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We have investigated scattering of exchange spin waves by a model nonuniformity of the effective
magnetic field. In particular, certain profiles of the nonuniformity are characterized by a total
transmission of the spin wave intensity while inducing large shifts to the phase of transmitted spin
waves. These properties are discussed in the context of potential application within a spin wave
logic device—a spin wave interferometer containing such a nonuniformity in one of its branches.
We demonstrate limitations imposed upon the size and the speed of operation of such a device by
a requirement that it be controlled by an external uniform magnetic field. © 2007 American Institute

of Physics. [DOI: 10.1063/1.2740339]

I. INTRODUCTION

The continuing search for logic paradigms alternative to
those based upon semiconductors has led to suggestions that
propagating magnetic domains'™ or spin waves” '? could
create a basis for such logic devices. In Mach-Zehnder-
interferometer-type logic elements discussed in Refs. 5, 7,
and 8, microwave power is split into two waveguide
branches containing yttrium iron garnet (YIG) phase shifters.
In one of the branches, the phase of the magnetostatic spin
wave carrying signals in YIG is modified upon transmission
through a region of a nonuniform magnetic field created by
electrical current in an underlying stripline. The signals from
the two branches of the interferometer are then brought to-
gether, and depending upon the induced phase shift, either
constructive or destructive interference is observed. Such
logic devices have a size of several millimeters, limited by
the wavelength of microwaves. For the same frequency, the
wavelength of spin waves is orders of magnitude shorter than
that of electromagnetic waves, and hence all-spin-wave logic
elements, such as those discussed in Refs. 6 and 10, might be
much smaller in size than those from Refs. 5, 7, and 9. The
nanoscale phase-shifting nonuniformity could be created by
introducing a domain wall®!! or by a direct local modifica-
tion of magnetic parameters, e.g., magnetic anisotropy.12 The
challenge is to realize a nonuniformity that would induce
180° phase shift to spin wave while leaving its amplitude
unchanged.
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The frequency of magnetostatic, exchange, and dipole-
exchange spin waves in a 5-nm-thick film of YIG (Ref. 13) is
plotted in Fig. 1 as a function of the spin wave wavelength,
using the approximate dispersion relations from Ref. 14. One
can see that the dispersion of sufficiently short wavelength
spin waves (so-called exchange spin waves), which are of
primary interest for use within nanoscale all-spin-wave logic
devices, is described relatively well even when the dynamic
magnetodipole interaction is neglected. The frequency of the
exchange spin waves lies in the THz range, which makes
them attractive for use in the emerging THz wave technol-
ogy. Brillouin light scatteringls’16 and scanning Kerr
rnicroscopy”’18 can offer the temporal and spatial resolution
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FIG. 1. (Color online) The frequency of exchange, dipole-exchange, and
magnetostatic spin waves are plotted as a function of their wavelength for a
5-nm-thick film of YIG, neglecting anisotropy and assuming that the wave
vector is parallel to the static magnetization.
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FIG. 2. (a) The coordinate system of the problem is shown. (b) The spin
wave interferometer is shown schematically. The values of the magnetic
parameters are constant in the reference branch (1), while the values of the
parameter of the uniaxial magnetic anisotropy have profiles shown in (c).

that is required for detection of propagating magnetostatic
waves. At the same time, it is still to be seen if a similar
technique, for example, such as that proposed in Ref. 19,
could serve for detection of propagating exchange spin
waves.

Here, we report a theoretical investigation of the scatter-
ing of exchange spin waves by a nonuniformity of the value
of the uniaxial anisotropy and/or of the bias magnetic field.
We show that certain profiles of the effective magnetic field
are characterized by a total transmission of the spin wave
amplitude while inducing sizable shifts to the phase of the
transmitted spin wave, as required for spin wave logic de-
vices. Finally, we discuss general limitations inherent to spin
wave logic devices of the considered type.

Il. THEORY

Let us consider a spin wave interferometer shown in Fig.
2(b), which is similar to that in Ref. 6. The interferometer
consists of a spin wave generator, a spin wave guide, and a
spin wave detector. The spin wave guide represents a loop
with two branches. One branch (1) is made of a stripe of
uniform magnetic material and serves as a “reference.” The
other branch (2) represents a stripe of a magnetic material
with a local decrease of the magnetic anisotropy (a “well”)
and serves as a spin wave “phase shifter.” The value of the
uniaxial anisotropy in the reference branch is equal to [,
while that in the phase shifter depends upon the coordinate x
along the length of the waveguide as

Bi

cosh? x/d’

B(x) = o - (1)
where B, and d are the “depth” and the characteristic
“width” of the well, respectively. The graph of function (1) is
shown in Fig. 2(c). The signal registered by the detector
results from interference of the two spin waves transmitted
through the phase shifter and the reference. The spontaneous
magnetization and the exchange parameter are assumed to be
equal to the same values M and « in both branches, respec-
tively. The discussion below applies to the straight parts of
the interferometer only, while the phase shifts induced to
spin waves within its curved parts are equal in both branches.
Within the straight regions, the easy axis of the uniaxial an-
isotropy and the directions of the internal magnetic field nH
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and of the static magnetization nM,, are all parallel to the x
axis.

The dynamics of magnetization M(r,z) is described by
the Landau-Lifshitz equation

oM
e - g[M X Hg], (2)

with the effective magnetic field defined in the exchange
approximation as

H,=[H+MyB(x)]n+aAM, (3)

where g is the gyromagnetic ratio (g>0).

Let us consider small deviations m(r,7) of the magneti-
zation from the ground state, i.e., a uniform magnetization
parallel to the easy axis. For this purpose, we represent mag-
netization as

M(r,) = Mon +m(r,), where |m| < M,. 4)

Introducing variable m,=m,+im, and seeking solutions in
the form of harmonic waves m,(r,1)=m(x)exp{iwt}, we ob-

tain the following linearized equation for m(x):
dzm(x) 1

Bi
1 Q-h- =1
dx* " a( Po+ coshz(x/d)

)m(x) =0, (5

where Q=w/gM, and h=H/M, are the dimensionless fre-
quency and magnetic field, respectively. This equation can be
reduced to the hypergeometrical Gauss equation,20 whose
general solution may be written as”!

m=CF[0.5(\ +ikd); 0.5(\ - ikd); 0.5;
—sinh?(x/d) | + iC, sinh(x/d) F[0.5(1 + X
+ikd); 0.5(1 + N\ —ikd); 1.5; —sinh®(x/d)],  (6)
where C; and C, are arbitrary constants, F is the hypergeo-
metrical function,®® and \ is determined from equation

B,d*>=aN(\—1). The asymptotic value of the wave number «
is given by

[Q—-h- P,
K= - .
o

Far enough from the well, solution (6) can be asymptoti-
cally represented as

exp{in} +R exp{— in} X— =00

T exp{i Kx} @

X— +00

where factors R and 7 have meaning of the amplitude coef-
ficients of reflection and transmission of spin waves, respec-
tively, and can be written as”!

Re exp{2i®} + exp{2iE} e exp{2i@} — exp{2iE}
- 2 o 2 ’
(8)

where O and E are given by

TI'(ixd)exp{- ixd In 2}
I'(0.5\ +i0.5xd)T[0.5(1 = \) +i0.5kd]’

O =arg
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FIG. 3. (Color online) The dependence of the intensity transmission coeffi-
cient D upon the wave number of the signal carrying spin wave and upon
the parameters of the well is shown.

T'(ixd)exp{- i0.5kd In 2}
ET[0.5(x = 1) + i0.5kd]T(1 = 0.5\ + i0.5xd)”
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Using these formulas, the intensity coefficients of reflection
and transmission of spin waves can also be calculated. In
particular, for the intensity transmission coefficient D, one
can obtain

Dy = sinh?(7xd)[ sinh®(7xd) + sin®(m\) ] (10)

The dependence of D, upon the wave number and the pa-
rameters of the well are illustrated in Fig. 3. Note that D,
=1, when condition

A=1,23,... (11)

is fulfilled, in which case spin waves pass the well without
reflection. Well profiles satisfying condition (11) correspond
to so-called reflectionless Poschl-Teller well potential.m’22
Phases (9) are then related as

—

O-F= 5 (12)
Even in the absence of reflection, the phase of the transmit-
ted spin wave is modified by the well, and so the spin wave
intensity at the output of the interferometer DY, which re-
sults from the interference of the waves transmitted through
the phase shifter and the reference, is equal to
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FIG. 4. (Color online) The output of the spin wave interferometer
Df)”(xd ,\) is plotted as a grayscale map. The white and black correspond to
0 and 1, respectively. The dependence of D((;) upon « and N\ for the other
parameters fixed is represented by the horizontal and vertical cross sections
of the surface Dg)(Kd ,\), respectively. The dependences of Dg> upon « and
d are represented by the projections of the cross sections of the surface
Dg)(Kd ,\) along curves defined by Eq. (15) upon the vertical and horizontal
axes. Three such curves are plotted for B,=5 and B,=1, while (-4 is equal
to 5.2 (red, solid), 5.7 (orange, dash), and 7 (green, dash-dot).

D{P ==|1+T1J%. (13)

1
4
For the reflectionless well profiles, we can write using Egs.
(8), (12), and (13),

D§? =sin*(2). (14)

lll. DISCUSSION

Let us now discuss in some detail the dependence of the
output of the interferometer upon the parameters of the phase
shifter, the frequency of the spin wave, and the applied mag-
netic field. From Egs. (8), (9), and (13), it is easy to see that
the output is a function of self-similar variables «d and \. To
take advantage of this, let us plot Dg)(Kd ,A) as a two-
dimensional grayscale map shown in Fig. 4. In Fig. 4, the
black and white correspond to a destructive and constructive
interference of the spin waves from the two branches, respec-
tively. However, a full transmission or a full extinction of the
signal can be observed only when the amplitudes of the two
spin waves are equal, that is only for integer values of A
(horizontal lines), unless the spin wave in the reference
branch is accordingly attenuated. The dependence of Dg)
upon « (and hence upon (), i, and B,) and \ (and hence
upon B;) for the other self-similar parameters fixed is repre-
sented by the horizontal and vertical cross sections of the
two-dimensional surface Dg)(Kd ,\), respectively. To study
the dependence of Dg) upon « and d, we have to take into
account that both xd and N\ depend upon another self-similar
variable, a/d*. Excluding the latter from the expressions for
xd and N\, we obtain equation of lines, different points of
each of which are obtained by varying «/d? for fixed values
of Q, h, By, and B,

Kd?By=(Q-h—By)NN-1). (15)

The dependences of Dg) upon « and d are then represented
by the projections of the cross sections of the two-
dimensional surface Dg )(Kd, \) by line (15) upon the vertical
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and horizontal axes. In doing so, one needs to note that «
=Bd?/N(\-1).

In order to use the interferometer as a magnetic-field-
controlled logic element, one must be able to shift from the
black to the white along one of the horizontal lines corre-
sponding to an integer \ by varying the value of /4 and hence
kd. The required variation of the bias magnetic field depends
upon the derivative

dicldh = — (93 dK) = = (A v,, (16)

where v, is the group velocity of the spin wave. For ex-
change spin waves, Q=h+,80+aK2, and so, Jk/dh=
—1/2ak. Thus, the shorter the wavelength of the spin waves
is, the larger is the change of the bias magnetic field required
to change the output of the interferometer from “0” to “1,”
which is also apparent from Fig. 4.2 This may present a
serious limitation for the desired miniaturization of spin
wave logic devices of this type. Furthermore, since the group
velocity of spin waves appears in the denominator of Eq.
(16), one may also need to compromise between the effi-
ciency of the magnetic field control and the speed of opera-
tion of such a device. Due to the general nature of Eq. (16),
one may also notice that the most efficient control by the bias
magnetic field is achieved for dipole-exchange spin waves in
the backward volume geometry,14 which have a characteris-
tic minimum in their frequency at a particular finite value of
the wave number. For example, magnetostatic backward vol-
ume spin waves were used in the millimeter-sized spin wave
logic devices from Ref. 7. Alternatively, in a nanoscale de-
vice, one could use materials with periodically modulated
magnetic properties (e.g., the anisotropy or the exchange pa-
rameter) instead of the homogeneous materials considered
here. Such materials (so-called magnonic crystals) have re-
cently been subject to increased attention in the context of
the emerging field of magnonics.24_29 In magnonic crystals,
the dispersion of spin waves contains so-called band gaps
and regions of reduced group velocity in their Vicinity.z(”28
Hence, the use of magnonic crystals within spin wave inter-
ferometers and of spin waves with frequency near the band-
gap edges as signal carriers could lead to more efficient and
miniature spin wave logic devices. However, investigation of
such devices is beyond the scope of the present paper.

IV. SUMMARY

In summary, we have investigated the scattering of ex-
change spin waves by a localized nonuniformity of the ef-
fective magnetic field. We have shown that certain profiles of
the effective magnetic field are characterized by a total trans-
mission of the amplitude while inducing large phase shifts
required for operation of spin wave logic devices. At the
same time, we have demonstrated a serious crosstalk be-
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tween the size and the speed of operation of such devices and
the efficiency of their control by an applied magnetic field.
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