and bottom interfaces of a conformally modulated 

thin dielectric slab were out of phase with each other, and that due to this the total 

transmitted diffracted field from the structure was near zero (depending upon the slab 

thickness). When the two gratings are in anti-phase the diffracted orders created from 

the bottom surface are 180° out of phase when compared to those in a conformal 

geometry. This is because the diffracted fields of the light propagating in the dielectric 

slab (ignoring multiple reflections once again) are defined by the grating which they 

have already passed through. In other words, the periodicity (in the x direction) of these 
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created from the bottom interface will be altered when the phase of that grating is 

changed relative to the top surface corrugation. In fact, when the two corrugated 

interfaces are in anti-phase the phase of the diffracted orders created from the bottom 

surface are changed by 180° when compared to the conformal case. 

 For the reflected diffracted order in a conformal geometry, for the slab thickness 

considered here, the diffracted orders created from the two interfaces were interfering 

constructively. For the anti-phase structure the opposite is true, and therefore the 

diffracted orders created at the top and bottom interfaces for this slab thickness cancel 

each other reducing the total reflected diffracted order fields from the system. However, 

the zeroth order reflected light is unaffected by the change in phase of the bottom 

surface corrugation, but since the zeroth order reflection is always going to be small 

(away from any possible waveguide modes of the system) the majority of the energy 

will be contained within the transmitted orders. 

 By the same arguments above, the transmitted diffracted order created at the 

bottom interface is also changed by 180° when compared to that created at the bottom 

surface for the conformally corrugated system. For the conformally modulated system 

the transmitted diffracted order fields from the top and bottom surfaces cancelled, 

whereas for the anti-phase structure they will interfere constructively. As we have 

previously mentioned the intensity of the diffracted order cannot be considered as the 

addition of the two transmitted diffracted orders created at the top and bottom surfaces, 

and therefore it is possible that this high level of intensity of the diffracted order is 

simply the result of the combination of these two diffraction processes. 

 It is interesting to consider the effect of the slab thickness, and of the grating 

amplitude, for an anti-phase grating in order to determine whether this property of 

almost all of the incident energy being transferred to the transmitted diffracted orders is 

a general property of anti-phase corrugated thin dielectric slabs, or whether it only 

happens to occur for the parameters which we are investigating. Therefore, we have 

modelled the intensities of the various orders from the system as a function of frequency 

and slab thickness (figure 4.3.3.4), and also of the transmitted orders as a function of 

frequency and grating amplitude for a 60nm thick dielectric slab, and also of a 150nm 

thick dielectric slab (figure 4.3.3.5). (Note the different frequency range used for the 

150nm thick dielectric slab modelling. The reason for this will be made clear later). 
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Figure 4.3.3.4. The intensities of the various orders from the anti-phase two interface system as a 

function of frequency and slab thickness. a) the zeroth order reflected, b) the zeroth order transmitted, c) 

the +1 diffracted reflected, and d) the +1 diffracted transmitted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3.5. The intensities of  the transmitted orders as a function of frequency and grating amplitude 

for a) and b) a 60nm thick dielectric slab, and c) and d) a 150nm thick dielectric slab. (a and c are the 

zeroth orders, and b and d are the diffracted orders). 
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 Firstly, it is clear from figure 4.3.3.4 that the slab thickness has relatively little 

effect on the intensity of the transmitted diffracted order, except for a small periodicity 

as a function of slab thickness. This is caused by an increased intensity in the reflected 

orders due to the change in phase of the reflected orders created from the bottom 

interface, arising from the increased propagation length within the dielectric slab.  

Therefore, this phenomenon seems to be relatively independent of the thickness of the 

grating slab. 

 The effect of grating amplitude for a 30nm thick slab (figure 4.3.3.5) indicates 

that for lower grating amplitudes the diffraction efficiency of the +1 transmitted 

diffracted order increases with amplitude of the grating, which, of course, must be true 

since for a very shallow grating there is far less diffracted order intensity occurring. 

However, for the 150nm thick grating slab the amplitude of the grating can be increased 

to 75nm (simply because, for an anti-phase grating structure, the amplitude of the 

grating is limited to half the slab thickness). In this case it is clear that the grating 

efficiency is periodic with increasing grating amplitude, and in fact this periodicity is 

given by: 

2

zn
a

λ
=  

4.3.3.1 

where zλ  is the z component of the wavelength of the diffracted order created at the top 

interface, and n is the refractive index of the slab dielectric, with a minimum in the 

diffracted order fields occurring when this condition is met. Two possible explanations 

for this periodicity will now be described. 

 Firstly, the interaction of the transmitted diffracted order created at the top 

interface with the reflected diffracted order created at the bottom interface creates field 

maxima and minima which are located within the grating grooves of the corrugation on 

the bottom interface (figure 4.3.3.6). It is possible that when these fields ‘fill’ the 

grating grooves in the bottom interface the zeroth order transmitted light from the top 

interface no longer ‘sees’ the corrugation on the bottom interface due to the occurrence 

of these fields. This would occur when the beating between the reflected and transmitted 

diffracted orders in the z direction has a wavelength of integer multiples of λ/2 which is 

the condition noted in equation 4.3.3.1.  
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Figure 4.3.3.6 Time averaged field profiles for successive maxima and minima in the 1st order 

transmitted diffracted order for an incident frequency of 1.75 x 1015Hz. a) a = 18.35nm, b) a = 37.2nm, c) 

a = 53.75nm. A red line has been drawn on to the plots at the tops of the bottom surface corrugation in 

order to demonstrate the way the field maxima fit within the grating grooves. 
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and Gaylord [1982]. In the two interface system described above, the transmitted 
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kx = kg (since we are incident upon the structure at normal incidence). Therefore, the –

2kg scattering of this field produces diffraction back in the direction of incidence, which 

is the condition for this phenomenon to occur. However, the periodicity of this effect for 

a single dielectric interface is approximately a = λz, which is not the periodicity noted 

from figure 4.3.3.4. Whether the fact that we have real propagating +1 and –1 

transmitted diffracted orders in our system, or the fact that the transmitted diffracted 
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nd

 order Littrow mount 

0 100 200 300 400 500 600 700 800

-200

-100

0

100

200

300

x (nm)

y
 (

n
m

)

0.4000
0.5000

0.6000
0.7000
0.8000

0.9000
1.000
1.100

1.200
1.300
1.400

1.500
1.600
1.700

1.800
1.900
2.000

0 100 200 300 400 500 600 700 800

-200

-100

0

100

200

300

x (nm)

y
 (

n
m

) 0
0.1375
0.2750

0.4125
0.5500
0.6875
0.8250

0.9625
1.100
1.237
1.375
1.512

1.650
1.787
1.925
2.062
2.200

0 100 200 300 400 500 600 700 800

-200

-100

0

100

200

300

x (nm)

y
 (

n
m

) 0
0.1875

0.3750
0.5625
0.7500

0.9375
1.125

1.313
1.500

1.688
1.875
2.063

2.250
2.438

2.625
2.813

3.000

(a) 

(c) 

(b) 



Chapter 4 The Optical Response of Shallow Dielectric Gratings and of Thin 

Dielectric Grating Slabs 

 

 

 117 

rather than the first, can account for this discrepancy is unknown, and therefore we 

cannot say whether this phenomenon is due to this mechanism or not. 

 

 We shall now consider the case where the phase of the bottom surface 

corrugation is out of phase with the top surface corrugation, but not in anti-phase with 

it. From figure 4.3.3.2 it is clear that, for a particular frequency and phase difference, 

the intensity of the +1 and –1 reflected diffracted orders are different, even though the 

light is normally incident upon the structure. Therefore, the structure exhibits the same 

type of behaviour as a blazed grating. However, the transmitted diffracted order 

intensities for the +1 and –1 orders are almost the same, which is not as expected for a 

blazed grating structure. This is shown in figure 4.3.3.7. Previous work has only 

considered a blazing effect on the waveguide modes (Yamasaki [1995], Peng and Tamir 

[1974]), and not on the diffracted orders. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3.7 The intensities as a function of frequency for a two interface corrugated system of 

thickness 60nm and amplitude 25nm for a) the reflected ±1 diffracted orders, and b)  the transmitted ±1 

diffracted orders. 
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of the resultant transmitted ±1 diffracted order fields will be equal since φb
 + ∆φb

 and φb
 

- ∆φb
 are symmetric about φt

. The same is true of the reflected ±1 diffracted orders. 

Therefore, the blazing effect in the reflected diffracted orders must be due to a different 

effect. 

 If we continue to consider our simple ray model for the diffraction properties of 

these two interface systems with no multiple reflections within the dielectric slab this 

phenomenon can be understood. The phases of the transmitted and reflected diffracted 

orders created at the top and bottom surfaces are shown in the following table: 

 

 Diffraction From +1 -1 

Reflected Top Surface tφ  
tφ  

 Bottom Surface udb

11 ++ ∆+∆+ φφφ  
udb

11 −− ∆+∆+ φφφ  

Transmitted Top Surface dt

1+∆+ φφ  dt

1−∆+ φφ  

 Bottom Surface db φφ ∆++1  db φφ ∆+−1  

 

Table 4.3.3.1 The phase effects which need to be considered when determining the total ±1 reflected and 

transmitted diffracted order fields from a thin corrugated dielectric slab (ignoring multiple reflections). 

 

 In table 4.3.3.1 the following notation has been used. If there is any difference in 

the phase between the +1 and –1 diffracted orders then the diffracted order has been 

added as a subscript. The t superscript denotes diffraction from the top surface, the b 

superscript denotes diffraction from the bottom surface, and the u and d superscripts 

denote any phase change due to propagation in the dielectric slab in the upward and 

downward going directions. 

 We shall first consider the transmitted diffracted orders. As described earlier the 

b

1+φ and b

1−φ terms are symmetric about tφ , and therefore these will have no effect on any 

difference in intensity between the +1 and –1 transmitted diffracted orders. Also, the 

d

1+φ and d

1−φ terms (which are due to the differences in propagation length within the 

dielectric slab of the ±1 transmitted diffracted orders created at the top interface) will be 

approximately symmetric about dφ (the phase change due to propagation of the zeroth 

order transmitted fields through the top interface). Therefore these will also have very 

little effect on any difference between the +1 and -1 transmitted diffracted order 
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intensities. It would therefore be expected that the +1 and –1 transmitted diffracted 

order intensities would be very similar even for a non-symmetric grating system.  

In fact this can be more clearly demonstrated by using some test numbers. Let us 

say that 0=tφ °, and that the bottom surface corrugation is 90° out of phase with the 

top surface corrugation so that 901 −=+
bφ ° and 901 =−

bφ °. We shall also introduce some 

slab thickness such that 30=dφ °, and since d

1+φ and d

1−φ are symmetric about this we 

shall give them values of 20° and 40° respectively. The phase of the +1 diffracted order 

created at the top interface is then 20° and that at the bottom interface is -60° giving an 

80° phase difference between them. The corresponding values for the –1 diffracted 

order are 40° for the top surface diffraction and 120° for the bottom surface diffraction, 

giving an 80° phase difference between them. Since the phase differences for the two 

diffracted orders are the same it would be expected that the intensities of the two orders 

would be the same. This agrees with the modelling shown in figure 4.3.3.7(b). 

In the reflection case the u

1+φ  and u

1−φ  terms are symmetric about 

dφ (approximately). We shall again use some test numbers to demonstrate what happens 

with the phases in this case. 180=tφ °, 30=dφ °, with u

1+φ and u

1−φ taking values of 40° 

and 20° respectively, and also 901 −=+
bφ °and 901 +=−

bφ °. These values then give the 

phase of the +1 reflected diffracted orders as 180° for diffraction from the top surface, 

and -20° for diffraction from the bottom surface, giving a phase difference between 

these of 160°. For the –1 reflected diffracted orders the corresponding results are 180° 

for diffraction from the top interface, and 140° for diffraction from the bottom interface, 

giving a phase difference between them of 40°. The phase differences for the +1 and –1 

diffracted orders are clearly different due to the propagation within the dielectric slab, 

and this will lead to a different intensity in the two, and hence a blazing effect. Also, 

since this difference is a result of the propagation of the light in the dielectric slab for 

the bottom surface diffraction process, it would be expected that it would be frequency 

dependent. This agrees with the results in figure 4.3.3.7(a). 
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4.4 Summary 

 

In this chapter we have investigated the optical response of single interface and 

two interface corrugated dielectric structures. In the first section we have described the 

diffracted order intensities / magnitudes and phases for the diffracted orders when they 

are propagating, and when they are evanescent. We have found that when either the 

reflected or transmitted diffracted order becomes evanescent the amplitude coefficient 

of the other diffracted order reduces to zero even though the amplitude coefficient of the 

diffracted order which has become evanescent still has some magnitude. We have also 

found that the phase of the diffracted orders depend upon whether the light is incident 

upon the air side of the structure, or the SiO2 side of the structure. 

 In the second section the results obtained on single interface structures have 

been used to describe the way in which the transmitted diffracted orders created at the 

top and bottom corrugated surfaces of a conformally modulated thin dielectric slab 

cancel, producing no transmitted diffracted order fields when the dielectric slab 

thickness is very small. The exception to this occurs when real propagating diffracted 

orders are allowed within the SiO2 slab only. In this case evanescently decaying 

transmitted diffracted fields are evident from the structure. 

Following this we have discussed the optical response of thin dielectric slabs 

corrugated on both interfaces when there is some phase difference between the two 

corrugations. We have found that it is possible to have almost the entire energy of the 

incident light distributed between the ±1 diffracted orders when the two corrugations are 

in anti-phase with each other. We have also described the way in which a blazing effect 

occurs in the reflected diffracted order when the phase between the two corrugations is 

between 0° and 180°. 
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Chapter 5 

 

Surface Plasmon Polaritons on Thin Slab Metal Gratings 

 

5.1 Introduction 

 

 In chapter 4 we investigated the case of a thin dielectric slab corrugated on both 

surfaces. In this chapter we will extend this to the case where the thin slab consists of a 

metal, upon which SPPs may be excited on both interfaces. There will be two main 

sections to this chapter. The first section will consider the case where the refractive 

indices of the two bounding dielectrics are different, and therefore the excitation 

frequencies of the SPPs on the two interfaces will also be different. This follows the 

work of Schröter and Heitmann [1999] where they observed that the SPP on the 

transmission side of the structure could not be excited when the metal slab was 

conformally modulated, but could be if the system was asymmeterised by flattening one 

of the interfaces, or by changing the phase of the corrugations with respect to each 

other. We will extend this work and explain that this is not entirely true, and give an 

explanation of their results. We shall also explain why, in this geometry, the 

transmission features due to SPP excitation may be observed as maxima, minima, of 

Fano shaped resonances. 

 In the second section we shall consider the case where the refractive indices of 

the two bounding dielectrics are identical. In this case coupled SPPs may be excited, 

and we shall begin the section by describing the long rang and short range SPPs 

(LRSPPs, SRSPPs) which may be excited. We shall then describe the effect on the 

dispersion and coupling of the coupled SPPs of changing the phase between the two 

corrugations, for both purely sinusoidal gratings, and those with a small 2kg component 

in the grating profile. 
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5.2 SPPs on Thin Corrugated Metal Slabs Bounded by two Dielectrics 

with Different Refractive Indices 

 

In a recently published paper (Schröter and Heitmann [1999]) an unexpected 

result when light was incident upon a periodically corrugated thin metal film bounded 

by dielectrics with different refractive indices was observed when the corrugations on 

the two interfaces were identical, and in phase with each other. They observed that it 

was not possible to excite the SPP on the metal surface not facing the incoming light, 

and they ascribed this to the lack of a thickness variation within the metal. In this 

section we present a somewhat different interpretation of their results, and show that the 

SPP is in fact excited on the transmission side of such structures, although only very 

weakly. We explain why this coupling is so weak in terms of cancellation of the 

evanescent diffracted orders from the two diffractive surfaces, and how, by changing the 

phase between the corrugations on either surface, this coupling becomes much stronger. 

We also present an explanation for the observation that SPP excitation on such 

structures may lead to transmission maxima, minima, or Fano shaped resonances (where 

the zeroth order transmission shows both maxima and minima through the SPP 

excitation frequency). 

 

If an optically thin corrugated metal film bounded by dielectrics is investigated, 

then it is possible that SPPs may be excited at both metal / dielectric interfaces, and in 

each case it is the evanescent diffracted orders (corresponding to diffraction in each 

bounding dielectric medium) which excite the SPPs.  

The samples Schröter and Heitmann manufactured (and also modelled) 

consisted of thin metal films approximately 80nm thick, which were corrugated on one, 

or both, surfaces. These films were produced on quartz substrates, with air as the other 

bounding medium. They then illuminated these samples from the quartz side with a 

multi-wavelength source at angles near normal incidence. They found that when only 

one surface was corrugated (either surface) SPPs could be excited at both interfaces, 

whereas if both surfaces were corrugated with identical gratings (in a conformal 

geometry) only the SPP on the surface irradiated could be excited. If one of the gratings 

on these doubly corrugated films was phase shifted with respect to the other then 

excitation of SPPs on both surfaces was again found to occur. 
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We have repeated their modelling using the method of Chandezon (see Chapter 

3), but using different grating parameters in order to replicate their results as closely as 

possible (unlike Schröter and Heitmann we use a sinusoidal grating profile in order to 

simplify the problem since it removes the possibility of scattering processes from the 

higher harmonics of the surface profile). We use a polynomial fitted to experimentally 

determined values to describe the frequency dependent dielectric function of the silver 

(separate polynomials for the real and imaginary parts). The results of these calculations 

for similar structures to those investigated by Schröter and Heitmann with normally 

incident TM polarised light as a function of frequency are shown in figure 5.2.1. Our 

results confirm their obsrevations in that the SPP at the air / metal interface (which 

would be expected to occur at f ~ 0.475 x 10
15

Hz) does not appear to be excited on the 

thin metal slab in a conformal geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.1.  Reflectivity of TM polarised light for normal incidence in the classical mount as a function 

of frequency, for a 40nm thick silver film corrugated with a 600nm pitch sinusoidal grating of 10nm 

amplitude. a) corrugated on both sides, b) corrugated on the bottom surface only, and c) corrugated on the 

top surface only. 
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necessary for coupling to occur. However, while this is in essence true, they do not 

0.30 0.35 0.40 0.45 0.50 0.55

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Air

Silver

SiO
2R

p
p

Frequency (10
15

Hz)

0.30 0.35 0.40 0.45 0.50 0.55

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Air

Silver

SiO
2

R
p
p

Frequency (10
15

Hz)

0.30 0.35 0.40 0.45 0.50 0.55

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Air

Silver

SiO
2R

p
p

Frequency (10
15

Hz)

(a) 

(c) 

(b) 



Chapter 5 Surface Plasmon Polaritons on Thin Slab Metal Gratings 

 

 124 

explain why it is necessary. We present below an extension of their results, and show 

that the SPP on the non-incident side of the structure is in fact excited, but only very 

weakly. We explain why this is the case, and also describe a second phenomenon: the 

fact that the feature seen in the transmitted zero-order can be observed as a transmission 

maximum, minimum, or as a Fano shaped resonance. 

Firstly we shall show that the SPP on the transmission side of the structure is 

excited even with a conformal geometry. Figure 5.2.2(a) shows the zero-order 

transmission, and total absorption, of the structure. 

 

 

 

 

 

 

 

 
Figure 5.2.2.  Transmissivity and absorption of TM polarised light for normal incidence in the classical 

mount for a thin silver film with the parameters used to obtain figure 5.2.1(a). 
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be diffracted at the first interface and produce three transmitted orders: the zeroth and 

±1 diffracted (which will be evanescently decaying in the y-direction). (For this grating 

pitch, and with normally incident light of the frequency range investigated, the other 

evanescent diffracted orders are extremely small and will be ignored). To first order we 

have nine possible scattered fields transmitted through the slab: the zeroth transmitted 

order from the first interface may pass through the second interface, or be diffracted by 

it, and the evanescent diffracted orders from the first interface may pass through the 

second interface or be diffracted by it (figure 5.2.3). Therefore, the resultant transmitted 

diffracted field from such a system will be a combination of the diffraction from the two 

interfaces. The SPP on the bottom interface may then be excited when the resultant 

transmitted diffracted field becomes evanescent and matches the coupling condition for 

the SPP. 

 

 

 

 

 

 

 

 

Figure 5.2.3.  Schematic showing the origin of the possible transmitted orders due to diffraction from a 

thin metal slab corrugated on both surfaces. The dotted lines indicate the evanescently decaying fields due 

to diffraction at the top interface. 

 

By performing calculations of the efficiencies and phases of a single interface 
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interface which is not diffracted at the second interface, and the zero-order transmitted 

field from the incident interface which is scattered into an evanescent diffracted order at 

the second interface, the total transmitted +1 diffracted field around the SPP excitation 

frequency can be calculated.  

 It must be noted that the ISS method only achieves convergence for gratings 

with a lower aspect ratio than those studied by Schröter and Heitmann, and that the 

method is very limited in that it may only be used to calculate the efficiencies and 
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combining the diffracted order efficiencies in the way described above will not give the 

total transmitted diffracted field for these thin slab structures since it does not account 

for the multiple reflections / scattering processes within the thin film. However, since all 

orders within the metal film are exponentially decaying, and therefore higher order 

contributions should be small, we can use this method as a close approximation since 

it’s simple analytical form may enable a better physical understanding of the processes 

involved than does the Chandezon method. It also allows the various scattering 

processes to be calculated individually which may facilitate a better understanding of 

the phenomena investigated. 

 Figure 5.2.4(a and b) shows the magnitudes and phases of the +1 diffracted 

orders for the two cases described above, and also shows the magnitude of the total 

diffracted order for a thin film structure, obtained by combining these two results (c).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.2.4.  The magnitude and phase of the 1

st
 order transmitted diffracted field around the SPP 

excitation frequency from a conformally corrugated structure for a) diffraction from the top surface, b) 

diffraction from the bottom surface, and c) the total 1
st
 order transmitted diffracted field. 
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phase also undergoes a 180° phase change through this point due to the fact that the SPP 

is being resonantly driven by the evanescent diffracted order (See Chapter 2). 

It is clear that the two contributions to the total +1 transmitted diffracted order 

fields are approximately 180° out of phase with each other throughout the frequency 

range investigated. Therefore, when these two contributions are combined they cancel 

each other leaving only a small transmitted diffracted order field due to the difference in 

the magnitude of the two contributing diffraction processes. Since the transmitted 

diffracted field is very small only very weak coupling to the SPP occurs, which in turn 

produces only small features in the zero-order transmission from the structure, and 

nearly no feature in the zero-order reflection. 

To first order the amplitude coefficient of the +1 transmitted diffracted order is 

given by (from Greffet and Massaranni [1990]): 
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(The definitions of the variables and the properties of this expression are 

discussed in detail for the case of dielectric interfaces in section 4.2 in chapter 4) 

 The 180° phase difference between the two diffraction processes can be seen 

from equation 5.2.1 where the 12 εε −  factor changes sign for diffraction at the 

SiO2/metal boundary compared to that at the metal/air boundary. In fact it is clear that 

this must be the case since, as the thickness of the thin metal film tends towards zero, 

the resultant diffraction may only be due to any difference between n1 and n3 (this 

difference is also the reason that the results based upon the ISS method for the two 

diffraction processes which lead to the total transmitted diffracted field, shown in figure 

5.2.4, are not exactly out of phase with each other)  

 For the other structures investigated by Schröter and Heitmann this cancellation 

does not occur. The structures which are only corrugated on one surface have stronger 

transmitted diffracted order fields because there is no secondary corrugation producing 

cancelling fields out of phase with them. However, for the case where both surfaces are 

corrugated, but phase shifted with respect to each other, the case is a little more 

complex. 

 Since the SPP is excited by the evanescent diffracted order the fields have a 

periodicity in the x-direction (parallel to the grating vector) only. This periodicity is 

caused by the diffraction from the grating surface, and the fields produced have their 
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maxima and minima at the maxima and minima of the grating profile. The diffraction 

occurring at the SiO2/metal boundary at some instant in time may have field maxima at 

the maxima of the grating profile from which it is diffracted. If this is the case, then at 

the same instant in time the diffraction occurring at the metal/air boundary will have 

field minima at the maxima of the grating from which it is diffracted. This is the 180° 

phase difference described earlier. If the phase of the grating on the transmission side is 

altered with respect to that on the incident side by some phase φ then, since the field 

maxima and minima are locked to the grating profile from which it is diffracted, the 

phase difference between the two diffracted orders is now equal to 180°-φ. Since the 

phase difference is no longer 180° the two diffracted orders will not cancel in the same 

way and stronger coupling to the SPP can occur. This is shown in figure 5.2.5, where 

the zero-order reflectivity and transmissivity are shown as a function of frequency, and 

phase between the two gratings. Also shown is the magnitude of the amplitude 

coefficient for the +1 diffracted order. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.5.  Results from a dual corrugated silver film as a function of frequency and the phase between 

the corrugation on the two interfaces. a) zero-order reflection, b) zero-order transmission (log scale), and 

c) the magnitude of the first diffracted order (log scale). 
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 It is clear that the coupling to the SPP on the transmission side (at f ≈ 

0.48x10
15

Hz) generally increases as the phase between the two grating surfaces is 

increased, and that this corresponds to an increase in the magnitude of the complex 

amplitude coefficient of the 1
st
 transmitted diffracted order. Also to be noted is that the 

minimum in the magnitude of the amplitude coefficient for the first diffracted order 

actually occurs when the phase between the two gratings is not 0°. This is due to 

additional small phase and amplitude differences between the fields created by the two 

diffraction processes caused by the thickness of the silver film. 

 Finally we shall discuss the shape of the resonance features observed in the 

transmitted zero-order. Figure 5.2.6 shows the zeroth order transmission and absorption 

for a conformally corrugated metal slab, a metal slab with a corrugation on the top 

surface only, and a metal slab with a corrugation on the bottom surface only. From these 

it is clear that transmission maxima or minima may occur on resonance, or that a Fano 

shaped resonance may occur (one which shows a maximum and minimum on either side 

of the resonance frequency). In order to understand this it is first necessary to 

understand how the features due to SPP excitation originate in the reflected and 

transmitted zero-orders (we shall only consider the 1
st
 diffracted order processes) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.6. The zeroth order transmission, and absorption in the metal slab, for the same structures as 

used for figure 5.2.1. 
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 For light incident upon a semi-infinite metal grating the phase of the E-field of 

the specularly reflected order is changed by 180° with respect to the incident light. Also, 

the evanescent diffracted orders are 90° out of phase with the incident light and, due to 

the fact that the SPP is resonantly driven by the evanescent order (producing another 

90° phase shift), the SPP is in anti-phase with the incident light. When light is re-

radiated from the SPP this process is repeated so that the re-radiated light is in anti-

phase with the specularly reflected order, thereby cancelling and producing a reflectivity 

minimum.  

 When an optically thin metal film is investigated there is similarly a 180° phase 

change from the SPP when it is re-radiated into the transmitted zero-order. Figure 

5.2.4(c) shows the resultant diffracted field phase and magnitude for the combined 

diffraction processes from the top and bottom surfaces of a thin silver film in a 

conformal geometry, and this shows that the phase on resonance is approximately 140° 

with respect to the incident light. Due to the metal film thickness the phase of the zero-

order for a planar film with the same average thickness is approximately -40°, and 

therefore when the 180° phase change to the SPP upon re-radiation is taken into account 

these are in phase with each other, and result in a transmission maximum. This is as 

observed in figure 5.2.6(a). 

 This same type of analysis can be used to understand the other transmission 

features observed on the structures investigated in this chapter. The transmission 

minima occur when the re-radiated light is in anti-phase with the zero-order transmitted 

light, and the Fano shaped resonances occur when the re-radiated light is ±90° out of 

phase with the zero-order transmitted light. Of course, this is very much simplified here 

as in most real cases (for example when the phase between the two gratings on either 

surface is not a simple multiple of π/2) the phase between the re-radiated light and the 

transmitted zero-order will not be 0°, 90°, or 180°, but rather somewhere between. Also, 

the shape of the resonance will depend strongly upon the relative intensities between the 

re-radiated light and the transmitted zero-order, therefore being strongly dependent 

upon the film thickness and grating profile. 
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5.3 Coupled SPPs on Thin Metal Slabs Corrugated on Both Surfaces 

 

 In the previous section we considered the case of a thin metal slab corrugated on 

both surfaces, but bounded by dielectrics with different refractive indices in order to 

separate the SPP excitation frequencies for the two interfaces. In this section we shall 

consider the case where the refractive indices of the two bounding dielectrics are 

identical (we shall consider them to both be air). In this situation we can no longer 

consider the SPPs on the two surfaces separately as they couple together and form two 

different types of SPP, the long range SPP (LRSPP), and the short range SPP (SRSPP). 

We shall first describe these SPP modes for a planar interface, before considering the 

situation of a thin metal slab corrugated on both surfaces in either a conformal 

geometry, or with the two corrugations phase shifted with respect to each other. 

 

5.3.1 Coupled SPPs on Planar Metal Slabs 

 

 As described in the previous section it is possible to excite the SPP on both 

surfaces of an optically thin corrugated metal slab. The corrugations are needed to allow 

coupling to the SPP modes, but the SPPs may be excited on a planar surface if, for 

example, a prism coupling technique is utilised (see chapter 2). The SPP on a planar 

surface is simpler to explain, and therefore in introducing the concept of coupled SPPs 

we shall again begin by describing the coupled SPP in this situation. 

 Consider an optically thin metal slab bounded by dielectrics with identical 

dielectric functions with an SPP excited on the top interface. The exponentially 

decaying fields of this SPP into the metal may excite another SPP on the bottom 

interface if the metal film thickness is small enough. These SPPs will then couple 

together, and in doing so they form two different types of coupled SPP modes, known 

as the long range SPP, and the short range SPP. These two SPPs have different charge 

distributions and these are shown in figure 5.3.1.1. 
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Figure 5.3.1.1 The charge distributions for a) the short range SPP, and b) the long range SPP. 

 

The short range SPP has a symmetric charge distribution, and the long range 

SPP has an anti-symmetric charge distribution. These coupled SPPs are described as 

long range and short range simply because their propagation distances are very different 

from each other. These different propagation lengths arise due to a different level of 

damping for the two modes, and this difference in damping is caused by the different 

field distributions associated with each mode. The instantaneous electric field 

distributions (parallel and perpendicular to the metal slab) for the two modes are shown 

in figure 5.3.1.2. These plots were obtained for a planar metal film by modelling the 

system with prism coupling to the modes (a prism / air / metal / air structure), and the 

distances on the x-axis are measured from the prism surface. The metal slab begins 

500nm from the prism, and is 30nm thick, with the permittivities of the silver εr = -17.0, 

and εi = 0.6. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3.1.2 Instantaneous electric field profiles (parallel and perpendicular components) for the 

LRSPP (a) and SRSPP (b) 
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From figure 5.3.1.2 it is clear that the LRSPP has a lower proportion of its fields 

within the metal film than has the SRSPP, and hence the attenuation of the mode is 

lower than that of the SRSPP. As the film thickness is decreased the proportion of the 

fields within the metal film is further diminished, leading to a LRSPP with an increased 

range. For a 15nm silver film the range is approximately 0.5mm, compared to 

approximately 43µm for a single interface SPP (see chapter 2). 

This diminishing of the proportion of the fields within the metal for the thinner 

slabs for the LRSPP also corresponds to an increase in the field enhancement at the 

metal surface. For a single interface SPP on a silver film at 632.8nm instantaneous field 

enhancement factors of the order of 30-40 can be achieved, however for the LRSPP on a 

10nm slab with the same permittivities (which will not in fact be the case for very thin 

films, but can be used as an approximation) the instantaneous field enhancements are of 

the order of 600 (Sarid [1982]). These high field enhancements have meant interest in 

the LRSPP for non-linear applications (see, for example, Stegeman, Burke and Hall 

[1982], and Hickernell and Sarid [1986]). 

In common with the SPP on a planar single interface, coupled SPPs may not be 

optically excited on planar systems without some method of increasing the wavevector 

of the incident light. In this section we shall consider grating coupling with both 

interfaces corrugated. 

 

5.3.2 Coupled SPPs on Conformally Modulated Thin Metal Slabs 

 

The dispersion relation of coupled SPPs on a planar metal slab involves a 

splitting of the single planar interface SPP dispersion curve into two separate dispersion 

curves, which take the same form as the single interface case, but with the LRSPP curve 

shifted up in frequency (for a given in-plane wavevector), and the SRSPP curve shifted 

down in frequency (for a given in-plane wavevector). When a corrugation is added to 

the surfaces these two curves are scattered back into the region of ω-k space available to 

incident radiation (in the same way as described for the single interface system in 

chapter 2), and these ‘coupled SPPs’ may then be coupled to by incident light (Dupta-

Gupta, Varada, and Agarwal [1987], Inagaki, Motosuga, Arakawa, and Goudonet 

[1985]). 
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The size of the splitting between the LRSPP and the SRSPP is predominantly 

determined by the thickness of the metal slab. This is shown in figure 5.3.2.1, in which 

the zeroth order reflection, transmission (log scale), and absorption of the system has 

been calculated as a function of frequency and slab thickness for a thin metal slab 

described as silver (with separate polynomials describing the frequency dependent real 

and imaginary parts of its dielectric function), and with both surfaces corrugated 

identically with a 10nm amplitude, 400nm pitch, sinusoidal grating. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.2.1 The optical response as a function of  frequency and slab thickness for kx = 0 on a 

conformal, sinusoidally corrugated silver slab of 10nm amplitude and 400nm pitch, in the classical 

mount. 

 

At large slab thickness the two branches of the coupled SPPs converge to the 

frequency at which the SPP would occur on a single interface silver grating of the same 

parameters. However, as the slab thickness is reduced it is clear that the LRSPP 

approaches the diffracted order light line (at f = 0.75x10
15

Hz) asymptotically, and that 

the SRSPP reduces in frequency and rapidly approaches 0 for very thin slabs.   

The cause of this asymptotic limit for the LRSPP is clear when the charge 

distributions and fields of the mode are considered. In figure 5.3.1.1 we have shown that 

the LRSPP has an anti-symmetric charge distribution on either side of the metal slab. 

Therefore, the fields of the system outside of the metal slab consist of field lines normal 
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to the surface pointing towards the metal slab at the negative charges on one side, and 

away from the metal slab at the positive charges on the opposite side. Therefore, at any 

instant in time, the fields outside of the metal slab resemble a photon propagating 

parallel to the average plane of the surface. Inside the metal slab the field lines are 

pointing in the opposite direction to those outside of the metal slab, and therefore the 

energy of the mode is not directly on the diffracted order light line. However, as the 

thickness of the slab is reduced the mode increasingly resembles a photon since the 

proportion of the fields of the SPP contained within the metal slab is reduced. 

The opposite is true of the SRSPP. From the charge distribution it is clear that 

the field lines outside of the metal slab are pointing in opposite directions on either side. 

Therefore, as the grating thickness is reduced, its resemblance to a photon decreases and 

it has to move away from the diffracted order light line. 

We have described the form of the dispersion of the mode as a function of slab 

thickness for normal incidence, but we have not considered the coupling to the SRSPP 

and LRSPP, or the nature of the resonant features in the zeroth order reflection and 

transmission obtained from the structure.  

In reflection, both the SRSPP and the LRSPP are shown as reflectivity minima. 

This is not surprising since the predominant mechanism by which this feature will occur 

is from scattering of the SPPs from the corrugation on the top surface (if it is scattered 

from the bottom surface it will be attenuated due to propagation through the silver slab), 

which will then interfere with the specularly reflected light in the same way as described 

for the single interface metal grating considered in chapter 2. The field distributions at 

the top surface for the SRSPP and LRSPP are very similar since they have the same 

charge distribution. Therefore they both result in reflectivity minima since the re-

radiated light is in anti-phase with the specularly reflected light. 

In transmission, the resultant zeroth order transmitted fields will be 

predominantly due to scattering from the bottom surface, and the charge distributions 

for the LRSPP and SRSPP are 180° out of phase with each other. Therefore, the  two 

modes will show the opposite features in the zeroth order transmitted intensities. This 

can be seen from figure 5.3.2.1 (b) where the feature due to the SRSPP is evident as a 

transmission minimum followed by a maximum, and that due to the LRSPP shows a 

transmission maximum followed by a minimum. This implies that the phase of the re-

radiated light is approximately +90° out of phase with the directly transmitted light in 
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the case of the LRSPP, and approximately -90° in the case of the SRSPP. It should also 

be noted that the absorption due to the two coupled SPP modes are similar to each other, 

though the absorption due to the LRSPP for lower slab thickness is slightly higher than 

that of the SRSPP. 

We shall now consider the case of changing in-plane wavevector (incident 

angle) on the nature of the coupled SPPs. In figure 5.3.2.2 we show the dispersion 

relation obtained from the scattering matrices, and the zeroth order reflection, 

transmission, and absorption of the system. The slab thickness is 30nm, with the rest of 

the parameters describing the system the same as for figure 5.3.3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 5.3.2.2 The optical response of the same system described for figure 5.3.2.1 as a function of 

frequency and in-plane wavevector. a) The dispersion of the modes obtained from the scattering matrices, 

b) the reflection, c) the transmission, and d) the absorption for the system. 
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thin metal slab. Also to be noted is the change in coupling condition for the two modes 

as a function of the in-plane wavevector. For high values of kx the coupling to the 

SRSPP is stronger than for low values of kx, whereas the reverse appears to be the case 
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for the LRSPP. However, the nature of the reflection and transmission features due to 

the excitation of the coupled SPPs appears to remain unchanged. 

 We shall now consider the more complicated case of adding a higher harmonic 

to the grating profile. Higher harmonics are likely to occur in the manufacture of thin 

slab metal gratings if the corrugations are formed by interferometric lithography due to 

non-linearities in the exposure and development processes (to be described in chapter 8) 

with the metal film then deposited via vacuum evaporation or sputtering. In the single 

interface case (chapter 2) we described the formation of band gaps in the dispersion 

curve of the SPP due to these higher harmonics, and therefore it is clear that they can 

have a significant effect on the optical response of gratings. In figure 5.3.2.3 we show 

similar plots to those in figure 5.3.2.1, but in this case there is a 5nm amplitude 2kg 

component +90° out of phase with the fundamental kg component (of amplitude 10nm)  

in the grating profiles. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.2.3 The optical response of the same system as figure 5.3.2.1, but with an additional 2kg 

component in the grating profile description of 5nm amplitude, as a function of frequency and slab 

thickness. a) the position of the modes obtained from the scattering matrices (z axis units are arbitrary), b) 

the reflection and c) the transmission (log scale) of the system. 

 

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Slab Thickness (nm)

F
re

q
u
e
n

c
y
 (

1
0

1
5
H

z
)

650.0
1016

1381
1747
2113
2478
2844
3209
3575
3941
4306
4672

5038
5403
5769
6134
6500

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Slab Thickness (nm)

F
re

q
u

e
n
c
y
 (

1
0

1
5
H

z
)

0
0.06250

0.1250
0.1875
0.2500
0.3125
0.3750
0.4375
0.5000

0.5625
0.6250
0.6875
0.7500
0.8125
0.8750
0.9375

1.000

0 20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

Slab Thickness (nm)

F
re

q
u

e
n
c
y
 (

1
0

1
5
H

z
)

0.005000

0.006963
0.009696

0.01350

0.01880
0.02618

0.03646
0.05078

0.07071
0.09847

0.1371
0.1910

0.2659
0.3703

0.5157

0.7181
1.000

(a) 

(c) 

(b) 



Chapter 5 Surface Plasmon Polaritons on Thin Slab Metal Gratings 

 

 138 

 In the case of a purely sinusoidal grating profile when the slab thickness was 

large there was a single SPP mode, which was identical to the single interface SPP. 

When a 2kg component is added to the grating profile a band gap opens (as described in 

chapter 2). This is the reason that there are two bands for large slab thickness in figure 

5.3.2.3(a). For lower slab thickness the LRSPP and SRSPP form directly from the high 

and low energy edges of the bandgap respectively. This is somewhat surprising since 

the symmetry of the charges on the upper surface for the SRSPP and LRSPP are 

identical, whereas those of the high and low energy band edges are not. In fact, for the 

upper energy band edges, when the phase of the 2kg component is +90° out of phase 

with the kg component, the maximum surface charge densities occur on the grating 

peaks and troughs, whereas for the LRSPP which forms from it they are on the 

midpoints between the peaks and grooves. 

 In order to understand this it is useful to investigate the dispersion curves of the 

SPPs of the system for different slab thickness. This is shown in figure 5.3.2.4, where 

the dispersion curves are shown for slab thickness of 70nm, 50nm, and 30nm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.2.4 The dispersion curves of the SPPs of the system for a conformally corrugated thin metal 

slab with a pitch of 400nm, and a grating profile described by a 10nm amplitude kg component, and a 

5nm 2kg component, with the phase of the 2kg component being +90° out of phase with the kg component. 

a) d = 70nm, b) d = 50nm, and c) d = 30nm (z axis units are arbitrary). 
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 From figure 5.3.2.4 it is clear that, for a 70nm thick metal slab, there is anti-

crossing between the LRSPP and the SRSPP very close to the position of the band gap. 

In fact, due to the fact that this anti-crossing is so close to the band gap, the modes 

around this point must be considered as having mixed SRSPP and LRSPP character. For 

decreasing slab thickness the anti-crossing occurs further from the kx = 0 axis, so that 

the modes at kx = 0 becomes more LRSPP and SRSPP in character the thinner the slab 

becomes. This leads us to the conclusion that when the slab thickness is made large 

enough that the SRSPP and LRSPP overlie each other the anti-crossing occurs at the 

position of the band gap, and that in this case the band gap and anti-crossing processes 

are the same. The charge distributions of the two band edges will then have the same 

form for both the LRSPP and SRSPP, since they are the same mode. 

 For a single interface grating with a 2kg component the coupling to the modes 

for normally incident light depends upon the phase of the 2kg component with respect to 

the kg component, with coupling only possible to the mode with an anti-symmetric 

charge distribution on either side of a grating peak (see chapter 2). The same is true of 

the coupled SPP modes, and therefore, when the grating slab thickness is relatively 

large and the coupled SPP modes are largely similar to the single interface SPP, only 

one band edge is coupled to. As the layer thickness is decreased, so that the modes 

become more LRSPP and SRSPP like, coupling to both modes is possible since both 

possible charge distributions for the LRSPP and SRSPP modes overly each other in 

energy (and therefore frequency), and there is a solution with an asymmetric charge 

distribution on either side of a grating peak for both modes.  

The reason for the fact that the two solutions for the two coupled modes overlie 

each other is that the light on the incident side ‘sees’ a 2kg component with a +90° phase 

difference with respect to the incident light, whereas the light transmitted through the 

structure ‘sees’ a 2kg component with a -90° phase difference with respect to the kg 

component. The charge distributions on the two sides of the structure then occur in the 

troughs of the 2kg component on one surface, and on the peaks of the 2kg component on 

the other surface. This is true for both possible solutions for the two coupled modes, and 

since any energy difference between them will be due to the 2kg component, both 

LRSPP modes and both SRSPP modes will have the same energy. The higher energy 

mode in figure 5.3.2.3 would, therefore, be expected to show no coupling for large slab 

thickness, but would show coupling for lower slab thickness. The opposite is true if the 
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phase of the 2kg component is -90° out of phase with the kg component, and the LRSPP 

could be coupled to for all slab thickness, whereas the SRSPP could only be coupled to 

for lower slab thickness 

 

5.3.3 Coupled SPPs on Thin Metal Slabs in a Non-Conformal Geometry 

 

 In this section we shall consider the case of a thin metal slab bounded by 

dielectrics with identical dielectric functions (in this case air), and corrugated with 

identical grating structures on both surfaces, but with a phase difference between the 

two gratings. We will pay particular attention to the case where the system is anti-

symmetric about the average plane of the structure. 

  We shall begin by considering the case where the two corrugations are perfectly 

sinusoidal. In figure 5.3.3.1 we show the zeroth order reflectivity, transmissivity, and 

absorption of the system for a 30nm thick silver slab (with the dielectric function 

described by polynomials) corrugated on both surfaces by a 400nm pitch, 10nm 

amplitude, sinusoidal grating, as a function of frequency and phase difference between 

the corrugations on the two interfaces. 

 

 

 

  

 

 

 

 

 

 

 

 

  

 

Figure 5.3.3.1 The zeroth order normal incidence reflectivity (a), transmissivity (b), and absorption of the 

system (c), for a 30nm thick silver slab corrugated on both surfaces with a 400nm pitch, 10nm amplitude, 

sinusoid as a function of frequency and phase between the corrugations on the two surfaces. 
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Before we consider the optical response of the system shown in figure 5.3.3.1 

we shall consider the absorption. The maximum in absorption occurs at the frequency at 

which the coupled SPPs are excited, and it is clear from figure 5.3.3.1(c) that the 

excitation frequency is reduced when the phase difference between the corrugations on 

each surface is increased. Also, the coupling strength to the mode is altered as the phase 

difference is changed. 

In order to understand this it is useful to consider an analogy to the coupled 

SPPs on these systems. If we have two pendulae connected together with a spring and 

we drive one harmonically then there are two possible steady state solutions: one in 

which the two pendulae oscillate in phase, and one in which they oscillate out of phase. 

These two solutions are analogous to the SRSPP and LRSPP on the thin metal slab 

systems, except that in this case the system is more complicated since the charge 

distributions on either side (the two pendulae in our analogy) can both be driven (by the 

reflected and transmitted diffracted orders). In section 5.2 we showed that the total 

transmitted diffracted order field of a doubly corrugated thin metal slab in a conformal 

geometry is nearly zero since the transmitted diffracted orders created at the two 

interfaces cancel. Therefore, in a conformal geometry we have the case where the 

charge distribution on only the incident interface is driven. When the phase of the 

bottom surface corrugation is changed with respect to the corrugation on the top 

(incident) surface the total transmitted diffracted order fields are no longer zero, 

resulting in the charge distributions on both interfaces being driven. The total 

transmitted diffracted order fields are at a maximum at a phase difference between the 

two corrugation of approximately 180° with some small change due to the thickness of 

the metal slab. When both charge distributions are being driven the frequency of the 

resonance is not necessarily going to be the same, and this is the reason that the SRSPP 

excitation frequency is reduced in figure 5.3.3.1. 

The coupling strength of the SRSPP increases with increasing phase difference 

between the two corrugations, while the  coupling strength to the LRSPP reduces, and 

this can be explained by considering the phase of the transmitted diffracted order with 

respect to the charge oscillations of the coupled SPPs on the bottom interface. This is 

analogous to the phase of the driving force on the second pendulum being different to 

the phase of oscillation of the second pendulum. If the driving force on the second 
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pendulum is in phase with the oscillation the coupling strength will be increased, 

whereas if it is out of phase the coupling strength will be decreased. Since the charge 

distributions on the bottom interface of the thin metal slab for the SRSPP and LRSPP 

are out of phase with each other this means that the coupling strength to one of the 

modes will be increased with an increase in the transmitted diffracted order, whereas the 

coupling strength to the other mode will be reduced. This is observed in figure 5.3.3.1. 

The other interesting feature to note in figure 5.3.3.1 is the change in the features 

in the reflectivity and transmissivity plots due to the change in the phase between the 

gratings. In the previous section on conformally corrugated structures we stated that the 

features observed in the zeroth order reflectivity were predominantly due to the 

scattering of the coupled SPPs from the corrugation on the top surface of the structure, 

and that since the charge distribution of the SRSPP and LRSPP are the same at the top 

interface the features observed due to re-radiation from both modes would be the same. 

This is still true for this system, although it is now clear that there is a very small 

maximum occurring at a slightly higher frequency than the minimum due to the 

excitation of the coupled SPPs, and we believe that this is due to the small influence of 

the coupled SPPs being scattered from the corrugation on the bottom interface. For this 

reason there is also a small discrepancy between the frequency at which the maximum 

absorption occurs (which is at the exact frequency at which the coupled SPPs are 

excited) and the minimum in the reflectivities. 

In transmission the predominant scattering process which affects the zeroth 

order transmissivity occurs at the bottom interface. The charge distributions of the 

LRSPP and SRSPP are 180° out of phase with each other meaning that the features in 

the zeroth order transmission are the opposite of each other. For the conformal geometry 

the feature due to the SRSPP is a maximum followed by a minimum, whereas the 

feature due to the LRSPP is a minimum followed by a maximum. Even if the phase of 

the bottom surface corrugation is changed with respect to the top surface corrugation the 

charge distribution of the two coupled modes remains unchanged, and therefore the 

nature of the features in the zero order transmission remain unchanged. The coupling 

strength changes due to the process described above. 

The reflectivity, transmissivity, and absorption of the system, as a function of 

frequency and in-plane wavevector for the case where the two gratings are in anti-phase 

with each other is shown in figure 5.3.3.2. 
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Figure 5.3.3.2 The reflectivity, transmissivity, and absorption of the system (a, b, and c), as a function of 

frequency and in-plane wavevector for the case where the two gratings are in anti-phase with each other 

for the same grating parameters as the system described previously. 
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phase with each other it is not possible to plot the optical response of the system as a 

function of the phase between the two gratings. This is due to the fact that the sign of 

the 2kg component on the bottom surface is reversed for the anti-phase case when 

compared to the conformal case, so that if we plotted the optical response as a function 

of the phase between the two corrugations we would not be investigating the change 

from a conformal geometry to that of an anti-phase geometry. Therefore, we shall only 

consider the case of the anti-phase structure here. A plot of the band structure, and of 

the reflectivity and transmissivity of the zeroth order for normally incident light, as a 

function of frequency and slab thickness is shown in figure 5.3.3.3 for a metal slab 

corrugated on both sides with the corrugations on the two surfaces in anti-phase with 

each other (the gratings have a 10nm amplitude kg component, a 5nm 2kg component, 

and a pitch of 400nm). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3.3.3 The band structure (a), reflectivity (b), and transmissivity (c) of the zeroth order, for 

normally incident light as a function of frequency and slab thickness for a metal slab corrugated on both 

sides when the corrugations on the two surfaces are in anti-phase (the gratings have a 10nm amplitude kg 

component, a 5nm 2kg component, and a pitch of 400nm). 
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It is clear from figure 5.3.3.3(a) that the dispersion of the modes is very different 

to that of the conformal case with a 2kg component (figure 5.3.2.4). In that case there 

were two modes evident: one which corresponded to the LRSPP (which developed from 

the high energy branch of the SPP dispersion curve for large slab thickness), and one 

which corresponded to the SRSPP (which developed form the low energy branch of the 

SPP dispersion curve for large slab thickness). In figure 5.3.3.3, however, there are now 

four different modes evident. (In fact for low slab thickness there are five since the 

second order SRSPP had reduced in frequency to just below the two first order 

LRSPPs). Two of these correspond to LRSPPs and two to SRSPPs, and these develop 

from both the high and low energy band edges of the band gap of the SPP dispersion 

curve at large slab thickness. 

In the conformal case the two LRSPP solutions, and the two SRSPP solutions 

had the same energy, and therefore they overlayed each other in the plots of figure 

5.3.2.4. In the anti-phase case this is no longer true since the charge distributions of the 

LRSPP and SRSPP for the solution which has its maximum surface charge densities at 

the maxima and minima of the kg component of the grating profile have a different 

thickness of metal between them than does the case where the maximum surface charge 

densities occur at the midpoints between maxima and minima of the kg component. 

Therefore, the two LRSPP and SRSPP modes have different energies and occur at 

different frequencies for low slab thickness.  

Another way of looking at this is to consider the charge distributions with 

respect to the 2kg component of the grating profile on each surface. The surface charge 

density of the coupled SPP mode on the top (incident) surface corrugation is excited by 

the reflected diffracted order and ‘sees’ a 2kg component which is +90° out of phase 

with the kg component. The bottom surface charge density of the coupled SPP mode is 

excited by the transmitted diffracted order which, even though the phase of the 2kg 

component of the grating is -90° out of phase with the kg component, ‘sees’ the 2kg 

component as being +90° out of phase. The LRSPP with surface charge density maxima 

on both surfaces occurring at the peaks and troughs of the kg component has its electric 

field maxima at the peaks of the 2kg component on both surfaces. For a single interface 

grating this would correspond to being the low energy band edge of the band gap at 

normal incidence. Correspondingly the LRSPP with surface charge density maxima on 

both surfaces at the midpoints between the maxima and minima of the kg component has 
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its electric field maxima at the troughs of the 2kg component on both surfaces, and this 

would correspond to the high energy band edge of the band gap at normal incidence for 

a single interface grating. Therefore, it is clear that the two possible LRSPP modes have 

different energies, with one resulting from the low energy band edge for large slab 

thickness, and one developing from the high energy band edge for large slab thickness. 

The same arguments are true for the two SRSPP modes. 

It is clear from the reflectivity and transmissivity plots in figure 5.3.3.3 that 

coupling only occurs to the LRSPP and SRSPP developing from the low energy band 

edge at large slab thickness (with the shape of the resonance features having the same 

forms as those described in the previous section for anti-phase sinusoidally corrugated 

systems). This is because it is only the modes which have their surface charge density 

maxima at the midpoints between the maxima and minima of the kg component of the 

grating profile which may be coupled to (for reasons described in chapter 2). 

If the phase of the 2kg component on the top surface (remembering that the 2kg 

component on the bottom surface has the opposite sign) is -90° rather than +90° then 

the LRSPP and SRSPP modes developing from the high energy band edge at large slab 

thickness will be coupled to rather than those from the low energy band edge. If the 

phase is 0° then all four modes will be coupled to. 

 

5.4 Summary 

  

 In this chapter we have initially considered the optical response of thin metal 

slabs where both surfaces are corrugated conformally, and where the thin metal slab is 

bounded by dielectrics with different dielectric functions for the incident and 

transmitted media. This has been performed in order to explain the results of Schröter 

and Heitmann (1999). When this system is conformally corrugated there is only very 

weak coupling to the SPP on the metal dielectric boundary on the transmission side of 

the system due to the fact that the transmitted diffracted orders created from the top and 

bottom surfaces of the metal slab cancel. When the phase of the corrugation on the 

bottom surface is changed with respect to the corrugation on the top surface then this 

cancellation effect is reduced so that the coupling to the bottom surface SPP increases. 

If the two corrugations are in anti-phase with each other the transmitted diffracted 

orders from the two interfaces interfere constructively so that the coupling to the bottom 
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surface SPP is at its maximum. We also described the shape of the features evident in 

the zeroth order transmission from the structure in terms of the phase between the re-

radiated light from the SPPs and the zeroth order transmission which has propagated 

directly through the structure. 

In the second section we proceeded to consider the case where the thin metal 

slab is bounded by dielectrics with identical dielectric functions, and in this system 

coupled SPP modes (the LRSPP and SRSPP) can be excited. We described the two 

coupled modes and the effect of the metal slab thickness and incident angle upon the 

features in the zeroth order reflectivity and transmissivity of the system when identical 

sinusoidal corrugations on the two surfaces are in phase with each other. The more 

interesting results occur when a small 2kg component is added to the grating profile. In 

this case anti-crossing is evident between the LRSPP and SRSPP modes in the 

dispersion curves due to an interaction between them, and for large slab thickness this 

anti-crossing becomes the same as the band gap for normally incident light observed on 

single interface gratings. Due to this the LRSPP is observed to develop from the high 

energy band edge for reducing slab thickness, and the SRSPP from the low energy band 

edge. 

Finally we considered the case where the two corrugations on each surface are 

non conformal, and we investigated the effect this has on the LRSPP and SRSPP 

modes. For purely sinusoidal corrugations the coupling strengths to the two coupled 

SPP modes alter as a function of the phase between the two corrugations due to the 

change in the magnitude of the transmitted diffracted order. The SRSPP mode couples 

more strongly with increasing phase difference between the two corrugations, whereas 

the LRSPP couples more weakly. This is due to the fact that the charge distributions of 

the SRSPP and LRSPP are 180° out of phase on the bottom surface. 

The effect of adding a 2kg component to the grating surface when the two 

corrugations are in anti-phase with each other is that the two possible LRSPP and 

SRSPP modes have different energies resulting in four different coupled SPP modes 

existing, with both LRSPP and SRSPP modes developing from the high energy and low 

energy band edges at large slab thickness. How many of these modes are evident in the 

optical response of the grating structure is dependent upon the phase of the 2kg 

component with respect to the kg component. 
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Chapter 6 

 

Dispersion of Surface Plasmon Polaritons on Narrow-

Grooved Short-Pitch Metal Gratings 

 

6.1 Introduction 

 

In the previous chapters we have considered the optical response of relatively 

shallow grating structures. In this, and subsequent, chapters we shall consider the 

optical response of single interface metal gratings when the grating depth is very large, 

with this chapter being concerned with arrays of Gaussian grooves. We shall pay 

particular attention to the zero order region of the spectrum, where, until recently, it was 

believed that SPPs could not be excited. In this region, when the grating grooves are 

deep enough, a family of self-coupled SPPs (to be defined later) have been shown to 

exist, which are very flat banded, and therefore lead to resonant absorption of light of a 

particular frequency over a wide range of incident angles. 

 In the first section of this chapter we shall briefly discuss the previous work 

which has been performed on deep metal gratings. Following this we shall show how 

the flat-banded SPP dispersion curves form from the well known shallow grating 

dispersion curve (described in chapter 2) due to the formation of very large band gaps, 

before describing the self-coupled SPPs excited with TE polarised light when the 

grating is oriented at a 90° azimuthal angle, and the dispersion of one of these self-

coupled SPP bands for all grating orientations. 

 

6.2  Previous Work on Deep Metal Gratings 

 

About 20 years ago a grating with a depth of up to 200nm with a pitch of the 

order of 500nm was considered to be very deep. A theoretical study was undertaken by 

Andrewartha, Fox and Wilson [1979a,b] on perfectly conducting lamellar structures 

with approximately these parameters in the classical mount which described the 

dispersion curve of resonance anomalies obtained from identifying poles in the complex 
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wavelength plane. They showed the formation of flat bands, but only investigated small 

regions of ω-k space which did not include near normal incidence, or the zero order 

region of the spectrum. It is also questionable whether the modes they were identifying 

would be the same as SPPs on finitely conducting metal gratings, since no dispersion of 

the dielectric function of the metal was included which is an integral part of the 

dispersion relation of SPPs. Similar work was performed by Laks, Mills and Maradudin 

[1981] but, although they considered sinusoidal gratings with a frequency dependent 

dielectric function for the metal described by a free electron model, they only 

considered the non-radiative region of ω-k space, and for lower aspect ratio structures 

than those of Andrewartha et al [1997a,b]. 

Recent advances in computational power, and in the development of 

manufacturing techniques capable of producing high aspect ratio sub-micron structures, 

have stimulated interest in gratings with higher aspect ratios (where the depth of the 

grating is of the order of, or greater than, the grating pitch - this is our definition of the 

term deep). Experimentally it has been found that deep lamellar gratings can support 

highly localised resonances within the grooves with grating pitches of 1.75µm and 

depths of up to 1µm (Lopez-Rios, Mendoza, Garcia-Vidal, Sanchez-Dehesa and 

Pannetier [1998], Garcia-Vidal, Sanchez-Dehesa, Dechelette, Bustarret, Lopez-Rios, 

Fournier and Pannetier [1999]). These flat-banded resonances are very different to SPPs 

on shallow gratings, and have been explained as being due to hybrid waveguide-SPP 

resonances. However, the evolution of these bands as a function of groove depth was 

not investigated and has not been explained in any detail. An extension of the studies of 

deep gratings conducted by Porto, Garcia-Vidal and Pendry [1999] evaluated the band 

structures for lamellar transmission gratings with a pitch of 3.5µm and a depth of 4µm. 

This also showed flat-banded resonances in the infra-red region of the spectrum and 

predicted almost total resonant transmittance of the incident light in the zero-order 

region of the spectrum. Other recent developments have shown that resonant enhanced 

optical transmission can take place through hole arrays in classically opaque metal films 

(Ebbesen, Lezec, Ghaemi, Thio and Wolff [1998], Ghaemi, Thio, Grupp, Ebbesen and 

Lezec [1998]) which is also associated with SPP excitation (Saloman, Grillot, Zayato 

and de Fornel [2001], Martin-Moreno, Garcia-Vidal, Lezec, Pellerin, Thio, Pendry and 

Ebbesen [2001]). 
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All of the work described so far has related to diffractive structures. Until 

recently it had been assumed that, if the corrugation has a pitch less than half the 

wavelength of the incident radiation (in other words it is zero-order, or non-diffractive), 

the interface would act as a good mirror. The reason for this is that, as well as having no 

available diffracted orders, it was thought that SPPs would no longer be excited since, 

even with the added momentum available to the incident radiation due to scattering 

from the grating, the momentum of SPPs on such a structure is greater than the photon 

momentum available to the radiation in the zero-order region of the spectrum. However, 

Sobnack, Tan, Wanstall, Preist and Sambles [1998], and Tan, Preist, Sambles and 

Wanstall [1999] have shown that, for very deep zero-order monogratings, the SPP 

dispersion curve may be so severely modified from the shallow grating case that 

resonant absorption of light due to SPP excitation may occur within the zero-order 

region of the spectrum. A family of these resonances have been demonstrated to exist, 

and these have been termed self-coupled SPP resonances (for reasons which will be 

made clear later in this chapter). They are flat banded, possessing near zero group 

velocity over a large range of incident wavevectors (figure 6.2.1). 

 

 

 

 

 

 

 

 

 

Figure 6.2.1. Reflectivity as a function of frequency and in-plane wavevector for TM polarised light 

incident on a 300nm deep, 50nm wide Gaussian-grooved, 200nm pitch silver grating held at a zero degree 

azimuthal angle. The bands are very flat for a large range of incident wavevectors. 
 

In this chapter we shall investigate these self-coupled SPPs, and specifically we 

shall attempt to bridge the gap between the well understood band structure of SPPs on 

shallow gratings and those of the high aspect ratio structures on which they are excited. 

It will also extend the previous work of Tan et al [1999] to explore the SPP band 

structure for zero-order gratings at orientations other than that of the grooves 

perpendicular to the plane of incidence of the exciting EM radiation. 
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6.3  Band gaps and the Formation of Self-Coupled SPPs   

 

 In Chapter 2 the formation of band gaps in the SPP dispersion curves for 

shallow gratings was described, and it was mentioned that it was not possible to 

analytically obtain the size and central frequency of the band gap for deep gratings. 

Therefore, in this chapter we shall numerically obtain the dispersion curves for zero-

order gratings for the visible region of the spectrum (λg = 200nm) for increasing depths, 

which will show the way band gaps develop for deeper gratings, and how they are 

responsible for the formation of a family of self-coupled SPPs in the zero-order region 

of the spectrum. In order to do this we have used computer codes based upon the 

method of Chandezon (Chapter 3). We have described the frequency dependent 

dielectric function of the metal as that of silver using the Drude model described in 

Chapter 2, with a plasma frequency of ωp = 1.32 x 10
16

 s
-1

, and a relaxation time of τ = 

1.45 x 10
-14

 s. 

If a grating which has a large first harmonic with a phase of +90° is investigated 

then a band structure which shows a large band gap with strong coupling to the lower 

energy branch is produced (described in chapter 2). An example of such a structure is a 

Gaussian groove profile, and it is this structure which is investigated in the following 

work in this chapter (figure 6.2.1). It is also used because previous work has shown the 

SPP resonances on deep Gaussian grooved gratings to be highly localised within the 

grooves. The use of Gaussian grooves on a grating of 200nm pitch reduces interactions 

between neighbouring grooves, allowing the band structure of more highly localised 

modes to be obtained. 

 

 

 

 

 

 

 

 

Figure 6.3.1 An example of the type of grating structure investigated. The profile is made up of a series of 

Gaussian grooves so that the depth, width and pitch of the grating may be altered independently, and so 

that in deep structures the SPP modes in neighbouring grooves will be largely isolated from each other. 
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 Figure 6.3.2 shows the band structure, in the classical mount, for the first 

Brillouin zone of a 200nm pitch silver grating with 50nm wide Gaussian grooves for 

10nm, 25nm, 50nm, and 75nm depths. In figure 6.3.2(a) the band structure looks very 

similar to that of a shallow sinusoidal grating. However, due to the large 1
st
 harmonic 

needed to create the Gaussian profile, relatively large band gaps are opened (for 

example at between 1.1 and 1.2 x 10
15

Hz at kx = 0). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.2 Dispersion curves for 200nm pitch, 50nm wide, Gaussian-grooved  silver gratings for kz = 0, 

with  a) d = 10nm, b) d = 25nm, c) d = 50nm, and d) d = 75nm. 

 

 When the depth is increased these band gaps widen with the low energy 

solutions reducing in energy until, when the depth is 50nm (figure 6.3.2(c)), a very flat 

band is forming. On further increase of depth to 75nm (figure 6.3.2(d)) this branch, 

while remaining quite flat, has a positive gradient close to the light line, while the 

second order low energy branch has passed through the first order high energy branch 

and is in the process of forming a second flat band. The formation of these flat bands 

will be discussed in more detail later. 
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Figure 6.3.3 |Hz| for the second order SPP resonance for a) d = 10nm, f = 1.36 x 10
15

Hz, b) d = 25nm, f = 

1.3 x 10
15

Hz, and c) d = 50nm, f = 1.19 x 10
15

Hz. 

 

 To understand the nature of these resonances it is instructive to investigate their 

field profiles. Figure 6.3.3 shows the |Hz| (z is along the groove direction) component of 

the fields at kx = 0 for the low energy branch of the second order TM resonance for 

10nm (f = 1.36 x 10
15

Hz), 25nm (f = 1.3 x 10
15

Hz) and 50nm (f = 1.19 x 10
15

Hz), deep 

gratings. For the resonance on a relatively shallow 10nm deep grating field maxima are 

observed on the tops of the grating between the grooves and also at the bottoms of the 

grating grooves. In addition to these there are two extra field maxima per grating period 

found on the grating groove ‘shoulders’. (This arises because the second order SPP at kx 

= 0 corresponds to a standing wave created by ±2kg scattering, thus the wave has 4 field 

amplitude maxima per grating period). When the depth is increased to 25nm the fields 

on the opposing shoulders of a groove appear to couple together, and by a depth of 

50nm these coupled fields are almost entirely localised within the grating grooves. 

Since the fields of the SPPs on either side of the groove have coupled together these 

resonances can be described as self coupled SPPs (SCSPPs). 
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 The dispersion curves for 100nm, 150nm and 300nm deep gratings are shown in 

figure 6.3.4. These show how the opening of even larger band gaps have pushed the low 

energy branches of the first, second and third order SPPs into the zero-order region of 

the spectrum. Indeed, the first order branch has been moved beyond the visible to the 

infra-red region of the spectrum. It is also noticeable that the character of the bands very 

much resembles that expected from anti-crossing of flat bands with the lightline. In fact, 

in previous work (Tan et al [1999]) it has been predicted that, for deep lamellar 

gratings, a series of almost flat bands with a small negative gradient would be expected. 

However, these flat bands interact with the free radiation and, since the density of states 

of the free radiation becomes divergent at grazing incidence, this leads to strong anti-

crossing between the flat bands and the lightline as shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.4 Dispersion curves for 200nm pitch, 50nm wide, Gaussian-grooved  silver gratings for kz = 0, 

with  a) d = 100nm, b) d = 150nm, and c) d = 300nm. 

 

 The dispersion curve for the 300nm deep grating (figure 6.3.4(c)) shows several 
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successive flat bands at kx = 0 are shown in figure 6.3.5. These show that there are a 

family of localised SCSPP resonances whose number of field maxima contained within 

the grating grooves is equal to the order of the mode (which corresponds to the multiple 

of kg from which the branch originates).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.5. |Hz| for the first four SCSPPs on a 300nm deep, 50nm wide, Gaussian grooved grating with 

kz = 0. a) f = 0.19 x 10
15

Hz, b) f = 0.44 x 10
15

Hz, c) f = 0.66 x 10
15

Hz, and d) f = 0.85 x 10
15

Hz. 

 

The fields on the flat regions of the dispersion curves for kx values away from 

the symmetry points of kx = 0 and the Brillouin zone boundaries show similar field 

distributions to those observed at normal incidence, the principle difference being the 

intensity distribution of the fields. These intensity differences vary periodically along 

the grating, with the periodicity being determined by the ratio of 2kx / kg (e.g. at 2kx / kg 

= 0.5 the fields in alternate grooves are the same (figure 6.3.6)). 
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Figure 6.3.6 |Hz| for the second order SCSPP resonance on a 300nm deep, 50nm wide, Gaussian grooved 

grating with 2kx / kg = 0.5 (f = 0.46x10
15

 Hz). 

 

 The nature of these resonances, and the mechanism by which they arise on short 

pitch gratings has been discussed. However, there are other aspects to the formation of 

these bands, and in order to discuss these it is useful to investigate the position of the 

SPPs in frequency as a function of depth (figure 6.3.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.7 Mode frequency as a function of grating depth for 200nm pitch, 50nm wide, Gaussian-

grooved gratings at kz = 0. a) 2kx / kg = 0.0, b) 2kx / kg = 0.1, c) 2kx / kg = 0.5, and d) 2kx / kg = 1.0. Dotted 

lines are light-lines. 
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At kx = 0 (figure 6.3.7(a)) the first order SPP (starting at f ≈ 1.15 x 10
15

 Hz) 

shows a band gap opening as the depth is increased. The splitting is highly asymmetric 

with the low energy branch reducing in frequency rapidly with increasing depth, and the 

high energy mode changing comparatively little. In order to understand this asymmetry 

it is necessary to consider the coupling of the surface plasmon with the free radiation. 

 Earlier the SPP dispersion curve for a planar metal interface was described as a 

solution of Maxwell’s equations. However, Maxwell’s equations implicitly contain the 

coupling of the free radiation to the SP, and it is this coupling which creates the familiar 

flat-surface dispersion curve, rather than a straight line at ωsp. When a grating structure 

is added and band gaps are opened at the Brillouin zone boundaries the high energy 

branches cannot increase in frequency above the light line (or its corresponding 

diffracted light line in the reduced zone scheme) since the coupling to the free radiation 

prevents it. For this reason the opening of the band gap is asymmetric; when the depth 

of the grating is increased the low energy branch may more readily reduce in energy 

relative to the high energy branch, which may only increase in energy up to that of the 

lightline, increasing asymptotically towards it with increasing depth. 

 When the band gaps increase at kx = 0 the higher order low energy branches are 

free to pass through the lower order high energy branches with no interaction since this 

is at a symmetry point in ω - k space. At large depths the frequency at which these low 

energy SPP branches may be excited reduces as approximately 1/d. This can be simply 

predicted by considering the resonances as standing wave modes within the grooves. 

 As kx is increased anti-crossing between higher order low energy branch SPPs 

and lower order high energy branch SPPs arises because the symmetry of the system has 

been broken. This can clearly be observed in figure 6.3.7(b) (2kx / kg = 0.1). At 2kx / kg 

= 0.5 the anti-crossing is so strong that the branches are no longer well defined (figure 

6.3.7(c)), and it is also noticeable that the coupling of the SPP bands with the free 

radiation causes them to tend towards the lightline (dotted lines at f = 0.38 x 10
15

Hz and 

1.14 x 10
15

Hz).  

 In figure 6.3.7(d) (2kx / kg = 1.0, at the Brillouin zone boundary) there is no 

longer any anti-crossing between the high and low energy SPP bands since it is another 

symmetry point in ω-k space. However, anti-crossing between the low energy branches 

and the lightline at f = 0.75 x 10
15

Hz is still evident. 
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Having described the SCSPP on metal gratings in the classical mount as a result 

of very large band gaps occurring in the dispersion curves of the SPPs we shall now 

extend this to the case of light incident at a 90° azimuthal angle. 

 

6.4 Self Coupled Surface Plasmon Polaritons excited with TE polarised 

radiation 

 

So far only the band structure in the ω-kx plane with kz = 0 (a 0° azimuthal 

angle) has been discussed. In this orientation only TM polarised radiation can be used to 

excite the SCSPP modes since a component of the radiation E-field must be 

perpendicular to the surface for excitation to occur. However, at normal incidence the 

case at a 0° azimuthal angle with TM polarised radiation is the same as for TE polarised 

radiation at an azimuthal angle of 90°. Therefore any SPP resonance excitable for one 

case should be excitable for the other. This is found to be the case, while the dispersion 

of these modes in the ω-kz plane with kx = 0 is significantly different from those in the 

other orientation (the ω-kx plane with kz = 0). 

Figure 6.4.1 shows the dispersion curve along the kz direction for the TE 

polarised resonances on a 300nm deep Gaussian grooved grating. There are three 

different features noticeable on this plot. Firstly, the diagonal line starting at the origin 

is the lightline. Moving away from this as kz is increased is a curve which originates at 

the origin and is the flat surface SPP curve (slightly deformed by the grating in the x-

direction). Thirdly, there are a series of bands which at normal incidence occur at the 

same frequencies as the TM excited resonances at normal incidence. These bands, 

though relatively flat, gently curve up in energy and, outside of the lightline, approach 

the grating-perturbed flat surface SPP curve. To understand the dispersion of these 

modes it is necessary to consider the SPP curve which has been scattered from the 

grating. 
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Figure 6.4.1 The dispersion curve for a 200nm pitch, 300nm deep, 50nm wide Gaussian-grooved grating 

with kx = 0 and varying kz . 
 

In chapter 2 we discussed the fact that when a grating is added in the x-direction 

folding of the SPP bands at the Brillouin zone boundaries causes the horn shape of the 

SPP dispersion curve for a flat surface to fold into the region of ω-k space available to 

incident radiation. Another way of considering this band folding is to position the 

grating-deformed SPP curves at integer values of the grating vector in the x-direction to 

represent the scattering of the SPP from the grating surface. For a very shallow grating, 

where there is little deformation of the SPP dispersion curve, a slice in ω-k space 

through the plane at kx = 0 will show the three types of features in figure 6.4.1. The 

lightline is present, as is the SPP horn centred at the origin. But there is also a curve 

which represents a slice through the scattered SPP curve centred at kx = kg. This is a 

band which rises in energy as kz is increased and approaches the SPP curve centred at 

the origin at large values of kz. Of course, at kx = 0 two SPPs scattered from the grating 

are actually interacting; one scattered from +kg, and one from –kg. Therefore the mode 

is a standing wave in the x-direction, which propagates in the z-direction. 

For a deep grating the band gaps and anti-crossing effects cause the SPP curve to 

deform in the x-direction, as discussed in the previous section. However, the effect of 

taking a slice through the scattered SPP curve in the ω-kz plane at kx = 0 produces bands 

which at normal incidence occur at a frequency defined by the deformation of the SPP 

dispersion curve caused by the grating. As kz is increased the effect of the grating 

structure diminishes since the SPP is no longer propagating perpendicular to the grating 

grooves. This reduces the size of the band gaps causing the bands to curve up in 

frequency until at large kz values they approach the dispersion curve centred at the 

origin. 
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It is noticeable in Figure 6.4.1 that, unlike the dispersion of these SCSPP bands 

in the kx direction, there is no coupling with the free radiation at the light line. In the 

case of TM polarised radiation incident in the ω-kx plane at kz = 0 there is a periodic 

variation of the electric field in the direction of the grating vector when kx is non-zero. 

Because of this the overlap integral of the wavefunctions of the incident light and the 

SCSPP mode will also be non-zero resulting in an interaction between them. By 

contrast, for TE polarised light incident in the ω-kz plane at kx = 0 there is no spatially 

periodic variation in the incident electric field in the direction of the grating vector for 

any values of kz. Therefore, the overlap integral is zero and there can be no interaction. 

This is a special case and only occurs when kx = 0. At all other orientations, where there 

is a finite kx, coupling of the SCSPP mode with the free radiation can take place, and 

splitting occurs. 

The form of the SPP dispersion curve for 0° and 90° azimuthal angles has now 

been described. In order to complete the discussion we shall now consider a single band 

of the SPP dispersion curve for any angle of incidence. 

 

6.5 Band Structure for a SCSPP band for all grating orientations 

 

When the grating is oriented such that both kx and kz are non zero there will be 

polarisation conversion due to the excitation of the SPP (as described in Chapter 2). The 

polarisation conserved and polarisation converted reflectivities as a function of 

frequency and in-plane wavevector for TM polarised light incident upon a 300nm deep, 

40nm wide, Gaussian grooved grating oriented at a 45° azimuthal angle is shown in 

figure 6.5.1.  

 

 

 

 

 

 

 

Figure 6.5.1 Polarisation conserved (a) and polarisation converted (b) reflectivities as a function of 

frequency and in-plane wavevector for TM polarised light incident upon a 300nm deep, 40nm wide, 

Gaussian grooved grating oriented at a 45° azimuthal angle. 
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It is clear that there is strong polarisation conversion occurring when the 

SCSPPs are excited. However, we are predominantly interested in obtaining the band 

structures for these resonances, and typically we have used the scattering matrices to 

obtain this in the previous sections. Unfortunately, due to the fact that there is anti-

crossing between the SPP dispersion curve and the light line in the case of kz = 0, and 

not for the case of kx = 0, it is not possible to plot the band structure of a single SCSPP 

band using the scattering matrix technique. Therefore, we shall use a different method 

which will enable us to obtain the band structure in the radiative region only. 

If we try to plot the band structure by identifying the minima in the reflectivities 

obtained from the structure we find that the results obtained are not in fact correct. This 

is because the polarisation conversion does not necessarily occur at the exact frequency 

of the SCSPP excitation, and this can produce a reflectivity minimum in the polarisation 

conserved reflectivity at a slightly different frequency to the true SCSPP excitation 

frequency. However, by calculating the absorption due to the excitation of a SCSPP 

resonance with both TM and TE polarised incident radiation it is possible to trace the 

SCSPP band for all possible grating orientations within the light line. The absorption 

(due to Joule heating in the metal) was calculated as a function of frequency for varying 

kx and kz within the lightline. By finding the peaks in the absorption the frequency at 

which resonant excitation of the SCSPP occurs may be found, and by plotting these the 

dispersion of a SCSPP band for all orientations of the grating with respect to the 

incident radiation may be obtained.  

This has been performed for the second order SCSPP resonance on a 300nm 

deep, 40 nm wide Gaussian grooved grating, and the results are shown in figure 6.5.2. 

For the planes at kx = 0, and kz = 0, the curves have the forms described in the previous 

sections, and for values of kx and kz between these planes the band structure is seen to 

vary smoothly. In the ω-kx plane at kz = 0 this band can only be excited with TM 

polarised radiation, and in the ω-kz plane at kx = 0 only TE polarised radiation can 

excite it. For finite values of both kx and kz both polarisations can excite the mode, 

however the coupling strength will vary due to the magnitude of the E-field component 

perpendicular to the surface of the grating structure changing as the grating orientation 

with respect to the incident radiation is changed. Also, the intensity of the polarisation 

converted reflectivity will vary with azimuthal angle as described in chapter 2.  
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Figure 6.5.2 The frequency of maximum absorption due to the excitation of the second order SCSPP on a 

200nm pitch, 300nm deep, 50nm wide Gaussian-grooved grating for varying kx and kz. 

 

The fact that there is a relatively flat band producing absorption for all grating 

orientations could be useful for such application as selective absorbers. However, its use 

may be limited because the structure will only absorb particular polarisations at certain 
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produce a structure which will absorb the same frequencies of the incident light for all 

polarisations at all azimuthal angles, and for a wide range of polar angles. 
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familiar shallow grating SPP dispersion curve caused by the large depth of the structure. 
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bands with the lightline, and anti-crossing between SPP bands away from the Brillouin 

zone boundaries, these have been shown to produce the dispersion curves obtained from 

the modelling. Also, the equivalent modes in the ω-kz plane at kx = 0, which are 

excitable with TE polarised radiation, have been shown to exist and are a product of the 

interaction of two SPPs scattered from ±kg producing a SPP which is a standing wave in 

the x-direction (parallel to the grating vector) but which may propagate in the z-

direction (parallel to the grating grooves). Finally, the dispersion of a single band of 

these modes has been calculated for all possible orientations of the grating with respect 

to the incident radiation, showing that a relatively flat banded mode can be excited for 

all azimuthal angles. 

These flat bands may be of interest for use in selective absorbers or in resonant 

enhanced Raman scattering. They may also be of use for coupling radiation out of 

fluorescent species situated within the grating grooves. 
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Chapter 7 

 

Surface Plasmon Polaritons on Narrow-Peaked Short-Pitch 

Metal Gratings 

 

7.1 Introduction 

 

 In this chapter we shall extend our investigation into deep short-pitch gratings to 

consider structures consisting of a series of narrow Gaussian peaks. The band structures 

of the SPPs on these structures are found to be considerably different to those of the 

narrow Gaussian grooved structures considered in chapter 6. 

 In the first section we shall consider TM polarised light incident in the classical 

mount, where once again SPPs are found to be excited even in the zero-order region of 

the spectrum, and these may result in strong absorption of TM polarised radiation. For 

zero in-plane wavevector the SPP modes consist of a symmetric charge distribution on 

either side of the grating peaks, with a family of these modes existing corresponding to 

different numbers of field maxima per grating period. Because of the charge symmetry 

these modes may only be coupled to at polar angles away from normal incidence where 

strong resonant absorption may then occur. The dispersion of these SPP modes as a 

function of in-plane wavevector is found to be complex arising from the formation of 

very large band-gaps due to the harmonic content of the grating profile, the creation of 

pseudo high energy modes, and also through strong interactions between different SPP 

bands. 

 In the second section we will consider the case of light incident in the conical 

mount, and in particular when the azimuthal angle is 90° or 45°. When the azimuthal 

angle is 90° we find that the low energy bands produced by band gaps in the SPP 

dispersion curves may only be excited with TM polarised light, and describe how the 

coupling to the mode with this polarisation arises. Similarly the high energy bands may 

only be coupled to by TE polarised light. We also explain the dispersion of these modes 

in terms of anti-crossing between the SPP dispersion curves created by scattering from 
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the grating, and the SPP dispersion curve arising from the origin which is relatively 

unperturbed by the grating. 

 When the grating is oriented at a 45° azimuthal angle polarisation conversion 

can occur. In fact there is a mechanism which produces broad-band polarisation 

conversion on these structures (which is described in the third section of the chapter), 

and the consequence of exciting the SPPs is to either enhance or suppress the 

polarisation conversion depending upon whether the SPP occurs in a region of this 

broad-band polarisation conversion or not. This is described, as well as a brief 

description of the dispersion of the modes in this orientation. 

 For a review of previously published work on deep gratings see chapter 6, 

section 2. 

 

7.2 SPPs on Narrow-Peaked Short-Pitch Gratings in the Classical 

Mount 

 

 In this section we shall consider the case of TM polarised light incident in the 

classical mount upon a grating consisting of a series of narrow Gaussian peaks of the 

form shown in figure 7.2.1 

Figure 7.2.1  An example of the type of grating structure investigated. The profile is made up of a series 

of Gaussian peaks defined by the grating pitch, peak height, and peak width (FWHM). 
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 In previous chapters we stated that the sign of any 2kg component in the grating 

profile has no effect upon the band structure of the system, only upon the coupling 

strength to the modes. Therefore it would be expected that the band structure of 

Gaussian peaked gratings would be the same as those of the Gaussian grooved 

structures described in chapter 6. However, we also stated that this was only true for 

shallow gratings. In figure 7.2.2 we plot the TM reflectivity as a function of frequency 

and in-plane wavevector for a 200nm pitch grating consisting of a series of 400nm high, 

40nm wide, Gaussian peaks in the classical mount. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2.2 TM reflectivity as a function of frequency and in-plane wavevector for a 200nm pitch silver 

grating consisting of a series of 400nm high and 40nm wide (FWHM) Gaussian peaks with light incident 

at a 0° azimuthal angle. 
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gratings consisting of a series of Gaussian grooves in chapter 6, the band structure of the 

two systems are very different. Therefore we need to understand the way in which the 

band structures on the Gaussian peaked structures arise, and why this difference occurs. 

We shall also describe the nature of the SPPs on these structures by investigating the 

field profiles, an example of which is shown in figure 7.2.3. To our knowledge these 

resonances have not previously been observed or investigated. 
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Figure 7.2.3 Time averaged Hz component of the fields of the SPP mode excited on a 200nm pitch 

silver grating consisting of a series of 400nm high and 40nm wide (FWHM) Gaussian peaks, with 

radiation of f = 0.88x10
15 

Hz incident at a 0° azimuthal angle and at 2kx / kg = 0.1. 
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SPP, what is actually excited are two SPPs, propagating in the +x and –x directions 

respectively. These interact to produce a standing wave which may have two possible 

field configurations relative to the grating profile, one with H-field maxima and minima 

on the sides of the grating peaks, and one with H-field maxima and minima at the peaks 

and troughs of the grating profile (for the 1
st
 order SPP crossing point at normal 

incidence). Due to their different field distributions these two standing waves have 

different energies, and therefore a band gap is opened. The two solutions also 

correspond to symmetric and anti-symmetric charge distributions on either side of the 

grating peaks. At normal incidence it is impossible for incident radiation to couple to 

the symmetric charge distribution case since it would require the incident radiation E-

fields to point in opposite directions on either side of the grating groove at the same 

instant in time. This, of course, is not possible for a normally incident plane wave. 

However, if the radiation is incident at some polar angle θ then the mode may be 

excited. 

 When the grating profile is more complicated than a pure sinusoid it is the 

details of the grating shape which determines which of these solutions is the high energy 

and which is the low energy. If we consider the 1
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 order branch at normal incidence 
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then it is the 2kg component of the grating profile which determines the field 

distribution of the high and low energy branches on either side of the band gap. 

 If the phase between the kg and 2kg components is -90° the high energy branch 

consists of H-field maxima at the peaks and troughs of the grating since these are the 

positions at which the 2kg component has its troughs (which correspond to an anti-

symmetric charge distribution on either side of the grating grooves). This branch may 

then be coupled to at normal incidence, whereas the low energy branch may not since 

the H-field maxima of this mode occur at the shoulders of the grating grooves (which 

correspond to an anti-symmetric charge distribution). Therefore, the upper energy 

branch is coupled to at normal incidence, and not the lower energy branch. The 

Gaussian peaked profile investigated here is an example of this second case, although it 

also has higher harmonic components which will affect the higher order SPPs at normal 

incidence, and those at the Brillouin zone boundary produced by the periodicity of the 

grating. 

 For these other SPP branch crossing points, whether at the Brillouin zone 

boundary or at normal incidence, the formation of the band gaps is very similar. The 

component of the grating profile which couples together the two counter-propagating 

SPPs, and therefore the one that produces the band-gap, is always the sum of the two 

SPP scattering processes involved in creating the SPP at this point. For example, the 2
nd

 

order SPP branch crossing point at 2kx = kg arises through scattering from –kg and +2kg, 

and therefore it is the 3kg component of the grating profile which produces the band-

gap.  

Another point to note is that the number of field maxima (we shall consider the 

time averaged Hzcomponent of the fields so that both maxima and minima in the 

instantaneous fields appear as maxima) per grating period for the SPP is determined by 

the scattering processes involved. For the 1
st
 order SPP at the Brillouin zone boundary 

there is one field maximum per grating period. The 1
st
 order SPP at normal incidence 

has two field maxima, since it arises from scattering by ±kg, and the second order SPP at 

the Brillouin zone boundary has three maxima since it arises from scattering by –kg and 

+2kg and so on. Therefore, SPPs at the Brillouin zone boundary have charge 

distributions which are not the same for each grating period, but which are instead the 

same for alternate peaks / grooves due to the fact that they have an odd number of field 

maxima per grating period. 
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 For the narrow-peaked grating profiles investigated in this chapter the phases of 

the odd integer kg components of the grating profile are always 0°. Therefore, the low 

energy branches of band-gaps arising at the Brillouin zone boundary have H-field 

maxima on the grating peak sides, and also at the midpoint between grating peaks. 

 For relatively shallow gratings (d << λg) the formation of band-gaps is well 

understood. However, when the grating height is increased so that it is of the order of 

the grating pitch the situation becomes more complex. The mode frequency, for kx = 0, 

as a function of grating peak height for a 200nm pitch grating consisting of a series of 

40nm wide Gaussian peaks at a 0° azimuthal angle is shown for normal incidence and 

the 1
st
 Brillouin zone boundary in figure 7.2.4. 

 

 

 

 

 

 

 

 

 

 

Figure 7.2.4 Mode frequency as a function of grating peak height for a 200nm pitch grating consisting of 

40nm wide (FWHM) Gaussian peaks at a 0° azimuthal angle. a) 2kx / kg = 0, and b) 2kx / kg = 1.0. 

 

 In figure 7.2.4(a), for small peak heights, a band-gap corresponding to the first 

order SPP opens at f ≈ 1.14 x 10
15 

Hz. The low energy branch rapidly reduces in energy 

with increasing peak height, whereas the high energy branch is observed to increase in 

energy relatively little. The reason for this asymmetric splitting is that the high energy 

branch may only rise in energy to asymptotically approach its associated diffraction 

edge, whereas the low energy branch has no such constraint. 

 As the peak heights increase, low energy branches of higher order SPPs are 

observed to reduce in energy through the high energy branch of the 1
st
 order SPP. Also, 

the low energy branches appear to have a limit to the energy they may reduce to of f ≈ 

0.6 x 10
15 

Hz. However, this is not actually the case and this apparent limit arises at the 

frequency at which the lowest band is flat across the whole of the Brillouin zone. In 
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fact, this rapid reduction in the rate at which the low energy branches lower in 

frequency appears to occur at any point where a flat band has formed across the entire 

Brillouin zone. 

 This behaviour can best be observed in the plots of the mode frequency as a 

function of peak height at the BZ boundary (Figure 7.2.4(b)). In this plot there appears 

to be anti-crossing of two modes at a frequency of between 1.1 - 1.2 x 10
15 

Hz, although 

in fact there is no mode starting at f = 1.1 x 10
15 

Hz. However, this frequency is very 

close to that of the high energy mode at kx = 0. The change in energy of this apparent 

anti-crossing as a function of peak height clearly follows that of the high energy mode 

at kx = 0. This implies that when a low energy branch at either symmetry point occurs at 

the same frequency as a high energy branch at the other symmetry point (in other words, 

when the band is flat across the whole of the Brillouin zone) then the low energy branch 

follows the dispersion of the high energy mode as a function of peak height until the 

next higher-order low energy SPP branch anti-crosses with it. 

 Some understanding of this behaviour can be gained by investigating the field 

distributions for a high energy branch at kx = 0, and for the low energy SPP at 2kx = kg 

which occurs at close to the same frequency. For a grating pitch of 200nm the first 

grating peak height at which this occurs is at d = 50nm, and the time averaged Hz 

component of the fields for the mode at near-normal incidence, together with that at the 

Brillouin zone boundary, are shown in figure 7.2.5.  

 

 

 

 

 

 

 

 

 

Figure 7.2.5 Time averaged Hz component of the fields of SPP modes excited on a 200nm pitch silver 

grating consisting of a series of 50nm high and 40nm wide (FWHM) Gaussian peaks at a 0° azimuthal 

angle. a) f = 1.22x10
15 

Hz and 2kx / kg = 0, and b) f = 1.16x10
15 

Hz and 2kx / kg =1.0. 
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The obvious difference between these is that a maximum in the Hz distribution 

is evident on the grating peaks for the SPP at near-normal incidence, which is absent in 

the field distribution for the mode at the Brillouin zone boundary.  However, in both 

cases it is clear that the strongest fields are those which occur at the grating troughs. 

 Since the dispersion in frequency as a function of grating peak height at d ≈ 50 

nm is strongly affected by the 2
nd

 order low energy mode this is far clearer for larger 

grating peak heights where the anti-crossing at the Brillouin zone boundary between this 

pseudo high energy mode and the higher order low energy modes is less pronounced. 

 

 

 

 

 

 

 

 

 

Figure 7.2.6 Time averaged Hz component of the fields of the SPP mode excited on a 200nm pitch 

silver grating consisting of a series of 350nm high and 40nm wide (FWHM) Gaussian peaks, with 

radiation of f = 1.26x10
15 

Hz incident at a 0° azimuthal angle and at 2kx / kg= 1.0. 
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energy SPP branch at kx = 0 is almost flat with the 1
st
 order high energy branch at the 

Brillouin zone boundary, and at this point the fields of the two modes are similar in the 

same way as described above. The apparent anti-crossing is far less pronounced in this 

case since the low energy modes are reducing in energy relatively slowly as they reach 

the frequency at which the anti-crossing takes place. Therefore it is not particularly clear 

for the grating height range investigated here, which is limited by the convergence 

limits of the modelling code. However, we believe that for larger grating peak heights 

these modes could be excited at lower frequencies. 

 From figure 7.2.4 the dispersion of these modes at normal incidence and at 2kx / 

kg = 1 are well defined. However, these do not explain the complex dispersion 

behaviour shown in the reflectivity plot of figure 7.2.2. In order to gain some insight 

into how this complex dispersion with changing in-plane wavevector arises it is useful 

to investigate the TM reflectivities as a function of both frequency and in-plane 

wavevector for different heights of the grating peaks. These are shown in figure 7.2.7.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2.7 TM reflectivity as a function of frequency and in-plane wavevector for a 200nm pitch silver 

grating, consisting of a series of 40nm wide (FWHM) Gaussian peaks, and peak heights of a) 10nm, b) 

75nm, c) 150nm, and d) 250nm. 
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band gap at kx = 0 opened due to the large first harmonic component inherent in the 

Gaussian peaked profile. 

 In figure 7.2.7(b) the Gaussian peak heights have been increased to 75nm. The 

1
st
 order low energy branch at kx = 0 has lowered in frequency sufficiently to produce a 

relatively flat band with the 1
st
 order high energy branch at the Brillouin zone boundary. 

In addition, the 2
nd

 order low energy branch at normal incidence has anti-crossed with 

the 1
st
 order high energy branch and has produced a band at f ≈ 1.13 x 10

15 
Hz. 

It would be expected on such a grating that the 1
st
 order SPP mode at normal 

incidence would produce a very broad and shallow reflectivity minimum since the 

radiative damping of a mode is known to increase with increasing depth / height of a 

grating. However, because these modes have fields which extend further into the metal 

than is the case with gratings consisting of narrow grooves (where the charge 

distribution is anti-symmetric on either side of the grating grooves), the resistive 

damping is also high. Since the resonance shape depends upon the ratio of the resistive 

and radiative damping components, with a reflectivity of zero when the two components 

are equal, this increase in the resistive damping compensates for the increase in the 

radiative damping. Therefore a deep reflectivity minimum is observed even on a high 

aspect ratio grating. 

 When the height of the peaks is increased to 150nm (Figure 7.2.7(c)) significant 

changes to the mode dispersions have occurred. The 1
st
 order branch has lowered in 

energy very little since it is almost flat across the entire Brillouin zone. However, the 

end of the 2
nd

 order SPP branch at the Brillouin zone boundary now coincides with that 

of the 1
st
 order branch. Due to the fact that the modes may disperse in frequency as a 

function of grating height more rapidly at the Brillouin zone boundary than at normal 

incidence it is now closer in frequency to the 1
st
 order SPP at normal incidence. 

Therefore the 1
st
 order SPP has coupled more strongly to it leaving only weak coupling 

with the 2
nd

 order SPP at kx = 0. 

 In figure 7.2.7(d) the grating peak height has been increased to 250nm. The 

dispersion of the modes has developed from the 150nm case in that the lowest energy 

mode now weakly couples to a point on the lightline at f ≈ 0.52 x 10
15 

Hz, as well  as the 

1
st
 high energy mode at the Brillouin zone boundary. In figure 7.2.4(b) these non-

radiative modes are evident below the light line, which occurs at f = 0.75 x 10
15 

Hz. The 

second order of these modes occurs at f ≈ 0.5 x 10
15 

Hz and is an almost flat band across 
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to the lightline. This mode shows very weak coupling to radiation inside of the lightline 

since the branch of which it consisted before it become non-radiative remains coupled 

to the 1
st
 order high energy mode at the Brillouin zone boundary.  

 The remaining band structure within the Brillouin zone can best be understood 

by considering which of the bands at normal incidence couple to which at the Brillouin 

zone boundary. This is simply achieved by comparing figure 7.2.7(d) with those of 

figure 7.2.4. 

 In this we define LE and HE to refer to the low and high energy modes 

respectively, followed by an integer which defines the order of the mode. From figure 

7.2.4 and figure 7.2.7(d) it can be seen that LE1 at normal incidence links most strongly 

with HE1 at the Brillouin zone boundary, and LE2 links most strongly with LE3. Since 

LE4 at normal incidence is strongly coupled to LE4 at the Brillouin zone boundary after 

anti-crossing with the HE2 band, this leaves no branch at the Brillouin zone boundary 

for the LE3 branch at normal incidence to connect to. Therefore, it is observed to join 

only weakly with the LE3 band at the Brillouin zone boundary.  For higher grating peak 

heights the number of SPP branches at normal incidence which have only weak 

coupling to the branches at the Brillouin zone boundary is increased, as is evident in 

figure 7.2.2. This is because the dispersion in frequency of the SPP modes at the 

Brillouin zone boundary as a function of grating peak height is more rapid, and 

therefore a higher number of SPP modes at the Brillouin zone boundary are at a lower 

frequency than the 1
st
 order SPP at normal incidence. 

 

 (Note that, as the grating peak height is increased, one eventually reaches the 

point where the radius of curvature of the grating peaks is less than the electron mean 

free path or the skin depth, and therefore the use of a simple local dielectric function for 

the metal will become invalid. Therefore, the modelling for the gratings consisting of 

high peaks in this chapter may be flawed in these cases, however we believe that though 

this may alter the coupling to the modes it will not significantly change their 

dispersion). 

Having described the SPP modes on these structures in the classical mount, in the 

next section we shall consider the case when the azimuthal angle is non-zero (the 

conical mount). 
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7.3 SPPs on Narrow-Peaked Short-Pitch Gratings in the Conical 

Mount  

 

In the previous section we discussed the optical response of narrow-peaked 

short-pitch metal gratings in the classical mount. In this section we shall extend this to 

the case of non-zero azimuthal angles, and in particular where the azimuthal angle is 

either 90° or 45°. An SPP excited by TM polarised light on deep metal gratings oriented 

at a 90° azimuthal angle was first discovered by Watts, Preist and Sambles (1997), and 

this mode is evident in the results we shall present in this chapter. We shall discuss why 

this mode is excited on this structure and not on the Gaussian grooved structures 

discussed in chapter 6, and describe the dispersion of the mode with changing in-plane 

wavevector. We shall also discuss the effect of polarisation conversion on these 

structures when the azimuthal angle is 45°, although the case of polarisation conversion 

for normally incident light on these structures will be discussed in more detail in section 

7.4. 

The zeroth order reflectivity as a function of frequency and in-plane wavevector 

for a 200nm pitch silver grating consisting of 10nm deep and 40nm wide Gaussian 

peaks, and for an azimuthal angle of 90°, for both TM and TE polarised light is shown 

in figure 7.3.1. 

 

 

 

 

 

 

 

Figure 7.3.1 The zeroth order reflectivity from a 200nm pitch silver grating consisting of a series of 

10nm deep 40nm wide Gaussian peaks, oriented at a 90° azimuthal angle, as a function of frequency and 

in-plane wavevector. a) TM polarised radiation, and b) TE polarised radiation. 
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the same as those observed for that orientation. This is in fact the case, as will be shown 

later in the section. 

In the classical mount there was no coupling to the low energy modes for 

normally incident TM polarised light due to the symmetry of the surface charge 

densities of the SPPs on the grating peaks. Since the surface charges are distributed 

symmetrically on either side of a grating peak for these low energy branches of the band 

gaps, and the fields of the incident light are always pointing in the same direction, the 

light may not couple to the mode. If the azimuthal angle is 90° then the surface charge 

densities always have this orientation (since kx = 0), and for TE polarised light the fields 

will always point in the same direction. Therefore, these modes may not be coupled to 

for any polar angle of incidence. The high energy branches of the SPP band gaps have 

an anti-symmetric charge distribution on either side of a grating peak, and therefore 

these may be coupled to with TE polarised light. Since the high energy branch of the 

band gap disperses very little with increasing depth of the grating we will not discuss 

this mode any more in this chapter, except to mention that its dispersion with changing 

in-plane wavevector arises in the same way as that of the resonances observed on the 

narrow grooved structure at a 90° azimuthal angle described in chapter 6. 

For the narrow grooved structures described in chapter 6 it was not possible to 

couple to the low energy SPP modes with TM polarised light when the azimuthal angle 

was 90°. This was due to the fact that, even though TM polarised light has a non-zero 

component of its electric field normal to the surface in this orientation, the charge 

distribution of the low energy modes required the incident light to have an E-field 

pointing in the same direction on either side of a grating peak parallel to the grating 

vector in order for coupling to occur. This could only be satisfied by TE polarised light. 

Conversely, for a grating consisting of a series of Gaussian peaks the charge distribution 

of the low energy modes is symmetric on either side of a grating peak, and in this case 

only TM polarised light may excite the modes since its E-field (for non-normal polar 

angles) has a normal component to the surface and points in the same direction parallel 

to the grating grooves, enabling it to couple to the symmetric charge distribution. This 

implies that whether TE or TM polarised light may couple to SPP modes when the 

azimuthal angle is 90° is defined by the phase of the 2kg component of the grating 

profile with respect to the kg component, since it is this which defines whether the 

modes consist of symmetric or anti-symmetric charge distributions. 
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An additional requirement for the coupling of TM polarised light to these modes 

is that the fields of the incident light must point in opposite directions at different points 

on the surface in the y-direction (normal to the average plane of the surface). This is 

because the surface charge distribution changes sign in the y-direction, and this 

requirement suggests that maximum coupling to the mode will occur when the y-

component of the wavevector of the incident light is equal to the y-component of the 

SPP wavevector. Of course, this maximum coupling is likely to mean that the mode is 

over coupled and will not result in the lowest reflectivity minimum possible, but it is 

clear from this argument that the coupling to the mode will increase for higher values of 

kz, and be very weak for angles near normal incidence. This can clearly be seen from 

figure 7.3.1(a) where the coupling to the first order SPP increases as kz is increased. 

If the depth of the grating is increased then the y-component of the SPP 

wavevector also increases, and therefore for deeper gratings the coupling to the SPP will 

be stronger for lower values of kz. This is clearly seen if we calculate the same plots as 

in figure 7.3.1(a) but for increasing grating depths (figure 7.3.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3.2 The TM reflectivity from 200nm pitch silver gratings consisting of a series 40nm wide 

Gaussian peaks, oriented at a 90° azimuthal angle, as a function of frequency and in-plane wavevector. a) 

d = 50nm, b) d = 100nm, c) d = 200nm, and d) d = 300nm 
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From figure 7.3.2 it is evident that the coupling to the lowest energy mode 

becomes stronger close to the kz = 0 axis as the depth of the grating is increased. Also, 

the coupling to the higher order SPP modes (which have a larger y-component in their 

wavevector) couple less strongly close to the kz = 0 axis. This is as expected from the 

arguments presented above. 

If we investigate the field distributions of these modes we can show their nature. 

The zH  component of the fields (the component along the grooves) of the four lowest 

energy modes on the structure described for figure 7.3.2(c), and with kz = 0.4 are shown 

in figure 7.3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3.3 The zH  component of the fields (the component along the grooves) of the four lowest 

energy modes on the structure described for figure 7.3.2(c), and with kz = 0.4. a) f = 0.721 x 10
15

Hz, b) f 

= 0.833 x 10
15

 Hz, c) f = 1.008 x 10
15

Hz, and d) f = 1.148 x 10
15

Hz. 

 

When the field distributions of figure 7.3.3 are compared to that shown in figure 

7.2.3 for the SPP mode on a similar structure at an azimuthal angle of 0° it is clear that 

the modes are of the same origin. The main difference between the modes is that, even 
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though the SPPs at a 90° azimuthal angle are standing waves in the x-direction (similar 

to those at an azimuthal angle of 0°), they are also propagating in the z-direction (which 

the SPPs in the previous orientation are not). This can be shown by plotting the field 

distribution in the x-z plane through one of the SPP field maxima shown in figure 7.3.3. 

This has been performed for the SPP mode shown in figure 7.3.3(c) at y = 110nm 

(through the middle field maximum), and is shown in figure 7.3.4. 

 

 

 

 

 

 

 

 

 

Figure 7.3.4 The zH  component of the fields in the x-z plane through the middle field maximum 

shown in figure 7.3.3(c) (y = 110nm). 

 

It is clear, therefore, that the modes are produced by two SPPs propagating at 
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propagating in the –x and +z directions, so that the resulting mode is a standing wave in 

the x-direction, propagating in the z-direction. The periodicity of the fields in the z-

direction shown in figure 7.3.4 is determined by the propagation angle of the SPPs. 

The final features to note in the plots of figure 7.3.2 are the different dispersion 

with changing in-plane wavevector of the lowest energy SPP mode when compared to 

the higher order modes, and also the anti-crossing between this lowest energy SPP mode 

and the higher order SPP modes. The explanations for both of these are due to the same 

mechanism. 

The charge distributions of the low energy branches of the SPP dispersion 

curves for these Gaussian peaked gratings have symmetrical charge distributions on 

either side of the peaks, and therefore have their maximum charge densities at the peaks 
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these regions. Also the planar SPP dispersion curve (only slightly perturbed by the 

grating) which resides outside of the light line will have field maxima at these same 

regions. Therefore, anti-crossing may occur between the two bands, and this can be seen 

if, instead of plotting the reflectivities as we have so far in this chapter, we plot the band 

structure instead. We have done this for a 50nm deep grating, which resulted in the 

reflectivity plot of figure 7.3.2(a), and is shown in figure 7.3.5. 

 

 

 

 

 

 

 

 

 

 

Figure 7.3.5 The band structure for a 200nm pitch silver grating consisting of a series of 40nm wide 

50nm deep Gaussian peaks. The first and second order SPPs are shown as well as the light line and the 

SPP dispersion curve centred at the origin. 
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originate at f ≈ 0.85 x 10
15

Hz and f ≈ 1.28 x 10
15

Hz). The peculiarity of this plot is that 

the planar surface SPP should approach f ≈ 1.5 x 10
15

Hz (since this is the equivalent of 

ωsp in this plot), yet it is clearly approaching a limit at a lower frequency than this. What 

is in fact happening is that anti-crossing is occurring between the first order SPP and the 

planar SPP curve, so that the planar SPP curve at high values of kz is approaching the 

dispersion expected of the first order SPP, and the first order SPP is approaching that of 

the planar surface SPP. This is the cause of the increased gradient in the first order SPP 

when compared to the other SPP curves shown in figures 7.3.2(a) and (b). Similarly, 

when the higher order SPPs reduce in frequency such that they cross with the lowest 

frequency SPP anti-crossing may also take place, since all of these modes have strong 
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fields on the flat regions between the peaks. This is clearly seen in figures 7.3.2(c) and 

(d). 

 Having considered the dispersion and optical response of the Gaussian peaked 

gratings at a 90° azimuthal angle we shall now consider the case of the grating oriented 

at a 45° azimuthal angle. In this orientation polarisation conversion can occur, and we 

will primarily consider the effect of the SPPs on the polarisation conversion. Since we 

are considering the case of an azimuthal angle of 45° both TM and TE polarised light 

can couple to the SPP modes, and so the results of considering TM polarised incident 

light are much the same as considering that of TE polarised incident light. Therefore, it 

does not matter which we choose to investigate; we have chosen TM polarised light.  

 The polarisation conserved and converted TM reflectivities for 200nm pitch 

silver gratings consisting of a series of 40nm wide Gaussian grooves oriented at a 45° 

azimuthal angle as a function of frequency and in-plane wavevector for various depths 

are shown in figure 7.3.6. 
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Figure 7.3.6 Zeroth order TM reflectivities for 200nm pitch silver gratings consisting of a series of 40nm 

wide Gaussian grooves oriented at a 45° azimuthal angle as a function of frequency and in-plane 

wavevector. a) 10nm deep polarisation conserved, b) 10nm deep polarisation converted, c) 50nm deep 

polarisation conserved, d) 50nm deep polarisation converted, e) 100nm deep polarisation conserved, f) 

100nm deep polarisation converted, g) 200nm deep polarisation conserved, h) 200nm deep polarisation 

converted. 
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 The most obvious point to note in figure 7.3.6 is the broad band polarisation 

conversion which occurs when the depth is large. This phenomenon will be considered 

in section 7.4 for normal incidence, and therefore will not be discussed here. We will 

concentrate on the SPP bands which are evident as relatively sharp features for non-

normal angles of incidence. 

 The dispersion of the SPP bands in this orientation are a result of the evolution 

of the SPP dispersion curves for an azimuthal angle of 0° (described in section 7.2), to 

those of the SPP dispersion curves for an azimuthal angle of 90° (described earlier in 

this section). The bands exist for all possible grating orientations, and vary 

monotonically between these two limiting azimuthal angles, with the dispersion in the 

orientation considered here appearing slightly more like those of the dispersion when 

the azimuthal angle is 90°, rather than 0°. 

The more interesting feature is the effect of these SPPs on the polarisation 

conversion from the structure. For shallow gratings the polarisation conversion is 

enhanced by the SPP, whereas for deeper gratings it is suppressed. In fact the minima in 

the polarisation converted reflectivities appear when the SPPs arise in a region of broad 

band polarisation conversion. To understand this we need to consider in more detail the 

process by which polarisation conversion occurs. 

We have previously stated that polarisation conversion occurs due to the fact 

that both TM and TE polarised light can result from scattering of the SPP in to the 

specularly reflected order. Since, at a 45° azimuthal angle, the coupling into, and out of, 

the SPP mode is equal for both TM and TE polarised light it may be somewhat 

surprising that the polarisation converted reflectivity is often higher than 50%, and may 

in fact approach nearly 100%. 

In order to understand this we will begin by considering the case of light 

incident upon a shallow grating oriented at a 0° azimuthal angle. When a SPP is excited 

a reflectivity minimum is produced, but we must consider where this lost energy has 

been dissipated. The excited SPP scatters out of the grating and into the specularly 

reflected order, whereupon it interferes destructively with the light which has been 

directly reflected from the surface. This produces the reflectivity minimum, but the 

energy has to have been dissipated somewhere. The only other energy loss channel 

available (if the structure is non-diffractive) is the absorption in the metal, and in this 

situation this is where the energy has been lost. 
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In the case of polarisation conversion when the azimuthal angle is 45° both TM 

and TE polarised light has been scattered into the specularly reflected order from the 

SPP. If we are considering TM polarised incident light then the TM polarised light 

scattered out of the SPP will destructively interfere with the directly reflected light as 

before. In this situation, however, there is an extra energy loss channel of the 

polarisation converted scattered light. Whether this energy is lost into absorption or the 

polarisation converted order depends upon the probability of scattering of the SPP from 

the surface. This is increased for deeper gratings, meaning that the majority of the 

energy will be distributed into the polarisation converted order, and therefore the 

polarisation conversion from the structure can approach 100%. 

In order to explain the suppression of the polarisation conversion due to the SPP 

in the plots of figure 7.3.6 we must again consider the energy distributions between the 

orders. For a deep grating there is a broad band polarisation conversion region in which 

the SPPs are excited. If an SPP scatters into the specularly reflected order then 

destructive interference will occur in the polarisation converted order rather than the 

polarisation conserved order, due to the fact that the vast majority of the light in the 

specular reflected orders not due to the SPPs is already polarisation converted. The 

energy from the destructive interference has only two energy loss channels; absorption 

in the metal, and redistribution into the polarisation conserved order. The same 

arguments apply as before, meaning that maxima are observed in the polarisation 

conserved order which may approach 100%. 

 

7.4  Broad Band Polarisation Conversion from Gratings at Normal 

Incidence 

 

In Chapter 2 polarisation conversion from gratings at azimuthal angles which are 

not 0° or 90° was shown to originate via two different mechanisms (with a maximum in 

the conversion occurring at a 45° azimuthal angle in both cases). Firstly, it may be 

produced when a surface plasmon polariton (SPP) is excited, and secondly there is a 

dependence of the polarisation conversion on the depth of the grating caused by field 

loops being created within the grating grooves. The dispersion of the polarisation 

conversion produced via the excitation of SPPs follows that of the SPP dispersion 
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curves, with the frequency at which it occurs for normally incident light being 

predominantly determined by the grating pitch, and the dielectric function of the media. 

The dispersion of the polarisation conversion maximum which arises due to the creation 

of field loops as a function of the grating depth is given by, 

θcos4

)12(

d

nc
f

−
=  

where n is an integer corresponding to the number of field loops contained within the 

grating grooves, and θ is the polar angle of incidence. Since we are interested only in 

normal incidence here θ = 0, and f α 1/d. 

 These two mechanisms produce relatively narrow polarisation conversion bands, 

which have limited use for applications. In this section we explore a novel structure for 

extending the polarisation conversion band over a broader range, and in particular over 

the whole of the visible spectrum.  

 

The only SPP modes which will be excited in the orientation of interest are the 

high energy branches of the SPP dispersion curve, since coupling to the low energy 

branches is prohibited due to the phase of the 2kg component of the grating profile with 

respect to the kg component. Due to the opening of the band gap the excitation 

frequency of these modes as a function of depth shows an increase from its original 

frequency at small d (determined by the pitch of the grating and the permittivities of the 

metal) to asymptotically approach its associated diffraction edge as the size of the band 

gap increases. 

 As previously stated both the polarisation conversion due to the excitation of the 

SPP, and that due to the field loops, give relatively narrow polarisation conversion 

resonances as a function of frequency. However, these two modes are able to interact 

since the overlap integral of their fields is non zero. It is this interaction, which produces 

anti-crossing and a resultant mode of mixed character, which enables the width of the 

polarisation conversion resonance as a function of frequency to be increased, producing 

a broad polarisation conversion band.  

Figure 7.4.1 shows the polarisation conserved (a) and converted (b) reflectivities 

as a function of the frequency of the incident light and the height of the peaks for a 

200nm pitch grating consisting of a series of 60nm wide Gaussian peaks (at full width 

half maximum), and oriented at an azimuthal angle of 45° for normally incident TM 
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radiation. The metal grating is modelled as silver using a Drude model with ωp = 1.32 x 

10
16

s
-1

 and τ = 1.4x10
-14

s. The very short pitch of the grating is used here to clearly 

demonstrate the origin of the broad polarisation conversion bands as there are fewer 

SPP bands and diffraction edges in the region of interest. Also, it is important that the 

grating be non-diffractive in the optical region of the spectrum at normal incidence 

requiring that the pitch be less than 400nm. 

 

 

 

 

 

 

 

 

 

Figure 7.4.1 Reflectivity from a 200nm pitch silver grating consisting of a series of 60nm wide Gaussian 

peaks at a 45° azimuthal angle as a function of frequency and peak height. a) Polarisation conserved, and 

b) polarisation converted. 

 

 At small d a band originating at f = 1.18 x 10
15

Hz is observed. This is the high 

energy branch of the first order SPP which, with increasing depth of the grating, would 

be expected to increase in frequency to asymptotically approach its corresponding 

diffraction edge at f = 1.5 x 10
15

Hz. However, there is clear anti-crossing occurring with 

the mode dispersing with frequency as 1/d at a depth of 50-100nm.  

If the width of the Gaussian peaks is narrowed to 40nm (figure 7.4.2) the 

interaction strength between the modes has altered, reducing the width of the gap 

produced by the anti-crossing. This change in the interaction strength has also produced 

back bending of the mixed character mode, and the polarisation conversion as a function 

of frequency for a depth of 180nm shows strong polarisation conversion over a broad 

frequency band from approximately 0.5 x 10
15

Hz to 1.2 x 10
15

Hz (a wavelength range 

of ~350nm).  
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Figure 7.4.2  Reflectivity from a 200nm pitch silver grating consisting of a series of 40nm wide Gaussian 

peaks at a 45° azimuthal angle as a function of frequency and peak height. a) Polarisation conserved, and 

b) polarisation converted. 

 

It is instructive at this point to investigate the fields of this mixed mode. Figure 

7.4.3 shows the x and z components of the electric field for 3 different points on figure 

7.4.2(a). Figure 7.4.3(a) shows the fields for a 100nm deep grating at a frequency of 

1.37 x 10
15

Hz. The x component shows strong SPP character in the enhanced fields 

localised at the interface, there is also a localised ‘loop’ of field in the z-component 

which is also due to the excitation of the SPP. It is noticeable that above the grating 

surface the two components are 180° out of phase with each other and it is this phase 

difference which is the origin of the polarisation conversion. 
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Figure 7.4.3 x and z components of the E fields at three points on the plot in figure 7.4.2(a). a) d = 

100nm, f = 1.37 x 10
15

Hz, b) d = 250nm, f = 0.97 x 10
15

Hz, and c) d = 250nm, f = 0.41 x 10
15

Hz. 
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from the bottom of the grove. However, there is still a 180° phase difference between 

the two components producing the polarisation conversion. 

 The broad polarisation conversion band for this grating at 180nm deep only 

extends down to a frequency of 0.5 x 10
15

Hz (600nm wavelength) which is still well 

into the visible region of the spectrum. Unfortunately, there is a limit to the low 

frequency extent of this band for a given depth given by the 1/d relation. However, by 

changing the pitch of the grating the frequency origin of the SPP mode is reduced and 

therefore the broad-band reduces in energy. Also, the interaction strength between the 

two modes is such that the broad-band is shifted to a higher depth where the 1/d relation 

means that the lower limit for the polarisation conversion band is lowered. For a 300nm 

pitch grating with 60nm wide Gaussian peaks the back bending of the resultant mixed 

mode is more pronounced than in the 200nm pitch case (Figure 7.4.4), but at a depth of 

265nm the polarisation conversion is still >90% across a broad frequency band. This is 

shown in figure 7.4.4(c), which demonstrates the broad band extending across the whole 

of the visible region of the spectrum (from 400nm to 800nm wavelength). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4.4 Reflectivity from a 300nm pitch silver grating consisting of a series of 60nm wide Gaussian 

peaks at a 45° azimuthal angle. a) Polarisation conserved reflectivity as a function of frequency and peak 

height, b) polarisation converted reflectivity as a function of frequency and peak height, and c) reflectivity 

as a function of wavelength for d=265nm. 
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 In reality, the Drude model does not describe the permittivity of a metal 

particularly well, especially in regions of absorption. Therefore we have also modelled 

the polarisation conserved and converted reflectivities from similar structures to those 

described above, but with the permittivity of the silver described using a polynomial, 

which was fitted to experimentally derived figures. The results of these calculations are 

shown in Figure 7.4.5 for a 250nm pitch grating with 50nm wide Gaussian peaks, which 

were determined to be the optimum grating parameters in this case. The same 

broadband polarisation conversion is clearly visible, however less of the incident light is 

converted when compared to the grating described by the Drude model, especially at the 

high frequency region of the spectrum where there is increased absorption. This is 

clearly due to the more realistic values of the permittivity. However, the polarisation 

conversion from the grating remains >70% over the whole of the visible region of the 

spectrum. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4.5  Reflectivity from a 250nm pitch silver grating consisting of a series of 50nm wide Gaussian 

peaks at a 45° azimuthal angle. Silver permittivity described by a polynomial fitted to experimentally 

determined values. a) Polarisation conserved reflectivity as a function of frequency and peak height, b) 

polarisation converted reflectivity as a function of frequency and peak height, and c) reflectivity as a 

function of wavelength for d=240nm. 
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where the absorption at these wavelengths is less. The permittivity of the aluminium 

was described by a polynomial function fitted to experimentally derived values as in the 

silver case. The structure we obtained which produces the maximum polarisation 

conversion over a large wavelength range consists of a series of 232.5nm high, 60nm 

wide Gaussian grooves, with a grating pitch of 300nm. This is shown in Figure 7.4.6. 

For this structure there is a greater efficiency of polarisation conversion for lower 

wavelengths than in the silver case, however this increase in efficiency at the blue end 

of the spectrum is at the cost of a lowering of efficiency at the extreme red end of the 

spectrum.  

Figure 7.4.6  Reflectivity from a 300nm pitch aluminium grating consisting of a series of 232.5nm high, 

60nm wide Gaussian peaks at a 45 degree azimuthal angle of 45°. 
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7.5 Summary 

 

In this chapter we have extended our investigation into deep short-pitch gratings 

to consider structures consisting of a series of narrow Gaussian peaks. In the first 

section we considered TM polarised light incident in the classical mount, where SPPs 

were found to be excited even in the zero-order region of the spectrum. For zero in-

plane wavevector these SPP modes consisted of a symmetric charge distribution on 

either side of the grating peaks, with a family of these modes existing corresponding to 

different numbers of field maxima per grating period. The dispersion of these SPP 

modes as a function of in-plane wavevector was found to be relatively complex arising 

from the formation of very large band-gaps, and also through strong interactions 

between different SPP bands. 

 In the second section we considered the case of light incident in the conical 

mount, and in particular when the azimuthal angle was 90° or 45°. When the azimuthal 

angle was 90° we found that the low energy bands produced by band gaps in the SPP 

dispersion curves could only be excited with TM polarised light. Similarly the high 

energy bands could only be coupled to by TE polarised light. We also explained the 

dispersion of these modes in terms of anti-crossing between the SPP dispersion curves 

created by scattering from the grating, and the SPP dispersion curve arising from the 

origin which is relatively unperturbed by the grating. 

 When the grating was oriented at a 45° azimuthal angle polarisation conversion 

was shown to occur. We have shown (in the third section of this chapter) that there is a 

mechanism which produces broad band polarisation conversion on these structures, and 

the result of the SPPs is to either enhance or suppress the polarisation conversion 

depending upon whether the SPP occurs in a region of this broad band polarisation 

conversion or not.  
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Chapter 8 

 

Experimental Observation of SPPs on Deep Zero-Order 

Silver Gratings for the Visible Region of the Spectrum 

 

8.1 Introduction 

 

 In the previous two chapters the SPP modes which may be excited on deep zero-

order metal gratings have been described. In this chapter a method for manufacturing 

such gratings is presented, and it is shown that resonant absorption of light may occur, 

which is believed to be due to the excitation of self-coupled SPPs. To our knowledge 

SPPs have never before been observed in the zero-order region of a grating. 

 Due to problems with the manufacturing process, which are inherent to the 

method, the surface of the grating structure is relatively rough, which causes diffuse 

scatter, and therefore a reduced specularly reflected order intensity. For this reason it 

has not been possible to fit the data obtained to theory, and therefore it is not possible to 

categorically attribute these reflectivity minima to the excitation of SPPs. However, the 

dispersion of these modes with changing in-plane wavevector is found to be very 

similar to those obtained for the SCSPPs in chapter 6, and therefore we believe that it is 

these modes which are being excited. The main difference in the optical response 

obtained from the gratings studied when compared to those investigated in chapter 6 is 

that broad band polarisation conversion occurs when the grating is oriented at a 45° 

azimuthal angle. This is more reminiscent of the structures investigated in chapter 7, 

and the reason that broad-band polarisation conversion occurs on these structures, even 

though it is the SCSPPs which appear to be excited, is explained. 

 

8.2 Methodology 

  

In chapters 6 and 7 the optical response of deep zero-order (for the visible region 

of the spectrum) grating structures has been described. In this section the method by 

which such gratings have been manufactured is described, and also the way in which the 
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optical response of these structures have been measured. There are three main stages in 

the fabrication process; grating fabrication in a photoresist layer, transfer of the grating 

into a SiO2 substrate by reactive ion etching, and vacuum deposition of silver onto the 

SiO2 grating. Each of these will be described in some detail, with the method used to  

obtain the optical response also described. 

 

8.2.1 Sample Fabrication 

 

The substrates on which the structures were manufactured were made of SiO2, 

with the surface on which the structure was to be fabricated polished to λ / 10, and the 

reverse surface inspection-polished (meaning that there are no gross defects). The 

substrates were 6mm thick and 25mm square. They were cleaned thoroughly by 

immersing them in concentrated nitric acid for 1hr, before being cleaned with acetone 

and isopropanol using cotton buds. At this stage the inspection-polished side of the 

substrate was painted black, for reasons which will be explained later in this section. As 

a final cleaning stage the SiO2 surface was ‘drag cleaned’ using lens tissue soaked in 

acetone in order to remove any final steaks or dust on the surface. 

Immediately following this cleaning procedure the substrate was taken into a 

clean room for spin coating with photoresist. The photoresist used was Shipley SPR700, 

which is a broad-band photoresist sensitive to light of wavelengths between 

approximately 300 – 450nm. After exposure the photoresist becomes soluble in alkali 

solution, so that if it is exposed with a periodic intensity of light a grating structure may 

be produced. The method by which this is achieved will be described later in this 

section. 

If the substrate is spin-coated at 4000rpm with non-diluted photoresist a film 

thickness of approximately 1.2µm is produced. For our purposes it was desirable to 

have a photoresist film thickness of approximately 300-400nm, since this was the limit 

of grating depth we could achieve, and by diluting the photoresist with a suitable 

solvent (obtained from Shipley), and by varying the spin speed, the thickness of the 

photoresist could be reduced to produce the thinner films required. Since any dust or 

imperfections on the SiO2 surface will produce gross imperfections in the quality of the 

film the dust free environment of the clean room was necessary, and additional 
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precautions against dust were made by the use of an inert gas jet which was used on the 

surface immediately prior to the spin coating. 

 After the photoresist had been deposited the samples were placed in a light-proof 

box to avoid accidental exposure to light. For shallow gratings, and in its use in the 

electronics industry, the photoresist layer is typically ‘soft-baked’ for 1min. on a 

hotplate prior to exposure in order to remove any residual solvent, and to reduce its 

sensitivity to light. For the deep gratings we required we needed the photoresist to be as 

sensitive to light as possible, and therefore this soft-bake procedure was not used, but 

rather the samples were left overnight in order to ensure that the photoresist layer was 

solvent free. 

 The next step in the fabrication process was to produce the grating structure in 

the photoresist layer. In order to do this the photoresist layer was exposed to an 

interference pattern generated by a two-beam interferometer (Hutley [1982]). A 

schematic of the interferometer system used is shown in figure 8.2.1.1. 

 

Figure 8.2.1.1 A schematic of the interferometer system used to manufacture the surface relief gratings. 

 

The 325nm wavelength line of a HeCd laser was focused using a short focal 

length lens before being re-collimated using a longer focal length lens in such a way 

that the beam was expanded to a diameter of approximately 1cm
2
. This expanded beam 

passed through a 50:50 beam-splitter arrangement, manufactured by evaporating a thin 

layer of aluminium on the hypotenuse face of a 45° prism, which was then index 

matched to another 45° prism so that a cube was formed. 
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 The two beams were reflected by a mirror arrangement shown in figure 8.2.1 so 

that they were incident upon a mirror which was placed in the position the sample 

would be for the exposure, such that the angle of incidence of the two beams (θ) on the 

sample were the same. The offset in position of the two mirrors is due to the need to 

have the path length of the two beams as similar as possible because of the limited 

coherence length of the HeCd laser. The incident angle θ defines the pitch of the grating 

to be produced, which is given by, 

0sin2 λθλ =g  8.2.1 

where gλ is the desired grating pitch, and 0λ  is the wavelength of light used (in this case 

325nm). The minimum pitch obtainable is, therefore, half of the wavelength of the light 

used, which in this case is 162.5nm, although due to practical limitations grating pitches 

of approximately 170nm were achieved. Great care is used in aligning the system so 

that the two beams overlay each other as precisely as possible. 

 Interferometer systems for creating diffraction gratings are typically used in 

clean rooms due to the fact that the diffraction rings created by dust particles can cause 

severe non-uniformity in the resultant grating. To overcome this problem, and enable 

the interferometer to be used in a standard laboratory, a two diffuser system was placed 

into the path of the laser beam between the two lenses, which also created a more 

uniform distribution of light over a larger area. This enabled the size of the grating area 

to be increased up to approximately 2cm
2
. The way in which the diffusers prevent the 

problems with dust in the environment of the system is as follows.  

 The first diffuser (D1) is stationary and is placed slightly before the focal point 

of the first lens (L1). This diffuser destroys the spatial coherence of the beam across its 

diameter, and gives a more uniform distribution of light which is essential if the grating 

is to be uniform over a large area (though with a stationary speckle pattern). The small 

speckles created by this diffuser prevent a constant interference pattern from being 

generated by dust particles moving through either of the two beams produced by the 

beam splitter. The second diffuser (D2) is then placed at the focal length of L1 and 

rotated. This rotation produces a time variation in the intensity of the speckle. This 

means that the speckle in the beam is averaged out throughout the time of exposure, 

giving a uniform distribution of light, and a uniform grating. Due to the fact that the 

speckles in the two beams need to overlap at the surface of the sample, and that the 
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speckle is very small, the alignment of the two beams needs to be very accurate. The 

two diffusers were made by lightly sand blasting silica plates and then etching in 

hydrofluoric acid for a couple of minutes. This creates a random pattern of 

‘microlenses’ which are ideal for this application. 

 Once the interferometer was aligned the photoresist coated SiO2 substrate was 

placed in position and exposed for the desired length of time. The black painted rear of 

the structure prevents any reflection from the rear of the substrate, which can cause 

standing waves normal to the surface that prevent the formation of the desired grating 

profile. The exposure time needed depends upon the source intensity and a couple of 

parameters; the grating pitch required, and the depth of grating to be fabricated. The 

dependence upon the grating pitch arises due to the reflection coefficient off the top 

surface of the photoresist altering with changing incident angle. This causes the 

exposure energy per unit time within the photoresist layer to be reduced for smaller 

grating pitches, and therefore shorter pitch gratings require longer exposure times. The 

depth dependence arises because the rate at which the photoresist dissolves in an alkali 

developer solution depends strongly upon the energy of exposure the photoresist has 

undergone. In fact, both the exposure and development processes are non-linear, and to 

create very deep gratings it is necessary to use higher exposure energies (longer 

exposure times) with short development times. These parameters were determined 

iteratively, with typical exposure times for deep short pitch gratings being of the order 

of 1hr. 

 After exposure the sample was immersed in Shipley Microposit 303 developer 

solution diluted to a concentration of 0.25M for approximately 2 seconds, before being 

immediately immersed in de-ionised water to wash off the developer solution. The 

water was then removed by an inert gas jet. Typical depths for a 170nm pitch grating 

which could be achieved by this process were of the order of 150 – 200nm, although 

due to the non-linear exposure and development processes the resulting profile is far 

from sinusoidal. The macroscopic uniformity of the gratings was poor due to the rapid 

development process, however they were uniform over the area of the beam spot used in 

the experimental determination of the sample's optical response, and were therefore 

deemed sufficient. An example of the grating profile obtained by taking a cross-section 

of one of these grating using a scanning electron microscope is shown in figure 8.2.1.2. 
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Figure 8.2.1.2 SEM image of a typical photoresist grating produced by the method described in this 

section. 

 

 This profile is very much like those investigated in chapter 7. Unfortunately, it is 

not possible to coat these gratings in metal by vacuum evaporation (to be described later 

in this section) since the nucleation kinetics are such that the metal preferentially 

deposits in the grating grooves, creating an array of metallic wires. If enough metal is 

evaporated so that the whole structure is immersed in metal, the top surface no longer 

resembles that of the photoresist grating, and no resonant features were evident in the 

reflectivity when they were investigated. Therefore, we decided to investigate the 

structure from the SiO2 side since the evaporated metal film follows the bottom surface 

of the grating. This then enables gratings with a similar profile to those investigated in 

chapter 6 to be manufactured. However, the photoresist layer is then an extra optical 

layer in the equation. In order to overcome this the photoresist grating was etched so 

that the shape was transferred into the SiO2 substrate using a Reactive Ion Etcher (RIE), 

before the metal deposition stage. 

 Reactive ion etching involves the use of a process gas which reacts with the 

substrate material and not the mask (in this case the photoresist grating) in order to 

transfer the grating into the substrate. A schematic of the system is shown in figure 

8.2.1.3. 
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Figure 8.2.1.3 A schematic of the Reactive Ion Etcher (RIE) system. 

 

 The sample is placed in a vacuum chamber on top of one of the electrodes of an 

RF system. The RF creates ions in the process gas, and also causes these ions to 

bombard the sample so that a chemical reaction with the substrate material may occur. 

In order to etch the SiO2 the process gas used is CHF3 with the reaction mechanism 

being: 

COOHSiFSiOCHF 42334 2423 ++→+  

All of the products of this reaction are gaseous at the system pressure used, and are 

removed by the vacuum system. 

There are two main problems with this method. Firstly, the mask used is not 

binary, with a finite layer of photoresist above the SiO2 substrate even at the troughs of 

the grating profile. And secondly, the CHF3 ions are a precursor to a polymer which 

may be formed on the surface of the grating. This polymer is non-continuous and may 

act as many small ‘micromasks’, which can cause severe roughness in the resultant 

etched profile. In order to overcome these problems a small amount of O2 was added to 

the process gas, which etches the photoresist slowly, and also reacts with the carbon in 

the system reducing the formation of the polymer. If the O2 proportion is such that the 
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photoresist is etched by the O2 at the same rate as the SiO2 is etched by the CHF3, then 

the resultant etched profile would be expected to be similar to that of the photoresist 

grating. 

The parameters used in the etching process were: a pressure of 50mT, RF power 

of 180W, DC bias on the RF of –500V, gas flow rates of 20 standard cubic centimetres 

per minute for the CHF3, and 4 standard cubic centimetres per minute for the O2, and an 

etch time of approximately 15mins. With these parameters the photoresist grating was 

etched into the SiO2 with an approximately 1:1 ratio, however, the resultant profile was 

found to be somewhat different to the initial photoresist grating profile (figure 8.2.1.4) 

 

Figure 8.2.1.4 SEM image of the etched grating produced by reactive ion etching of a photoresist grating 

into the SiO2 substrate. 

 

 This difference in the grating profiles is caused by polymer forming on the sides 

of the grating grooves. Reactive ion etching is typically performed using binary etch 

masks, and in order to achieve more anisotropic etching (in other words, the sidewalls 

of the grating are not etched whereas the bottoms of the grooves are) the fact that 

polymer may form on the sidewalls of the grating, but not on the tops and bottoms of 

the grooves, is utilised. The polymer then forms an etch resistant barrier on the 

sidewalls, so that only the bottoms of the grooves are etched. The reason that the 

polymer may form on the grating sidewalls is that there is no reactive gas incident upon 

them since the bombarding of the surface is in the vertical direction only. 

 For non-binary gratings there are no vertical sidewalls, although from the profile 

shown in figure 8.2.1.2 the gradient of the sides of the grating are very steep. Therefore, 
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it is likely that more polymer will form on the sides of the gratings than on the tops and 

bottoms of the grooves and peaks. This causes a flattening of the top of the grating 

which is evident in the etched profile shown in figure 8.2.1.4. Another consequence of 

the increased polymer formation on the sides of the grating is an increase in the surface 

roughness of the etched profile and, as will be seen later in this chapter, this is a 

considerable problem in producing good quality samples. 

 After the grating was etched in to the SiO2 the sample was coated in silver by 

vacuum evaporation. A schematic of the system used to do this is shown in figure 

8.2.1.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2.1.5 A schematic of the vacuum deposition equipment used to coat the grating in silver. 

 

 The sample is placed in a vacuum chamber with the face of the structure to be 

coated facing a molybdenum boat in which 99.999% pure silver is contained. The 

vacuum chamber is pumped down to a pressure of 1 x 10
-6

mT by use of both a rotary 

pump (down to 1x10
-2

mT) and a diffusion pump. When the base pressure has been 

obtained a current is passed through the molybdenum boat so that it heats sufficiently 
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for the silver to evaporate, with the silver vapour then condensing on to the structure. 

The rate at which the silver evaporates is controlled by the current being passed through 

the molybdenum boat, and is measured using a quartz crystal thickness monitor. 

 As described previously the metal preferentially deposits in the grating grooves, 

and therefore a film of sufficient thickness was needed to completely submerge the 

structure with optically thick silver. In order to do this a film thickness of approximately 

500nm was evaporated onto the sample. After cooling the sample was removed from the 

chamber and the optical response measured. 

 

8.2.2 Measurement of the Optical Response of the Structures 

 

 In order to measure the optical response of these structures a typical 

monochromator / rotating table system is used. A white light source enters a 

monochromator which outputs a beam of almost monochromatic light (the spectral 

width is approximately 0.25nm), with a wavelength range of 350nm to 850nm. Due to a 

low signal level blow 400nm only 400nm to 850nm is used in the experiment. The light 

is passed through an aperture to spatially filter the light, removing any scatter, before 

being passed through an optical chopper operating at approximately 1.3kHz. This 

allows the resultant modulated signal to be recovered from the two detectors using a 

pair of phase sensitive detectors. After the chopper the light passes through a polariser 

so that the optical response with either TM or TE polarised incident light can be 

investigated. A second aperture is then placed in the beam, before a beam splitter is 

used to remove a small percentage of the light, which then enters a reference detector. 

The sample is placed accurately at the centre of rotation of the rotating table at some 

polar angle θ to the incident beam, so that as θ is varied the area of sample being 

investigated always remains the same. The specularly reflected light then enters a 

second detector enabling the optical response of the structure to be determined. The 

detectors used are highly-sensitive photomultiplier tubes needed because of the low 

intensity signal obtained from the monomchromator source. A schematic of the system 

is shown in figure 8.2.2.1. 
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Figure 8.2.2.1 A schematic of the system used to measure the wavelength dependent reflectivities of the 

samples. 

 

The samples were set-up in the system in two different ways. The aim was to 

record the wavelength dependent reflectivity of the sample for various values of sinθ in 

order to map out the dispersion of the modes, and compare them to the results shown in 

chapters 6 and 7. Due to the fact that the SiO2 substrate was relatively thick there was an 

upper limit to the angle range we could investigate, with a maximum value of sinθ = 
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0.8. Since the light was incident through the SiO2 substrate there was also a problem 

with the very low transmitted intensity through the sample for high incident angles due 

to the high specular reflection at the air / SiO2 interface. Therefore, for higher values of 

sinθ (greater than 0.4), a 45° prism was index-matched to the sample so that high 

incident angles on the SiO2 / silver interface could be achieved without the high incident 

angles on the air / SiO2 interface. 

Data were recorded as wavelength dependent reflectivity from the sample. By 

using the signal obtained from the reference detector, any fluctuations in intensity from 

the monochromator source could be averaged out since they would occur in both the 

reference and reflectivity signals. The signal was also normalised by dividing the results 

by a ‘straight through run’ in which the wavelength dependent signal with no sample in 

the system was measured. This enabled the absolute reflectivity to be determined. 

By setting up the monochromator so that the maximum possible intensity output 

could be achieved, and by careful alignment of the system, a relatively high signal was 

obtained. Therefore, the signal to noise ratio was large, producing good quality data. 

 

8.3 Results and Discussion 

 

 The wavelength dependent reflectivity for values of sinθ between 0.1 and 0.8 in 

steps of 0.1 were obtained for TM and TE polarised incident light over a wavelength 

range of 400-850nm, and for azimuthal angles of 0°, 45°, and 90°. The data sets which 

showed reflectivity features were those for TM polarised light at an azimuthal angle of 

0°, TE polarised light at an azimuthal angle of 90°, and both polarisation for an 

azimuthal angle of 45°. The results for an azimuthal angle of 45° were very similar for 

both TM and TE polarised light, and therefore only the TM results will be shown. 

 

8.3.1 TM polarised light incident at a 0°°°° azimuthal angle 

 

 The wavelength dependent reflectivity of a 150nm deep 170nm pitch silver 

grating oriented at a 0° azimuthal angle for TM polarised incident light, and for various 

polar angles of incidence are shown in figure 8.3.1.1 (without prism – see section 8.2.2), 

and figure 8.3.1.2 (with prism). 
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Figure 8.3.1.1 The wavelength dependent reflectivity for various angles of incidence of a 150nm deep, 

170nm pitch, silver grating oriented at an azimuthal angle of 0° with TM polarised incident light. The 

light is incident through the SiO2 substrate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3.1.2 The wavelength dependent reflectivity for various angles of incidence of a 150nm deep, 

170nm pitch, silver grating oriented at an azimuthal angle of 0° with TM polarised incident light. The 

light is incident through a 45° SiO2 prism which is index matched to the  SiO2 substrate of the sample. 

 

 The first point to note in these plots are the reflectivity values. In order to 

separate the various lines there is an offset of 0.1 on the reflectivity scale between the 

different data sets in both figure 8.3.1.1 and figure 8.3.1.2. Therefore, the reflectivity 

plotted is the absolute reflectivity for only the lowest line in each plot. The other point 

to note regarding the level of reflectivity is that it is very low when compared to a 

planar silver surface, and when compared to the reflectivities off resonance on the 

structures studied in chapters 6 and 7. This large reduction in the reflectivity is due to 
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the roughness caused by the reactive ion etching process which causes scatter of the 

incident light, and thereby a loss of energy in the specularly reflected order. 

 It is clear in the plots for low values of sinθ that there are two reflectivity 

minima at approximately 440 and 760nm wavelength. For higher values of sinθ an extra 

feature occurs at the low wavelength end of the spectrum which corresponds to the 

diffracted order pseudo critical edge. Even though the grating is 170nm in pitch it is 

only truly zero-order for wavelengths above approximately 500nm due to the refractive 

index of the SiO2 substrate through which the reflectivity is measured. 

 If the positions in wavelength of the reflectivity minima are measured and 

converted to ω then they can be plotted in the same way as the dispersion curves shown 

in chapter 6. This has been performed and the results are shown in figure 8.3.1.3. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.3.1.3 The dispersion of the reflectivity minima obtained from figure 8.3.1.1 and 8.3.1.2. The 

light line and diffracted order light line are also shown. 

 

 If figure 8.3.1.3 is compared with the dispersion curves of the self-coupled SPPs 

shown in figure 6.3.4(a) then it is noticeable that the dispersion of the two modes are 

very similar. The lower frequency band is very flat, changing little in frequency with 

increasing in-plane wavevector, with the higher frequency mode decreasing in 

frequency to approach the conjunction of the light line and diffracted order light line. 

This strongly suggests that the reflectivity minima are due to the excitation of self-

coupled SPPs. Unfortunately, due to the increased scatter from the surface (and, 

therefore, lowering in the intensity of the specularly reflected order) it is not possible to 
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fit the wavelength dependent reflectivity data to theory, and therefore we cannot 

categorically attribute the reflectivity minima to these SPP resonances. Other problems 

in comparing this data to theory arise due to the large width of the modes, which is 

presumably due to broadening caused by a non-constant width and depth of the grating 

grooves. If an approximate comparison is attempted using the grating depth measured 

from the SEM of the cross section of the grating profile, it is found that the two modes 

occur at different frequencies than predicted, and are closer in frequency than would be 

expected if they were the first two SCSPP bands, but further apart than expected if they 

were the second and third SCSPP bands. This is possibly due to the fact that a single 

value for ε(ω) for the metal structure is not valid due to the surface roughness, although 

use of an intermediate cer-met layer to describe the rough surface is not able to correct 

for this. Therefore, it is not possible to say which order SCSPP bands have been excited. 

 

8.3.2 TE polarised light incident at a 90°°°° azimuthal angle 

 

The wavelength dependent reflectivity of a 150nm deep, 170nm pitch, silver 

grating oriented at a 90° azimuthal angle for TE polarised incident light and for various 

polar angles of incidence are shown in figure 8.3.2.1 (without prism), and figure 8.3.2.2 

(with prism). 

Figure 8.3.2.1 The wavelength dependent reflectivity for various angles of incidence of a 150nm deep, 

170nm pitch, silver grating oriented at an azimuthal angle of 90° with TE polarised incident light. The 

light is incident through the SiO2 substrate. 
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Figure 8.3.2.2 The wavelength dependent reflectivity for various angles of incidence of a 150nm deep, 

170nm pitch, silver grating oriented at an azimuthal angle of 90° with TE polarised incident light. The 

light is incident through a 45° SiO2 prism which is index matched to the  SiO2 substrate of the sample. 

 

 The results shown in figures 8.3.2.1 and 8.3.2.2 look very similar to those of 

figures 8.3.1.1 and 8.3.1.2, which for very low incident angles is not surprising since the 

case of TM polarised normally incident light on a grating oriented at a 0° azimuthal 

angle is the same as that of TE polarised normally incident light on a grating oriented at 

a 90° azimuthal angle. The dispersion of these modes, obtained in the same way as in 

section 8.3.1, is shown in figure 8.3.2.3. 

Figure 8.3.2.3 The dispersion of the reflectivity minima obtained from figure 8.3.2.1 and 8.3.2.2 
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 If figure 8.3.2.3 is compared to figure 6.4.1 it is noticeable that the form of the 

dispersion of the modes are very similar, in that the modes are relatively flat, but curve 

up in energy for larger values of the in-plane wavevector. This agrees with the belief 

that these modes are SCSPPs, as described in section 8.3.1. The same discussion about 

the problems with comparing the data to theory also apply. 

 

8.3.3 TM polarised light incident at a 45°°°° azimuthal angle 

 

 When the azimuthal angle is neither 0° or 90° the polarisation of the incident 

light may be converted by the grating (as described in chapter 2), with the maximum in 

polarisation conversion occurring when the azimuthal angle is 45° Therefore, when the 

grating is oriented relative to the incident beam such that polarisation conversion 

occurs, it is necessary to measure both the polarisation conserved and converted 

reflectivities in order to determine the full optical response of the structure. This is 

achieved by placing a polariser in the reflected beam between the sample and the 

reflectivity detector, which can be set to allow light through of either the same 

polarisation state as the polariser in the beam before the sample, or the orthogonal 

polarisation state. Also, the results for TM polarised incident light are very similar to 

those for TE polarised light, and therefore only the results for TM polarised light are 

shown here. 

In figure 8.3.3.1 the total wavelength dependent reflectivity is shown, and the 

polarisation conserved and converted wavelength dependent reflectivities obtained from 

the same structure investigated in sections 8.3.1 and 8.3.2, for the same polar angles, but 

with the grating oriented at a 45° azimuthal angle. The results obtained for sinθ < 0.4 

were obtained without a prism matched to the SiO2 substrate, whereas for those with 

sinθ ≥ 0.4 the light was incident upon the structure via a prism. 
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Figure 8.3.3.1 The polarisation conserved and converted wavelength dependent reflectivities for various 

angles of incidence of a 150 deep, 170nm pitch, silver grating oriented at an azimuthal angle of 45° with 

TM polarised incident light. For a) to c) the light is incident through the SiO2 substrate, whereas for d) to 

h) it is incident through a 45° SiO2 prism which is index matched to the  SiO2 substrate of the sample. a) 

sinθ = 0.1, b) sinθ = 0.2, c) sinθ = 0.3, d) sinθ = 0.4, e) sinθ = 0.5, f) sinθ = 0.6, g) sinθ = 0.7, h) sinθ = 

0.8. 
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  There are several features to note from the plots in figure 8.3.3.1. Firstly, it 

should be noted that the reflectivities measured are the absolute reflectivities, although 

the result obtained for sinθ = 0.8, exhibits a surprisingly low reflectivity when 

compared to the rest of the plots. This is possibly due to the increased effective beam 

area on the sample, causing a greater region of the grating to be sampled. This would 

cause any non-uniformity over the grating region to have a more pronounced effect 

upon the reflectivity obtained. Another point to note is that it is only the total reflectivity 

plots for the various polar angles (produced by combining the polarisation conserved 

and converted reflectivities), which show the position of the reflectivity minimum due 

to SPP excitation correctly, and therefore it is these which must be considered when the 

dispersion of the mode with changing in-plane wavevector is determined. It is also clear 

that the maximum in the polarisation conversion does not occur at the same frequency 

as the reflectivity minimum in the total reflectivity plots, and this contradicts the results 

obtained in chapter 6 regarding the polarisation conversion from structures exhibiting 

SCSPP excitation. In fact, it is more reminiscent of the broad-band polarisation 

conversion obtained from the narrow-peaked Gaussian structures investigated in chapter 

7, since in some of the plots the polarisation converted reflectivity is greater than the 

polarisation conserved reflectivity over much of the wavelength range investigated. The 

reason for this is relatively simple. 

 In the case of a grating consisting of a series of Gaussian grooves the vast 

majority of the light is reflected from the top surface of the grating, and therefore there 

is very little polarisation conversion caused by the depth of the grating grooves (see 

chapter 2 for an explanation of the polarisation conversion mechanisms). For the 

Gaussian peaked gratings the case is very different, with considerable polarisation 

conversion occurring due to the depth of the grooves and, since the broad-band 

polarisation conversion is a result of an interaction between the SPP mediated 

polarisation conversion and the polarisation conversion caused by the depth of the 

grating grooves, the broad-band polarisation conversion does not occur on the narrow-

grooved gratings, but does occur on the wider groove gratings. The structure 

investigated here is not as narrow grooved as those investigated in chapter 6 (as is 

evident from the SEM of the grating profile in figure 8.2.1.4), and therefore there will 

be increased polarisation conversion occurring due to the depth of the structure. This 
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will then lead to broad-band polarisation conversion like that obtained from the peaked 

structures investigated in chapter 7. The necessity of a 2kg component in the grating 

profile which is +90° out of phase with the kg component for SCSPPs to be excited is 

still satisfied even though the grooves are broader in the structure investigated. 

 By determining the positions in wavelength of the reflectivity minima in the 

total reflectivity curves in figure 8.3.3.1, and plotting them on a ω-k plot in the same 

way as in the previous sections the dispersion of the SPP mode can be obtained and is 

plotted in figure 8.3.3.2. 

Figure 8.3.3.2 The dispersion of the reflectivity minima obtained from the total reflectivity plots of figure 

8.3.3.1 

 

The form of the dispersion of the mode with changing in-plane wavevector is 

very similar to that shown in figure 6.5.1, and this again suggests that the reflectivity 

minima are due to the excitation of SCSPPs. 

 

8.4 Summary 

 

In this chapter a method for manufacturing deep zero-order gratings for the 

visible region of the spectrum has been presented. Data has also been presented which 

show the optical response obtained from one of these gratings for TM polarised incident 

light when the grating was oriented at 0° and 45° azimuthal angles, and TE polarised 

incident light when the grating was oriented at a 90° azimuthal angle. These results 
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show that resonant absorption of light may occur, which is believed to be due to the 

excitation of self-coupled SPPs. To our knowledge this is the first time that SPPs have 

been observed on zero-order gratings.  

Due to problems with the manufacturing process, which are inherent in the 

method, the surface of the grating structure was found to be relatively rough. This 

caused diffuse scatter, and therefore reduced the specularly reflected order intensity. For 

this reason it was not possible to fit the data obtained to theory, and therefore it was not 

possible to categorically attribute these reflectivity minima to the excitation of SCSPPs. 

However, the dispersion of these modes with changing in-plane wavevector was found 

to be very similar to those obtained for the SCSPPs in chapter 6, and therefore we 

believe that it is these modes which have been excited. The main difference in the 

optical response obtained from the gratings produced when compared to those 

investigated in chapter 6 was that broad band polarisation conversion occurred when the 

grating was oriented at a 45° azimuthal angle. The reason for this was explained in 

terms of the grating grooves being broader than those investigated in chapter 6. 
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Chapter 9 
 

Conclusions and Future Work 

 

 

9.1 Summary 
 
 The work in this thesis presents an original investigation of the optical response 

of various grating structures, with a view to advancing the understanding of the effects 

of short-pitch corrugations on the various orders produced. Both dielectric and metal 

gratings have been studied with either one or two interfaces, with several interesting 

results. 

 In the work on dielectric structures the main new results which are of interest 

occur on the two interface systems, where, if the slab thickness is very small and the 

two identical corrugations on each surface are in phase with each other, a total lack of 

transmitted diffracted orders is found to occur. This is shown to arise due to cancellation 

of the diffracted orders created at the two interfaces in the transmitted half-space. When 

the phase between the two gratings on each surface is changed there are two main 

results. Firstly, the structure acts as if it is effectively blazed for the first reflected 

diffracted order (the +1 and –1 diffracted orders are found to have different intensities). 

Secondly, when the two corrugations are in anti-phase with each other, it is found that 

almost all of the energy of normally incident light can be equally distributed between 

the +1 and –1 transmitted diffracted orders, with almost no intensity in either the 

reflected orders or zeroth transmitted order. Though this is found to be a special case, 

the range of grating parameters over which it occurs is shown to be relatively large, and 

the origin of the effect is discussed. 

 Similar original investigations have been undertaken with the slab material being 

a good metal. In this case SPPs are excited on both interfaces, but when the metal slab is 

bounded by dielectrics of different refractive indices (and therefore the frequency of 

excitation of the SPPs on the two metal / dielectric interfaces is different) the SPP on the 

transmitted side of the structure is found to be only very weakly excited. This effect is 

shown to arise due to the same transmitted diffracted order cancelling mechanism as is 

found on the dielectric structures. When the phase between the two surface corrugations 

is non-zero, coupling to this SPP is found to arise once more since this cancellation no 
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longer occurs. The way in which excitation of the SPPs can give maxima, minima, or 

Fano shaped resonances in the transmitted zeroth order is also discussed. This is 

ascribed to the phase difference between the light coupled out of the SPP, and that 

which passes straight through the structure. 

 If the bounding dielectrics have the same refractive index then coupled SPPs are 

found to occur on the thin metal slabs. These coupled SPPs are described and the effect 

of the thickness of the slab, the phase between the two corrugations, and the addition of 

higher harmonics to the description of the grating profile on the optical response of the 

structure are investigated. The explanation of the results obtained for coupled SPPs is 

more complicated than for the SPPs bound to only one interface, but it is shown how 

both transmission maxima and minima can occur in the transmitted zeroth order 

depending upon the phase between the two corrugations, and also the way in which 

band gaps are produced in the dispersion curves of the coupled SPPs. Typically there 

are two coupled SPP modes for a thin metal slab, the long range SPP and the short 

range SPP, however it is found that when there is a 2kg component in the grating profile, 

and the two corrugations are anti-symmetric, a total of four coupled modes exist. These 

arise due to the different possible charge distributions of the modes with respect to the 

grating profile. 

 The next section of the thesis concerned the influence of very deep corrugations 

on the nature of the SPPs on a single interface dielectric / metal structure. Initially the 

case of a grating consisting of a series of narrow Gaussian grooves is explored, showing 

that there are a family of self-coupled SPPs, which are extremely flat banded with fields 

highly localised within the grooves, and which occur even in the zero-order region of 

the spectrum. These newly discovered modes are examined for all possible grating 

orientations with respect to the incident light, and it is shown that they arise due to the 

formation of very large band gaps in the SPP dispersion curves, and through interactions 

between the various SPPs which can be excited on the structures. 

 Following this, the inverse structure of a grating consisting of a series of narrow 

Gaussian peaks is studied for the first time. The dispersion and nature of the SPP modes 

which can be excited on the structure are investigated, and found to be radically 

different to those of the Gaussian grooved structures previously studied. The complex 

dispersion of these modes is described for gratings oriented at azimuthal angles of 0°, 

45°, and 90°, and the polarisation of light which can excite the modes for each of these 
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orientations is also described. One surprising phenomenon which occurs is that of 

broad-band polarisation conversion when the gratings are oriented at a 45° azimuthal 

angle. The gratings show polarisation conversion of >80% over the whole of the visible 

region of the spectrum for normally incident light, and the way in which this occurs is 

described. 

 In the final chapter, results of an original experimental study on these deep zero-

order metal gratings are presented. The fabrication method of the structures is described, 

along with the method used to obtain the optical response of the structure. The 

wavelength dependent reflectivity results obtained for various polar and azimuthal 

angles show reflectivity minima in the specularly reflected order. The dispersion of the 

modes with changing in-plane wavevector has been obtained from these results, 

showing very flat bands which are similar to those of the self-coupled SPPs described in 

chapter 6. Unfortunately, it was not possible to fit the data to theory due to a large 

amount of surface roughness caused by the manufacturing process. Therefore, it was not 

possible to categorically ascribe these modes to the self-coupled SPPs, although the 

evidence of the dispersion curves strongly suggested that this was the case. 

 

9.2 Possible Applications 

 

 SPPs have, so far, formed the basis for relatively few applications. One field in 

which they have been somewhat successful is as chemical and biological sensors, where 

their sensitivity to the refractive index of the dielectric is used to determine changes in 

the local environment at the interface. The structures investigated in this thesis do not 

appear to lend themselves to this field, but there are several other possible applications 

for which they may be of use. 

 The SPPs on the thin metal slabs (chapter 5) could be used to enable more light 

to be coupled out of organic LEDs or, in fact, any light emitting structure where a 

proportion of the power is typically lost to surface EM modes or absorption in metal 

layers. This possibility is the subject of a patent application. 

 For the high-aspect ratio zero-order structures there are a number of possible 

applications. The narrow-grooved structures (chapter 6) produce selective absorption of 

light over a band of frequencies, which is relatively independent of the angle of 

incidence. For this reason these structures have received interest as stealth materials. 
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They have also received interest regarding a possible use as active surfaces for surface 

enhanced Raman spectroscopy. In this case they may be of particular interest since the 

molecules could fit entirely in to the grooves in which the enhanced fields of the SCSPP 

are contained. 

 In the case of the narrow-ridged structures (chapter 7) it is the broad-band 

polarisation conversion effect which lends itself to applications. Their possible use for 

increasing the amount of light emitted from back-lit LCDs is described in chapter 7. In 

addition to this they may be used as anti-counterfeiting materials. A system whereby a 

silver film which appears black in reflection through parallel polarisers, but silver 

through crossed polarisers, would be a simple, though very difficult to forge, anti-

counterfeiting system.   

 

9.3 Future Work 

 

 The majority of future work resulting from this thesis lies in the experimental 

observation of the numerous phenomena which have been predicted. The work on the 

thin slab structures presents many problems in regard to grating fabrication. The 

conformal structures may be manufactured using similar techniques to those described 

in chapter 8, and in fact some thin conformal metal slabs have been investigated in the 

past (for example Schröter and Heitmann [1999] investigated thin metal slabs bounded 

by dielectrics with different refractive indices). However, it is by no means obvious 

what methods could be used to fabricate the structures when the corrugations on the two 

interfaces are out of phase with each other, although any method by which this could be 

controllably accomplished would open up a large field of research. Similarly, it would 

be of great interest if the fabrication problems involved in manufacturing the deep zero-

order structures described in chapters 6,7 and 8 could be overcome to give precise 

control over the form of the grating profiles. This could lead to several applications, and 

may be possible using advance fabrication techniques such as e-beam lithography. 

 In terms of further modelling work to more fully describe the structures 

investigated in this thesis there are several future avenues which could be explored. 

Firstly, the depth of the corrugations on the thin dielectric and metal slabs could be 

increased since, especially in the case of the metal slabs, the effect on the 

electromagnetic modes of the system of the deeper corrugations would significantly 
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alter the optical response obtained. Also, it would be interesting to investigate the 

optical response of deep lamellar single interface metal gratings, since similar results to 

those obtained in chapter 6 and 7 would be expected, and lamellar structures could 

certainly be manufactured using e-beam lithography equipment. 

 In addition there are numerous other structures which would be expected to 

show similar effects to those described in this thesis. The most obvious of these would 

be deep, short-pitch, bigrating structures (either square or hexagonal), since it would be 

expected that SCSPPs could be excited on these structures if the grooves were narrow, 

and that the coupling to these modes would be the same for both linear polarisations for 

all azimuthal angles of incidence. Also, bigratings of the narrow peaked structures 

would develop into arrays of narrow peaks, which could also have very interesting 

optical properties. 

 Other, more novel, structures could combine the use of dielectric and metal 

gratings to take advantage of the coupled modes of the systems, and it would also be 

interesting to explore the optical properties of non-single valued surfaces. In this case 

the optical properties of structures consisting of resonant grooves / cavities with a 

controlled opening on the top surface could be explored, with the coupling strength to 

the modes of the systems being controlled by the size of the openings. 
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(Malvern). 

 

Other publications intended for submission in the future include: 

 

1. A paper on the thin slab dielectric structures described in chapter 3. 

2. A paper on the thin slab metal gratings bounded by dielectrics with different 

refractive indices described in chapter 5 (after resolution of issues pertaining to the 

patent application described above) 

3. A paper on the coupled SPP modes found on thin slab metal gratings bounded by 

identical dielectrics described in chapter 5. 

4. A paper on the narrow-peaked short-pitch metal gratings in the conical mount 

described in chapter 7. 
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