
An environment for multicolumn output�†

Frank Mittelbach
Email: see top of the source file

Printed December 21, 1998

Abstract

This article describes the use and the implementation of themulticols environment. This environment allows
switching between one and multicolumn format on the same page. Footnotes are handled correctly (for the most
part), but will be placed at the bottom of the page and not under each column. LATEX’s float mechanism, however,
is partly disabled in the current implementation. At the moment only page-wide floats (i.e., star-forms) can be used
within the scope of the environment.

Preface to version 1.5

This new release contains two major
changes:multicols will now support
up to 10 columns and two more tun-
ing possibilities have been added to
the balancing routine. The balanc-
ing routine now checks the badness

of the resulting columns and rejects
solutions that are larger than a cer-
tain treshold.

At the same time multicols
has been upgraded to run under
LATEX 2ε.

I apologise for the state of the
code documentation but the work on
LATEX 2ε kept me too busy to do a
proper job. This will hopefully be
corrected in the near future.

1 Introduction

Switching between two column and
one column layout is possible in
LATEX, but every use of\twocolumn
or \onecolumn starts a new page.
Moreover, the last page of two col-
umn output isn’t balanced and this
often results in an empty, or nearly
empty, right column. When I started
to write macros fordoc.sty (see
“The doc –Option”, TUGboat vol-

ume 10 #2, pp. 245–273) I thought
that it would be nice to place the
index on the same page as the bib-
liography. And balancing the last
page would not only look better,
it also would save space; provided
of course that it is also possible to
start the next article on the same
page. Rewriting the index environ-
ment was comparatively easy, but

the next goal, designing an environ-
ment which takes care of footnotes,
floats etc., was a harder task. It
took me a whole weekend1 to get to-
gether the few lines of code below
and there is still a good chance that
I missed something after all.

Try it and, hopefully, enjoy it; and
pleasedirect bug reports and sug-
gestions back to Mainz.

2 The User Interface

To use the environment one simply
says

\begin{multicols}{ hnumberi}
hmulticolumn texti

\end{multicols}

where hnumberi is the required
number of columns andhmulti-
column texti may contain arbitrary

LATEX commands, except that floats
and marginpars are not allowed in
the current implementation2.

�This file has version number v1.5q, last revised 1998/01/19.
†Note: This package is released under terms which affect its use in commercial applications. Please see the details at the top of the source file.
1I started with the algorithm given in the TEXbook on page 417. Without this help a weekend would not have been enough.
2This is dictated by lack of time. To implement floats one has to reimplement the whole LATEX output routine.

1

As its first action, themulticols
environment measures the current
page to determine whether there
is enough room for some por-
tion of multicolumn output. This
is controlled by thehdimeni vari-
able \premulticols which can be
changed by the user with ordinary
LATEX commands. If the space is less
than \premulticols , a new page
is started. Otherwise, a\vskip of
\multicolsep is added.3

When the end of themulticols en-
vironment is encountered, an anal-
ogous mechanism is employed, but
now we test whether there is a space
larger than\postmulticols avail-
able. Again we add\multicolsep
or start a new page.

It is often convenient to spread
some text over all columns, just be-
fore the multicolumn output, with-
out any page break in between. To
achieve this themulticols environ-
ment has an optional second argu-
ment which can be used for this pur-
pose. For example, the text you are
now reading was started with

\begin{multicols}{3}
[\section{The User

Interface}] ...

If such text is unusually long (or
short) the value of\premulticols
might need adjusting to prevent a
bad page break. We therefore pro-
vide a third argument which can be
used to overwrite the default value
of \premulticols just for this oc-
casion. So if you want to combine
some longer single column text with
a multicols environment you could
write

\begin{multicols}{3}
[\section{Index}

This index contains ...]
[6cm]

...

Separation of columns with ver-
tical rules is achieved by setting
the parameter\columnseprule to
some positive value. In this article
a value of.4pt was used.

Since narrow columns tend
to need adjustments in in-
terline spacing we also pro-
vide a hskipi parameter called
\multicolbaselineskip which
is added to the\baselineskip
parameter inside themulticols envi-
ronment. Please use this parameter
with care or leave it alone; it is
intended only for package file de-
signers since even small changes
might produce totally unexpected
changes to your document.

2.1 Balancing columns

Besides the previously mentioned
parameters, some others are pro-
vided to influence the layout of the
columns generated.

Paragraphing in TEX is con-
trolled by several parameters. One
of the most important is called
\tolerance : this controls the al-
lowed ‘looseness’ (i.e. the amount
of blank space between words).
Its default value is 200 (the LATEX
\fussy) which is too small for nar-
row columns. On the other hand
the\sloppy declaration (which sets
\tolerance to 10000= ∞) is too
large, allowing really bad spacing.4

We therefore use a
\multicoltolerance parame-
ter for the\tolerance value inside
the multicols environment. Its
default value is 9999 which is less
than infinity but ‘bad’ enough for
most paragraphs in a multicolumn
environment. Changing its value
should be done outside themulticols
environment. Since\tolerance
is set to \multicoltolerance

at the beginning of everymulti-
cols environment one can locally
overwrite this default by assign-
ing \tolerance = hdesired
valuei. There also exists a
\multicolpretolerance pa-
rameter holding the value for
\pretolerance within a multicols
environment. Both parameters
are usually used only by package
designers.

Generation of multicolumn out-
put can be divided into two parts. In
the first part we are collecting mate-
rial for a page, shipping it out, col-
lecting material for the next page,
and so on. As a second step, balanc-
ing will be done when the end of the
multicols environment is reached. In
the first step TEX might consider
more material whilst finding the fi-
nal columns than it actually use
when shipping out the page. This
might cause a problem if a footnote
is encountered in the part of the in-
put considered, but not used, on the
current page. In this case the foot-
note might show up on the current
page, while the footnotemark corre-
sponding to this footnote might be
set on the next one.5 Therefore the
multicols environment gives a warn-
ing message6 whenever it is unable
to use all the material considered so
far.

If you don’t use footnotes too of-
ten the chances of something actu-
ally going wrong are very slim, but
if this happens you can help TEX
by using a\pagebreak command in
the final document. Another way to
influence the behavior of TEX in this
respect is given by the counter vari-
able ‘collectmore’. If you use the
\setcounter declaration to set this
counter tohnumberi, TEX will con-
siderhnumberi more (or less) lines
before making its final decision. So

3Actually the added space may be less because we use\addvspace (see the LATEX manual for further information about this command).
4Look at the next paragraph, it was set with the\sloppy declaration.
5The reason behind this behavior is the asynchronous character of the TEX pagebuilder. However, this could be avoided by defining very com-

plicated output routines which don’t use TEX primitives like \insert but do everything by hand. This is clearly beyond the scope of a weekend
problem.

6This message will be generated even if there are no footnotes in this part of the text.

2

a value of�1 may solve all your
problems at the cost of slightly less
optimal columns.

In the second step (balancing
columns) we have other bells and
whistles. First of all you can say
\raggedcolumns if you don’t want
the bottom lines to be aligned. The
default is \flushcolumns , so TEX
will normally try to make both the
top and bottom baselines of all
columns align.

Additionally you can set another
counter, the ‘unbalance’ counter, to
some positivehnumberi. This will
make all but the right-most column
hnumberi of lines longer than they
would normally have been. ‘Lines’
in this context refer to normal
text lines (i.e. one\baselineskip
apart); thus, if your columns con-
tain displays, for example, you may
need a higherhnumberi to shift
something from one column into an-
other.

Unlike ‘collectmore,’ the ‘unbal-
ance’ counter is reset to zero at the
end of the environment so it only ap-
plies to onemulticols environment.

The two methods may be com-
bined but I suggest using these fea-
tures only when fine tuning impor-
tant publications.

Two more general tuning possi-
bilities were added with version 1.5.
TEX allows to measure the badness
of a column in terms of an integer
value, where 0 means optimal and
any higher value means a certain
amount of extra white space. 10000
is considered to be infinitely bad
(TEX does not distinguish any fur-
ther). In addition the special value
100000 means overfull (i.e., the col-
umn contains more text than could
possibly fit into it).

The new release now measures
every generated column and ignores
solutions where at least one col-
umn has a badness being larger than
the value of the countercolumnbad-
ness. The default value for this
counter is 10000, thus TEX will ac-
cept all solutions except those being

overfull. By setting the counter to a
smaller value you can force the al-
gorithm to search for solutions that
do not have columns with a lot of
white space.

However, if the setting is too low,
the algorithm may not find any ac-
ceptable solution at all and will then
finally choose the extreme solution
of placing all text into the first col-
umn.

Often, when colunms are bal-
anced, it is impossible to find a so-
lution that distributes the text evenly
over all columns. If that is the case
the last column usually has less text
than the others. In the earlier re-
leases this text was stretched to pro-
duce a column with the same height
as all others, sometimes resulting in
really ugly looking columns.

In the new release this stretching
is only done if the badness of the
final column is not larger than the
value of the counterfinalcolumnbad-
ness. The default setting is 9999,
thus preventing the stretching for all
columns that TEX would consider
infinitely bad. In that case the fi-
nal column is allowed to run short
which gives a much better result.

2.2 Not balancing the
columns

Although this package was written
to solve the problem of balancing
columns, i got repeated requests to
provide a version where all white
space is automatically placed in the
last column or columns. Since ver-
sion v1.5q this now exists: if you
usemulticols* instead of the usual
environment the columns on the last
page are not balanced. Of course,
this environment only works on top-
level, e.g., inside a box one has
to balance to determine a column
height in absense of a fixed value.

2.3 Floats inside amulticols
environment

Within the multicols environment
the usual star float commands are
available but their function is some-
what different as in the two-column
mode of standard LATEX. Stared
floats, e.g.,figure* , denote page
wide floats that are handled in a sim-
ilar fashion as normal floats outside
the multicols environment. How-
ever, they will never show up on the
page where they are encountered. In
other words, one can influence their
placement by specifying a combina-
tion of t , b, and/orp in their op-
tional argument, buth doesn’t work
because the first possible place is the
top of the next page. One should
also note, that this means that their
placement behavior is determined
by the values of\topfraction , etc.
rather then by\dbl... .

2.4 Warnings

Under certain circumstances the use
of themulticols environment may re-
sult in in some warnings from TEX
or LATEX. Here is a list of the impor-
tant ones and the possible cause:

Underfull \hbox (badness
...)

As the columns are often very nar-
row TEX wasn’t able to find a good
way to break the paragraph. Un-
derfull denotes a loose line but as
long the badness values is below
10000 the result is probably ac-
ceptable.

Underfull \vbox ... while
\output is active

If a column contains an character
with an unusual depth, for example
a ‘(’, in the bottom line then this
message may show up. It usually
has no significance as long as the
value is not more than a few points.

LaTeX Warning: I moved some
lines to the next page

3

As mentioned above,multicols
sometimes screws up the foot-
note numbering. As a precaution,
whenever there is a footnote on
a page that wheremulticols had
to leave a remainder for the fol-
lowing page this warning appears.
Check the footnote numbering on
this page. If it turns out that it
is wrong you have to manually
break the page using\newpage or
\pagebreak[..] .

Floats and marginpars not
allowed inside ‘multicols’
environment!

This message appears if you try to
use the\marginpar command or
an unstared version of thefigure or
table environment. Such floats will
disappear!

Command \@footnotetext has
changed. Check if current
package is valid.

This message signals that the ker-
nel command \@footnotetext
does not have the definitionmulti-
cols assumes it should have. One
reason can be that themulticols

version does not fit the LATEX re-
lease version. However, a more
likely cause is that some other
package or class used redefines
this command (which it shouldn’t).
At the time of writing (97/11/16)
the AMS classes have this prob-
lem. The correct way to define the
layout for footnotes is to modify
the commands\@makefntext and
\@makefnmark . The kernel com-
mand\@footnotetext should not
be modified.

2.5 Tracing the output

To understand the reasoning behind
the decisions TEX makes when pro-
cessing amulticols environment, a
tracing mechanism is provided. If
you set the counter ‘multicols’ to a
positivehnumberi you then will get
some tracing information on the ter-
minal and in the transcript file:

hnumberi= 1. TEX will now tell
you, whenever it enters or leaves a
multicols environment, the number
of columns it is working on and its
decision about starting a new page

before or after the environment.

hnumberi= 2. In this case you also
get information from the balanc-
ing routine: the heights tried for
the left and right-most columns,
information about shrinking if the
\raggedcolumns declaration is in
force and the value of the ‘unbal-
ance’ counter if positive.

hnumberi= 3. Settinghnumberi to
this value will additionally trace
the mark handling algorithm. It
will show what marks are found,
what marks are considered, etc.
To fully understand this informa-
tion you will probably have to read
carefully trough the implementa-
tion.

hnumberi � 4. Settinghnumberi to
such a high value will additionally
place an\hrule into your output,
separating the part of text which
had already been considered on
the previous page from the rest.
Clearly this setting shouldnot be
used for the final output. It will
also activate even more debugging
code for mark handling.

3 Prefaces to older versions

3.1 Preface to version 1.4

Beside fixing some bugs as men-
tioned in themulticol.bug file this
new release enhances themulticols
environment by allowing for balanc-
ing in arbitrary contexts. It is now,
for example, possible to balance text
within a multicols or a minipage as
shown in 2 where amulticols envi-
ronment within aquote environment
was used. It is now even possible to
nestmulticols environments.

The only restriction to such inner
multicols environments (nested, or
within TEX’s internal vertical mode)
is that such variants will produce a

box with the balanced material in it,
so that they can not be broken across
pages or columns.

Additionally I rewrote the algo-
rithm for balancing so that it will
now produce slightly better results.

I updated the source documen-
tation but like to apologize in ad-
vance for some ‘left over’ parts that
slipped through the revision.

A note to people who like
to improve the balancing algo-
rithm of multicols: The balanc-
ing routine in now placed into
a single macro which is called

\balance@columns . This means
that one can easily try different bal-
ancing routines by rewriting this
macro. The interface for it is ex-
plained in table 1. There are sev-
eral improvements possible, one can
think of integrating the\badness
function of TEX3, define a faster al-
gorithm for finding the right col-
umn height, etc. If somebody thinks
he/she has an enhancement I would
be pleased to learn about it. But
please obey the copyright notice and
don’t changemulticol.dtx directly!

4

The macro\balance@columns that contains the
code for balancing gathered material is a macro
without parameters. It assumes that the mate-
rial for balancing is stored in the box\mult@box
which is a \vbox . It also “knows” about all
parameters set up by themulticols environment,
like \col@number , etc. It can also assume that
\@colroom is the still available space on the cur-
rent page.

When it finishes it must return the individ-
ual columns in boxes suitable for further pro-
cessing with \page@sofar . This means that

the left column should be stored in box reg-
ister \mult@gfirstbox , the next in register
\mult@firstbox + 2, . . . , only the last one
as an exception in register\mult@grightbox .
Furthermore it has to set up two the macros
\kept@firstmark and \kept@botmark to hold
the values for the first and bottom mark as found
in the individual columns. There are some helper
functions defined in section 5.1 which may be
used for this. Getting the marks right “by hand”
is non-trivial and it may pay off to first take a
look at the documentation and implementation of
\balance@columns below before trying anew.

Table 1: Interface description for\balance@columns

3.2 Preface to version 1.2

After the article about themulticols
environment was published inTUG-
boat 10#3, I got numerous requests
for these macros. However, I also
got a changed version of my style
file, together with a letter asking me
if I would include the changes to
get better paragraphing results in the
case of narrow lines. The main dif-
ferences to my original style option
were additional parameters (like
\multicoladjdemerits to be used
for \adjdemerits , etc.) which
would influence the line breaking al-
gorithm.

But actually resetting such pa-
rameters to zero or even worse to
a negative value won’t give better
line breaks inside themulticols envi-
ronment. TEXs line breaking algo-
rithm will only look at those possi-
ble line breaks which can be reached
without a badness higher than the
current value of\tolerance (or
\pretolerance in the first pass).
If this isn’t possible, then, as a last
resort, TEX will produce overfull
boxes. All those (and only those)

possible break points will be consid-
ered and finally the sequence which
results in the fewest demerits will be
chosen. This means that a value of
�1000 for \adjdemerits instructs
TEX to prefer visibly incompatible
lines instead of producing better line
breaks.

However, with TEX 3.0 it is
possible to get decent line breaks
even in small columns by setting
\emergencystretch to an appro-
priate value. I implemented a ver-
sion which is capable of running
both in the old and the new TEX (ac-
tually it will simply ignore the new
feature if it is not available). The
calculation of\emergencystretch
is probably incorrect. I made a few
tests but of course one has have
much more experience with the new
possibilities to achieve the maxi-
mum quality.

Version 1.1a had a nice ‘feature’:
the penalty for using the forbidden
floats was their ultimate removal
from LATEXs \@freelist so that af-
ter a few \marginpar s inside the

multicols environment floats where
disabled forever. (Thanks to Chris
Rowley for pointing this out.) I
removed this misbehaviour and at
the same time decided to allow at
least floats spanning all columns,
e.g., generated by thefigure* en-
vironment. You can see the new
functionality in table 2 which was
inserted at this very point. How-
ever single column floats are still
forbidden and I don’t think I will
have time to tackle this problem in
the near future. As an advice for
all who want to try: wait for TEX
3.0. It has a few features which
will make life much easier in multi-
column surroundings. Nevertheless
we are working here at the edge of
TEXs capabilities, really perfect so-
lutions would need a different ap-
proach than it was done in TEXs
page builder.

The text below is nearly un-
changed, I only added documenta-
tion at places where new code was
added.

5

\setemergencystretch : This is a hook for people
who like to play around. It is supposed to set the
\emergencystretch hdimeni register provided in the
new TEX 3.0. The first argument is the number of
columns and the second one is the current\hsize . At
the moment the default definition is 4pt � #1 , i.e. the

\hsize isn’t used at all. But maybe there are better for-
mulae.

\set@floatcmds : This is the hook for the experts who
like to implement a full float mechanism for themulti-
cols environment. The@in the name should signal that
this might not be easy.

Table 2: The new commands ofmulticol.sty version 1.2. Both commands might be removed if good solutions to these
open problems are found. I hope that these commands will prevent that nearly identical style files derived from this
one are floating around.

4 The Implementation

We are now switching to two-column output to show the abilities of this environment (and bad layout decisions).

4.1 The documentation driver file

The next bit of code contains the documentation driver
file for TEX, i.e., the file that will produce the documen-
tation you are currently reading. It will be extracted from
this file by thedocstrip program. Since this is the first
code in this file one can produce the documentation sim-
ply by running LATEX on the.dtx file.

1 h�driveri
2 \documentclass{ltxdoc}

We use thebalancingshow option when loadingmulti-
cols so that full tracing is produced. This has to be done
before thedoc package is loaded, sincedoc otherwise
requiresmulticols without any options.

3 \usepackage{multicol}
4 \usepackage{doc}

First we set up the page layout suitable for this article.
5 \setlength{\textwidth}{39pc}
6 \setlength{\textheight}{54pc}
7 \setlength{\parindent}{1em}
8 \setlength{\parskip}{0pt plus 1pt}
9 \setlength{\oddsidemargin}{0pc}

10 \setlength{\marginparwidth}{0pc}
11 \setlength{\topmargin}{-2.5pc}
12 \setlength{\headsep}{20pt}
13 \setlength{\columnsep}{1.5pc}

We want a rule between columns.
14 \setlength\columnseprule{.4pt}

We also want to ensure that a newmulticols environment
finds enough space at the bottom of the page.

15 \setlength\premulticols{6\baselineskip}

When balancing columns we disregard solutions that are
too bad. Also, if the last column is too bad we typeset it
without stretch.

16 \setcounter{columnbadness}{7000}
17 \setcounter{finalcolumnbadness}{7000}

The index is supposed to come out in four columns. And
we don’t show macro names in the margin.

18 \setcounter{IndexColumns}{4}
19 \let\DescribeMacro\SpecialUsageIndex
20 \let\DescribeEnv\SpecialEnvIndex
21 \renewcommand\PrintMacroName[1]{}
22 \CodelineIndex
23%\DisableCrossrefs % Partial index
24 \RecordChanges % Change log

Line numbers are very small for this article.

25 \renewcommand{\theCodelineNo}
26 {\scriptsize\rm\arabic{CodelineNo}}
27 \settowidth\MacroIndent{\scriptsize\rm 00\ }
28

29 \begin{document}
30 \typeout
31 {**
32 ˆˆJ* Expect some Under- and overfull boxes.
33 ˆˆJ**}
34 \DocInput{multicol.dtx}
35 \end{document}
36h=driveri

4.2 Identification and option processing

We start by identifying the package. Since it makes use
of features only available in LATEX 2ε we ensure that this
format is available. (Now this is done earlier in the file.)

37h�packagei

38% \NeedsTeXFormat{LaTeX2e}
39% \ProvidesPackage{multicol}[..../../..
40% v... multicolum formatting]

6

Next we declare options supported bymulticols.
Twocolumn mode andmulticols do not work together so
we warn about possible problems. However, since you
can revert to\onecolumn in which casemulticols does
work, we don’t make this an error.
41 \DeclareOption{twocolumn}
42 {\PackageWarning{multicol}{May not work
43 with the twocolumn option}}

Tracing is done using a counter. However it is also pos-
sible to invoke the tracing using the options declared be-
low.

44 \newcount\c@tracingmulticols
45 \DeclareOption{errorshow}
46 {\c@tracingmulticols\z@}
47 \DeclareOption{infoshow}
48 {\c@tracingmulticols\@ne}
49 \DeclareOption{balancingshow}
50 {\c@tracingmulticols\tw@}
51 \DeclareOption{markshow}
52 {\c@tracingmulticols\thr@@}
53 \DeclareOption{debugshow}
54 {\c@tracingmulticols5\relax}
55 \ProcessOptions

4.3 Starting and Ending themulticols Environment

As mentioned before, themulticols environment has one
mandatory argument (the number of columns) and up to
two optional ones. We start by reading the number of
columns into the\col@number register.

56 \def\multicols#1{\col@number#1\relax

If the user forgot the argument, TEX will complain about
a missing number at this point. The error recovery mech-
anism will then use zero, which isn’t a good choice in
this case. So we should now test whether everything is
okay. The minimum is two columns at the moment.

57 \ifnum\col@number<\tw@
58 \PackageWarning{multicol}%
59 {Using ‘\number\col@number’
60 columns doesn’t seem a good idea.ˆˆJ
61 I therefore use two columns instead}%
62 \col@number\tw@ \fi

We have only enough box registers for ten columns, so
we need to check that the user hasn’t asked for more.

63 \ifnum\col@number>10
64 \PackageError{multicol}%
65 {Too many columns}%
66 {Current implementation doesn’t
67 support more than 10 columns.%
68 \MessageBreak
69 I therefore use 10 columns instead}%
70 \col@number10 \fi

Within the environment we need a special version of the
kernel\@footnotetext command so we assign it right
at the beginning.

71 \let\@footnotetext\mult@footnotetext

Now we can safely look for the optional arguments.

72 \@ifnextchar[\mult@cols{\mult@cols[]}}

The\mult@cols macro grabs the first optional argument
(if any) and looks for the second one.

73 \def\mult@cols[#1]{\@ifnextchar[%

This argument should be ahdimeni denoting the min-
imum free space needed on the current page to start

the environment. If the user didn’t supply one, we use
\premulticols as a default.

74 {\mult@@cols{#1}}%
75 {\mult@@cols{#1}[\premulticols]}}

After removing all arguments from the input we are able
to start with\mult@@cols .

76 \def\mult@@cols#1[#2]{%

First thing we do is to decide whether or not this is an un-
bounded multicols environment, i.e. one that may split
across pages, or one that has to be typeset into a box. If
we are in TEX’s “inner” mode (e.g., inside a box already)
then we have a boxed version of multicols therefore we
set the@boxedmulticols switch to true. Themulticols
should start in vertical mode. If we are not already there
we now force it with\par since otherwise the test for
“inner” mode wouldn’t show if we are in a box.

77 \par
78 \ifinner \@boxedmulticolstrue

Otherwise we check\doublecol@number . This counter
is zero outside a multicols environment but positive in-
side (this happens a little later on). In the second case
we need to process the current multicols also in “boxed
mode” and so change the switch accordingly.

79 \else
80 \ifnum \doublecol@number>\z@
81 \@boxedmulticolstrue
82 \fi
83 \fi

Then we look to see if statistics are requested:

84 \mult@info\z@
85 {Starting environment with
86 \the\col@number\space columns%

In boxed mode we add some more info.

87 \if@boxedmulticols\MessageBreak
88 (boxed mode)\fi
89 }%

7

Then we measure the current page to see whether a use-
ful portion of the multicolumn environment can be type-
set. This routine might start a new page.

90 \enough@room{#2}%

Now we output the first argument and produce vertical
space above the columns. (Note that this argument corre-
sponds to the first optional argument of themulticols en-
vironment.) For many releases this argument was type-
set in a group to get a similar effect as\twocolumn[..]
where the argument is also implicitly surrounded by
braces. However, this conflicts with local changes done
by things like sectioning commands (which account for
the majority of commands used in that argument) mess-
ing up vertical spacing etc. later in the document so that
from version v1.5q on this argument is again typeset at
the outer level.

91 #1\par\addvspace\multicolsep

We start a new grouping level to hide all subsequent
changes (done in\prepare@multicols for example).

92 \begingroup
93 \prepare@multicols

If we are in boxed mode we now open a box to typeset
all material from the multicols body into it, otherwise we
simply go ahead.

94 \if@boxedmulticols
95 \setbox\mult@box\vbox\bgroup

We may have to reset some parameters at this point, per-
haps\@parboxrestore would be the right action but I
leave it for the moment.

96 \fi

We finish by suppressing initial spaces.

97 \ignorespaces}

Here is the switch and the box for “boxed” multicols
code.

98 \newif\if@boxedmulticols
99 \@boxedmulticolsfalse

100\newbox\mult@box

The \enough@room macro used above isn’t perfect
but works reasonably well in this context. We mea-
sure the free space on the current page by subtracting
\pagetotal from \pagegoal . This isn’t entirely correct
since it doesn’t take the ‘shrinking’ (i.e.\pageshrink)
into account. The ‘recent contribution list’ might
be nonempty so we start with\par and an explicit
\penalty .7 Actually, we use\addpenalty to ensure
that a following\addvspace will ‘see’ the vertical space
that might be present. The use of\addpenalty will have
the effect that all items from the recent contributions will
be moved to the main vertical list and the\pagetotal

value will be updated correctly. However, the penalty
will be placed in front of any dangling glue item with
the result that the main vertical list may already be over-
full even if TEX is not invoking the output routine.

101\def\enough@room#1{%

Measuring makes only sense when we are not in “boxed
mode” so the routine does nothing if the switch is true.

102 \if@boxedmulticols\else
103 \par

To empty the contribution list the first release contained
a penalty zero but this had the result that\addvspace
couldn’t detect preceding glue. So this was changed to
\addpenalty . But this turned out to be not enough as
\addpenalty will not add a penalty when@nobreak is
true. Therefore we force this switch locally to false. As
a result there may be a break between preceding text and
the start of a multicols environment, but this seems ac-
ceptable since there is the optional argument for exactly
this reason.

104 \bgroup\@nobreakfalse\addpenalty\z@\egroup
105 \page@free \pagegoal
106 \advance \page@free -\pagetotal

To be able to output the value we need to assign it to a
register first since it might be a register (default) in which
case we need to use\the or it might be a plain value in
which case\the would be wrong.

107 \@tempskipa#1\relax

Now we test whether tracing information is required:

108 \mult@info\z@
109 {Current page:\MessageBreak
110 height=%
111 \the\pagegoal: used \the\pagetotal
112 \space -> free=\the\page@free
113 \MessageBreak
114 needed \the\@tempskipa
115 \space(for #1)}%

Our last action is to force a page break if there isn’t
enough room left.

116 \ifdim \page@free <#1\newpage \fi
117 \fi}

When preparing for multicolumn output several things
must be done.

118\def\prepare@multicols{%

We start saving the current\@totalleftmargin and
then resetting the\parshape in case we are in-
side some list environment. The correct indenta-
tion for the multicols environment in such a case will
be produced by moving the result to the right by
\multicol@leftmargin later on. If we would use the

7See the documentation of\endmulticols for further details.

8

value of of \@totalleftmargin directly then lists in-
side themulticols environment could cause a shift of the
output.
119 \multicol@leftmargin\@totalleftmargin
120 \@totalleftmargin\z@
121 \parshape\z@

We also set the register\doublecol@number for later
use. This register should contain 2� \col@number . This
is also an indicator that we are within amulticols environ-
ment as mentioned above.
122 \doublecol@number\col@number
123 \multiply\doublecol@number\tw@
124 \advance\doublecol@number\mult@rightbox

125 \if@boxedmulticols
126 \let\l@kept@firstmark\kept@firstmark
127 \let\l@kept@botmark\kept@botmark
128 \global\let\kept@firstmark\@empty
129 \global\let\kept@botmark\@empty
130 \else

We add an empty box to the main vertical list to en-
sure that we catch any insertions (held over or inserted
at the top of the page). Otherwise it might happen
that the\eject is discarded without calling the output
routine. Inside the output routine we remove this box
again. Again this code applies only if we are on the
main vertical list and not within a box. However, it is
not enough to turn off interline spacing, we also have to
clear\topskip before adding this box, since\topskip
is always inserted before the first box on a page which
would leave us with an extra space of\topskip if multi-
cols start on a fresh sheet.
131 \nointerlineskip {\topskip\z@\null}%
132 \output{%
133 \global\setbox\partial@page\vbox
134 {%

Now we have to make sure that we catch one special sit-
uation which may result in loss of text! If the user has a
huge amount of vertical material within the first optional
argument that is larger then\premulticols and we are
near the bottom of the page then it can happen that not
the \eject is triggering this special output routine but
rather the overfull main vertical list. In that case we get
another breakpoint through the\eject penalty. As a re-
sult this special output routine would be called twice and
the contents of\partial@page , i.e. the material before
themulticols environment gets lost. There are several so-
lutions to avoid this problem, but for now we will simply
detect this and inform the user that he/she has to enlarge
the\premulticols by using a suitable value for the sec-
ond argument.
135h�checki
136 \ifvoid\partial@page\else

137 \PackageError{multicol}%
138 {Error saving partial page}%
139 {The part of the page before
140 the multicols environment was
141 nearly full withˆˆJthe result
142 that starting the environment
143 will produce an overfull
144 page. SomeˆˆJtext may be lost!
145 Please increase \premulticols
146 either generally or for this%
147 ˆˆJenvironment by specifying a
148 suitable value in the second
149 optional argument toˆˆJthe
150 multicols environment.}
151 \unvbox\partial@page
152 \box\last@line
153 \fi
154h=checki
155 \unvbox\@cclv
156 \global\setbox\last@line\lastbox
157 }%

Finally we need to record the marks that are present
within the\partial@page so that we can construct cor-
rect first and bottom marks later on. This is done by the
following code.

158 \prep@keptmarks

Finally we have to initialize\kept@topmark which
should ideally be initialized with the mark that is cur-
rent on “top” of this page. Unfortunately we can’t use
\topmark because this register will not always contain
what its name promises because LATEX sometimes calls
the output routine for float management.8 Therefore
we use the second best solution by initializing it with
\firstmark . In fact, for our purpose this doesn’t matter
as we use\kept@topmark only to initialize\firstmark
and \botmark of a following page if we don’t find any
marks on the current one.

159 \global\let\kept@topmark\firstmark
160 }\eject

The next thing to do is to assign a new value to\vsize .
LATEX maintains the free room on the page (i.e. the page
height without the space for already contributed floats)
in the register\@colroom . We must subtract the height
of \partial@page to put the actual free room into this
variable.

161 \advance\@colroom-\ht\partial@page

Then we have to calulate the\vsize value to use dur-
ing column assembly.\set@mult@vsize takes an argu-
ment which allows to make the setting local (\relax) or
global (\global). The latter variant is used inside the
output routine below. At this point here we have to make
a local change to\vsize because we want to get the

8During such a call the\botmark gets globally copied to\topmark by the TEX program.

9

original value for\vsize restored in case thismulticols
environment ends on the same page where it has started.

162 \set@mult@vsize\relax

Now we switch to a new\output routine which will be
used to put the gathered column material together.

163 \output{\multi@column@out}%

Finally we handle the footnote insertions. We have
to multiply the magnification factor and the extra skip
by the number of columns since each footnote reduces
the space for every column (remember that we have
pagewide footnotes). If, on the other hand, footnotes are
typeset at the very end of the document, our scheme still
works since\count\footins is zero then, so it will not
change. To allow even further customization the setting
of the\footins parameters is done in a separate macro.

164 \init@mult@footins

For the same reason (pagewide footnotes), thehdimeni
register controlling the maximum space used for foot-
notes isn’t changed. Having done this, we must reinsert
all the footnotes which are already present (i.e. those en-
countered when the material saved in\partial@page
was first processed). This will reduce the free space (i.e.
\pagetotal) by the appropriate amount since we have
changed the magnification factor, etc. above.

165 \reinsert@footnotes

All the code above was only necessary for the unre-
strictedmulticols version, i.e. the one that allows page
breaks. If we are within a box there is no point in setting
up special output routines or\vsize , etc.

166 \fi

But now we are coming to code that is necessary in all
cases. We assign new values to\vbadness , \hbadness
and\tolerance since it’s rather hard for TEX to produce
‘good’ paragraphs within narrow columns.

167 \vbadness\@Mi \hbadness5000
168 \tolerance\multicoltolerance

Since nearly always the first pass will fail we ignore it
completely telling TEX to hyphenate directly. In fact, we
now use another register to keep the value for the mul-
ticol pre-tolerance, so that a designer may allow to use
\pretolerance .

169 \pretolerance\multicolpretolerance

For use with the new TEX we set\emergencystretch
to \col@number � 4pt. However this is only a
guess so at the moment this is done in a macro

\setemergencystretch which gets the current\hsize
and the number of columns as arguments. Therefore
users are able to figure out their own formula.

170 \setemergencystretch\col@number\hsize

Another hook to allow people adding their own
extensions without making a new package is
\set@floatcmds which handles any redefinitions of
LATEXs internal float commands to work with themul-
ticols environment. At the moment it is only used to
redefine\@dblfloat and\end@dblfloat .

171 \set@floatcmds

Additionally, we advance \baselineskip by
\multicolbaselineskip to allow corrections for nar-
row columns.

172 \advance\baselineskip\multicolbaselineskip

The\hsize of the columns is given by the formula:

\linewidth � (\col@number �1)� \columnsep

\col@number

The formula above has changed from release to release.
We now start with the current value of\linewidth so
that the column width is properly calculated when we
are inside a minipage or a list or some other environ-
ment. This will be achieved with:

173 \hsize\linewidth \advance\hsize\columnsep
174 \advance\hsize-\col@number\columnsep
175 \divide\hsize\col@number

We also set\linewidth and\columnwidth to \hsize
In the past\columnwidth was left unchanged. This is
inconsistent, but\columnwidth is used only by floats
(which aren’t allowed in their current implementation)
and by the\footnote macro. Since we want pagewide
footnotes9 this simple trick saved us from rewriting the
\footnote macros. However, some applications refered
to \columnwidth as the “width of the current column”
to typeset displays (theamsmath package, for example)
and to allow the use of such applications together with
multicol this is now changed.

Before we change\linewidth to the new value
we record its old value in some register called
\full@width . This value is used later on when we pack-
age all columns together.

176 \full@width\linewidth
177 \linewidth\hsize
178 \columnwidth\hsize
179}

9I’m not sure that I really want pagewide footnotes. But balancing of the last page can only be achieved with this approach or with a multi-path
algorithm which is complicated and slow. But it’s a challenge to everybody to prove me wrong! Another possibility is to reimplement a small part
of the fire up procedure in TEX (the program). I think that this is the best solution if you are interested in complex page makeup, but it has the
disadvantage that the resulting program cannot be called TEX thereafter.

10

This macro is used to set up the parameters associated
with footnote floats. It can be redefined by applications
that require different amount of spaces when typesetting
footnotes.

180\def\init@mult@footins{%
181 \multiply\count\footins\col@number
182 \multiply\skip \footins\col@number
183}

Since we have to set\col@umber columns on one page,
each with a height of\@colroom , we have to assign
\vsize = \col@number � \@colroom in order to col-
lect enough material before entering the\output routine
again. In fact we have to add another(\col@number �
1)� (\baselineskip � \topskip) if you think about
it.

184\def\set@mult@vsize#1{%
185 \vsize\@colroom
186 \@tempdima\baselineskip
187 \advance\@tempdima-\topskip
188 \advance\vsize\@tempdima
189 \vsize\col@number\vsize
190 \advance\vsize-\@tempdima

But this might not be enough since we use\vsplit
later to extract the columns from the gathered material.
Therefore we add some ‘extra lines,’ the number depend-
ing on the value of the ‘multicols’ counter. The final
value is assigned globally if#1 is \global because we
want to use this macro later inside the output routine too.

191 #1\advance\vsize
192 \c@collectmore\baselineskip}

Here is the dimen register we need for saving away the
outer value of\@totalleftmargin .

193\newdimen\multicol@leftmargin

When the end of themulticols environment is sensed we
have to balance the gathered material. Depending on
whether or not we are inside a boxed multicol different
things must happen. But first we end the current para-
graph with a\par command.

194\def\endmulticols{\par
195 \if@boxedmulticols

In boxed mode we have to close the box in which we
have gathered all material for the columns.

196 \egroup

Now we call \balance@columns the routine that bal-
ances material stored in the box\mult@box .

197 \balance@columns

After balancing the result has to be returned by the com-
mand\page@sofar . But before we do this we reinsert
any marks found in box\mult@box .

198 \return@nonemptymark{first}%
199 \kept@firstmark
200 \return@nonemptymark{bot}%
201 \kept@botmark
202 \page@sofar

203 \global\let\kept@firstmark
204 \l@kept@firstmark
205 \global\let\kept@botmark
206 \l@kept@botmark
207h�marktracei
208 \mult@info\tw@
209 {Restore kept marks to\MessageBreak
210 first: \meaning\kept@firstmark
211 \MessageBreak bot\space\space:
212 \meaning\kept@botmark }%
213h=marktracei

This finishes the code for the “boxed” case.

214 \else

If we are in an unrestrictedmulticols environment we
end the current paragraph with\par but this isn’t suffi-
cient since TEXs pagebuilder will not totally empty the
contribution list.10 Therefore we must also add an ex-
plicit \penalty . Now the contribution list will be emp-
tied and, if its material doesn’t all fit onto the current
page then the output routine will be called before we
change it. At this point we need to use\penalty not
\addpenalty to ensure that a) the recent contributions
are emptied and b) that the very last item on the main
vertical list is a valid break point so that TEX breaks the
page in case it is overfull.

215 \penalty\z@

Now it’s safe to change the output routine in order to
balance the columns.

216 \output{\balance@columns@out}\eject

If the multicols environment body was completely empty
or if a multi-pagemulticols just ends at a page bound-
ary we have the unusual case that the\eject will have
no effect (since the main vertical list is empty)—thus no
output routine is called at all. As a result the material
preceding themulticols (stored in\partial@page will
get lost if we don’t take of this by hand.

217 \ifvbox\partial@page
218 \unvbox\partial@page\fi

10This once caused a puzzling bug where some of the material was balanced twice, resulting in some overprints. The reason was the\eject
which was placed at the end of the contribution list. Then thepagebuilder was called (an explicit\penalty will empty the contribution list), but
the line with the\eject didn’t fit onto the current page. It was then reconsidered after the output routine had ended, causing a second break after
one line.

11

After the output routine has acted we restore the kept
marks to their initial value.
219 \global\let\kept@firstmark\@empty
220 \global\let\kept@botmark\@empty
221h�marktracei
222 \mult@info\tw@
223 {Make kept marks empty}%
224h=marktracei
225 \fi

The output routine above will take care of the\vsize
and reinsert the balanced columns, etc. But it can’t rein-
sert the\footnotes because we first have to restore the
\footins parameter since we are returning to one col-
umn mode. This will be done in the next line of code;
we simply close the group started in\multicols .

To fix an obscure bug which is the result of the cur-
rent definition of the\begin . . . \end macros, we check
that we are still (logically speaking) in themulticols en-
vironment. If, for example, we forget to close some en-
vironment inside themulticols environment, the follow-
ing \endgroup would be incorrectly considered to be the
closing of this environment.
226 \@checkend{multicols}%
227 \endgroup

Now it’s time to return any footnotes if we are in unre-
stricted mode:
228 \if@boxedmulticols\else
229 \reinsert@footnotes
230 \fi

We also set the ‘unbalance’ counter to its default. This is
done globally since LATEX counters are always changed
this way.11

231 \global\c@unbalance\z@

We also take a look at the amount of free space on the
current page to see if it’s time for a page break. The ver-
tical space added thereafter will vanish if\enough@room
starts a new page.
232 \enough@room\postmulticols
233 \addvspace\multicolsep

If statistics are required we finally report that we have
finished everything.

234 \mult@info\z@
235 {Ending environment
236 \if@boxedmulticols
237 \space(boxed mode)\fi
238 }}

Let us end this section by allocating all the registers used
so far.

239\newcount\c@unbalance
240\newcount\c@collectmore

In the new LATEX release\col@number is already allo-
cated by the kernel, so we don’t allocate it again.

241%\newcount\col@number
242\newcount\doublecol@number
243\newcount\multicoltolerance
244\newcount\multicolpretolerance
245\newdimen\full@width
246\newdimen\page@free
247\newdimen\premulticols
248\newdimen\postmulticols
249\newskip\multicolsep
250\newskip\multicolbaselineskip
251\newbox\partial@page
252\newbox\last@line

And here are their default values:

253\c@unbalance = 0
254\c@collectmore = 0

To allow checking whether some macro is used within
themulticols environment the counter\col@number gets
a default of1 outside the the environment.

255\col@number = 1
256\multicoltolerance = 9999
257\multicolpretolerance = -1
258\premulticols = 50pt
259\postmulticols= 20pt
260\multicolsep = 12pt plus 4pt minus 3pt
261\multicolbaselineskip=0pt

4.4 The output routines

We first start with some simple macros. When typeset-
ting the page we save the columns either in the box reg-
isters 0, 2, 4,. . . (locally) or 1, 3, 5,. . . (globally). This is
PLAIN TEX policy to avoid an overflow of the save stack.

Therefore we define a\process@cols macro to help
us in using these registers in the output routines be-
low. It has two arguments: the first one is a number;
the second one is the processing information. It loops
starting with \count@=#1 (\count@ is a scratch regis-

ter defined in PLAIN TEX), processes argument#2, adds
two to \count@ , processes argument#2 again, etc. until
\count@ is higher than\doublecol@number . It might
be easier to understand it through an example, so we de-
fine it now and explain its usage afterwards.

262\def\process@cols#1#2{\count@#1\relax
263 \loop
264h�debugi
265 \typeout{Looking at box \the\count@}
266h=debugi

11Actually, we are still in a group started by the\begin macro, so\global must be used anyway.

12

267 #2%
268 \advance\count@\tw@
269 \ifnum\count@<\doublecol@number
270 \repeat}

We now define \page@sofar to give an example
of the \process@cols macro. \page@sofar should
output everything prepared by the balancing routine
\balance@columns .
271\def\page@sofar{%

\balance@columns prepares its output in the even num-
bered scratch box registers. Now we output the columns
gathered assuming that they are saved in the box regis-
ters 2 (left column), 4 (second column), . . . However, the
last column (i.e. the right-most) should be saved in box
register 0.12 First we ensure that the columns have equal
width. We use\process@cols for this purpose, starting
with \count@ = \mult@rightbox . Therefore\count@
loops through\mult@rightbox , \mult@rightbox +

2,. . . (to\doublecol@number).
272 \process@cols\mult@rightbox

We have to check if the box in question is void, because
the operation\wd hnumberi on a void box willnotchange
its dimension (sigh).
273 {\ifvoid\count@
274 \setbox\count@\hbox to\hsize{}%
275 \else
276 \wd\count@\hsize
277 \fi}%

Now we give some tracing information.
278 \mult@info\z@
279 {Column spec:\MessageBreak
280 (\the\multicol@leftmargin\space -->
281 \the\full@width\space = \the\hsize
282 \space x \the\col@number)%
283 }%

At this point we should always be in vertical mode.
284\ifvmode\else\errmessage{Multicol Error}\fi

Now we put all columns together in an\hbox of width
\full@width (shifting it by \multicol@leftmargin
to the right so that it will be placed correctly if we are
within a list environment)
285 \moveright\multicol@leftmargin
286 \hbox to\full@width{%

and separating the columns with a rule if desired.
287 \process@cols\mult@gfirstbox{\box\count@
288 \hss\vrule\@width\columnseprule\hss}%

As you will have noticed, we started with box register
\mult@gfirstbox (i.e. the left column). So this time
\count@ looped through 2, 4,. . . (plus the appropriate
offset). Finally we add box 0 and close the\hbox .
289 \box\mult@rightbox

The depths of the columns depend on their last lines. To
ensure that we will always get a similar look as far as the
rules are concerned we force the depth at least the depth
of a letter ‘p’.

290% \strut
291 \rlap{\phantom p}%
292}%
293}

Before we tackle the bigger output routines we define
just one more macro which will help us to find our way
through the mysteries later.\reinsert@footnotes will
do what its name indicates: it reinserts the footnotes
present in\footinbox so that they will be reprocessed
by TEX’s pagebuilder.

Instead of actually reinserting the footnotes we insert
an empty footnote. This will trigger insertion mecha-
nism as well and since the old footnotes are still in their
box and we are on a fresh page\skip footins should
be correctly taken into account.

294\def\reinsert@footnotes{\ifvoid\footins\else
295 \insert\footins{}\fi}

Now we can’t postpone the difficulties any longer. The
\multi@column@out routine will be called in two sit-
uations. Either the page is full (i.e. we have collected
enough material to generate all the required columns)
or a float or marginpar (or a\clearpage is sensed. In
the latter case the\outputpenalty is less than�10000,
otherwise the penalty which triggered the output routine
is higher. Therefore it’s easy to distinguish both cases:
we simply test this register.

296\def\multi@column@out{%
297 \ifnum\outputpenalty <-\@M

If this was a\clearpage , a float or a marginpar we call
\speci@ls

298 \speci@ls \else

otherwise we construct the final page. Let us now con-
sider the normal case. We have to\vsplit the columns
from the accumulated material in box 255. Therefore
we first assign appropriate values to\splittopskip and
\splitmaxdepth .

299 \splittopskip\topskip
300 \splitmaxdepth\maxdepth

Then we calculate the current column height (in
\dimen@). Note that the height of\partial@page is al-
ready subtracted from\@colroom so we can use its value
as a starter.

301 \dimen@\@colroom

12You will see the reason for this numbering when we look at the output routines\multi@column@out and\balance@columns@out .

13

But we must also subtract the space occupied by foot-
notes on the current page. Note that we first have to reset
the skip register to its normal value. Again, the actual
action is carried out in a utility macro, so that other ap-
plications can modify it.

302 \divide\skip\footins\col@number
303 \ifvoid\footins \else
304 \leave@mult@footins
305 \fi

Now we are able to\vsplit off all but the last column.
Recall that these columns should be saved in the box reg-
isters 2, 4,. . . (plus offset).

306 \process@cols\mult@gfirstbox{%
307 \setbox\count@
308 \vsplit\@cclv to\dimen@

After splitting we update the kept marks.

309 \set@keptmarks

If \raggedcolumns is in force we add avfill at the
bottom by unboxing the split box.

310 \ifshr@nking
311 \setbox\count@
312 \vbox to\dimen@
313 {\unvbox\count@\vfill}%
314 \fi
315 }%

Then the last column follows.

316 \setbox\mult@rightbox
317 \vsplit\@cclv to\dimen@
318 \set@keptmarks
319 \ifshr@nking
320 \setbox\mult@rightbox\vbox to\dimen@
321 {\unvbox\mult@rightbox\vfill}%
322 \fi

Having done this we hope that box 255 is emptied. If
not, we reinsert its contents.

323 \ifvoid\@cclv \else
324 \unvbox\@cclv
325 \penalty\outputpenalty

In this case a footnote that happens to fall into the left-
over bit will be typeset on the wrong page. Therefore we
warn the user if the current page contains footnotes. The
older versions ofmulticols produced this warning regard-
less of whether or not footnotes were present, resulting
in many unnecessary warnings.

326 \ifvoid\footins\else
327 \PackageWarning{multicol}%
328 {I moved some lines to
329 the next page.\MessageBreak
330 Footnotes on page
331 \thepage\space might be wrong}%
332 \fi

If the ‘tracingmulticols’ counter is 4 or higher we also add
a rule.
333 \ifnum \c@tracingmulticols>\thr@@
334 \hrule\allowbreak \fi
335 \fi

To get a correct marks for the current page we have
to (locally redefine\firstmark and \botmark . If
\kept@firstmark is non-empty then\kept@botmark
must be non-empty too so we can use their values. Oth-
erwise we use the value of\kept@topmark which was
first initialized when we gathered the\partical@page
and later on was updated to the\botmark for the preced-
ing page

336 \ifx\@empty\kept@firstmark
337 \let\firstmark\kept@topmark
338 \let\botmark\kept@topmark
339 \else
340 \let\firstmark\kept@firstmark
341 \let\botmark\kept@botmark
342 \fi

We also initalize\topmark with \kept@topmark . This
will make this mark okay for all middle pages of themul-
ticols environment.
343 \let\topmark\kept@topmark
344h�marktracei
345 \mult@info\tw@
346 {Use kept top mark:\MessageBreak
347 \meaning\kept@topmark
348 \MessageBreak
349 Use kept first mark:\MessageBreak
350 \meaning\kept@firstmark
351 \MessageBreak
352 Use kept bot mark:\MessageBreak
353 \meaning\kept@botmark
354 \MessageBreak
355 Produce first mark:\MessageBreak
356 \meaning\firstmark
357 \MessageBreak
358 Produce bot mark:\MessageBreak
359 \meaning\botmark
360 \@gobbletwo}%
361h=marktracei

With a little more effort we could have done better. If
we had, for example, recorded the shrinkage of the ma-
terial in \partial@page it would be now possible to
try higher values for\dimen@ (i.e. the column height)
to overcome the problem with the nonempty box 255.
But this would make the code even more complex so I
skipped it in the current implementation.

Now we use LATEX’s standard output mechanism.13

Admittedly this is a funny way to do it.

362 \setbox\@cclv\vbox{\unvbox\partial@page
363 \page@sofar}%

13This will produce a lot of overhead since both output routines are held in memory. The correct solution would be to redesign the whole output
routine used in LATEX.

14

The macro\@makecol adds all floats assigned for the
current page to this page.\@outputpage ships out the
resulting box. Note that it is just possible that such floats
are present even if we do not allow any inside amulticols
environment.
364 \@makecol\@outputpage

After the page is shipped out we have to prepare the
kept marks for the following page.\kept@firstmark
and \kept@botmark reinitilized by setting them to
\@empty . The value of\botmark is then assigned to
\kept@topmark .
365 \global\let\kept@topmark\botmark
366 \global\let\kept@firstmark\@empty
367 \global\let\kept@botmark\@empty
368h�marktracei
369 \mult@info\tw@
370 {(Re)Init top mark:\MessageBreak
371 \meaning\kept@topmark
372 \@gobbletwo}%
373h=marktracei

Now we reset\@colroom to \@colht which is LATEX’s
saved value of\textheight .
374 \global\@colroom\@colht

Then we process deferred floats waiting for their chance
to be placed on the next page.
375 \process@deferreds
376 \@whilesw\if@fcolmade\fi{\@outputpage
377 \global\@colroom\@colht
378 \process@deferreds}%

If the user is interested in statistics we inform him about
the amount of space reserved for floats.
379 \mult@info\@ne
380 {Colroom:\MessageBreak
381 \the\@colht\space
382 after float space removed
383 = \the\@colroom \@gobble}%

Having done all this we must prepare to tackle the next
page. Therefore we assign a new value to\vsize . New,
because\partial@page is now empty and\@colroom
might be reduced by the space reserved for floats.
384 \set@mult@vsize \global

The \footins skip register will be adjusted when the
output group is closed.
385 \fi}

This macro is used to subtract the amount of space oc-
cupied by footnotes for the current space from the space
available for the current column. The space current col-
umn is stored in\dimen@ . See above for the description
of the default action.
386\def\leave@mult@footins{%
387 \advance\dimen@-\skip\footins
388 \advance\dimen@-\ht\footins
389}

We left out two macros: \process@deferreds and
\speci@ls .

390\def\speci@ls{%
391 \ifnum\outputpenalty <-\@Mi

If we encounter a float or a marginpar in the current im-
plementation we simply warn the user that this is not al-
lowed. Then we reinsert the page and its footnotes.

392 \PackageWarning{multicol}%
393 {Floats and marginpars not
394 allowed inside ‘multicols’
395 environment!
396 \@gobble}%
397 \unvbox\@cclv\reinsert@footnotes

Additionally we empty the\@currlist to avoid later
error messages when the LATEX output routine is again
in force. But first we have to place the boxes back onto
the \@freelist . (\@elt s default is\relax so this is
possible with\xdef .)

398 \xdef\@freelist{\@freelist\@currlist}%
399 \gdef\@currlist{}%

If the penalty is�10001 it will come from a\clearpage
and we will execute\@doclearpage to get rid of any de-
ferred floats.

400 \else \@doclearpage \fi
401}

\process@deferreds is a simplified version of
LATEX’s \@startpage . We first call the macro
\@floatplacement to save the current user parameters
in internal registers. Then we start a new group and save
the \@deferlist temporarily in the macro\@tempb .

402\def\process@deferreds{%
403 \@floatplacement
404 \@tryfcolumn\@deferlist
405 \if@fcolmade\else
406 \begingroup
407 \let\@tempb\@deferlist

Our next action is to (globally) empty\@deferlist
and assign a new meaning to\@elt . Here\@scolelt
is a macro that looks at the boxes in a list to decide
whether they should be placed on the next page (i.e.
on \@toplist or \@botlist) or should wait for further
processing.

408 \gdef\@deferlist{}%
409 \let\@elt\@scolelt

Now we call\@tempb which has the form

\@elt hbox registeri\@elt hbox registeri. . .

So \@elt (i.e. \@scolelt) will distribute the boxes to
the three lists.

410 \@tempb \endgroup
411 \fi}

15

The\raggedcolumns and\flushcolumns declarations
are defined with the help of a new\if... macro.

412\newif\ifshr@nking

The actual definitions are simple: we just switch totrue
or false depending on the desired action. To avoid ex-
tra spaces in the output we enclose these changes in
\@bsphack . . .\@esphack .

413\def\raggedcolumns{%
414 \@bsphack\shr@nkingtrue\@esphack}
415\def\flushcolumns{%
416 \@bsphack\shr@nkingfalse\@esphack}

Now for the last part of the show: the column balancing
output routine. Since this code is called with an explicit
penalty (\eject) there is no need to check for something
special (eg floats). We start by balancing the material
gathered.

417\def\balance@columns@out{%

For this we need to put the contents of box 255 into
\mult@box .

418 \setbox\mult@box\vbox{\unvbox\@cclv}%
419 \balance@columns

This will bring us into the position to apply
\page@sofar . But first we have to set\vsize to a value
suitable for one column output.

420 \global\vsize\@colroom
421 \global\advance\vsize\ht\partial@page

Then we\unvbox the \partial@page (which may be
void if we are not prcessing the first page of thismulti-
cols environment.

422 \unvbox\partial@page

Then we return the first and bottom mark and the gath-
ered material to the main vertical list.

423 \return@nonemptymark{first}\kept@firstmark
424 \return@nonemptymark{bot}\kept@botmark
425 \page@sofar

We need to add a penalty at this point which allows to
break at this point since calling the output routine may
have removed the only permissible break point thereby
“glueing” any following skip to the balanced box. In
case there are any weird settings for\multicolsep etc.
this could produce funny results.

426 \penalty\z@
427}

As we already know, reinserting of footnotes will be
done in the macro\endmulticols .

This macro now does the actual balancing.

428\def\balance@columns{%

We start by setting the kept marks by updating them with
any marks from this box. This has to be donebeforewe

add a penalty of�10000 to the top of the box, otherwise
only an empty box will be considered.
429 \get@keptmarks\mult@box

We then contine by resetting trying to remove any dis-
cardable stuff at the end of\mult@box . This is rather
experimental. We also add a forced break point at the
very beginning, so that we can split the box to height
zero later on, thereby adding a known\splittopskip
glue at the beginning.
430 \setbox\mult@box\vbox{%
431 \penalty-\@M
432 \unvbox\mult@box
433 \remove@discardable@items
434 }%

Then follow values assignments to get the\vsplit ting
right. We use the natural part of\topskip as the natural
part for \splittopskip and allow for a bit of under-
shoot and overshoot by adding some stretch and shrink.

435 \@tempdima\topskip
436 \splittopskip\@tempdima
437 \@plus\multicolundershoot
438 \@minus\multicolovershoot
439 \splitmaxdepth\maxdepth

The next step is a bit tricky: when TEX assembles mate-
rial in a box, the first line isn’t preceded by interline glue,
i.e. there is no parameter like\boxtopskip in TEX. This
means that the baseline of the first line in our box is at
some unpredictable point depending on the height of the
largest character in this line. But of course we want all
columns to align properly at the baselines of their first
lines. For this reason we have opened\mult@box with
a \penalty -10000. This will now allow us to split off
from \mult@box a tiny bit (in fact nothing since the first
possible break-point is the first item in the box). The
result is that\splittopskip is inserted at the top of
\mult@box which is exactly what we like to achieve.
440 \setbox\@tempboxa\vsplit\mult@box to\z@

Next we try to find a suitable starting point for the cal-
culation of the column height. It should be less than the
height finally chosen, but large enough to reach this fi-
nal value in only a few iterations. The formula which is
now implemented will try to start with the nearest value
which is a multiple of\baselineskip . The coding is
slightly tricky in TEX and there are perhaps better ways
. . .
441 \@tempdima\ht\mult@box
442 \advance\@tempdima\dp\mult@box
443 \divide\@tempdima\col@number

The code above sets\@tempdima to the length of a col-
umn if we simply divide the whole box into equal pieces.
To get to the next lower multiple of\baselineskip
we convert this dimen to a number (the number of

16

scaled points) then divide this by\baselineskip (also
in scaled points) and then multiply this result with
\baselineskip assigning the result to\dimen@ . This
makes\dimen@ � to \@tempdimena .

444 \count@\@tempdima
445 \divide\count@\baselineskip
446 \dimen@\count@\baselineskip

Next step is to correct our result by taking into account
the difference between\topskip and\baselineskip .
We start by adding\topskip ; if this makes the result too
large then we have to subtract one\baselineskip .

447 \advance\dimen@\topskip
448 \ifdim \dimen@ >\@tempdima
449 \advance\dimen@-\baselineskip
450 \fi

At the user’s request we start with a higher value (or
lower, but this usually only increases the number of
tries).

451 \advance\dimen@\c@unbalance\baselineskip

We type out statistics if we were asked to do so.

452 \mult@info\@ne
453 {Balance columns\on@line:
454 \ifnum\c@unbalance=\z@\else
455 (off balance=\number\c@unbalance)\fi
456 \@gobbletwo}%

But we don’t allow nonsense values for a start.

457 \ifnum\dimen@<\topskip
458 \mult@info\@ne
459 {Start value
460 \the\dimen@ \space ->
461 \the\topskip \space (corrected)}%
462 \dimen@\topskip
463 \fi

Now we try to find the final column height. We start by
setting\vbadness to infinity (i.e. 10000) to suppress un-
derfull box reports while we are trying to find an accept-
able solution. We do not need to do it in a group since at
the end of the output routine everything will be restored.
The setting of the final columns will nearly always pro-
duce underfull boxes with badness 10000 so there is no
point in warning the user about it.

464 \vbadness\@M

We also allow for overfull boxes while we trying to split
the columns.

465 \vfuzz \col@number\baselineskip

The variable\last@try will hold the dimension used in
the previous trial splitting. We initialize it with a nega-
tive value.

466 \last@try-\p@
467 \loop

In order not to clutter up TEX’s valuable main mem-
ory with things that are no longer needed, we empty

all globally used box registers. This is necessary
if we return to this point after an unsuccessful trial.
We use\process@cols for this purpose, starting with
\mult@grightbox . Note the extra braces around
this macro call. They are needed since PLAIN TEX’s
\loop . . .\repeat mechanism cannot be nested on the
same level of grouping.

468 {\process@cols\mult@grightbox
469 {\global\setbox\count@
470 \box\voidb@x}}%

The contents of box\mult@box are now copied globally
to box \mult@grightbox . (This will be the right-most
column, as we shall see later.)

471 \global\setbox\mult@grightbox
472 \copy\mult@box

We start with the assumption that the trial will be suc-
cessful. If we end up with a solution that is too bad we
settoo@bad to true .

473h�badnessi
474 \global\too@badfalse
475h=badnessi

Using \vsplit we extract the other columns from box
register \mult@grightbox . This leaves box register
\mult@box untouched so that we can start over again if
this trial was unsuccessful.

476 {\process@cols\mult@firstbox{%
477 \global\setbox\count@
478 \vsplit\mult@grightbox to\dimen@

After every split we check the badness of the resulting
column, normally the amount of extra white in the col-
umn.

479h�badnessi
480 \ifnum\c@tracingmulticols>\@ne
481 \@tempcnta\count@
482 \advance\@tempcnta-\mult@grightbox
483 \divide\@tempcnta \tw@
484 \message{ˆˆJColumn
485 \number\@tempcnta\space
486 badness: \the\badness\space}%
487 \fi

If this badness is larger than the allowed column badness
we reject this solution by settingtoo@bad to true .

488 \ifnum\badness>\c@columnbadness
489 \ifnum\c@tracingmulticols>\@ne
490 \message{too bad
491 (>\the\c@columnbadness)}%
492 \fi
493 \global\too@badtrue
494 \fi
495h=badnessi
496 }}%

17

There is one subtle point here: while all other
constructed boxes have a depth that is determined
by \splitmaxdepth the last box will get a natural
depth disregarding the original setting and the value
of \splitmaxdepth or \boxmaxdepth . This means
that we may end up with a very large depth in box
\mult@grightbox which would make the result of the
testing incorrect. So we change the value by unboxing
the box into itself.
497 \boxmaxdepth\maxdepth
498 \global\setbox\mult@grightbox
499 \vbox{\unvbox\mult@grightbox}%

We also save a copy\mult@firstbox at its “natural”
size for later use.

500 \setbox\mult@nat@firstbox
501 \vbox{\unvcopy\mult@firstbox}%

After \process@cols has done its job we have the fol-
lowing situation:

box \mult@rightbox � all material
box \mult@gfirstbox � first column

box \mult@gfirstbox +2 � second column
...

...
box \mult@grightbox � last column

We report the height of the first column, in brackets the
natural size is given.

502 \ifnum\c@tracingmulticols>\@ne
503 \message{ˆˆJFirst column
504 = \the\dimen@\space
505 (\the\ht\mult@nat@firstbox)}\fi

If \raggedcolumns is in force older releases of this file
also shrank the first column to its natural height at this
point. This was done so that the first column doesn’t run
short compared to later columns but it is actually produc-
ing incorrect results (overprinting of text) in boundary
cases, so since version v1.5q\raggedcolumns means
allows for all columns to run slightly short.

506% \ifshr@nking
507% \global\setbox\mult@firstbox
508% \copy\mult@nat@firstbox
509% \fi

Then we give information about the last column.14

510 \ifnum\c@tracingmulticols>\@ne
511 \message{<> last column =
512 \the\ht\mult@grightboxˆˆJ}%

Some tracing code that we don’t compile into the pro-
duction version unless asked for. It will produce huge
listings of the boxes involved in balancing in the tran-
script file.

513h�debugi

514 \ifnum\c@tracingmulticols>4
515 {\showoutput
516 \batchmode
517 \process@cols\@ne
518 {\showbox\count@}}%
519 \errorstopmode
520 \fi
521h=debugi
522 \fi

We check whether our trial was successful. The test used
is very simple: we merely compare the first and the last
column. Thus the intermediate columns may be longer
than the first if\raggedcolumns is used. If the right-
most column is longer than the first then we start over
with a larger value for\dimen@ .

523 \ifdim\ht\mult@grightbox >\dimen@

If the height of the last box is too large we mark this trial
as unsuccessful.

524h�badnessi
525 \too@badtrue
526 \else

Otherwise we have a valid solution. In this case we take
a closer look at the last column to decide if this col-
umn should be made as long as all other columns or if
it should be allowed to be shorter. For this we first have
to rebox the column into a box of the appropriate height.
If tracing is enabled we then display the badness for this
box.

527 \global\setbox\mult@grightbox
528 \vbox to\dimen@
529 {\unvbox\mult@grightbox}%
530 \ifnum\c@tracingmulticols>\@ne
531 \message{Final badness:
532 \the\badness}%
533 \fi

We then compare this badness with the allowed badness
for the final column. If it does not exceed this value we
use the box, otherwise we rebox it once more and add
some glue at the bottom.

534 \ifnum\badness>\c@finalcolumnbadness
535 \global\setbox\mult@grightbox
536 \vbox to\dimen@
537 {\unvbox\mult@grightbox\vfill}%
538 \ifnum\c@tracingmulticols>\@ne
539 \message{ setting natural
540 (> \the\c@finalcolumnbadness)}%
541 \fi
542 \fi
543 \fi

14With TEX version 3.141 it is now possible to use LATEX’s \newlinechar in the \message command, but people with older TEX versions will
now getˆˆJ instead of a new line on the screen.

18

544 \ifdim\ht\mult@nat@firstbox<\dimen@
545 \ifdim\ht\mult@nat@firstbox>\last@try
546 \too@badtrue
547 \dimen@\ht\mult@nat@firstbox
548 \last@try\dimen@
549 \advance\dimen@-\p@
550 \fi
551 \fi

Finally the switchtoo@bad is tested. If it was made
true either earlier on or due to a rightmost column be-
ing too large we try again with a slightly larger value for
\dimen@ .
552 \iftoo@bad
553h=badnessi
554 \advance\dimen@\p@
555 \repeat

At that point \dimen@ holds the height that was de-
termined by the balancing loop. If that height for the
columns turns out to be larger than the available space
(which is \@colroom) we sqeeze the columns into the
space assuming that they will have enough shrinkability
to allow this.15

556 \ifdim\dimen@>\@colroom
557 \dimen@\@colroom
558 \fi

Then we move the contents of the odd-numbered box
registers to the even-numbered ones, shrinking them if
requested. We have to use\vbox not \vtop (as it was
done in the first versions) since otherwise the resulting
boxes will have no height (TEXbook page 81). This
would mean that extra\topskip is added when the
boxes are returned to the page-builder via\page@sofar .

559 \process@cols\mult@rightbox
560 {\@tempcnta\count@
561 \advance\@tempcnta\@ne
562 \setbox\count@\vbox to\dimen@
563 {%

564 \vskip \z@
565 \@plus-\multicolundershoot
566 \@minus-\multicolovershoot
567 \unvbox\@tempcnta
568 \ifshr@nking\vfill\fi}}%
569}

4.5 The box allocations

Early releases of these macros used the first box registers
0, 2, 4,. . . for global boxes and 1, 3, 5,. . . for the corre-
sponding local boxes. (You might still find some traces
of this setup in the documentation, sigh.) This produced
a problem at the moment we had more than 5 columns
because then officially allocated boxes were overwritten
by the algorithm. The new release now uses private box
registers
570\newbox\mult@rightbox
571\newbox\mult@grightbox
572\newbox\mult@gfirstbox

573\newbox\mult@firstbox
574\newbox\@tempa\newbox\@tempa
575\newbox\@tempa\newbox\@tempa
576\newbox\@tempa\newbox\@tempa
577\newbox\@tempa\newbox\@tempa
578\newbox\@tempa\newbox\@tempa
579\newbox\@tempa\newbox\@tempa
580\newbox\@tempa\newbox\@tempa
581\newbox\@tempa\newbox\@tempa
582\newbox\@tempa
583\let\@tempa\relax

5 New macros and hacks for version 1.2

If we don’t use TEX 3.0 \emergencystretch is un-
defined so in this case we simply add it as an unused
hdimeni register.
584\@ifundefined{emergencystretch}
585 {\newdimen\emergencystretch}{}

My tests showed that the following formula worked
pretty well. Nevertheless the\setemergencystretch
macro also gets\hsize as second argument to enable
the user to try different formulae.
586\def\setemergencystretch#1#2{%
587 \emergencystretch 4pt
588 \multiply\emergencystretch#1}

Even if this should be used as a hook we use a@in the
name since it is more for experts.

589\def\set@floatcmds{%
590 \let\@dblfloat\@dbflt
591 \def\end@dblfloat{\par
592 \vskip\z@
593 \egroup
594 \color@endbox
595 \@largefloatcheck
596 \outer@nobreak

15This might be wrong, since the shrinkability that accounts for the amount of material might be present only in some columns. But it is better
to try then to give up directly.

19

This is cheap (defering the floats until after the current
page) but any other solution would go deep into LATEX’s
output routine and I don’t like to work on it until I know
which parts of the output routine have to be reimple-
mented anyway for LATEX3.

597 \ifnum\@floatpenalty<\z@

We have to add the float to the\@deferlist because
we assume that outside themulticols environment we are

in one column mode. This is not entirely correct, I al-
ready used themulticols environment inside of LATEXs
\twocolumn declaration but it will do for most appli-
cations.
598 \@cons\@deferlist\@currbox
599 \fi
600 \ifnum\@floatpenalty=-\@Mii
601 \@Esphack
602 \fi}}

5.1 Maintaining the mark registers

This section contains the routines that set the marks so
that they will be handled correctly. They have been in-
troduced with version 1.4.

First thing we do is to reserve three macro names to hold
the replacement text for TEX’s primitives \firstmark ,
\botmark and\topmark . We initialize the first two to be
empty and\kept@topmark to contain two empty pair of
braces. This is necessary since\kept@topmark is sup-
posed to contain the last mark from a preceding page and
in LATEX any “real” mark must contain two parts repre-
senting left and right mark information.
603\def\kept@topmark{{}{}}
604\let\kept@firstmark\@empty
605\let\kept@botmark\@empty

Sometimes we want to return the value of a “kept” mark
into a \mark node on the main vertical list. This is done
by the function\return@nonemptymark . As the name
suggests it only acts if the replacement text of the kept
mark is non-empty. This is done to avoid adding an
empty mark when no mark was actually present. If we
would nevertheless add such a mark it would be regarded
as a valid\firstmark later on.
606\def\return@nonemptymark#1#2{%
607 \ifx#2\@empty
608 \else

For debugging purposes we take a look at the value of
the kept mark that we are about to return. This code will
get stripped out for production.
609h�marktracei
610 \mult@info\tw@
611 {Returned #1 mark:\MessageBreak
612 \meaning#2}%
613% \nobreak
614% \fi
615h=marktracei

Since the contents of the mark may be arbitrary LATEX
code we better make sure that it doesn’t get expanded
any further. (Some expansion have been done already

during the execution of\markright or \markboth .) We
therefore use the usual mechanism of a toks register to
prohibit expansion.16

616 \toks@\expandafter{#2}% \mark{\the\toks@}%

We don’t want any breakpoint between such a returned
mark and the following material (which is usually just
the box where the mark came from).

617 \nobreak
618 \fi}

If we have some material in a box register we may want
to get the first and the last mark out of this box. This can
be done with\get@keptmarks which takes one argu-
ment: the box register number or its nick name defined
by \newbox .

619\def\get@keptmarks#1{%

For debugging purposes we take a look at the current di-
mensions of the box since in earlier versions of the code
I made some mistakes in this area.

620h�debugi
621 \typeout{Mark box #1 before:
622 ht \the\ht#1, dp \the\dp#1}%
623h=debugi

Now we open a new group an locally copy the box to
itself. As a result any operation, i.e.\vsplit , will only
have a local effect. Without this trick the box content
would get lost up to the level where the last assignment
to the box register was done.

624 \begingroup
625 \vbadness\@M
626 \setbox#1\copy#1%

Now we split the box to the maximal possible dimen-
sion. This should split off the full contents of the box
so that effectively everything is split off. As a result
\splitfirstmark and\splitbotmark will contain the
first and last mark in the box respectively.

627 \setbox#1\vsplit#1to\maxdimen

16Due to the current definition of\markright etc. it wouldn’t help to define the\protect command to prohibit expansion as any\protect has
already vanished due to earlier expansions.

20

Therefore we can now set the kept marks which is a
global operation and afterwards close the group. This
will restore the original box contents.

628 \set@keptmarks
629 \endgroup

For debugging we take again a look at the box dimension
which shouldn’t have changed.

630h�debugi
631 \typeout{Mark box #1 \space after:
632 ht \the\ht#1, dp \the\dp#1}%
633h=debugi
634}

The macro \set@keptmarks is responsible for set-
ting \kept@firstmark and\kept@botmark , by check-
ing the current values for\splitfirstmark and
\splitbotmark .

635\def\set@keptmarks{%

If \kept@firstmark is empty we assume that it isn’t set.
This is strictly speaking not correct as we loose the abil-
ity to have marks that are explicitly empty, but for stan-
dard LATEX application it is sufficient. If it is non-empty
we don’t change the value—within the output routines it
will then be restored to\@empty .

636 \ifx\kept@firstmark\@empty

We now put the contents of\splitfirstmark into
\kept@firstmark . In the case that there wasn’t any
mark at all \kept@firstmark will not change by that
operation.

637 \expandafter\gdef\expandafter
638 \kept@firstmark
639 \expandafter{\splitfirstmark}%

When debugging we show the assignment but only when
something actually happened.

640h�marktracei
641 \ifx\kept@firstmark\@empty\else
642 \mult@info\tw@
643 {Set kept first mark:\MessageBreak
644 \meaning\kept@firstmark%
645 \@gobbletwo}%
646 \fi
647h=marktracei
648 \fi

We always try to set the bottom mark to the
\splitbotmark but of course only when there has been
a \splitbotmark at all. Again, we assume that an
empty\splitbotmark means that the split off box part
didn’t contain any marks at all.

649 \expandafter\def\expandafter\@tempa
650 \expandafter{\splitbotmark}%
651 \ifx\@tempa\@empty\else
652 \global\let\kept@botmark\@tempa
653h�marktracei

654 \mult@info\tw@
655 {Set kept bot mark:\MessageBreak
656 \meaning\kept@botmark%
657 \@gobbletwo}%
658h=marktracei
659 \fi}%

The \prep@keptmarks function is used to initialize the
kept marks from the contents of\partial@page , i.e. the
box that holds everything from the top of the current
page prior to starting themulticols environment. How-
ever, such a box is only available if we are not producing
a boxedmulticols.
660\def\prep@keptmarks{%
661 \if@boxedmulticols \else
662 \get@keptmarks\partial@page
663 \fi}

664\def\remove@discardable@items{%
665h�debugi
666 \edef\@tempa{s=\the\lastskip,
667 p=\the\lastpenalty,
668 k=\the\lastkern}%
669 \typeout\@tempa
670h=debugi
671 \unskip\unpenalty\unkern
672h�debugi
673 \edef\@tempa{s=\the\lastskip,
674 p=\the\lastpenalty,
675 k=\the\lastkern}%
676 \typeout\@tempa
677h=debugi
678 \unskip\unpenalty\unkern
679h�debugi
680 \edef\@tempa{s=\the\lastskip,
681 p=\the\lastpenalty,
682 k=\the\lastkern}%
683 \typeout\@tempa
684h=debugi
685 \unskip\unpenalty\unkern
686h�debugi
687 \edef\@tempa{s=\the\lastskip,
688 p=\the\lastpenalty,
689 k=\the\lastkern}%
690 \typeout\@tempa
691h=debugi
692 \unskip\unpenalty\unkern
693}

694h�badnessi
695\newif\iftoo@bad

696\newcount\c@columnbadness
697\c@columnbadness=10000
698\newcount\c@finalcolumnbadness
699\c@finalcolumnbadness=9999
700

21

701\newdimen\last@try
702

703\newdimen\multicolovershoot
704\multicolovershoot=2pt
705\newdimen\multicolundershoot
706\multicolundershoot=2pt
707\newbox\mult@nat@firstbox
708h=badnessi

A helper for producing info messages

709\def\mult@info#1#2{%
710 \ifnum\c@tracingmulticols>#1%
711 \GenericWarning
712 {(multicol)\@spaces\@spaces}%
713 {Package multicol: #2}%
714 \fi
715}

6 Fixing the \columnwidth

If we store the current column width in\columnwidth
we have to redefine the internal\@footnotetext macro
to use\textwidth for the width of the footnotes rather
then using the original definition.

We start by checking that the kernel definition hasn’t
changed. At the time of writing (97/11/16) this will re-
sult in a warning if this package is used together with the
amsart class as the latter redefines that kernel command
unnecessarily. This is unfortunate but can’t be avoided at
the moment—the AMS class is scheduled to be updated.
716\CheckCommand\@footnotetext[1]{%
717 \insert\footins{%
718 \reset@font\footnotesize
719 \interlinepenalty\interfootnotelinepenalty
720 \splittopskip\footnotesep
721 \splitmaxdepth \dp\strutbox
722 \floatingpenalty \@MM
723 \hsize\columnwidth \@parboxrestore
724 \protected@edef\@currentlabel{%
725 \csname p@footnote\endcsname\@thefnmark
726 }%
727 \color@begingroup
728 \@makefntext{%

729 \rule\z@\footnotesep
730 \ignorespaces#1\@finalstrut\strutbox}%
731 \color@endgroup}}

Now follows the definition we use for footnotes within
the multicols environment which differs only in the
initialization for \hsize .

732\newcommand\mult@footnotetext[1]{%
733 \insert\footins{%
734 \reset@font\footnotesize
735 \interlinepenalty\interfootnotelinepenalty
736 \splittopskip\footnotesep
737 \splitmaxdepth \dp\strutbox
738 \floatingpenalty \@MM
739 \hsize\textwidth \@parboxrestore
740 \protected@edef\@currentlabel{%
741 \csname p@footnote\endcsname\@thefnmark
742 }%
743 \color@begingroup
744 \@makefntext{%
745 \rule\z@\footnotesep
746 \ignorespaces#1\@finalstrut\strutbox}%
747 \color@endgroup}}

7 Further extensions

This section does contain code for extensions added to
this package over time. Not all of them may be active,
some might sit dormant and wait for being activated in
some later release.

7.1 Not balancing the columns

This is fairly trivial to implement. we just have to dis-
able the balancing output routine and replace it by the
one that ships out the other pages. This was suggested
by Matthias Clasen.

748h�nobalancei
749 \@namedef{multicols*}{%

If we are not on the main galley, i.e., inside a box of
some sort, that approach will not work since we don’t

have a vertical size for the box so we better warn that we
balance anyway.

750 \ifinner
751 \PackageWarning{multicol}%
752 {multicols* inside a box does
753 not make sense.\MessageBreak
754 Going to balance anyway}%
755 \else
756 \let\balance@columns@out
757 \multi@column@out
758 \fi
759 \begin{multicols}
760}

When ending the environment we simply end the inner
multicols environment, except that we better also stick

22

in some stretchable vertical glue so that the last column
still containing text is not vertically stretched out.
761 \@namedef{endmulticols*}{\vfill
762 \end{multicols}}
763h=nobalancei
764h=packagei

23

