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Abstract

This thesis reports the results of ab initio calculations performed using AIMPRO,

a local-spin-density-functional, real-space cluster code. The clusters are typically

70-200 atoms in size and are all hydrogen terminated to passivate the surface dan-

gling bonds. Using this approach a large number of defects have been examined in

diamond, silicon, and gallium arsenide.

Defects in diamond are of great interest from an optical point of view, and the

properties of a range of vacancy-impurity complexes are examined in detail. Syn-

thetic diamonds grown using transition metal catalysts exhibit pronounced optical

features which have been correlated with nickel. Reported here are the structures

of Ni point defects and Ni-impurity complexes.

Transition metals are also important impurities in Si due to the device implica-

tions. Substitutional Ni undergoes a subtle Jahn-Teller distortion in the negative

charge state, which is reproduced in these calculations. Ni-H2 complexes are also

reported.

Finally, the use of C as an acceptor in GaAs has many advantages such as

its low diffusivity and samples can be doped with high concentrations. However,

C readily complexes with H to form electrically inactive centres. Reported here

are the results of a study of the anharmonicity of the C-H stretch mode and the

structures of di-carbon-hydrogen complexes that exhibit strongly polarised local

vibrational modes.
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Jones, J. Goss, and S. Öberg, Phys. Rev. B 54, 5485 (1996).

7. ‘The nitrogen-pair oxygen defect in Silicon’, F. Berg Rasmussen, S. Öberg, R.
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Jones, C. Ewels, J. Goss, J. Miro, and P. Deák, E-MRS, Strasbourg, (1995).

15. ‘H passivated defects in InP’, C. P. Ewels, S. Öberg, P. R. Briddon, J. Goss,
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and F. Berg Rasmussen, Semiconductor Science and Technology 9, 2145-48,

(1994).

18. ‘Ab Initio Calculations of Anharmonicity of the C-H stretch mode in HCN

and GaAs’, R. Jones, J. Goss, C. Ewels, and S. Öberg, Phys. Rev. B 50,
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‘Of bell or knocker there was no sign; through these frowning walls and

dark window openings it was not likely that my voice could penetrate.

The time I waited seemed endless, and I felt doubts and fears crowding

upon me. What sort of place had I come to, and among what kind of

people? What sort of grim adventure was it on which I had embarked?’

Extract from ‘Dracula’, Bram Stoker.



Chapter 1

Introduction

Beatrice: ‘You kill me to deny it, but a man of science hath no better

grasp of English than a lawyer doth ethics.’

‘Much Ado About Nothing’, William Shakespeare.

Presented within this thesis are the results of first principles calculations of

the geometry, electronic structure, and optical properties of a variety of defects in

diamond, silicon and GaAs.

‘First principles’ refers to the fact that no experimental data is required as in-

put for the calculations, except for the atomic numbers of the constituent atoms.

This is in contrast to a number of alternative methods, such as the ‘complete ne-

glect of differential overlap’ (CNDO) and similar approximations (INDO, MNDO,

MINDO, etc.) which use (for example) ionisation energies and electron affinities to

parameterise some of the integrals. Simple potential methods such as those due to

Keating [1] and Tersoff [2] are derived from bulk properties. These have the advan-

tage that they can be used to treat large systems very quickly, but suffer from the

fact that the potentials are not sufficiently transferable: that is they do not describe

atomic environments that differ very much from that of bulk. It is therefore highly

desirable to pursue the first principles approach. Until relatively recently, this has

proved difficult for a number of reasons.

The original approach due to Hartree and Fock [3] uses an anti-symmetric wave-

function made up from one-electron states to model a system of N -electrons. How-

ever, this approach suffers from a crippling scaling problem so that in practice only

very small systems are tractable problems. This obstacle was overcome to some ex-

tent by Hohenberg and Kohn [4], and Kohn and Sham [5] who formulated density

functional theory (DFT). Under this approach a system of atoms can be repre-

sented simply from the electron density n(r) instead of the complex anti-symmetric

wavefunctions adopted in Hartree-Fock and related methods.

19



CHAPTER 1. INTRODUCTION 20

A difficulty remains in the computation of the exchange and correlation energies.

This is usually circumvented by invoking the local density approximation (LDA),

where the exchange-correlation energy density at a point r with density n is taken

to be that of the homogeneous electron gas with the same electron density. This

can be readily extended to spin-polarised systems and is then termed the local spin

density approximation (LSDA).

In the past decade the availability of faster, more powerful computing resources

has made possible the study of larger and more challenging problems. These include

the determination of the most energetically favourable surface reconstructions [6, 7],

the geometry of dislocations [8], as well as a plethora of point defect structures.

The LSDA can be applied to DFT in a number of ways, and the code used

throughout this thesis has been named AIMPRO - Ab initio modelling program.

AIMPRO uses a real space approach, which makes the code ideal for the calculation

of the structures of molecules, such as C60 [9] and ferrocene [10]. In the case of

defects however, a cluster must be constructed that is sufficiently large that the local

environment of the defect closely resembles that of the bulk material. Typically,

the clusters used in this thesis contain 70-200 atoms. A schematic representation of

a 71-atom tetrahedral cluster (atom centred) is shown in Fig. 1.1. In AIMPRO the

[110]-[001]

[110]

Figure 1.1: Diagram showing the 71-atom tetrahedral cluster (X35H36).

Kohn-Sham orbitals are expanded in a basis of Gaussian functions, as is the fit to the

charge density. The electron-ion interaction is treated using the norm-conserving
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pseudopotentials of Bachelet, Hamann, and Schlüter [11], except for the case of

hydrogen, for which the bare Coulomb potential is used. The structure is optimised

from the analytically derived forces using a conjugate gradients algorithm.

Using this approach, a number of experimentally measurable quantities can be

obtained. These include localised vibrational modes, the symmetries1 of the ground

and excited states in optical transitions, and semi-qualitatively the transition en-

ergies and radiative lifetimes. Thus, AIMPRO can be used not only to examine

the detailed structures of defects to correlate with experiment, but also provide

information to experimentalist colleagues as a guide to where to look for, for ex-

ample, a one-phonon side band in photoluminescence. In fact, collaboration with

experimental groups has proved highly productive in a number of cases such as the

T-line [12] and the hydrogenated vacancy and interstitial [13] in Si.

The contents of this thesis can be summarised as follows. Chapter 2 describes in

some detail the background to the theory, touching on Hartree-Fock methods, and

parameterised Hartree-Fock methods (especially CNDO). However, the main aim is

to discuss the AIMPRO formalism. The methods and approximations adopted for

the calculations of experimental observables are detailed in this Chapter and their

limitations explained.

Following this, Chapter 3 outlines a number of the more commonly used exper-

imental techniques. These are: localised vibrational mode spectroscopy, electron

paramagnetic resonance (EPR), luminescence spectroscopy techniques, and deep

level transient spectroscopy.

The background Chapters are followed by three Chapters containing the results

of the ab initio calculations. The first (Chapter 4) concerns the class of vacancy-

related optical defects in diamond formed particularly after irradiation and anneal-

ing. They are characterised by strong and sharp optical peaks, and are made up

of vacancies complexed with one or more impurity atoms. Good agreement with

experiment is found in the case of a single N atom in the neutral or negative charge

states. The quantitative agreement in the case of three N atoms is slightly less

satisfactory, although the calculations have provided a clear qualitative picture.

Si and P both readily complex with a vacancy and form a split-vacancy structure.

The former gives rise to a complex set of zero-phonon lines, which can be understood

from a negative charge state of the centre. The latter may be responsible for a broad

red donor-acceptor recombination band, but much more importantly is likely to lie

at the root of the difficulty in producing n-type semiconducting diamond using

phosphorus.

1The character tables of the key point groups studied in this thesis are given in Appendix A.
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The location and presence of H in diamond has long been a matter of heated

discussion. Following recent observation of H-related centres in polycrystalline di-

amond using EPR, the structure and electronic properties of vacancy-hydrogen

complexes are also presented in Chapter 4, but no firm conclusions can be made

regarding this class of centres.

Chapter 5 continues the theme of luminescent centres in diamond. Diamonds

which are produced using the high temperature, high pressure method exhibit pro-

nounced optical peaks. Many of these have been correlated with Ni introduced from

the solvent-catalyst. Ni is known to give rise to a number of EPR signals, and a

number of assignments have been made in the past to both substitutional and inter-

stitial Ni centres. The results presented here show that there is no requirement for

an interstitial species, and many assignments may have been made on the strength

of unreliable calculations. The geometries and electronic structures of Ni, Ni-N and

Ni-B centres are reported.

The final section in Chapter 5 examines substitutional Ni and Ni-hydrogen com-

plexes in silicon. In contrast with diamond, Ni−s in Si is known to undergo a Jahn-

Teller distortion to form a low symmetry centre. This is reproduced in these calcu-

lations. Furthermore, evidence is provided for hydrogen adopting the anti-bonding

site in the Ni-H2 complex.

The final results Chapter concerns a range of centres that have been observed in

GaAs using infrared absorption spectroscopy. C is a common impurity, and is often

intentionally introduced as an acceptor due to its low diffusivity and high doping

concentrations. However, hydrogen readily complexes with C to form electrically

inactive centres. This CAs-H centre exhibits a characteristic local vibrational mode

at 2635 cm−1. However, the isotope shifts suggest that this mode is very anhar-

monic. It is anharmonicity that breaks the symmetry selection rules that prevent an

overtone, but to date, the overtone to this centre has not been observed. Chapter 6

shows that one solution may be that electrical anharmonicity reduces the intensity

of the overtone.

A further set of bands related to C-H stretch modes have been seen in heavily

doped samples. Interestingly, some of them exhibit strong (nearly 100%) polarisa-

tion in one of the two 〈110〉 directions normal to the growth direction. It is thought

that C-pairs are formed during growth, and H bonded to one of these C atoms gives

rise to the polarised absorption. The structures and local vibrational modes of a

number of such centres with one or two hydrogen atoms are reported.

General conclusions are presented in Chapter 7.



Chapter 2

Theory

‘As far as the laws of mathematics refer to reality, they are not certain;

and as far as they are certain, they do not refer to reality.’

- Albert Einstein

2.1 Introduction

A variety of theoretical methods and approximations are used by the academic

community to model many-body problems. In this Chapter, I shall start from stat-

ing the initial problem, and step through the construction of a number of methods

adopted to solve it. Starting with the Born-Oppenheimer approximation, I shall

outline Hartree-Fock theory (Sec. 2.4), and a number of parameterised Hartree-Fock

methods (Sec. 2.5) which are based on the Roothaan equations. Finally I shall out-

line density functional theory (Sec. 2.8) and the local density approximation for the

exchange-correlation energy (Sec. 2.9).

However, the main goal of this Chapter is to detail the approximations and

techniques employed in the ‘Ab Initio Modelling PROgram’ or AIMPRO. AIMPRO

is a self-consistent density functional code applied to a real-space atomic-clusters

developed in Exeter and Newcastle over the last ten years. The use of atomic clusters

makes the program ideally suited to calculations of molecular structures and has

been successfully applied to the class of carbon structures termed ‘fullerenes’ [9].

However, the main thrust of this thesis is to explore the properties of defects in

solids. AIMPRO models bulk-material with large clusters (typically 70-150 atoms)

where the surface ‘dangling bonds’ are saturated with hydrogen atoms. The charge

density and wavefunctions are expanded in terms of a Gaussian basis, and models

the electron-ion interaction via norm-conserving pseudopotentials (Sec.2.11).

AIMPRO can currently calculate a number of experimental observables, includ-

ing localised vibrational modes, and electronic transition energies and rates. The

23



CHAPTER 2. THEORY 24

methods used are outlined in Sec. 2.15 and Sec. 2.17 respectively. Other observ-

able quantities that may be estimated using AIMPRO are binding energies, and

reorientation and migration barriers. The AIMPRO methodology is reviewed in

Ref. [14].

2.2 The problem posed

Fundamentally, we wish to solve the many-body Schrödinger equation for a specific

set of atoms in a specific configuration, i.e.

ĤΨi = EiΨi,

where Ĥ is the many-body Hamiltonian, and Ψi is the many-body wavefunction

corresponding to the ith state which has energy Ei. In general, Ψi is a function of

the electron spin and co-ordinates as well as the nuclear positions. For all but the

most simple of problems, this is an intractable problem.

Adopting atomic units1 the Schrödinger equation for a set of electrons in a field

due to ions of charge Za at sites Ra is given by:{
−

∑
a

1

2Ma
∇2

a −
1

2

∑
µ

∇2
µ +

1

2

∑
ν 6=µ

1

|rµ − rν | −
∑
µ,a

Za

|rµ − Ra|

+
1

2

∑
a6=b

ZaZb

|Ra − Rb| − E

}
Ψ(r) = 0. (2.1)

This can alternatively (using obvious notation) be written as

{Tion + Te + Ve−e + Ve−i + Vi−i −E}Ψ(r) = 0. (2.2)

Here r is used to denote the positions and the spins of the electrons, i.e. (r1, s1, r2, s2,

r3, s3, ...).

Any practical method of solving Eq. 2.1 must first decouple the motion of the

electrons and ions. One may then calculate the effective potential felt by each

electron due to the other electrons and ions. From there one may calculate the

forces on the ions, optimise the ion positions with respect to the total energy, and

hence derive the equilibrium geometry.

Returning to the first step, one needs to separate the electron and ion compo-

nents of the many-body wavefunctions, and this is achieved under the adiabatic or

Born-Oppenheimer approximation.

1In the atomic units system, ~, e, me, and 4πε0 are taken to be unity. Then, 1 a.u. of energy
is equivalent to 27.212 eV, and 1 a.u. of length is 0.529 Å.
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2.3 The Born-Oppenheimer approximation

One assumes that, due to the large mass of the ions compared to that of the electron,

the motion of the ions simply modulates the electronic wavefunction, i.e.

ΨTotal(r, R) = χ(R)Ψ(r, R). (2.3)

Here χ(R) is an amplitude dependent on the positions of the ions, and Ψ(r, R) is a

solution of

{Te + Ve−e + Ve−i + Vi−i − E}Ψ(r) = 0.

R denotes the nuclear co-ordinates (R1,R2, ...). Substituting Eq. 2.3 into Eq. 2.2,

multiplying through by Ψ∗(r, R) and integrating over r, one arrives at the equation:

{Tion(R) + E(R) +W (R) −ET}χ(R) =∑
a

∫
Ψ∗(r, R)

1

Ma

∇aΨ(r, R)∇aχ(R)dr. (2.4)

The sum is over the nuclei. The left hand is simply the Schrödinger equation for

the ions moving in a potential E +W , where

W (R) = −
∑

a

1

2Ma

∫
Ψ∗(r, R)∇2

aΨ(r, R)dr

is due to the electrons moving along with the nuclei. W (R) is negligibly small.

The right hand side of Eq. 2.4 is zero if Ψ(r, R) is real and corresponds to a non-

degenerate ground state. Otherwise this term is a small perturbation, which can be

important in the case of a degenerate ground state. Here it can lead to symmetry

breaking as in the case of a Jahn-Teller distortion [15]. If the right hand side is

neglected, then the electron and ion motions are decoupled.

The term E(R) represents the potential energy of the ions averaged over the

state Ψ(r, R), and the minimum of E therefore represents the ground state of the

system. This is usually what one seeks in these calculations.

2.4 Hartree-Fock Theory

One way to construct the many-body wavefunction, Ψ(r, R), is from a single Slater

determinant of N one-electron spin-orbitals2:

Ψ(r) =
1√
N !

det |ψµ(r)|, ψµ(r) = ψ(r)χα(s).

2The determinant form of the wavefunction ensures that the anti-symmetry under particle
exchange, required by the Pauli exclusion principle, is included.
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χα(s) is a spin function which satisfies:∑
s

χ∗
α(s)χβ(s) = δαβ ,

with the sum over up and down spins, and the orbitals satisfy:∫
ψ∗

i (r)ψj(r)dr = δij .

In each case δ is the standard Kronecker delta function.

The averaged energy of a such determinental wavefunction is, adopting Dirac

notation, 〈Ψ|Ĥ|Ψ〉. This has been shown [16] to be given by:

E =
∑

λ

〈λ|T + Ve−i + Vi−i|λ〉 +
1

2

∑
λ,µ

{〈λµ|Ve−e|λµ〉 − 〈λµ|Ve−e|µλ〉}, (2.5)

where the sums are over the occupied spin-orbitals. Note, the second summation

involve four-centre integrals. Alternatively, Eq. 2.5 may be written as:

E = −1

2

∑
λ,s

∫
ψ∗

λ(r, s)∇2ψλ(r, s)dr +

∫
n(r)Ve−idr + EH + Ex + Ei−i, (2.6)

where we have introduced the Hartree, exchange, and ion-ion energies (EH, Ex, and

Ei−i), and the electron density, n:

EH =
1

2

∫
n(r1)n(r2)

|r1 − r2| dr1dr2, (2.7)

Ex = −1

2

∑
λµ

∑
s1s2

∫
ψ∗

λ(r1)ψ
∗
µ(r2)

1

|r1 − r2|ψµ(r1)ψλ(r2)dr1dr2, (2.8)

Ei−i =
1

2

∑
a6=b

ZaZb

|Ra −Rb| , and (2.9)

n(r) =
∑
λ,s

|ψλ(r, s)|2. (2.10)

The total energy (for a given set of nuclei), E, is then minimised subject to or-

thonormal ψλ by introducing Lagrange multipliers Eλµ, giving the Hartree-Fock

(HF) equations for each orbital λ:{
−1

2
∇2 + Ve−i(r) + V H(r) + V x

λ (r) − Eλ

}
ψλ(r) =

∑
µ6=λ

Eλµψµ(r). (2.11)

Here

V H(r)ψλ(r) =
δEH

δψ∗
λ

=

∫
n(r1)ψλ(r)

|r− r1| dr1,

V x
λ (r)ψλ(r) =

δEx

δψ∗
λ

= −
∑
µs1

∫
ψ∗

µ(r1)ψλ(r1)
1

|r− r1|ψµ(r)dr1
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are the Hartree and exchange potentials respectively, and the expression for the

exchange involves a sum over occupied orbitals µ whose spin are the same as that

of λ.

Next, one performs a unitary transformation on the Slater determinant to diag-

onalise Eλµ reducing the right hand side of Eq. 2.11 to zero. The total energy can

then be found by multiplying the HF equations (2.11) by ψ∗
λ(r), integrating over r

and summing over λ and s, to give:

−
∑
λ,s

∫
ψ∗

λ(r)
1

2
∇2ψλ(r)dr +

∑
λ,s

∫
ψ∗

λ(r)Ve−i(r)ψλ(r)dr

+
∑
λ,s

∫
ψ∗

λ(r)V
H(r)ψλ(r)dr +

∑
λ,s

∫
ψ∗

λ(r)V
x
λ (r)ψλ(r)dr−

∑
λ,s

Eλ = 0

Then, the first and second terms are the kinetic energy associated with the elec-

trons and the electron-ion interaction energy respectively. The terms involving the

Hartree and exchange potentials are simply twice the Hartree and exchange energies

respectively. Therefore, we now have:

Te + Ee−i + 2EH + 2Ex −
∑

λ

Eλ = 0.

Then the total energy is found by removing the double counting and adding the

ion-ion energy term:

Etotal =
∑

λ

Eλ − EH − Ex + Ei−i.

In practice the HF equations are solved self-consistently by making a sensible

initial guess at the set of ψλ(r) and calculating the Hartree and exchange potentials.

These output potentials are then fed back into the HF equations to calculate a

new set of ψλ(r). This cycle is repeated until the input and output potentials are

sufficiently close. Usually, the initial guesses for the spin-orbitals are related to

atomic orbitals.

Using HF methods, one can arrive at a very good agreement for structures and

vibrational modes of small molecules. However, a number of four-centre integrals are

required for the exchange energy. This leads to a prohibitively heavy computational

effort for systems of more than a few atoms, and therefore the simulation of defects

in bulk materials is impractical. To apply HF theory to larger problems, a number of

semi-empirical parameterisations have been developed where these time consuming

integrals are no longer calculated, or are performed approximately.
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2.5 Parameterised Hartree-Fock methods

There are a number of paradigms for parameterising the basic HF equations, each

having a different level of approximation. For the purposes of this thesis, only the

basic approximations are outlined. One particular method, the original formulation

of the complete neglect of differential overlap approximation [17], is described in

detail.

The first stage is to expand the one-electron wavefunctions in a linear combina-

tion of atomic orbitals (LCAO), φµ:

ψi =
∑

µ

cµiφµ.

Then one can write the (differential) HF equations in an algebraic expression,

termed the Roothaan equations. The Roothaan equations are given by:∑
ν

(Fµν − εiSµν) cνi = 0 (2.12)

where Fµν is the Fock matrix and Sµν is the overlap matrix:

Fµν = Hµν +
∑
λσ

Pλσ

[
〈µν|λσ〉 − 1

2
〈µλ|νσ〉

]
(2.13)

Sµν =

∫
φµ(r)φν(r)dr

and εi are the one-electron energies. Hµν and Pλσ are the core Hamiltonian ma-

trix elements and the density matrix elements respectively, and 〈µν|λσ〉 are the

differential overlap matrix elements:

Hµν =

∫
φµ(r)H

coreφν(r)dr

Pλσ = 2

occ∑
i

c∗λicσi

〈µν|λσ〉 =

∫ ∫
φµ(r1)φν(r1)

1

|r1 − r2|φλ(r2)φσ(r2)dr1dr2

At this stage there are no approximations. However, one can utilise the fact that

many of the integrals are very small or zero and begin to neglect systematically some

of the matrix elements.

The zero-differential overlap approximation [18] (ZDOA) is the starting point for

many semi-empirical methods. The ZDOA sets all but a few terms in the differential

overlap matrix identically to zero:

〈µν|λσ〉 = 〈µµ|λλ〉δµνδλσ,
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and the overlap integrals, Sµν are neglected in the normalisation of the molecular

orbitals. To retain some of the overlap character that is required to treat chem-

ical bonding correctly, the Hamiltonian matrix elements, Hµν , are treated semi-

empirically.

The ZDOA simplifies the Roothaan equations to become:

∑
ν

Fµνcνi = εicµi (2.14)

Fµν =

{
Hµµ − 1

2
Pµµ〈µµ|µµ〉+

∑
λ Pλλ〈µµ|λλ〉 ν = µ

Hµν − 1
2
Pµν〈µµ|νν〉 µ 6= ν.

This vastly reduces the number of 2-electron integrals and removes all 3- and 4-

centre integrals. Note, these equations only apply to closed shell molecules, that is

to say spin zero systems. One can extend these equations to a spin polarised system

simply by writing down Eq. 2.14 for each spin.

2.5.1 Complete neglect of differential overlap

The degree to which the ZDOA is applied varies from one method to another,

but the simplest form is the complete neglect of differential overlap approximation,

CNDO [19]. Here Eq. 2.14 applies, but in order that rotational invariance is main-

tained, one is required to further approximate the remaining 2-electron integrals

by:

〈µµ|λλ〉 = γAB,

where γAB is the average electrostatic repulsion between any electron on atom A

and any electron on atom B. Thus, these integrals depend only on the nature of

the atoms A & B, and not on the type of orbitals. Under CNDO, only the valence

electrons are explicitly considered.

Thus the Fock matrix elements for the CNDO approximation are given as:

Fµν =

{
Hµµ − 1

2
PµµγAA +

∑
λ PBBγAB ν = µ, φµ on atom A

Hµν − 1
2
PµνγAB ν 6= µ, φµ on atom A, φν on atom B

where PBB =
∑B

λ Pλλ is the total electron density associated with atom B. Applying

the same approximations to the core Hamiltonian (Ĥ = −1
2
∇2−∑

B VB) one arrives

at:

Hµν =



Uµµ − ∑

B 6=A〈µ|VB|µ〉, ν = µ, φµ on atom A

Uµν −
∑

B 6=A〈µ|VB|ν〉, φµ, φν on A〈
µ

∣∣−1
2
∇2 − VA − VB

∣∣ ν〉
− ∑

C 6=A,B〈µ|VC|ν〉, φµ on A, φν on B

(2.15)
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where

Uµν =

〈
µ

∣∣∣∣−1

2
∇2 − VA

∣∣∣∣ ν
〉
,

and −Vi is the potential due to the nucleus and core electrons on atom i.

If the atomic orbital basis is made up from s, p, d, ... atomic functions, then Uµν ,

µ 6= ν are zero by symmetry. Again, to maintain rotational invariance 〈µ|VB|µ〉
must be a constant, VAB, which describes the interaction of any electron on atom

A with the core of atom B. Furthermore, neglect of monatomic differential overlap

means that 〈µ|VB|ν〉 = 0, µ 6= ν. The term involving a summation over C in

Eq. 2.15 is a three-centre integral, and thus is neglected, leaving the first term, called

the ‘resonance integral’, which is a measure of the possible lowering of the electron

energy by existing simultaneously in the fields of two atoms. Rotational invariance

requires that this term is a constant βµν , which is assumed to be proportional to

the overlap, i.e. βµν = βo
ABSµν .

Applying these further conditions to Eqs. 2.15, we arrive at

Hµν =



Uµµ − ∑

B 6=A VAB, ν = µ, φµ on A

0, µ 6= ν, φµ, φν both on A

βo
ABSµν , µ 6= ν, φµ on A, φν on B

(2.16)

This expression can now be substituted into the Fock matrix, giving

Fµν =

{
Uµµ +

(
PAA − 1

2
Pµµ

)
γAA +

∑
B 6=A(PBBγAB − VAB) ν = µ

βo
ABSµν − 1

2
PµνγAB µ 6= ν

(2.17)

One can write the summation in Eq. 2.17 as∑
B 6=A

−QBγAB + (ZBγAB − VAB),

where QB is the net charge on atom B. Here (ZBγAB − VAB) is the difference

between the potentials due to the valence electrons and core of atom B, termed the

penetration integral [20]. This demonstrates one of the advantages of this approach:

physical quantities are readily separable allowing simple interpretation of the results

of any calculation.

Finally, combining all the approximations, an expression for the total energy

can be written down:

Etot =
1

2

∑
µν

Pµν(Hµν + Fµν) +
∑
A<B

ZAZBR
−1
AB.

Now one must decide how to evaluate an number of terms: Sµν , Uµν , VAB,

γAB, and βo
AB. Under the CNDO approximations there are historically two systems

adopted, termed CNDO/1 and CNDO/2.



CHAPTER 2. THEORY 31

2.5.2 CNDO/1

• The overlap integrals are directly evaluated. The repulsion integrals are ap-

proximated by integrals of s-orbitals on atoms A and B:

γAB =

∫ ∫
s2

A(r1)
1

|r1 − r2|s
2
B(r2)dr1dr2.

• The electron-ion interaction VAB is also calculated using an s-orbital on atom

A:

VAB = ZB

∫
s2

A(r)

|r − RB|dr.

• The one-electron Hamiltonian matrix elements, Uµµ, are obtained by fitting

to atomic ionisation energies.

• Finally, the bonding parameters, βo
AB are approximated by the expression

βo
AB =

1

2
(βo

A + βo
B),

and each βo
A is empirically fitted to ab initio calculations for each atomic

species.

CNDO/1 was the first parameterisation under the CNDO approximation, but

this was quickly superseded by CNDO/2.

2.5.3 CNDO/2

There are two improvements made to the CNDO/1 parameterisation.

1. The penetration integral is neglected which means that the electron-ion in-

tegrals VAB are no longer evaluated separately, but instead are related to

the repulsion term, VAB = ZBγAB. There is no physical justification for this

approximation, but it often predicts bond-length reasonably well.

2. Instead of fitting the Uµµ using only the ionisation potential, an average of the

ionisation potential and electron affinities is used. This should make CNDO/2

better suited to modelling the tendencies for atomic orbitals to both gain and

lose electrons than CNDO/1.

In all other ways CNDO/2 is the same as CNDO/1.

In summary, CNDO-type calculations are based on the HF quantum mechanical

description. The approximations neglect the vast majority of integrals, making the

calculation of large systems of atoms possible. However, in the process a great deal
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of the interaction information is lost. The fact that the method has been successful

in describing a range of problems is primarily due to the fact that fitting some of

the terms to experimental and/or ab initio data in some way replaces the neglected

terms by building the information into the integrals that remain.

It should be noted, however, the neglect of exchange integrals means that spin-

sensitive systems will not be correctly described. This is in some part corrected by

the following method.

2.5.4 Intermediate neglect of differential overlap

CNDO explicitly excludes the two-electron exchange integrals. These are crucial

to provide a description of any system where an electron spin distribution is im-

portant such as finding the relative energies of different spin states. If one includes

exchange for electrons on the same atom, i.e. one retains one-centre monatomic dif-

ferential overlap integrals, this problem is mitigated to some extent and is termed

the intermediate neglect of differential overlap, (INDO) [21, 22]. In the formalism

of Slater [23], these integrals are established by using a fit to experimental atomic

energy levels. There are no other major differences between CNDO and INDO.

2.5.5 Neglect of diatomic differential overlap

The next logical extension is to neglect only diatomic differential overlap, and thus

such a method would include dipole-dipole interactions of the form 〈sApA|sBpB〉.
This level of approximation is naturally termed the neglect of diatomic differential

overlap, (NDDO).

2.5.6 Summary

In summary, these approximate, empirical methods have been developed to circum-

vent the prohibitive computational demands of the ab initio HF method. Although

the approximations allow one to treat large systems of atoms very rapidly, terms in

the calculations are being sacrificed for this speed, and consequently the description

of a system of atoms using these methods will always be inferior to first principles

methods.

One example of where this can be important is where CNDO methods get the

ordering of electronic levels wrong. This is the case for the negatively charged

substitutional Ni impurity in diamond [24] where CNDO calculations produce a

rogue a1 level below instead of above a t2 level. This leads to the defect possessing

an effective spin of S=1/2, whereas experimental evidence shows that the true spin

state is S=3/2 [25].
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2.6 Hartree-Fock theory of the homogeneous elec-

tron gas

As stated above, HF theory can only be applied to simple systems. One such situ-

ation is the homogeneous electron gas, where the ions form a uniform background.

A solution to Eq. 2.11 then takes the form of a set of plane waves of the form,

ψλ(r, s) =
1√
Ω
eik.rχα(s),

where λ labels the wave-vector k and spin α, and Ω is the volume of the primitive

unit cell. Since the electron density, n, is uniform, EH and Ei−i exactly cancel Ee−i

to give the energy levels:

Eλ = Ek,α =
1

2
k2 + V x

k .

It can be shown that by writing η = k/kf (where the electron density is given by

n = 1
3π2k

3
f), the exchange potential is:

V x
k = −4

(
3n

8π

) 1
3

F (η),

F (η) =
1

2
+

1 − η2

4η
ln

(
1 + η

1 − η

)
.

Since the density of states is given by

N(E) =
4πk2

8π3

1

|∇Ek| ,

the singularity in the derivative of V x
k as η → 1 leads to a zero density of states as

k → kf , which is incorrect, and is due to the absence of correlation in the calcu-

lations. This error can be surmounted by constructing wavefunctions made up of

combinations of determinants, a method which is termed ‘configuration interaction’

(CI), but this is extremely computationally demanding and only a few atoms can

be treated in this manner.

2.7 Correlation

In 1980, Ceperley and Alder [26] performed quantum Monte-Carlo calculations on

the non-spin-polarised and spin-polarised electron gases to find a better estimate of

the ground state energies. This method includes the correlation energy, Ec which

is missing from HF. Defining the correlation energy per electron, εc, polarisation ξ

and the Wigner-Seitz radius of each electron rs by:

Ec = Ωnεc(n, ξ), ξ =
(n↑ − n↓)

n
, rs = (4πn/3)1/3, (2.18)
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γ β1 β1

Non-polarised -0.1423 1.0529 0.3334
Polarised -0.0843 1.3981 0.2611

A B C D
Non-polarised 0.0311 -0.0480 0.0020 -0.0116
Polarised 0.0155 -0.0269 0.0007 -0.0048

Table 2.1: Parameterisation of the exchange-correlation energy in Ref. [27].

then εc for ξ = 0 and ξ = 1 are given as [27]:

εc =

{
γ{1 + β1

√
rs + β2rs}−1, for rs ≥ 1

B + (A+ Crs) ln(rs) +Drs, for rs < 1

The values of the coefficients are given in Table 2.1.

In the case of a partially polarised gas, i.e. where 0 < ξ < 1, the correlation

energy is taken to be the average over the polarised and non-polarised cases [28]:

εc(n, ξ) = εnp
c (n) + f(ξ)(εpc (n) − εnp

c (n))

f(ξ) =
(1 + ξ)4/3 + (1 − ξ)4/3 − 2

24/3 − 2
.

To a good approximation, the exchange-correlation energies vary as αns1 and βns2

for the non- and fully-polarised cases respectively, and AIMPRO uses the simplified

expression for the non-polarised case Exc:

Exc = ΩAn1.30917, (2.19)

For polarised gases, AIMPRO uses:

Exc = Ω
∑
i,s

Ain
pi+1
s nqi

1−s, (2.20)

where Ai, pi and qi are given in Table 2.2. The subscript 1−s in Eq. 2.20 refers to the

opposite spin to that over which is being summed. The error in this approximation

is very small for low electron density (n < 1), but for larger density values, an

alternative set of parameters is used A′
i, p

′
i and q′i (also given in Table 2.2). However,

this approximation is poorer at low densities.

2.8 Density functional theory

If one wishes to perform first principles calculations for large systems of atoms, one

needs to circumvent the computationally intensive aspects of HF theory in some

way. One solution which has been highly successful over the past decade is density
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i Ai pi qi
1 -0.9305 0.3333 0.0000
2 -0.0361 0.0000 0.0000
3 0.2327 0.4830 1.0000
4 -0.2324 0.0000 1.0000
i A′

i p′i q′i
1 -0.9305 0.3333 0.0000
2 -0.0375 0.1286 0.0000
3 -0.0796 0.0000 0.1286

Table 2.2: Parameterisation of the exchange-correlation used in AIMPRO.

functional theory (DFT). At the centre of this method the electron density is treated

as the fundamental variable [4, 5] instead of the one-electron wavefunctions as in

HF. This is possible since there is a one-to-one correspondence between the a non-

degenerate, non-polarised ground state wavefunction, Ψ(r) and the electron density

n(r1) defined by the expression:

n(r1) =
∑

µ

∫
δ(r1 − rµ)|Ψ(r)|2dr.

This in turn arises from the result that for the electron Hamiltonian, H = Te+Ve−e+

Ve−i, there is a one-to-one correspondence between the external potential Ve−i and

the ground state electron density. This can be easily proved as follows. Suppose

that this is not true, i.e. there exist two potentials with the same n. Then, from the

variational principle, if Ψ1 and Ψ2 are the ground state (normalised) wavefunctions

for the two potentials V1 and V2 with density n, and if HiΨi = EiΨi, then

E1 = 〈Ψ1|H1|Ψ1〉 < 〈Ψ2|H1|Ψ2〉 = E2 + 〈Ψ2|V1 − V2|Ψ2〉
= E2 +

∫
(V1 − V2)n(r)dr.

But similarly

E2 < E1 +

∫
(V2 − V1)n(r)dr.

Adding these equations gives us

E2 + E1 < E1 + E2,

which is a contradiction. Thus, Ve−i is uniquely defined by n, and hence Ψ is a unique

functional of n. Remarkably, this means that the many-body wavefunction which

is dependent on (3 spatial +1 spin)×(number of electrons) variables is uniquely

defined by the charge density which is a function of only three spatial variables and

spin.
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It has also been shown [4] that the total energy, E, is also a functional of the

electron density:

E[n] = T [n] + Ee−i[n] + EH[n] + Exc[n] + Ei−i, (2.21)

where

Ee−i[n(r)] = −
∫
n(r)

∑
a

Za

|r − Ra|dr,

EH[n(r)] =
1

2

∫
n(r1)n(r2)

|r1 − r2| dr1dr2,

Ei−i =
1

2

∑
a6=b

ZaZb

|Ra − Rb| .

The expressions for the kinetic energy, T , and the exchange-correlation energy,

Exc, are not obviously functionals of n in the way Ee−i and EH are. Kohn and

Sham [5] provided a paradigm for treating the kinetic term by introducing a set of

orthonormal orbitals3 as a basis for the (spin polarised) charge density:

ns(r) =
∑

λ

δsλ,s|ψλ(r)|2.

Then the kinetic energy can be written as

T = −1

2

∑
λ,s

∫
ψ∗

λ∇2ψλdr.

The only remaining term in Eq. 2.21 is Exc. An exact expression for this is

not known, so in practice some form of approximation must be adopted, the most

common of which is termed the local density approximation (LDA).

2.9 The local density approximation

One assumes that for any small region in the system, the exchange-correlation

is the same as that for the uniform electron gas with the same electron density.

This approximation applies to a spin zero system, and the exchange-correlation is

approximated by:

Exc =

∫
n(r)εxc(n)dr,

where εxc(n) is the exchange-correlation density for the homogeneous electron gas.

For a spin polarised system, one simply applies the same assumptions using the

exchange-correlation energy density of the spin-polarised electron-gas, εxc(n↑, n↓).
3Note, since these ‘Kohn-Sham’ (KS) orbitals are merely an expansion of the charge density,

strictly they cannot be interpreted as one-electron states.
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This is termed the local spin density approximation (LSDA) and implementing this

within DFT is often termed local spin density functional theory (LSDFT).

It is possible to go beyond the local approximation, and include further deriva-

tive terms in the density, termed the gradient correction [29]. However, the merits

of such an approach are not accepted universally: with the improvement in ground

state energy the gradient correction generally leads to a deterioration in the struc-

ture.

2.10 Determination of the Kohn-Sham orbitals

The KS orbitals are determined by minimising the total energy, E, with respect to

ns, subject to the constraint that both the total spin and the number of electrons are

conserved. Then applying the variational principle, one arrives at the KS equations:{
−1

2
∇2 −

∑
a

Za

|r− Ra| + V H(r) + V xc
sλ

(n↑, n↓) −Eλ

}
ψλ(r) = 0

∑
s

∫
|ψλ(r)|2dr = 1,

where

V xc
s =

d(nεxc)

dns
.

These sets of equations (one set for each spin state) can be solved to generate the

KS levels, Eλ, and KS wave-functions. In contrast to HF, the wavefunctions derived

are not strictly those belonging to one-electron states, and the eigenvalues under

LSDFT are not the ionisation energies as is the case in HF theory (Koopman’s

theorem), but instead are related to the quasi-particle energies. It is possible to

augment the density functional theory via, for example, GW theory4 which predicts

quasi-particle energies with reasonable accuracy [31].

2.11 Pseudopotentials

In practice, the all-electron potential representing the interaction between the nuclei

and electrons is replaced by a pseudopotential, in which only the valence electrons

are considered explicitly. This approximation can be crucial since a treatment

including core states has a number of associated difficulties.

4A full discussion of GW theory is beyond the scope of this thesis, but the framework within
which the GW approximation is formulated is that of a perturbation expansion of one particle
greens function G(p, w). See for example Ref. [30]
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• First, the total energy generated by using an all-electron potential is very

large. Then when comparing total energies of similar systems large errors can

be generated by subtracting similar values.

• Secondly, as one adds more and more core electrons, wavefunction orthonor-

mality means that the wavefunctions will become very oscillatory. This makes

the fitting to a Gaussian or plane-wave basis very difficult. Furthermore, a

small error in the fit to the wavefunction for one of the core states can have

a dramatic effect on the energy of the core eigenvalue.

• Thirdly, as the atomic number increases, the core states become relativistic

in nature. The use of pseudopotentials immediately removes this difficulty.

Since the core electrons do not take a significant role in bonding, one can justify the

use of pseudopotentials in solid state problems. However, the core electrons undergo

exchange interactions with the valence electrons, the constructions of pseudopoten-

tials is a non-trivial exercise.

The way one goes about constructing a pseudopotential is dependent on the

application for which the potential is to be used. For example, for a plane-wave

approach, one would desire a functional form that decays rapidly with wave-vector,

such as the soft-pseudopotentials of Vanderbilt [32], but this is not important in

the real-space methodology adopted in AIMPRO.

We have adopted the approach of Bachelet et al. [11] who developed a set of

norm-conserving pseudopotentials for atomic species with atomic number ranging

from 1 (hydrogen) to 94 (plutonium). The term ‘norm-conserving’ simply implies

that the pseudopotential possesses exactly the same atomic charge density beyond

the core radius as that of the the all-electron potential.

The sequence of processes required to produce a potential is as follows:

1. The KS equations are solved for the atom. To do this, the spherically sym-

metric atomic configuration is chosen so that the KS levels are labelled by

angular momentum, l, in the case of the lighter atoms, and j = l±1/2 for the

heavy atoms where the Dirac equation is required. It is important to include

in the construction all the orbitals that will take part in bonding the solid

state. For example, in the case of carbon, the atomic configuration is nor-

mally taken as 1s22s22p2, which does not contain any d-orbital dependence.

To rectify this, the l = 2 potential is constructed using the ionised configura-

tion 1s22s0.752p13d0.25. This procedure is tailored to each atomic species.

2. Then, the solutions to the all-electron KS equations for the atom produce a set

of all-electron wavefunctions and energy levels, which in turn can construct the
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all electron potential, denoted V ν(r). This potential contains the exchange-

correlation, Hartree and nuclear potentials, and is singular at r = 0.

3. From these all-electron quantities, one constructs a first approximation to the

pseudopotential for each value of the angular momentum, l, or in the case of

relativistic treatment, j = 1 ± 1/2. This first guess removes the singularity:

Vl(r) = V ν(r)(1 − f(r/rc,l)) + cνl f(r/rc,l).

The function f(x) tends to unity as x→ 0, and rapidly decreases to zero as x

increases. Such a function might be e−x3.5
. Then, Vl(r) → cνl as r → 0, where

cνl is a constant chosen so that the lowest energy level generated by V ν is the

same as that generated by Vl(r). Then the normalised pseudo-wavefunction

of Vl, denoted by ων
1l, is, to within a normalisation constant, the same as the

true, all-electron wavefunction at large r, since Vl(r) is the same as V ν(r)

there.

4. rc,l is the radius at which the pseudo-wavefunction and true wavefunction

approach each other, and is termed the core radius. Care must be taken in

the choice of value for rc,l since taking too large a value will remove critical

bonding information from the potential. Generally, rc,l is chosen to be midway

between the last node and last extremum.

5. The next stage is to modify the pseudo-wavefunctions so that they agree with

the true wavefunctions exactly, and not just to a normalisation constant. This

is done using the expression:

ων
2l = γν

l {ων
1l(r) + δν

l r
l+1f(r/rc,l)}.

Here the quantities γν
l and δν

l are simply the normalisation constants.

6. The potential that gives rise to the pseudo-wavefunction ων
2l is obtained by

inverting the Schrödinger equation using the energy levels of the all-electron

system. Such a potential would then give rise to a wavefunction that agrees

with the all electron wavefunction outside the core radius, and also generates

the all-electron energy levels. However, this potential still includes the Hartree

and exchange-correlation potentials.

7. The Hartree potential arising from the pseudo-wavefunction can be removed

exactly, but a removal of the exchange-correlation potential can only be per-

formed approximately. This approximation can be improved upon by instead

subtracting the exchange-correlation potential due to the all-electron charge
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density and spin-polarisation [33]. Once this is done, one is left with the bare

electron-ion pseudopotential, Vl(r).

8. For relativistic atoms, an average pseudopotential is defined as being:

Vl(r) =
1

2l + 1

{
lVl− 1

2
(r) + (l + 1)Vl+ 1

2
(r)

}
,

which is termed the scalar relativistic potential. The spin-orbit potential is

given by:

V so
l (r) =

2

2l + 1

{
Vl+1/2(r) − Vl−1/2(r)

}
,

which leads to the full pseudopotential:

V ps(r) =
∑

l

|l〉 {Vl(r) + V so
l (r)L.S} 〈l|.

9. Finally, the potentials have been parameterised by fitting to simple functions,

such that:

Vl(r) = −Zν

r

{
2∑

i=1

ccierf(
√
αc

ir)

}
+

3∑
i=1

{
Ai,l + r2Ai+3,l

}
e−αi,lr

2

V so
l (r) =

3∑
i=1

{Bi,l + r2Bi+3,l}e−αi,lr
2

.

Here, the values Zν and αc
i are the valence electron charge and the inverse of

the extent of the core charge density.

10. Note, the coefficients, cci , in the first term in the potential are independent of

the angular momentum, l, and hence this part of the potential is termed local.

Since
∑2

i=1 c
c
i = 1, at distances where αc

ir � 1, the first term is simply the

Coulomb potential due to the valence electrons, −Zν/r. The second term has

coefficients that do depend on l, and this part of the potential is thus termed

non-local.

11. The constants, Zν , c
c
i , α

c
i , Ai,l, Bi,l and αi,l are tabulated in Ref. [11].

Note, although these pseudopotentials are generated to include spin-orbit interac-

tion, this term is currently neglected by AIMPRO.

2.12 AIMPRO methodology

In this section the details of the approach adopted in AIMPRO are discussed. This

will include an explanation of the mathematical constructions used in generating
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the Hartree and exchange-correlation energies, and end in the expression of the

Kohn-Sham equations in the form of a matrix-eigenvalue problem (Sec. 2.12.3).

The wavefunctions are expanded in a basis of localised orbitals such that:

ψλ(r, s) = χα(s)
∑

i

cλi φi(r −Ri), cλi ∈ <, (2.22)

where the basis functions are Gaussian orbitals:

(x− Rix)
n1(y −Riy)

n2(z − Riz)
n3e−ai(r−Ri)2 , ni ∈ N .

From suitable combinations of ni, one can construct the s, p, d, ... orbitals. For

example ni = 0, i = 1, 2, 3 generates an s-Gaussian orbital.

The charge density, n(r), for each spin is constructed in terms of a density

matrix, bij,s, such that :

ns(r) =
∑
ij

bij,sφi(r − Ri)φj(r − Rj),

bij,s =
∑
λocc

δ(s, sλ)c
λ
i c

λ
j (2.23)

Then it is necessary to calculate each term in Eq. 2.21 in terms of this basis. Since

the basis is made up of Gaussian functions, the kinetic and pseudopotential terms

are readily (analytically) found:

Tij = −1

2

∫
φi(r − Ri)∇2φj(r − Rj)dr, and

V ps
ij =

∫
φi(r− Ri)

∑
a

V ps
a (r −Ra)φj(r −Rj)dr.

2.12.1 Evaluation of the Hartree energy

Writing down the expression for the Hartree energy, one finds that the term re-

quires O(N4) integrals, where N is the number of basis functions. To calculate all

of these integrals would make the calculation prohibitively time consuming, and

therefore a number of approximations are made. One option is to integrate these

terms over a mesh [34], but the approach adopted for AIMPRO is to reduce the

integral analytically to a simpler, approximate form. This is achieved by using an

approximate charge density, ñs(r). This is in turn an expansion of a set of basis

functions [35, 36]:

ñs(r) =
∑

k

ck,sgk(r), ñ(r) =
∑

s

ñs(r).

The exact Hartree energy is replaced by ẼH, such that:

ẼH =

∫
ns(r)ñs(r2)

|r1 − r2| dr1dr2 − 1

2

∫
ñs(r)ñs(r2)

|r1 − r2| dr1dr2,
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which is clearly exact if ñ = n. The fitting function coefficients are chosen so that

the error in the Hartree energy is minimised:

EH − ẼH =
1

2

∫ {n(r1) − ñ(r1)}{n(r2) − ñ(r2)}
|r1 − r2| dr1dr2,

which in turn is done by differentiating with respect to the ck to give:

∑
l

Gklcl =
∑
ij

tijkbij , (2.24)

where

tijk =

∫
φi(r1 −Ri)φj(r1 −Rj)gk(r2)

1

|r1 − r2|dr1dr2, and

Gkl =

∫
gk(r1)gl(r2)

1

|r1 − r2|dr1dr2.

The basis functions, gk, are a set of atom centred Gaussian functions5:{
1 − 2bk

3
(r −Rk)

2

}
e−bk(r−Rk)2 , (2.25)

which give rise to a Gaussian potential:∫
gk(r1)

|r− r1|dr1 =
3bk
2π

e−bk(r−Rk)2 .

Since the integrals of the gk vanish, we need to add a further simple Gaussian,

which will then contribute to the total number of electrons. Since all terms in

the integral tijk are Gaussian, they can be evaluated analytically, and very rapidly.

Nevertheless, evaluating this matrix scales like O(N3), where N is the number of

basis functions and will be the most time consuming part of the calculation when

the clusters are small. For larger clusters (& 100 atoms), a number of integrals can

be ignored, since the overlap of orbitals distant from each other in the cluster is

essentially zero. Then, it is the solution of the eigenvalue problem (Sec. 2.12.3) that

is the time limiting step.

2.12.2 Exchange-correlation energy

In a similar approach to that adopted for calculating the Hartree energy, the

exchange-correlation energy is replaced by using the approximate charge density

ñ:

Ẽxc =

∫
εxc(ñ↑, ñ↓)ñdr.

5This is actually only one of the basis set options within AIMPRO, and one might also use a
simple Gaussian basis set which does not include the term in braces.
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Again, ñ is an expansion of basis functions,

ñs(r) =
∑

k

dk,shk(r),

where hk(r) are simple Gaussians, and the dk,s are found by minimising∫
{ns(r) − ñs(r)}2dr.

Differentiating with respect to dk,s leads to the equations:

∑
l

Hkldl,s =
∑
ij

uijkbij,s, (2.26)

Hkl =

∫
hk(r)hl(r)dr,

uijk =

∫
φi(r− Ri)φj(r − Rj)hk(r)dr.

Once the coefficients are found, one can simply substitute the basis expansion

into the expression for Exc to get (in the non-spin-polarised case)

Ẽxc =
∑

k

dk

∫
hk(r)εxc(ñ)dr.

Since the hk have been chosen to be Gaussian functions, this value is simply propor-

tional to the average value of the exchange-correlation density under these functions,

〈εxc(ñ)〉k. Now, εxc varies slowly with density, and thus we can approximate 〈εxc(ñ)〉k
by εxc(〈ñ〉k), which is equivalent to replacing the exact exchange-correlation density

at a point by the value for the homogeneous electron gas with the average density,

〈ñ〉k. This approximation can be improved upon by using the more accurate ex-

pression for the exchange-correlation density:

εxc(n) ≈ Ans,

(s = 0.30917) leading to an expression for Ẽxc:

Ẽxc =
∑

k

dkεk, (2.27)

where

εk = Ikεxc(〈ñ〉k)efk ,

fk =
1

2
s(s− 1) ln

(〈ñ2〉k
〈ñ〉k2

)
,

Ik =

∫
hk(r)dr.
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All of the integrals in this expression can be solved analytically. This theory has

been extended to the spin-polarised system [37]. The true exchange-correlation is

written (referring to Sec. 2.7 and Table 2.2):

Exc(n↑, n↓) =
∑
i,s

Ai

∫
npi+1

s nqi
1−sdr,

and again we substitute ñ for n, although in this case, the density is spin polarised:

Ẽxc =
∑
ks

dk,sεk,s, εk,s =
∑

i

AiIk〈ñpi
s ñ

qi
1−s〉k. (2.28)

The spin-polarised exchange-correlation energy is then evaluated by interpolating

between the integer values of:

f(p, q) =
1

2
p(p− 1)f(2, 0) +

1

2
q(q − 1)f(0, 2) + pqf(1, 1),

which are known. Here, f is defined by the expression:

f(p, q) = ln

( 〈ñp
sñ

q
1−s〉k

〈ñs〉pk〈ñ1−s〉qk

)
.

2.12.3 Arrival at the eigenvalue equation

Ultimately, combining all the expressions for the components of the total energy

results in the a matrix formulation of the KS equations. The total energy can be

written

E =
∑
ij

{Tij + V ps
ij }bij + ẼH + Ẽxc + Ei−i,

where i and j label the coefficients of the basis orbitals. Then E is minimised with

respect to the orthonormal set of wavefunctions, ψλ(r), by introducing Lagrange

multipliers, Eλ, to get the expression:∑
ijλ

cλi {Tij + V ps
ij − EλSij}cλj + ẼH + Ẽxc + Ei−i, (2.29)

Sij =

∫
φi(r − Ri)φj(r −Rj)dr.

Differentiating Eq. 2.29 with respect to cλi , we arrive at the KS equations:∑
j

{
Tij + V ps

ij + V H
ij + V xc

ij,sλ
− EλSij

}
cλj = 0, (2.30)

where the Hartree and exchange-correlation potentials are introduced by:

∂ẼH

∂cλi
=

∑
j

V H
ij c

λ
j , V H

ij =
∑
kl

Gklcl
∂ck
∂bij

∂Ẽxc

∂cλi
=

∑
j

V xc
ij,sλ

cλj , V xc
ij,s =

∑
k

{
εk,s +

∑
l

dl,s
∂εl,s
∂dk,s

}
∂dk,s

∂bij,s
,
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and Eqs. 2.24 and 2.26 provide the expressions:∑
l

Gkl
∂cl
∂bij

= tijk
∑

l

Hkl
∂dl,s

∂bij,s
= uijk.

The KS equations in Eq. 2.30 can be written in matrix form

(H −ES)c = 0,

which is just the generalised eigenvalue problem. The overlap matrix, S, is then

Choleski decomposed, i.e. S = U tU , where U is upper triangular, which takes

O(N3) operations. Then, by writing Uc = d, we arrive at the standard eigenvalue

problem: [
(U−1)tHU−1 −E

]
d = 0.

The eigenvalues are then found using the standard Householder method, and since

there are many more unoccupied states than occupied, a subset of the eigenvectors

are found using an inverse iteration method. For large clusters, it is the solution

of the generalised eigenvalue problem that in practice is the most time consuming

step in the computation, and scales as O(N3).

2.13 The self-consistent cycle

In order that a method may correctly model the redistribution of charge from one

atom to another, it is essential to perform electronic structure calculations self

consistently. Self-consistency simply means that the charge density generated by

an external potential is the same as the charge density that generated that potential,

to within some tolerance.

The initial guess at the charge density coefficients is taken either to be those of

the neutral atom or those output from a previous calculation. First, these initial

charge density coefficients, labelled cik and di
k,s, are fed into the KS equations and

the density matrix, bij,s, is generated. Then Eqs. 2.24 and 2.26 are used to determine

the output charge density coefficients, say cok and do
k,s. Then one takes a weighted

average of the input and output charge densities:

c′k = ck + w(cok − ck), d′k,s = dk,s + w(do
k,s − dk,s).

The procedure is identical for the ck’s and dk,s’s.

The generation of an output charge density can be viewed as a non-linear opera-

tor acting on the input charge density, cok = L̂k(c). Then the output charge density

generated from an input charge density made up from the weighted average would

be written as:

co′k = L̂k(c
′) = L̂k(c+ w(co − c)).
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If the weighting factor, w, is sufficiently small, then this non-linear operation can

be approximated by a Taylor expansion linear in w:

co′k = L̂k(c) + w
∑

l

Dkl(c
o
l − cl)

= cok + w
∑

l

Dkl(c
o
l − cl),

where

Dkl =
∂L̂k

∂cl
.

For self-consistency, the input and output charge densities must be the same to

within some tolerance, i.e. co′k = c′k. Thus, one can write down an expression for

generating w:

cok + w
∑

l

Dkl(c
o
l − cl) = ck + w(cok − ck),

which leads to

(1 − w)(ck − cok)

w
=

∑
l

Dkl(c
o
l − cl). (2.31)

In practice one needs to choose a trial value of the weighting factor, w = w1, where

w1 is small. Then, the output charge density, termed co′1k, can be expressed as:

co′1k = cok + w1

∑
l

Dkl(c
o
l − cl),

and hence

∑
l

Dkl(c
o
l − cl) =

(co′1k − cok)

w1

. (2.32)

Then, comparing Eqs. 2.31 and 2.32, w can be chosen such that it minimises

∑
k

ekgk(r), (2.33)

where ek is the difference between Eqs. 2.31 and 2.32,

(1 − w)(ck − cok)

w
− (co′1k − cok)

w1
.

Generally, the charge density converges very rapidly, and self-consistency is con-

sidered to have been reached when the difference in the input and output Hartree

energies is less than 10−5 a.u.
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2.13.1 The ‘Fermi temperature’

Although in general, the above self-consistency cycle converges rapidly, when two

levels are close together or degenerate, this algorithm can lead to discontinuities in

the charge density as levels cross. This problem, known as ‘charge sloshing’ can in

most cases be corrected by the introductions of Fermi statistical filling of the states,

i.e. where the electron density is smeared out over those levels near the Fermi-level.

Then the energy to be minimised is a free energy and includes the entropy:

F = E + kBT
∑

λ

{fλ ln fλ + (1 − fλ) ln(1 − fλ)} − µ

{∑
λ

fλ −M

}
, (2.34)

where the energy level Eλ is occupied by fλ electrons, µ is the chemical potential, kB

is Boltzman’s constant, and M is the total number of electrons. Minimising Eq. 2.34

with respect to the chemical potential and the occupancies gives the familiar Fermi

distribution:

fλ =
1

e(Eλ−µ)/kBT + 1
.

The expression for the density matrix must also be changed, and becomes

bij,s =
∑

λ

δs,sλ
fλc

λ
i c

λ
j .

Typically, a value of kBT = 0.04 eV is used.

A couple of points should be made with regards to this procedure. First, the

Fermi occupancies are not being used to simulate a system for T > 0, merely to aid

the self-consistency procedure. Secondly, this procedure may actually obscure the

physics of the system one is studying such as in the case of a Jahn-Teller distortion.

In such cases, the method used to achieve a self-consistent solution is to dictate the

symmetry of the states that are to filled, such as in the case of the substitutional

Ni− impurity in Si.

2.14 Structural optimisation

Following the evaluation of a self-consistent charge density, one is able to calculate

the atomic forces, analytically. The forces can then be used to generate a search

direction for minimising the energy of the cluster with respect to the location of the

ion cores, Ra. This is done via a conjugate gradients algorithm. Both expressions

for the forces and minimisation routine follow.
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2.14.1 Atomic forces

The force on any given atom a in a direction l is given by the expression:

fla = − ∂E

∂Rla
, l = x, y, z.

This can be evaluated by calculating the change in energy, ∆E when atom a is

displaced by ∆Rla. From each term in Eq. 2.29, this can be written as:

∆E =
∑
ij

bij∆{Tij + V ps
ij } +

∑
ij

{Tij + V ps
ij }∆bij

+∆ẼH + ∆Ẽxc + ∆Ei−i (2.35)

∆ẼH =
∑
kl

ckGkl∆cl +
1

2

∑
kl

ckcl∆Gkl

∆Ẽxc =
∑
k,s

εk,s∆dk,s +
∑
k,s

dk,s∆εk,s.

From Eqs. 2.24 and 2.26, the ∆ck and ∆dk,s can be evaluated, and gathering like

terms, Eq. 2.35 can be rewritten as:

∆E =
∑
ij

{Tij + V ps
ij + V H

ij }∆bij +
∑
ij,s

V xc
ij,s∆bij,s.

From the KS equations (2.30) this can expressed as:

∆E =
∑

λ

Eλ∆{
∑
ij

cλi c
λ
jSij} −

∑
ijλ

Eλc
λ
i c

λ
j ∆Sij .

Since
∑

ij c
λ
i c

λ
jSij is simply the number of electrons, M , which is a constant, the

first term vanishes. Hence, just as with the Hellmann-Feynman forces [38], the

AIMPRO atomic forces do not contain derivatives of the wavefunction coefficients.

Despite the expressions for the forces being rather complex, the fact that they are

all obtainable analytically means that the time required to evaluate them is small in

comparison with the overall time taken to calculate the self-consistent total energy.

2.14.2 Conjugate gradients optimisation

Once the atomic forces have been found, one can relax the atoms so that the total

energy is reduced. One scheme might be to use the forces as a search direction

along which one can calculate a number of total energies and find the minimum by

interpolation. This method is termed ‘steepest descents’, but this is not the most

efficient method. Algorithms that retain knowledge from previous search directions

are in general much faster. It is therefore common practice to employ a conjugate

gradients formalism.
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Here, the initial search direction is in fact the steepest descents, but subsequent

searches are performed in a direction which is conjugated to the previous ones.

Thus, if the forces are labelled as above, fla, then the search direction is defined to

be:

dla = fla −
∑

la fla(fla − f o
la)∑

la(f
o
la)

2
do

la,

where the superscript ‘o’ refers to the forces and search direction for the previous

iteration. In general, this method results in a rapid convergence to an energy

minimum.

One can superimpose restrictions on the atoms that are allowed to move, and

more importantly, the point group symmetry to which the cluster must transform.

Thus, when relaxing, say, a C3v defect such as the neutral nitrogen impurity in

diamond, the symmetry of the defect can be precisely controlled to be at least C3v

throughout relaxation, which leads to a considerable speed up in the running of the

program, as well as a precise description of the degeneracies of the KS levels and

vibrational modes.

If such constraints are not employed, noise in the forces, can lead to a loss

of symmetry, and, typically, a larger number of iterations are required before the

equilibrium structure is located.

2.15 Vibrational modes

One of the most important requirements of theoretical simulations of this type

is to be able to reproduce quantities that are experimentally observable. One such

observable is the infra-red absorption due to atomic vibrations, described in Sec. 3.2.

To simulate atomic vibrations theoretically, one calculates the energy double

derivatives. In Eq. 2.4, the term E(R) is essentially the potential energy seen by

the ions due to the electrons, and is a minimum at the equilibrium structure. Thus,

one can expand this function in terms of the ion displacements:

E(R) = E(Ro) +
1

2

∑
la,mb

(
∂2E

∂Rla∂Rmb

)
∆Rla∆Rmb + ..., (2.36)

where the terms Rla refer to the displacement of the ion a in the l-direction, and

the equilibrium nuclear coordinates are Ro. Then the harmonic normal modes of

the system are described by the solutions of the dynamical matrix [39]:

∑
mb

Ela,mbu
i
mb = ω2

i u
i
la,

Ela,mb =
1√

MaMb

(
∂2E

∂Rla∂Rmb

)
,
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where ω2
i and ui

la are the normal mode frequencies and co-ordinates respectively.

In practice the energy double derivatives, Ela,mb, are approximated by the dif-

ference formula:

Dla,mb =
(f+

mb(l, a) − f−
mb(l, a))

2ε
.

Here, f+
mb(l, a) is the self-consistent force on atom b in the m direction when atom

a is displaced by a small amount, ε in a direction l. The term f−
mb(l, a) is the

corresponding force when atom a is moved in the opposite direction by ε. Then

Dla,mb is the energy second derivative up to second order in ε, but since this method

is a difference and not a derivative, it includes all even powers of ε. Therefore, the

modes thus generated are termed quasi-harmonic [40].

At each stage of the calculation of the energy double derivatives, the self-

consistent energy and forces must be found, which means that only a limited number

of atoms in the cluster can be practically included in the dynamical matrix in this

fashion. In practice the energy double derivatives are only calculated for the defect

atoms and those directly bonded to them. The remaining atoms are included in

the dynamical matrix via some form of valence force potential. The one used here

is due to Musgrave and Pople [41].

2.15.1 Musgrave-Pople valence force potentials

The Musgrave-Pople (MP) valence force potential is made up from all the combi-

nations of stretch and bend up to second order:

Va =
1

4

∑
b

k(a)
r (∆rab)

2 +
r2
0

2

∑
b>c

k
(a)
θ (∆θbac)

2

+r0
∑
c>b

k
(a)
rθ (∆rab + ∆rac)∆θbac +

∑
c>b

k(a)
rr ∆rab∆rac

+r2
0

∑
d>c>b

k
(a)
θθ ∆θbac∆θcad.

where ∆rab is the change in the distance between atoms a and b, and ∆θbac is the

change in the angle subtended by atoms b and c at atom a. Note, this potential is

only applied to nearest neighbours.

Using this potential, one can derive a phonon dispersion spectrum, which has

been done for a number of materials using AIMPRO: diamond [42], silicon [43],

germanium [44], GaAs [45], AlAs [46], InP [47], and quartz [48]. The high fre-

quency modes are reproduced fairly accurately, but due to the lack of the long range

Coulomb potential, the splitting of the longitudinal and transverse optic modes is

not reproduced. Furthermore, the low lying modes which involve the motion of

more than nearest neighbours are not well reproduced.
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Despite its shortcomings, the potential is sufficient to model the interaction of

more distant ‘bulk’ atoms with the core defect atoms. This is the approach adopted

in the calculation of local modes, provided the defect modes are not resonant with

bulk modes. Where the mode is resonant, an alternative approach is used utilising

the Green function for the bulk material. This method is not discussed here, but a

full explanation can be found in Refs. [14, 49]. One should note, the most significant

factor in the precision of the calculated frequency is the bond-length. For hydrogen

modes, approximately a 1% change in bond-length gives a 3% change in frequency,

so for a high frequency mode like the 2635 cm−1 stretch mode of CAs-H in GaAs,

a 0.01 Å change in bond-length might raise or lower the calculated frequency by as

much as 70 cm−1. Despite the error in the absolute frequencies, isotopes shifts are

usually much more accurately described.

One often finds that the number of modes observed experimentally for a certain

defect is less than the number one would theoretically expect. This can arise for

a number of reasons. First, the modes in question may lie in a frequency range

where there the absorption is dominated by another band. Secondly, symmetry

selection rules may dictate that a mode is IR- or Raman-inactive (see Sec. 3.2).

More subtly the mode may be invisible due to anharmonic effects, which has been

suggested for the case of the overtone of the stretch mode of the CAs-H centre in

GaAs [40]. Alternatively, if the induced dipole is small, i.e. the effective charge of

the vibration is small, the mode may not be observed. The methods for quantifying

anharmonicity and effective charges are outlined in the following sections.

2.15.2 Anharmonicity

In many cases, the quasi-harmonic approximation for the vibrational modes is very

good, but where the amplitude of the vibration is large, such as in H-stretch modes,

a larger range of the vibronic potential is sampled. This means that terms of r3 and

higher become increasingly important, where r is the atomic displacement from the

equilibrium position. The consequent asymmetry in the vibronic potential breaks

the symmetry selection rules, allowing transitions between states that possess the

same parity in the harmonic approximation. Thus, the overtone can be observed.

2.15.2.1 Quantifying anharmonicity

If one labels the energies of the vibronic states of a given potential Ei, i = 0, 1, 2, ...,

then the frequency of the fundamental vibration ω01 is given by ~ω01 = E1 − E0,

and the overtone by ~ω02 = E2 − E0. The anharmonicity of a vibration may be

quantified by the parameter A given by the difference in frequency between twice
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the fundamental and the overtone, i.e.

A = 2ω01 − ω02. (2.37)

In the case of heavily hydrogenated amorphous silicon, the anharmonicity of the

2005 cm−1 Si-H band thus defined is 60 cm−1 [50].

Generally, the harmonic vibrational frequency of an oscillator moving in one-

dimension with spring constant k and effective mass m∗ is

ν =

√
k

m∗ (2.38)

where the effective mass is written

1

m∗
imp

=
1

m1

+
1

χm2

. (2.39)

Here m1 is the mass of the light atom (such as H) labelled atom 1 and m2 is

the mass of the atom 2 to which atom 1 is bound. χ is a measure of how the

atom 2 interacts with the atoms to which it is bound, and will thus be unity for

a diatomic molecule. Generally, one would expect χ ≥ 1 because and back-bonds

would tend to make atom 2 appear to be heavier than it is really. However, this is not

necessarily the case. If the C atom were to be very tightly bound to another atom,

the slight movement of the C atom during the vibration might cost energy which

would actually push the mode up. Hence a value of χ < 1 would be appropriate.

This is found in the case of the prussic acid molecule, H-C-N, and this is described

in detail in Sec. 6.2. However, this is not the case for the 2635 cm−1 stretch mode

of CAs-H in GaAs [51]. The value of χ as calculated from simply substituting the

isotopic data into Eq. 2.38 is less than one. Now, χ is a measure of how, in this

case, the carbon atom is bound to the rest of the lattice, and the strong binding

argument for the H-C-N molecule does not apply in this case.

The overtone of CAs-H is not observed, so one needs an alternative way of

quantifying the anharmonicity to A. An approach [51] which can be adopted pro-

vided there is sufficient isotopic data for a vibration is described as follows. The

anharmonic frequency is written as:

ω = ν − B

m
, (2.40)

where ν is simply the harmonic frequency (Eq. 2.38), and B is the measure of

anharmonicity.

There is accurate data for both isotopes of C and H. The ratios

Rω(H) =

(
ω(H − 12C)

ω(H − 13C)

)2
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and

Rν(H) =

(
ν(H − 12C)

ν(H − 13C)

)2

are equal to first order, and can thus be used to estimate χ. Another value for χ

can be obtained from Rω(D). These are both greater then unity. B can also be

obtained [52] from the expression

B ≈ 2ωD
r′ − r

2 − r′

where r = ωH/ωD and r′ = νH/νD. The value of m in Eq. 2.40 might be the mass of

a hydrogen atom, as used in Ref. [51], or the effective mass, as defined in Eq. 2.39.

A × m∗ is equal to B in low order perturbation theory, i.e. when the quartic

terms are treated in first order and the cubic terms in second order, and are equal

to:
(15a2

3 − 12a2a4)

8a2
2

,

where the parameters ai are the coefficients of the xi in the quartic vibronic poten-

tial. The parameter A×m∗ is termed Bo.

2.15.2.2 Theoretical approach

The vibronic potential is generated by stepping the appropriate atoms in the direc-

tion of the normal coordinate generated by the quasi-harmonic methodology. At

each point, the self-consistent total energy is calculated. It is crucial to sample a

broad range of displacements so that the outermost points are well outside the tails

of the vibronic wavefunction. In principle, one should also consider the coupling

of stretch and bend characters, but for high frequency modes, such as that of the

C-H stretch mode of the CAs −H complex in GaAs, this coupling is expected to be

rather small, and is therefore be neglected.

Previous ab initio theoretical studies have often used a one-dimensional quartic

polynomial potential to model the vibronic potential, for example of H on the (111)

surface of diamond [53]. In this case they found the calculated 2727 cm−1 stretch

mode to exhibit anharmonicity (A=113 cm−1). Unlike Ref. [53], we find that a

polynomial expansion of terms up to and including x8 is required to model the

potential accurately. However, although polynomials are commonly used [53, 54],

a Morse potential [55]:

V (r) = D(1 − e−ar)2,

possesses phenomenologically the correct shape. Morse potentials have also been

used for anharmonic calculations [56], and, perhaps surprisingly, we find that these

two-parameter potentials fit the ab initio data as accurately as the x8 polynomial.
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Whatever form of potential is taken, the vibrational modes are calculated by

solving the one-dimensional Schrödinger equation. If a polynomial fit to the po-

tential is chosen, this can be readily written in terms of a secular matrix equation.

The Hamiltonian is a combination of the harmonic and anharmonic terms Ĥo + V̂ ,

and the Schrödinger equation can be written as

(Ĥo + V̂ )Ψi(x) = EiΨi(x).

Ψi(x) is then expanded in terms of a set of (orthonormal) harmonic wavefunctions,

Ψi(x) =

∞∑
j=0

cijφj(x),

φj(x) = Hj(
√
βx)

(√
βπ

2jj!

) 1
2

e−βx2/2, β =

√
mk

~
.

Here m is the mass of the oscillator, k is the spring constant, and Hj(η) is the jth

Hermite polynomial defined iteratively by the expression:

Hj+1(η) = 2ηHj(η) − jHj−1(η), H0 = 1, H1 = 2η.

In practice, of course, the expansion of the anharmonic wavefunction is a truncated

series of harmonic functions. Typically the number of terms, No is around fifty.

Substituting the expansion into the Schrödinger equation, multiplying on the left

by φk and integrating over x gives the secular equations

〈k|Ĥ
∑

j

cij|j〉 = 〈k|Ei

∑
j

cij|j〉
∑

j

cij〈k|Ĥ|j〉 = Ei〈k|
∑

j

cij|j〉

= Ei

∑
j

cij〈k|j〉

= Ei

∑
j

cijδkj

∑
j

cij〈k|Ĥ|j〉 = Eicik (2.41)

The matrix elements are of the form〈
k

∣∣∣∣∣Ĥo +

Nx∑
λ=3

aλx
λ

∣∣∣∣∣ j
〉

= 〈k|Ĥo|j〉 +

Nx∑
λ=3

aλ〈k|xλ|j〉.

The first term on the right is simply the harmonic energy levels given by Eo
i =

(i+ 1
2
)hν, where ν is the harmonic fundamental frequency. The anharmonic terms
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can be found by analytically constructing each term in x using creation and annihi-

lation operations. Alternatively, since the matrices Xn
kj with elements 〈k|xn|j〉 are

symmetric, one can generate any value of n from X1
kj by matrix multiplication:

Xn
kj = (X1

kj)
n.

Using this, the matrix elements of the full anharmonic Hamiltonian for any choice

of Nx and No can be readily evaluated.

Once the Hamiltonian is set up, one solves the secular equation in the usual way

to generate a set of eigenvalues and eigenvectors which correspond to the vibronic

energy levels and wavefunctions respectively.

The accuracy of the calculation is mainly dependent on two factors: the number

of terms in x in the polynomial fit, and the number of harmonic functions used in

the expansion of the anharmonic wavefunction. If too few terms in x are used, then

the fit to the potential is poor, but as one adds terms, one also adds further minima,

albeit outside the ab initio data range. One or more of these (unphysical) minima

might be lower in energy than that at x = 0. Then, as the number of terms in the

wavefunction expansion is increased, the range of x sampled by the sum increases,

and hence the ground state anharmonic wavefunction may become centred on one

of these false minima. This situation is illustrated in Fig. 2.1, which shows the first

three energy levels and wavefunctions for No = 30 and No = 90.

Both of these problems can be avoided with a judicious choice of No and Nx,

but it is perhaps better to choose an alternative type of fit that does not possess

false minima. If one retains the polynomial fit, one can set the potential to be a

simple function of x outside a critical region.

The Morse potential which does not posses any minima other than at x = 0. A

direct comparison is made in Fig. 2.2. Despite having only two fitting parameters,

the Morse potential is very nearly as good a fit as an eighth order polynomial.

If one adopts a polynomial expansion to fit the vibronic potential, then one can

immediately identify the coefficient of x2 with k/2. Then the harmonic frequency

is given by ν2 = 2a2/m
∗, which in general will be higher than the quasi-harmonic

frequencies since this does not include higher order even powers of x. If the Morse

potential is used, then k = 4Da2.

In general, the matrix elements, 〈i|Ĥ|j〉 are not analytically available, and it

is desirable to adopt an approach that can be generalised to any form of fit that

one might choose. Therefore, instead of solving the secular equation, one might

choose to integrate the Schrödinger equation directly, for instance using the shooting

method. Comparing the solutions of the secular equation and shooting method for

the polynomial, one finds that they agree to within a small error.
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Figure 2.1: Plots showing the solutions to the secular equations 2.41 where (a) No = 30, and (b)
No = 90. The displacement, x, is in a.u., and the wavefunctions have been shifted vertically so
that each is zeroed about its energy level.
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Figure 2.2: A plot of the polynomial potential as plotted in Fig. 2.1 also showing the Morse
potential fit.

Using the above method for calculating the anharmonic vibrations, one can

examine how the calculated frequencies vary with changing values of χ or bond-

length. The effect of χ is very small: neglecting χ in the case of the CAs-H complex

in GaAs leads to a 30 cm−1 (∼1%) shift in frequency. The equilibrium bond length

cannot be altered in the calculations directly. This is simulated by the application of

a linear shift to the potential that changes the location of the minimum. Changing

the effective bond-length in this way reveals a marked sensitivity.

In fact, as highlighted in Sec. 2.15.1, bond-length is the critical quantity for the

absolute magnitude of local vibrational modes (LVMs), but differences are some-

what less sensitive. This appears to remain true for anharmonicity, as described in

detail for the CAs-H case (Sec. 6.2).

2.15.2.3 Electrical anharmonicity

The above analysis treats the mechanical anharmonicity, but there is also an an-

harmonicity in the electrical characteristics of the vibration, that is to say that the

dipole moment is not linear in x. In general, under the dipole approximation, the

integrated intensity of a local vibrational mode is proportional to

|〈Ψi |p(x)|Psij〉|2 ,
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Figure 2.3: A plot of the non-linear dipole moment of the CAs − H complex in GaAs, p(x), x in
a.u.

where p(x) is the dipole operator. Thus, for the ratio of overtone and fundamental

intensities, one is required to calculate the expression∣∣∣∣〈Ψ2|p(x)|Ψ0〉
〈Ψ1|p(x)|Ψ0〉

∣∣∣∣
2

(2.42)

The function p(x) for the CAs − H complex in GaAs is plotted in Fig. 2.3. It can

clearly be seen that this function is non-linear. This is discussed in more detail in

Sec 6.2.

2.15.2.4 Theoretical evaluation of χ.

To calculate χ from quantities evaluated in AIMPRO, one can take the following

approach. Again, the method is illustrated using the example of the CAs-H complex

in GaAs. One may write the double derivatives of energy with respect to the H and

C atoms as EX,Y where X and Y may be H or C. Then, assuming that the H-stretch

mode is decoupled from all other vibrational modes, the only derivatives of interest

are along the stretch direction. The quasi-harmonic frequencies then take the value:

ν2 =
EH,H

MH

− E2
C,H

MH(EC,C −MCν2)
. (2.43)
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Substituting Eq. 2.38 with k = EH,H, one can express χ as follows:

χ =

(
EH,H

EC,H

)2 {
1 − EC,C

EH,H

MH

MC

+
MH

χMC

}
. (2.44)

Note, χ is only weakly dependent the hydrogen mass if the 2nd and 3rd terms in

braces in Eq. 2.44 are small. This is true when

EC,C

EH,H
� MC

MH
.

If this were not the case, and if EC,C is large (such as if the C-back bonding is

strong) then χ can reasonably be less than unity. If the C atom was decoupled

from the rest of the lattice, then translational symmetry would require:

EH,H = EC,C = −EC,H.

Then Eq. 2.44 gives χ=1 and

ν2 = EH,H

(
1

MH
+

1

MC

)
,

as expected.

2.15.3 Effective charges

The integrated intensity, I of a vibrational mode is related to the induced dipole

moment through the expression [57]:

I =
2π2ρ

ncm
η2, (2.45)

η2 =
∑

k

m

(
∂Mx

∂Qk
i

)2

,

where ρ is the concentration of the impurity, n is the refractive index, c is the

speed of light, m is the impurity mass, η is the effective charge of the LVM, Mx

is the induced dipole in the direction of the applied electric field (x), Qi is the

normal coordinate of the ith normal mode, and the sum is over any degeneracy in

the normal modes.

The induced dipole M can be evaluated in the cluster formalism using the

expression

M =
∑

a

ZaRa −
∫

rn(r)dr,

where the atoms are displaced according to the normal co-ordinate, that is to say

by
Qiu

i
la√
m
.
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If the defects are randomly oriented, then it is necessary to average over the

different orientations, so that, for example, the effective charge on a non-degenerate

mode at a C3v centre is given by [58]:

η2 =
m

3

∑
l

(
∂Ml

∂Q

)2

.

Note however, defects are not always randomly oriented. For example the (CAs)2−H

centre in GaAs is preferentially aligned along one 〈110〉 direction (see Chapter 6).

Using this method, the effective charge for all the modes of a given centre can

be calculated. Suppose that only one mode is observed experimentally. Then, if

one of the modes possesses a value of η greater than the others, this is a strong

indication that this is the one that is experimentally observed.

2.16 Multiplets

The derivation of DFT is strictly applicable only to ground state systems, for which

the theory predicts properties with quantitative accuracy. However, problems arise

when several degenerate orbitals are only partially filled, such as in the case of high

symmetry defects. An example in diamond of such as a (C3v) defect is the vacancy

bordered by a single nitrogen atom (see Chapter 4). This type of problem involves

multiplet structures and therefore should strictly be beyond the theory. However,

von Barth [59] developed a method for obtaining approximate multiplet energies

using DFT.

Under this approach the density functional energy is related to a specific de-

terminental wavefunction, the contents of which are in turn dictated by the choice

of occupancy of the KS levels. The energies of different multiplets can therefore

be generated by a judicious choice of these occupancies. Each determinant can be

written as a linear combination of multiplets, |D〉 =
∑

a ca|Ma〉. Operating on each

determinant with the Hamiltonian and finding the expectation gives:

〈D|Ĥ|D〉 = E =
∑

a

|ca|2〈Ma|Ĥ|Ma〉.

Given sufficient independent determinants, one can then deduce values for the mul-

tiplet energies, such as in the neutral vacancy-nitrogen complex in diamond. How-

ever, this is not always possible, as in the case of the neutral vacancy in diamond.

2.17 Electronic transitions

Experimentally, for a particular electronic transition the symmetry of the ground

and excited states, the zero-phonon energy, and the radiative lifetime may be known.
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Of all of these terms, all but the first is related to an excited state of the system.

Fortunately, as described above, we can get around this problem in a number of

favourable cases where multiplet structures can be found. Thus, but occupying

the orbitals appropriately, we can estimate the energy of the excited state, and

hence the energy of the optical transition between this state and the ground state.

Alternatively, theory due to Slater [16] allows one to estimate the transition energy

with a single calculation.

2.17.1 Transition states

The problem is to calculate the energy of a transition between electronic states with

energy Eλ and Eµ. According to the Slater transition state method, the transition

energy is given by the difference between the KS levels, Eµ − Eλ when half an

electron is promoted from the lower to the higher orbital, i.e. both Eλ and Eµ are

half filled. Note that this transition energy is not the same as the zero-phonon

energy, and differs from it by the relaxation energy. This method has been used

successfully in a number of cases in diamond [60], and gives energies very similar

to the energy difference between the ground and excited multiplets.

2.17.2 Radiative lifetimes

The rate at which electrical dipole transitions occur between states λ and µ can be

estimated using the following relationship [61]:

1

τλµ
=

4nω3

3c3~

e2

4πεo
|rλµ|2 (2.46)

rλµ =
∑

s

〈ψλ(r, s)|r|ψµ(r, s)〉, . (2.47)

where n the refractive index, e the electron charge, c the speed of light and ω the

transition frequency.

Within AIMPRO this integral is calculated for the pseudo-wavefunctions of the

KS-levels, which is not strictly correct since the wavefunctions are zero near the

atomic nuclei. Also, due to the cubic dependence of the transition rate on the

frequency, the calculations are very sensitive to errors in ω. Despite these short

comings, these calculations have given correct order of magnitude estimates in the

case of vacancy-impurity defects in diamond [60].

2.18 Clusters

It is important to select an appropriate basis set and cluster to treat a particular

defect.
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In general, the wavefunction basis for each atom is made up of a number of

atom centred s- and p-Gaussian orbitals. For transition elements there are further

d-Gaussian orbitals, and for the lanthanides f -Gaussian orbitals. GaAs, Si and Ge

also require d-orbital character in the basis set, and this can be achieved either by

explicitly having atom centred d-Gaussian orbitals or, more simply, by adding bond

centred Gaussians.

The wavefunction basis functions are as introduced in Sec. 2.12,

(x− Rix)
n1(y −Riy)

n2(z − Riz)
n3e−ai(r−Ri)

2

, ni ∈ N .

ni = 0, i = 1, 2, 3 gives one the s-Gaussians, n1 = 1, ni = 0, i = 2, 3 generates the

p-Gaussian functions, and the d- and f -Gaussians can be generated if
∑

i ni = 2

and
∑

i ni = 3 respectively. The complete wavefunction basis is then made up of a

linear superposition of the atom- and bond-centred orbitals.

The exponents, ai, for a particular atom are found by minimising the total

energy of the pseudo-atom. This procedure also generates a set of coefficients, cλi

from Eq. 2.22. Then these coefficients can be used in the fixed linear combination

with different exponents to form a ‘minimal basis’. If the coefficients multiplying the

orbitals are treated as variational parameters, the basis is termed ‘big’. In a large

cluster one usually has the central atoms of the defect and the nearest neighbours

in big basis and the remaining, more remote atoms in minimal basis.

As described above, the charge density is also expanded in terms of basis func-

tions (Eq. 2.25 and pure Gaussians), both at atom- and bond-centres. In this case

the optimal basis is established by maximising the estimated Hartree energy ẼH,

as described above in Sec. 2.12.1.

Typically, for a sp bonding material such as C or Si, the basis is made up of

3-4 sets of Gaussians in the wavefunction expansion and 4-5 charge density fitting

functions, although for some problems a bigger basis is required, with, for instance,

eight sets of wavefunction Gaussians, and eight charge density fitting functions. For

transition metal elements, the number of charge density fitting functions increases

dramatically since the atomic charge density increases near the origin as r4, and

is poorly represented by the functions in Eq. 2.25. In applying the basis selection

to a cluster, it is important that the arrangement of big/minimal basis atoms and

bond-centres reflects the symmetry of the defect.

One consequence of using a Gaussian basis set is that increasing the number

of functions can lead to an ‘over-complete’ basis, which results in an instability

in the Choleski decomposition of the overlap matrix. Therefore, in contrast to

the calculations using a plane-wave basis, one cannot strictly converge the total

energy. However, in practice it is usual to be examining energy differences, such as



CHAPTER 2. THEORY 63

in the relative stabilities of defect structures or the excitation energy of an electron

from one multiplet to another, and these energies are usually well described using

AIMPRO.

The clusters are terminated with hydrogen, with the X-H bonds oriented along

the bulk bond direction. The cluster itself takes two main forms. The first is

atom-centred surrounded by concentric shells of bulk atoms. This cluster therefore

possesses a tetrahedral symmetry. For the III-V’s, this means that there is an

excess of either the group-III or group-V atom type, and consequentially the neutral

cluster would have the incorrect number of bonding electrons. For all of the bonding

orbitals to be filled, the neutral charge state is modelled by charging the cluster by

the difference in the number of, group-III and group-V atoms. For example, a Ga

centred cluster Ga19As16H36 would be charged by 3e.

The second type of cluster is bond centred, which avoids the charging problem

encountered in the atom centred III-V cluster as these clusters contain the same

number of group-III and group-V atoms (by symmetry). This type of cluster is

referred to as stoichiometric, and possesses trigonal symmetry. One disadvantage

of using stoichiometric clusters for III-V compound semiconductors is that they

possess an inherent dipole. Consequentially the central bond is longer than the six

equivalent back bonds. However, for most III-V materials all bonds are reproduced

to within 3% of the experimental value.

It is well known that DFT underestimates the band gaps of semiconductors,

and band gaps in clusters are overestimated due to the confining nature of the H-

termination. In the case of diamond, these effects conspire to give approximately

the correct values. Fig. 2.4 shows how the band gap, as estimated by the difference

in the energies of the highest occupied and lowest unoccupied KS-eigenvalues. For

Si, Ge, and GaAs, there is a clear decrease in the band-gap with increasing cluster

size, as expected. All but diamond compare rather badly with the experimental

values: 5.5, 1.17, 0.75, and 1.42 eV for diamond, Si, Ge, and GaAs respectively.

The overestimation of band gaps can be corrected by applying the so-called

scissors operator:

∆(r, r′) = V
∑
λ′
ψλ′(r)ψλ′(r′) for λ′ unoccupied.

∆ can also be defined in terms of the occupied levels,

∆(r, r′) = V
∑
ij

(δi,j − bij)φi(r − Ri)φj(r
′ − Rj),

and it is this form of the scissors operator that is used in AIMPRO. This is simply

added to the Hamiltonian and shifts the unoccupied states of the cluster containing
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Figure 2.4: A graph showing the dependence on cluster size of the band-gap for diamond, Si,
Ge, and GaAs. The group-IV materials clusters are made up as follows: X35H36, X71H60, and
X181H116. There are two possible arrangements of each GaAs cluster - Ga centred and As centred.
The three clusters are X19Y16H36, X31Y40H60, and X89Y92H116. In the graph, ×’s indicate Ga
centred clusters and ©’s As centred clusters. (cf. experimental values of the band-gap: 5.5, 1.17,
0.75, and 1.42 eV for diamond, Si, Ge, and GaAs respectively.)

no defect upwards by a quantity V . V is chosen such that the ‘pure’ cluster possesses

the experimental band-gap. The scissors operator is not often employed but has

been used in the case of gold and gold-hydrogen centres in Si.

2.19 Summary

In this chapter, I have tried to give a relatively detailed description of the road to

the methods used in AIMPRO. I have also included a description of a couple of

rival methods, namely Hartree-Fock and the parameterised methods of CNDO.

A number of sections are referred to regularly in the applications chapters,

and are of a technical nature. These include the methods used for calculations

of transition energies and rates, vibrational modes and other observables, as well

the basis functions used to model each atom.



Chapter 3

Experimental techniques

‘An expert is someone who knows some of the worst mistakes that can

be made in his subject and how to avoid them.’

- Werner Heisenberg

3.1 Introduction

A range of experimental methods have been successfully employed in the study of

defects in semiconductors and a number of these techniques (such as the frequencies

of localised vibrational mode spectroscopy and approximately the transition energy

in photoluminescence) measure quantities that are directly calculable using AIM-

PRO. Some other aspects of experimental procedure, such as uniaxial stress, are

less readily simulated directly, but still provide essential information such as defect

symmetry to the theorist.

Data on a specific defect derived from a single experiment or even single type of

experiment often proves insufficient for an unequivocal assignment to a particular

atomic and electronic structure. It is necessary to combine and correlate data from

different types of experiments, such as the optical and magnetic measurements,

which has proved effective in the case of the vacancy-nitrogen complex in diamond.

In this chapter the main experimental techniques referenced in later chapters

are outlined. Although it is not possible to examine the technicalities of each

method, the scope and accuracy is discussed in general terms. The methods covered

are: localised vibrational mode spectroscopy (especially in reference to hydrogen-

related centres); electron paramagnetic resonance; photoluminescence and related

techniques; and finally deep level transient spectroscopy.

65
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3.2 Localised vibrational mode spectroscopy

Localised vibrational mode spectroscopy (LVMS) encompasses a range of techniques

that measure the frequency of atomic vibrations, both bulk and those originating

from defects. The two main methods are infra-red (IR) absorption and Raman

scattering and since the selection rules for the two processes are different they

can provide complementary information. As an introduction, I shall begin with a

description of the vibrational properties of a crystal.

Diamond and zinc blende structures are comprised of two interlocking face-

centred cubic lattices. These crystal structures possess three optical and three

acoustic phonon bands, however, the physics can be understood by simplifying this

problem to one-dimension. In 1-D the phonon-dispersion possesses only one acoustic

and one optical branch [62]:

ω2(q) =
k

m∗ ± k

√
1

(m∗)2
− 4 sin2(qa)

m1m2
. (3.1)

Here k is the force constant, a is the inter atomic separation, m1 & m2 (m1 ≥ m2)

are the atomic masses and 1/m∗ = 1/m1 + 1/m2. The ± distinguishes between the

acoustic (-) and optic (+) branches. Fig. 3.1 shows Eq. 3.1 in graphical form for a

compound structure with the maximum frequency, ωmax = ω(q = 0) =
√

(2k/m∗).

Also shown is the gap between the optical and acoustic branches at the zone bound-

ary (q = ±π/2a) which arises from the difference in basis atom mass and therefore

is not present in the elemental semiconductors. The frequencies at the zone bound-

ary are ωa =
√

(2k/m1) and ωo =
√

(2k/m2) for the acoustic and optic branches

respectively.

3.2.1 Infra-red absorption

IR-absorption is particularly important for the characterisation of light impurities,

especially hydrogen. Only the basic principles and points relevant to the present

work are covered in this section. For a more complete description see Ref. [63].

For absorption in a pure crystal the crystal momentum and the energy must be

conserved. Since the momentum associated with a photon is rather small in the case

of atomic vibrations, this means that in one-phonon processes, absorption can only

occur close to q = 0. Multi-phonon processes can occur provided that the sum of the

momenta is close to zero. The absorption coefficient (i.e. the strength of absorption)

is proportional to the dipole matrix element (Sec. 2.15.3), and since there is no

induced dipole moment under the bulk normal modes of elemental semiconductors,

there is no first order absorption. However, in compound semiconductors there is
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Figure 3.1: The one-dimension phonon-dispersion for a material with zinc blende like structure.

a large induced dipole, and thus strong absorption around ωmax. This absorption

band is known as the ‘Reststrahl band’.

In principle, absorption can occur in processes involving any number of phonons.

However, as the number increases, the probability of such a process occurring de-

creases rapidly, and in practice only one- and two-phonon processes are important.

The frequency range ωmax → 2ωmax is where many defect related features of interest

lie1, and therefore it is essential that the bulk absorption in this range is minimised.

Fortunately, this can be achieved by cooling samples to T < 77 K.

Impurities introduce local changes in symmetry and therefore break the absorp-

tion selection rules. In general, a prerequisite for IR-absorption is the presence of

an induced dipole moment. When the frequency of an impurity vibration is far

from lattice mode frequencies, the vibration cannot propagate through the sample,

and such a mode is termed a localised vibrational mode (LVM). If the impurity

mass is large, i.e. mimp > m1, the impurity will possess normal modes that lie in

the bulk absorption bands, which may be observed as resonances, such as those of

nitrogen in diamond. Resonant mode absorption peaks tend to be broad, making

them difficult to observe unless the concentration of the impurity is very high2.

However, the presence of heavy impurities can sometimes be inferred from modes

1For example, GaAs possess ωmax ≈ 285 cm−1 [64], and SiGa:GaAs has a local mode at
384 cm−1.

2In the case of diamond, it is known that nitrogen may be present in concentrations as high as
parts per thousand.
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of light impurities (such as hydrogen) when they are attached to them.

As noted above, there is a gap in the density of phonon modes between the

acoustic branch maximum and optical branch minimum. Impurity modes at be-

tween these frequencies may be detected. For example, As at an P site in GaP

exhibits such a local mode [65], where the increase in mass (from 31 to 75 amu)

lowers a mode into the gap. Other examples of gap-modes in GaP are BGa and SiGa.

Note, both B and Si also possess higher frequency modes. The phonon density of

states may possess other local minima that allow observation of local modes, such

as the 156 cm−1 mode of BGa in GaP.

Despite the fortuitous location of some LVMs for frequencies < ωmax, infrared-

absorption spectroscopy is usually employed in the detection of higher frequency

modes which invariably arise from impurities with a low mass3. These modes can be

represented by Eqs. 2.38 and 2.39 (see Sec. 2.15.2). All terms in Eq. 2.45 are known

except for the defect concentration (ρ) and the ‘effective charge’ of the vibration

(η). To determine these, experimental calibrations must be made by estimating the

concentration using an alternative method, such as secondary ion mass spectroscopy

(SIMS)4, but this procedure is complicated and destructive. Note, this calibration

must be performed for each defect.

The symmetry of a centre can be established by applying uniaxial stress in (say)

the [100], [011], and [111] directions and observing the absorption peaks. The way

in which the peaks split with stress indicates the symmetry. This is called stress

dichroism, and can be applied to most spectroscopic techniques. As an example,

one can consider the case of the fully hydrogenated vacancy in silicon [13]. Uniaxial

stress shows here that the (threefold degenerate) 2222 cm−1 band splits into two

components under a 〈111〉 applied stress. In the 〈100〉, 〈110〉 and non-symmetric

directions, the band is split into three. This is indicative of a cubic symmetry,

e.g. Td. In fact just knowing that the mode is threefold degenerate is sufficient to

identify this symmetry.

The application of uniaxial stress can also be used to gain information about the

energy required to reorient a defect between equivalent configurations. This process

is known as stress induced alignment and is carried out as follows. As an illustration

the case of the CAs-H centre in GaAs is used [67]. First, uniaxial stress is applied

in one of the 〈111〉 (say [111]) directions at a (relatively5) high temperature. The

stress makes the four alignments of the CAs-H centre inequivalent, and since the

3relative to m2.
4SIMS involves the bombardment of the sample with primary ions and the detection of sec-

ondary ions sputtered from the sample surface. This procedure can be used to detect the presence
of dopants, and their distribution with depth. For a full explanation see Ref. [66].

5This temperature must be greater than the temperature at which the defect can reorient.
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centre can reorient, the lowest energy directions will be preferentially occupied. In

the CAs-H case the [1̄1̄1], [11̄1̄] and [1̄11̄] directions are equivalent. The sample is

then rapidly cooled while the stress is maintained, and the alignment is frozen in.

If an absorption experiment is then performed, in the different 〈111〉 directions the

CAs-H absorption will be different. One can then anneal the sample at increasing

temperatures. The absorption will follow the relation [68]

n(t) − no = [n(0) − no]e
−t/τ ,

where no is the equilibrium value of the concentration of the defect oriented along

one 〈111〉 direction, which at a time t is n(t). The reorientation time constant, τ is

given by the expression
1

τ
= νoe

−U/kBT ,

with νo being an attempt frequency and U the barrier to reorientation. For CAs-H in

GaAs, U = 0.63 eV.

To establish the chemical constituents of a defect one can examine the fine

structure in the absorption bands due to different isotopes. For example, SiGa :

GaAs gives rise to bands at 384, 379, and 373 cm−1 with intensities that correlate

to the abundances of 28Si, 29Si, and 30Si. For the complex of H with CAs in GaAs,

there are modes at 2635 and 2628 cm−1 for 12C and 13C respectively. Thus, hydrogen

is can be used as a probe to identify impurities to which it binds. This is especially

useful for the heavy impurities that cannot be directly observed by IR-absorption,

such as the H-passivation of Zn acceptors in GaAs [69].

Isotopic data can also provide information about symmetry. For an impurity at

an As site, isotopic shifts will be seen due to 69Ga and 71Ga. The number of equiva-

lent Ga atoms can be deduced from the relative intensities of the mixed isotope lines,

and hence some information regarding the local symmetry. For a sufficiently small

change in mass, the isotopic shift is given approximately (by assuming Eq. 2.38) as

2
δν

ν
=
δm∗

m∗ .

Whether or not the charge state induces a change in the LVM is dependent

on the position of the defect state in the gap. If the level is shallow, then the

associated wavefunction is dispersed over a large region of space. Then, occupying

or not occupying this state will have little effect on the local geometry of the defect,

and hence the LVMs. However, if the gap-level is deep, this correspond to the

wavefunction being more localised, and the occupancy is more likely to affect the

structure.

The breadth of an absorption peak is dependent on a number of factors: the

lifetime of the excited vibronic state, the strains inherent in the sample, and the
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isotopic shifts. The lifetime can be increased by lowering the temperature, and

the strains can be reduced by improving the sample quality. Typically, the full

width at half peak is 1 cm−1 or less at 77K, and Fourier transform IR-spectroscopic

techniques lead to a precision in the frequency of as good as 0.01 cm−1.

The concentration required for detectability is dependent on the quality of the

sample, the sample dimensions and the induced dipole of the LVM. However, typi-

cally a concentration of at least ρ ∼ 1015 cm−3 is required for a 1 mm thick sample.

In favourable conditions this minimum may be reduced: for sharp peaks, concen-

trations as low as 1013 cm−3 can be detected.

Due to the IR-absorption selection rules, some LVMs are not IR-active (i.e.

the induced dipole is zero by symmetry). However, the scattering selection rules

are different from those for absorption, and one can combine IR-absorption and

Raman spectra to provide a more complete picture of a defect centre. For example

the 739 cm−1 mode of the CAs-H complex in GaAs is not seen in IR-absorption

(despite being IR-active by symmetry) but is seen in Raman [70] (see Chapter 6).

3.2.2 Raman scattering

If one illuminates a crystal with monochromatic light (frequency ωo), the resulting

scattered radiation spectrum includes a strong line at ωo, and weaker lines at ωo ±
ωj(q), where ωj(q) are the optical phonon frequencies. The central peak is due to

elastically or Rayleigh scattered photons, whereas those at ωo−ωj(q) and ωo +ωj(q)

are inelastic or Raman scattered and termed Stokes and anti-Stokes lines. This can

be viewed more quantatively as follows.

One can write down the (time dependent) induced dipole as

M(t) =
∑

eiri(t) (3.2)

If the incident radiation possess an oscillatory electric field given by E = Eo cosωot,

then the induced dipole M can be expressed as a series in E:

M = αE +
1

2
βE2 + higher terms (3.3)

α is the electronic polarisability of the system, and β is a third rank tensor termed

the hyper-polarisability. β is responsible for the so-called hyper-Raman effect which

is beyond the scope of this chapter.

α is dependent on the charge distribution in the system and thus, in general,

will vary with atomic vibrations. One can expand α as a Taylor series:

α = αo +

(
∂α

∂Q

)
Q+

1

2

(
∂2α

∂Q2

)
Q2 + ... (3.4)
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where Q is the normal co-ordinate of the vibration. If one writes Q = Qo cosωst,

where ωs is the characteristic frequency of the mode, one can re-write the induced

dipole to first order in polarisability as:

M(t) = a cosωot+ b [cos(ωo − ωs)t+ cos(ωo + ωs)t] (3.5)

a = αoEo, b =
1

2

(
∂α

∂Q

)
QoEo.

Here, the first term is Rayleigh peak with frequency ωo, and the remaining terms

are the Stokes and anti-Stokes shifted peaks.

This classically based theory then can be used to predict the relative intensi-

ties of the Stokes and anti-Stokes peaks, but does so incorrectly. The intensity is

proportional to ∣∣∣∣d2M

dt2

∣∣∣∣
2

,

which results in a ratio intensities of

IStokes

IAnti−Stokes
=

(ωo − ωs)
4

(ωo + ωs)4
.

Clearly, this quotient is less than unity indicating that the anti-Stokes peak is more

intense, whereas experimentally the Stokes peak is the most intense.

In order to correct this error, one needs to perform a quantum mechanical deriva-

tion of the Raman effect. This results in an intensity ratio of

IStokes

IAnti−Stokes

=
(ωo − ωs)

4

(ωo + ωs)4
e~ωs/kBT ,

which correctly gives a ratio > 1.

Whether or not a vibrational mode is Raman active is dependent on the polar-

isability tensor, αρσ. The induced dipole to first order in E is written:
 Mx

My

Mz


 =


 αxx αxy αxz

αyx αyy αyz

αzx αzy αzz





 Ex

Ey

Ez


 (3.6)

Since αρσ is symmetric, one can perform a transformation (x, y, z) → (x′, y′, z′),

that will diagonalise this set of equations:
 M ′

x′

M ′
y′

M ′
z′


 =


 α′

x′x′ 0 0
0 α′

y′y′ 0
0 0 α′

z′z′





 E ′

x′

E ′
y′

E ′
z′


 . (3.7)

(x′, y′, z′) are termed the principle axes of the equilibrium structure, and in general,

one can always choose a set of co-ordinates that give a diagonal polarisability tensor.
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For convenience the primes are dropped, and equilibrium values denoted by the

superscript o: 
 αo

xx 0 0
0 αo

yy 0
0 0 αo

zz




When the system is perturbed under the motion of a normal mode, there is a change

in the polarisability. One can write down the polarisability for the perturbed system

in terms of a Taylor expansion:

αρσ = αo
ρσ +

∑
s

αρσ,sQs +
1

2

∑
s1,s2

αρσ,s1,s2Qs1Qs2 + ... (3.8)

where the notation

αρσ,s =
∂αρσ

∂s
.

To first order, the change in polarisability is αρσ,sQs, which is itself a tensor

quantity. This leads to a generalised expression of the form of Eq. 3.5

M(t) = aρ cosωot+
∑

s

bs,ρ [cos(ωo − ωs)t+ cos(ωo + ωs)t] (3.9)

aρ =
∑

σ

αo
ρσEoσ,

bsρ =
1

2
Qo

∑
σ

(
∂αρσ

∂Qs

)
Eoσ

As before, the first term is Rayleigh scattering, and the remaining two terms Stokes

and anti-Stokes. The latter are dependent on the terms αρσ,s. Therefore, in order for

Raman scattering to occur it is necessary that bsρ 6= 0. In other words, the change

in polarisability with the normal mode must, in some direction, be non-zero.

Despite the difficulty in performing Raman scattering experiments to charac-

terise defects in solids, the fact that the selection rules mean that modes that are

IR-inactive may be seen in Raman makes the technique very useful. Note, it is not

true that all IR-active modes are Raman-inactive or visa versa.

3.2.3 Summary

In summary, LVMS can be used to identify the vibrational frequencies of bulk

modes and a range of defects, with particular emphasis on the lighter elements such

as hydrogen. Uniaxial stress and isotopic data can be used to determine a detailed

picture of the defect responsible for a particular LVM. Typically, however, a large

concentration of the defect is required. Modes that do not possess an induced dipole

moment are not visible under IR, but may be Raman active and visa versa.
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3.3 Electron paramagnetic resonance

Where there is an excess of one electronic spin at a defect site (i.e. the effective spin

S is non-zero) the centre possesses a net magnetic dipole moment and, provided that

they do not interact, such centres are termed paramagnetic. An applied magnetic

field, Bo, will align these unpaired spins which will possess discrete energies Ei. If

a sample is subsequently exposed to electromagnetic radiation with frequency ν,

such that hν is equal to the separation between E0 and E1, absorption will occur.

This phenomenon is termed electron paramagnetic resonance (EPR), also known

as electron spin resonance (ESR). The discussion presented in this section is not

intended to be exhaustive, and further details may be found in Refs. [71] and [72].

EPR can be used to find a range of qualitative and quantitative properties of

defects. These include symmetry, nuclear spin of the defect atom, nuclear spin of

neighbouring atoms and the localisation of the wavefunction associated with the

unpaired electron.

3.3.1 Dipolar magnetic moment

One needs to begin by considering an electron in a magnetic field: an electron in a

magnetic field will move in a circular path. This is termed the cyclotron orbit. An

electron with an orbital angular frequency ω gives rise to a current

I =
−eω
2π

= −eν,
which in turn gives rise to a magnetic dipole moment, µo. The electron angular

momentum, l, in units of ~, is given by meωr
2, where r is the radius of the orbit

and me is the electron rest mass, and hence the dipole magnetic moment is given

by

µo = −goµBl,

where the constant go = 1 and

µB =
e~

2me

is the Bohr magneton.

The dipole magnetic moment is aligned in the direction normal to the plane of

the orbit. Next, one must include the contribution due to the intrinsic electron spin

angular momentum, s. This is given by

µs = −gsµBs,

where gs is the electron spin g-factor6 Finally, one can write down a total magnetic

moment, µ = µo + µs.
6gs is 2.0023 for the free electron.
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Let us first consider the simplest case: the unpaired electron is in an orbitally

non-degenerate state. The electron spin is limited to ±1/2 and the interaction

energy of the external field with the unpaired electron is given by −µs.B = gsµBs.B

which is the electronic Zeeman energy. If we choose the magnetic field to be aligned

along z, this simplifies to

Eel−Zeeman = gsµBBoms, ms = ±1

2
, (3.10)

since the eigenvalues of sz are ±1
2
. Then, the condition for resonance is that the

incident radiation has the same energy as the difference in the Zeeman energies, i.e.

hν = ∆Eel−Zeeman = gsµBBo. For an applied magnetic field of around a third of one

Tesla, this gives frequencies in the microwave band.

3.3.2 Absorption and derivative outputs

In practice the incident frequency is constant and the magnetic field is varied, giving

a graph of absorption against field. However, the absorption is often extremely weak

and superimposed on a large, slowly changing background. A modulated technique

is needed to enhance the signal 7.

This uses a second, alternating magnetic field applied in the direction of the

static Bo at 100 kHz with an amplitude somewhat less than the absorption line-

width. The (weak) output signal is usually further enhanced as follows: the detector

output is put into a lock-in amplifier which multiplies the signal by a weighting with

the same frequency as the oscillating field. The amplifier also integrates the signal

over many periods. When Bo is in resonance this produces a signal (provided that

the modulated field is sufficiently small) with an amplitude proportional to the

gradient of the absorption peak. This is illustrated in Fig. 3.2. The figure shows

the derivative plot with an amplitude W , and a line-width defined as the separation

between the two peaks ∆Bo. The integrated intensity is then given by W × ∆Bo

which is proportional to the concentration of spins. To convert this into an actual

concentration, as with IR-absorption the signal must be calibrated using a sample

where the spin concentration is known.

3.3.3 Nuclear Zeeman effect

Just as an electronic spin gives rise to a dipolar magnetic moment, so does a nuclear

spin. The nuclear Zeeman energy can be written down in exactly the same way as

7There is an alternative method where the signals are measured in ‘dispersion mode’ and the
output is like an absorption. This allows the use of higher microwave powers for the detection of
weak signals, but lacks the resolution of the modulated scheme.
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Figure 3.2: On the left is shown how the experiment is set up such that the modulation is used
as a reference to enhance the modulated output using a phase sensitive detector (PSD). On the
right is shown a schematic of the absorption and absorption derivative EPR spectra. The ‘wave’
indicated by ‘(MA)’ shows the modulated absorption produced by the modulated magnetic field,
∆B.

the electronic Zeeman energy:

Enuc−Zeeman = gNµNBomI , mN = ±1

2

where µN = e~/2mp is the nuclear magneton, and the (proton) nuclear g-factor is

gN = 5.5854. mp is the rest mass of a proton. Note, gN is dependent on the ac-

tual nucleus under study. The nuclear magneton is some three orders of magnitude

smaller than the Bohr magneton, and hence the nuclear Zeeman splittings corre-

spond to much higher frequency resonances (O(10 MHz)). The nuclear Zeeman

effect gives rise to an extra set of peaks split off from the main peaks.

In the same way as a resonance in the microwave frequency range is sought in

EPR, a radio frequency resonance can be sought for the nuclear Zeeman splittings.

The simultaneous resonance in terms of both the electronic and nuclear spins is

termed electron nuclear double resonance (ENDOR). The interpretation of ENDOR

data is even more complicated than that of EPR.

3.3.4 The hyperfine interaction

The hyperfine interaction is due to the magnetic coupling between the nuclear and

electronic spins:

Hhyp = gsgNµBµN

[
s.I

r3
− 3(s.r)(I.r)

r5

]
(3.11)

Once again, aligning the applied field along z only the z-components are retained,

and the hyperfine interaction can be written:

Hhyp =
1

r3
gsgNµBµNszIz(1 − 3 cos2 θ), (3.12)
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where θ is the angle between r and z.

Typically, the hyperfine energy is of the order of 100 times smaller than the

electronic Zeeman energy, and thus can be considered as a perturbation. Hhyp

in the above form is singular at r = 0, which must be corrected for the finite

probability of finding the electron in the nuclear core. This correction is called the

Fermi contact term and is incorporated in the central hyperfine term:

Hcentral−hyp = gsgNµBµN
8π

3
|ψ(0)|2s.I, (3.13)

Here, ψ(r) is the wavefunction associated with the unpaired electron. Reducing

everything to the z-direction, one can write Eq. 3.13 as

Hcentral−hyp = AmsmI ,

where A is the central hyperfine parameter. This term is typically comparable to

the hyperfine energy. In general, the nuclear spin I may take any half-integer value,

and hence give rise to (2I + 1) values of resonant field.

3.3.5 Spin orbit coupling

The spin-orbit interaction leads to an anisotropy in the electronic g-factor, and

this can be used to examine the symmetry of the defect. The spin-orbit interac-

tion is characterised by the Hamiltonian term HS−O = ηl.s, where deviations from

isotropy are determined by the sign and magnitude of η/(E1−E0). Here, the energy

subscripts 0 and 1 refer to the ground and excited electronic Zeeman split levels

respectively. The direction of the applied field is varied, and the measured g-factor

obeys the relation

g2 = g2
‖ cos2 θ + g2

⊥ sin2 θ,

where θ here refers to the angle between the direction or the spin and the applied

field.

3.3.6 High spin centres

In some cases the electronic spin of the centre is S > 1
2
, in which case there will be

(2S + 1) electronic Zeeman levels, E0, E1, ..., E(2S). For example, the S = 1, nega-

tively charged vacancy-nitrogen complex in diamond would possess three Zeeman

split energy levels.

3.3.7 Low symmetry defects

The expressions thus far have been applicable specifically to a system with Td sym-

metry. In general one should include terms in the total energy for lower symmetries.
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For systems with lower than axial symmetry system there are the extra terms:

D

[
S2

x − S(S + 1)

3

]
+ E

(
S2

x − S2
y

)
.

Then for axial symmetry E = 0, and for tetrahedral systems, D = 0, to return to

the original expression. These additional energy terms give rise to an additional 2S

lines in the absorption, which is referred to as fine structure.

To disentangle the peaks due to the fine and hyperfine terms, one can use the

fact that the hyperfine interaction is independent of the incident radiation frequency

whereas the fine structure is not. Then, by comparison of spectra of different

microwave cavity dimensions, one can identify the hyperfine and fine structure.

There are a number of other effects that are not mentioned here in detail. These

include the so called super-hyperfine interaction, which relates to nuclear spins in

atoms adjacent to the defect and high order interactions such as the magnetic

quadrupole effect.

EPR can detect, in general, lower concentrations of defect centres than infra-

red absorption, but the actual resolution is dependent on the line width of the

absorption. Typically, concentrations from greater than 1012 cm−3 can be detected.

3.3.8 Optical detection of magnetic resonance

An allied method to EPR is optical detection of magnetic resonance (ODMR). Here

the microwave transitions are induced in an optically excited state of the centre and

detected through a change in the luminescence intensity or luminescence polarisabil-

ity. An ODMR spectrum consists of variation in luminescence with magnetic field,

and thus the detection is much more sensitive than EPR since a photon detector is

much more sensitive than a microwave detector.

3.3.9 Summary

In summary, EPR and related techniques can provide a great deal of information

about defects with unpaired electrons, such as the localisation of the wavefunction

associated with the unpaired spin, and the symmetry of the defect. However, the

deconvolution of the various terms in the spin Hamiltonian is not simple and a

number of approximations are made, such as treating the unpaired electronic and

nuclear spins as points when estimating their separations. This has been done in

some cases by splitting the hyperfine interaction into isotropic (a) and anisotropic

(b) terms. Then assuming a the hyperfine interaction is essentially a dipole-dipole

interaction the separation is estimated from the expression: b = gµBgNµN/r
3. For

more details, see, for example, Ref. [73].
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3.4 Photoluminescence

Photoluminescence (PL) is one of many optical techniques that have been widely

employed in the characterisation of semiconductors. Other techniques closely re-

lated to PL are cathodoluminescence (CL) where the incident radiation takes the

form of electrons rather than photons, photoluminescence excitation (PLE) and

absorption, all of which shall be touched upon in this section.

During PL, samples are exposed to illumination with light of a frequency such

that hν > Eg,
8 which creates electron-hole pairs. The electrons rapidly relax into

lower energy states, particularly at defect sites. This may be via radiative or more

likely non-radiative mechanisms. They ultimately recombine with a hole in the

valence band or at another defect related state, emitting a photon with an energy

equal to difference in energy between the ground and excited states. This kind of

system is illustrated in Fig. 3.3(a).

Where the transition between the lowest excited state and the ground state has

a long radiative lifetime or forbidden by symmetry, the transition may be from a

higher excited state. This is the model proposed for the (trigonal) N3 optical feature

in diamond [74], where the presence of an A state (Ref. [74] suggests an A2-state)

is inferred from the presence of a vibronic system labelled N2. N2 is correlated

with N3 but possesses no zero-phonon transition.9 This leads to a picture of the

radiative decay from the second excited 2E-state as illustrated in Fig. 3.3(b).

PL and absorption differ in that absorption will (in principle) reveal all ex-

cited states, provided that the optical transition is allowed by symmetry. Under

absorption a continuum of optical frequencies is incident on the sample, and the

transmitted spectrum is recorded. Then, the difference between the incident and

transmitted spectra is the absorption. This is illustrated in Fig. 3.4(a). This tech-

nique has the advantage that it can be used directly to establish the concentrations

of centres [75] (as in IR absorption and EPR). However, absorption experiments

are difficult where samples are thin or where defect concentrations are small.

PLE avoids both of these problems. This experiment is essentially a PL mea-

surement where the incident radiation is from a tunable laser, and the energy of the

incident photons is (at least to begin with) below band-gap energy. The detector

is tuned to a specific frequency (say the lowest energy optical transition) and the

incident frequency increased incrementally. When the incident radiation is in res-

onance with the next excited state, the population of the state will increase. The

second excited state will non-radiatively decay very rapidly into the excited state

8Eg = the band-gap energy.
9For a system that transforms under the C3v symmetry point group, dipole selection rules

prevent any transition between A1 and A2 states, and some transitions between A1 and A1 states.
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Figure 3.3: Schematic representations of PL in the cases where (a) the transition observed is from
the first excited state to the ground state, and (b) where, since such a transition is forbidden, a
transition from the second excited state to the ground state, as suggested for the N2/N3 optical
systems in diamond [74].

of the transition being monitored. Since the population of the first excited state is

now being increased, the luminescence intensity will also increase. A plot of inci-

dent frequency vs. luminescence intensity will therefore produce a number of peaks

coincident with excited state energies. A schematic diagram of the PLE method is

shown in Fig. 3.4(b).

CL involves the exposure of the sample to an electron beam. Luminescence then

occurs via relaxation in the same way as for PL. However, this technique can lead to

defect ionisation, and one finds that PL and CL exhibit differences based on defect

charge states. For example, the vacancy-nitrogen complex in type Ib diamond10

exists in neutral and negative charge states. The 2.156 eV zero-phonon line due to

the neutral charge state is seen both in PL and CL, whereas the 1.945 eV line is

seen in PL but not in CL [76, 77].

As stated above, PL cannot in general be used to directly estimate the concen-

tration of the luminescent centre. This is due to the large number of factors that

feature in the processes, such as temperature and capture cross-sections as well as

non-radiative transitions. However, one should note that under certain, favourable

circumstances, the concentration of donors and acceptors can be found directly

from PL. When the defect concentrations are low, the luminescence is dominated

by free-exciton and donor and acceptor luminescence [78]. Then, the acceptor and

donor concentrations are proportional to the ratio of the area of the zero-phonon-

line (ZPL) and the peak-height of the free-exciton recombination luminescence.

10Type Ib diamond contains nitrogen predominantly in the isolated substitutional form. The
classification of diamonds is summarised in Chapter 4
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Figure 3.4: Schematic representations of (a) absorption and (b) PLE where transitions involving
all excited states are seen.

The calibration constant has been determined in a number of cases, and, in the

absence of any other major contaminants, this technique can be used to detect

concentrations of as low as 1010 cm−3 [79, 80].

Along with the ZPL, these optical techniques reveal transitions that are medi-

ated by one or more phonons, termed phonon side bands. The difference in energy

between the ZPL and a one-phonon side-band in equivalent to the phonon energy,

~ω. Hence, these methods can be employed to determine the local vibrational

modes of the defect responsible for the ZPL.

Now, as with the interpretation of IR-absorption, a key to assigning PL features

to atomic species are isotopic effects. The zero-point energy of an atom differs

for different isotopes and the optical transition energy therefore is also different.

However, care must be taken in interpreting results. The ZPL is related to difference

in the ground-state and excited-state total energies: 〈ΨGS|H|ΨGS〉 − 〈ΨEx|H|ΨEx〉.
If these wavefunctions have no amplitude at one of the impurity atoms, then there

will be no isotopic shift due to that atom. This behaviour is exhibited in the T-line

in Si. Recent collaborative work between experiment and theory [12] has led to an

assignment of this optical centre to a complex containing two C atoms in a split

interstitial arrangement, with a H atom bound to one C. The ground and excited

wavefunctions of the electron states involved in the optical transition have a very

small amplitude on one of the C atoms. Consequentially the ZPL exhibits isotopic
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fine structure consistent with the defect containing a single C atom. However, since

the C atoms are bonded to each other, phonon-assisted transitions exhibit isotopic

shifts consistent with a defect containing two C atoms.

As with other tools, uniaxial stress measurements can determine the symmetry

of the centre, as well as the symmetries of the electronic states involved in the

optical transition. This information is crucial to the establishment of a microscopic

structure, and can immediately eliminate possible charge states of a centre. For

example, as stated above, the trigonal vacancy-nitrogen centre in diamond occurs

in two charge states. The 2.156 eV ZPL system is known to possess a 2E ground

state. In the one-electron picture of the complex, the band-gap contains an a1- and

an e-level derived from the vacancy like t2-level. Thus, the e-level must contain

either one or three electrons to give the correct ground state symmetry, i.e. the

2.156 eV ZPL must arise from the neutral or the double negative charge state of

the N-V complex. This system is discussed in detail in Chapter 4. The manner

in which the peak positions change with stress can also give information about the

presence of other states in the gap, such as split off vibronic states due to Jahn-Teller

coupling [81].

Observing how ZPLs change with temperature can determine the energy split-

tings of nearby gap-states, such as in the 1.682 eV 12-line system in diamond. The

12 lines are believed to arise from three sets of four lines, one set for each isotope

of Si. Now, the four lines might arise from a transition from two types of systems.

1. A non-degenerate ground state to four nearby excited states.

2. Transitions between a double degenerate ground state to a doubly degenerate

excited state which have both been slightly split.

However, the change in relative intensities with temperature of the four lines would

be dramatically different for these two cases. Experiment shows that the ground

state is made up of two, slightly split levels, the separation being only 0.02 meV. In

Sec. 4.4 this centre is discussed in more detail. Time resolved optical measurements

give a measure of radiative lifetimes for individual ZPLs which can be modelled

theoretically (Sec. 2.17.2).

In summary, PL and related techniques can provide a wealth of information

about a defect, including symmetry, vibrational modes, and, in some cases, defect

concentrations. It can provide quantitative information on Jahn-Teller systems, and

a full picture of the electronic structure favourable situations. However, as with all

experimental techniques, the interpretation of the data requires care, and must

always be viewed in the context of other experimental and theoretical information.
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3.5 Deep level transient spectroscopy

Deep level transient spectroscopy (DLTS) is a powerful method developed in the

1970s [82] to probe deep (>0.1 eV) electron and hole traps in the band gap. For a

review of the method, see Ref. [83].

In order to characterise a sample using DLTS, the sample must either be in the

form of a p-n junction or Schottky barrier. The characteristics of deep electron and

hole traps can then be determined by measuring changes in capacitance with time

and temperature. The method is powerful, and can determine values for the trap

energy11, the capture cross section, and the defect concentration. For the purposes

of this section I shall only examine the case of deep electron traps, but the principles

can easily be applied to hole traps.

Consider the system which is shown schematically in Fig. 3.5(a). The region to

the right of the junction is depleted of majority carriers due to the band bending,

with the depletion depth given as x1 in the reverse bias V1. This configuration thus

acts as a parallel plate capacitor with contact area A and has a capacitance

C1 =
εrεoA

x1
. (3.14)

When the bias is increased to V2, the capacitance decreases to a value C2, which

corresponds to the larger depletion region x2 (Fig. 3.5(b)).

To perform the DLTS measurement, the reverse bias V2 is applied, with a short

pulse of the reduced bias V1. When the bias returns to V2, the decrease in capaci-

tance is almost immediate, with the depletion region now being x3 > x2. However,

the filled traps in the region x2 < x < x3 are not in thermal equilibrium, and

over time lose their electrons to bring the depletion region, and hence the junction

capacitance back to C2. This decay process has an exponential form as shown in

Fig. 3.6.

The decay can be measured either as a transient current or a transient change in

capacitance. The latter is invariably adopted. The capacitance transient is written

as:

∆C(t) = C2 − C(t) (3.15)

= ∆C(0)et/τ (3.16)

where ∆C(0) is |C2 − C3| and τ is the lifetime of the electron in the trap, which

can be written as:

1

τ
= σvNCe

−EC−ET
kBT = en. (3.17)

11The trap energy is usually quoted with respect to a band edge: EC − ET for electron traps,
and EV + ET for hole traps.
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Figure 3.5: Schematics of the conduction (EC) and valence (EV) bands bending at the p-n or
Schottky junction. Plots are shown for two reverse biases, V1 and V2. The junction is located at
x=0, and the distances xi and λi are described in the text.

σ is the capture cross-section of the electron trap, v is the average velocity of

electrons in the conduction band, and NC is the density of states in the conduction

band. en is simply the decay rate of electrons from the trap.

One possible measurable quantity using DLTS is an estimate of the trap concen-

tration. If the trap concentration, NT is much smaller than the donor concentration,

Nd, and if one assumes that NT is only weakly dependent on x, an approximate

value may be determined as follows. The capacitance of the junction for an applied

bias V1 is given as:

C1 = A

[
εrεoe

2(V1 + Vjunc)

] 1
2 √

Nd,

where Vjunc is simply the potential difference across the junction for no applied

potential, and is indicated in Fig. 3.5. Hence,

dC1

C1

=
1

2

dNd

Nd

.

One can then associate dC1 with ∆C(0) and dNd with NT to arrive at the expression

for the trap concentration:

NT =
2∆C(0)Nd

C1
. (3.18)

Eq. 3.17 shows that the decay rate is critically dependent on temperature, as

one might expect. This means that as the temperature is increased, the capacitance
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Figure 3.6: A plot of the reverse bias pulse and capacitance response.

returns to the equilibrium value more rapidly, as shown schematically in Fig. 3.7.

Also marked on this Figure is the ‘time window’, defined by the times t1 and t2.

An individual DLTS spectrum is obtained for a given time window by varying

temperature and plotting the change in capacitance (∆C) over the time window.

Such a plot shows the DLTS peaks characteristic of deep traps. A schematic DLTS

spectrum is shown in Fig. 3.8. Also indicated on Fig. 3.8 are the energies of the

traps, but in fact this picture is not strictly correct, since all terms in Eq. 3.17 are

dependent on temperature.

To determine an accurate value of ET , a series of measurements are performed

with different time windows. v and NC in Eq. 3.17 are proportional to T 1/2 and

T 3/2 respectively which means that Eq. 3.17 can be written

ln
( en

T 2

)
= χ−

(
EC − ET

kB

)
1

T
,

where χ is a constant related to the natural logarithm of σ. Then, plotting ln(en/T
2)

against T−1 gives a straight line with slope −(EC − ET )/kB. Trap energies can be

evaluated in this way to within a few %.

This plot can also be used to evaluate σ since the y-intercept is related to the

capture cross section. In practice, this method is not used since the resulting value

is not very accurate. An alternative method for estimating σ uses the fact that

for a sufficiently short applied bias pulse only a proportion of the traps will be

filled. As the pulse length is increased, the DLTS peak height increases due to more

traps being filled. Ultimately, the peak height will saturate as all the traps in the
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depletion region are filled. The characteristic time for filling the traps, τ ′ is related

to the capture cross-section by the relation:

σ =
1

τ ′vn
,

where n = Nd −NT ≈ Nd is the effective doping concentration. Thus, an Arrhenius

plot of peak height against pulse length can be used to evaluate σ.

Finally, it should be noted that Eq. 3.18 is only an approximate expression for

the trap concentration. The derivation of this expression uses the depletion length

x1 as determined from Eq. 3.14. However, the correct distance is that from the

interface to where the trap energy crosses the Fermi-level. This is denoted by λ in

Fig. 3.5. This error can be accounted for by including a correction factor to the

right hand side of Eq. 3.18,
x2

2

λ2
1 − λ2

2

.

λ can be determined from:

λ = x−
(

2εrεo(EF − ET )

e2(Nd −NT )

) 1
2

,

which is itself dependent on the trap concentration, NT . Thus, NT must be evalu-

ated from the corrected version of Eq. 3.18 iteratively.

In summary, the use of DLTS to characterise deep traps can provide the theorist

with valuable information. The position of the trap level in the gap can be calculated
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approximately using AIMPRO. DLTS has been used to investigate a large number

of centres, specifically the deep traps in GaAs produced by radiation damage, and

transition metals in Si.



Chapter 4

Vacancy-X complexes in diamond

‘... His party, cried “Advance and take thy prize

The diamond;”’ but he answer’d, “Diamond me

No diamonds! for God’s love, a little air!

Prize me no prizes, for my prize is death!

Hence will I, and I charge you, follow me not.”’

Alfred Tennyson from ‘Idylls of the King. Lancelot and Elaine.’

4.1 Introduction

Diamond has, for many centuries, fascinated mankind. The hardness, thermal

conductivity as well as the rarity and aesthetic appeal of diamond gem-stones has

led to scientific as well as commercial interest. Moreover, the availability of synthetic

diamond has led to the a desire to develop techniques for discriminating between

the more valuable gem stones and the man-made samples.

Diamonds can be grown using a number of techniques, the most important

of which are the high temperature, high pressure (HTHP), and chemical vapour

deposition (CVD) methods. During the development of diamond growth techniques

a number of materials with properties similar to diamond have been produced.

These include what is termed ‘diamond-like carbon’ and ‘tetrahedral amorphous

carbon’. Diamond-like carbon can be produced in large area films at relatively

modest expense, and diamond coating has made it into the realm of high-street

fashion: Rayban has recently put diamond coated sunglasses onto the market [84]

costing about £30 more than the untreated variety. They are reputed to have a

ten-fold increase in lifetime!

Viewed from an electronics point of view, these materials contain both sp2 and

sp3 bonded carbon. This leads to an effective lowering of the conduction band

bottom, and n-type semiconducting samples can be produced.

87
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Ia Nitrogen is present in the form of aggregates of several
types.

IaA The N-aggregates are predominantly in the form of A-
centres – substitutional N pairs.

IaB The N-aggregates are predominantly in the form of B-
centres – a vacancy surrounded by four N atoms.

Ib Nitrogen is present in the form of isolated substitutional
(deep) donors, Ns.

IIa Contains undetectable concentrations of N and B impuri-
ties – these diamonds are rather rare.

IIb Contains no detectable nitrogen but has substitutional
boron giving a variety of shades of characteristic blue colour
depending on the concentration. Such diamonds are (p-
type) semiconductors.

Table 4.1: A summary of the classification of diamonds.

Diamonds can be classified according to the content and form of nitrogen and/or

boron in the sample, and a summary is presented in Table 4.1. This system was

developed for natural diamond samples. Each form of nitrogen complex is char-

acterised by an absorption band from which the concentration of each defect type

can be estimated. Naturally, this categorisation is rather broad, and in practice

there are different forms of N-related defects in each sample – diamonds with A-

and B-centres are termed type IaA/B.

Besides the mechanical properties of diamond, technologically the most impor-

tant characteristic of diamond is its transparency to visible and infrared light. This

has led to the use of diamond for lenses in IR-detectors and in optical windows for

scientific equipment.

Optical properties are most often related to defects within diamond. The small

carbon mass generates substantial electron-phonon coupling, which together with

the high degeneracy associated with symmetric defects, often leads to important

and subtle Jahn-Teller (J-T) effects. A brief description of the J-T effect is given in

Appendix B. The high purity and large band gap of diamond facilitate experimental

studies of isolated centres in great detail. Positron annihilation studies [85] show

that vacancies are common defects in chemical vapour deposited (CVD) diamond.

They can occur in aggregates with concentrations up to 50 ppm which persist up

to 1100◦C. At a temperature around 600◦C neutral vacancies begin to migrate [86],

and readily complex with impurities creating further optically active defects.

In Sec. 4.2 a brief review of the single vacancy is presented, followed by vacancy-

nitrogen (Sec. 4.3) -silicon (Sec. 4.4) -phosphorus (Sec. 4.5) and -hydrogen com-

plexes (Sec. 4.6). The conclusions from all the V-X centres are summarised in the
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final section.

4.2 The vacancy

As indicated in the introduction, the presence of vacancies and related centres leads

to absorption and emission in the diamond samples, and hence colour. Vast amounts

of experimental and theoretical work has been published on the matter, and it is

not practical to present a detailed review of the literature here. Instead, I present

a summary of the the current understanding of the optical and electronic structure

of the neutral and negatively charged vacancy.

The early theoretical work of Coulson and Kearsley [87] using a ‘modified linear

combination of atomic orbitals’ approach suggested that the unrelaxed vacancy

possesses a filled (orbitally non-degenerate) a1- and a partially filled (orbitally

triply-degenerate) t2-level in the band-gap made up from combinations of the four

‘dangling-bond’ orbitals.

In the negative charge state the vacancy has the electronic configuration a2
1t

3
2. It

is believed that this gives rise to the ND1 optical-band (3.149 eV), which has been

shown to be a transition between A and T electronic states [88]. EPR and ENDOR

studies [89] have determined that V− possesses a 4A2 ground state, consistent with

the optical data, and shows that Hund’s rule is obeyed (S=3/2). This result has

been reproduced theoretically many times [15, 90, 91, 92, 93].

The neutral charge state of the vacancy is somewhat more complicated due to

the t2 level containing only two electrons and hence giving rise to T2 ⊗ T2 mul-

tiplets: Coulson and Kearsley lists the possible symmetries of the a2
1t

2
2 electronic

configuration as (adopting their notation):

1A1 + 1E + 3T1 + 1T2.

Thus the one-electron configuration with two electrons in the t2 level gives rise

to these four many-body configurations. Similarly, the one-electron excited state

(a1
1t

3
2) gives rise to the eight many-body states

5A2 + 3A2 + 3E + 1E + 3T1 + 1T1 + 3T2 + 1T2.

Transitions can occur between multiplets with the same spin1, provided that the

transition is symmetry allowed. For example, only transitions from T1 and T2 states

are allowed to an E state. The neutral vacancy, V0, is believed to be responsible

for a number of optical features of which GR1 (1.673 eV) is most prominent. This

1Transitions involving a change in effective spin do exist, but are generally much weaker than
spin conserving transitions.
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band arises from an electronic transition between a 1E ground state and a 1T2

excited state. Now, both the a2
1t

2
2 and a1

1t
3
2 one-electron configurations possess

states with 1T2 symmetry. However, it is believed [87, 94] that the GR1 band does

not involve the transition of an electron between one electron states, but instead

from a transition between multiplets arising from the a2
1t

2
2 electron configuration.

This ‘internal transition’ is possible due to the high symmetry of the centre.

Provided Hund’s rule is obeyed, trigonal (e.g. vacancy-impurity) centre related op-

tical features necessarily involve the transition of an electron between one-electron

states. This follows since the only electron configuration that gives rise to multiplets

is e2: E ⊗ E gives rise to 3A2 + 1E + 1A1. Hund’s rule requires the ground state

to possess 3A2 symmetry (as in the case of the negatively charged vacancy-nitrogen

complex below), and transitions between this and the other two states does not

conserve spin.

Returning to V0, it is worth noting that the von Barth method (Sec. 2.16)

for estimating multiplet energies is not available due to an inadequate number of

independent Slater determinants. However, the calculated multiplet structure due

to Coulson and Kearsley is in agreement with the experimental observations of the

GR1 band, and has formed the basis of the interpretation of other vacancy related

centres.

4.3 Vacancy-nitrogen complexes

One of the most thoroughly studied vacancy-impurity complexes is the vacancy-

nitrogen, [V-N]−, complex (see for example Refs. [95, 96, 97, 98]) . This trigonal

centre gives an emission peak at 1.945 eV which has been correlated with an S=1

EPR centre [95]. In samples exposed to relatively high levels of neutron irradiation,

and hence where the Fermi-level is relatively low [99], the 1.945 eV line has a

decreased intensity whilst a new line at 2.156 eV grows. It is suggested that the

neutral [V-N] defect is responsible for the 2.156 eV optical transition. Recently [100],

an S = 1
2

EPR centre attributed to this centre was observed. Other [V-Nn] defects

also exist: the H3 centre for n=2; the N3 centre for n=3 and the B centre for n=4.

All but the B-centre2 are known to be optically active [101, 102].

The energy levels of the C3v [V-N] defect can be understood from those of a

perturbed vacancy [93, 104]. As discussed above, the vacancy introduces a filled

a1 and partially filled t2-level into the band gap. For neutral [V-N], where a N

atom replaces one of the neighbours of the vacancy, the t2-level is now occupied

by three electrons and lies above the occupied a1-level. In fact the results of these

2Absorption has been tentatively associated with the B-centre – see Ref. [102].
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calculations show that the a1-level was pushed downwards towards the valence band

leaving a t2-level deep within the band gap. The trigonal symmetry of [V-N] splits

t2 into a filled a1 state lying below an e-level containing one electron. Thus it is

expected that [V-N] possesses an S=1/2 ground state.

In the negative charge state, the e-level contains two electrons and thus the

system can possess an effective spin of either S=1 or S=0 resulting in 3A2,
1A1

and 1E states. If the orthonormal e-orbitals are denoted by x and y, then the

many-body states constructed from the pair of electrons occupying these orbitals

are:

Ψ(3A2) =
1√
2
(x1y2 − x2y1)




α1α2

(α1β2 + α2β1)/
√

2
β1β2

Ψ(1A1) = (x1x2 + y2y1)(α1β2 − α2β1)/2

Ψ(1E) =
(x1y2 + x2y1)
(x1x2 − y1y2)

}
(α1β2 − α2β1)/2

The energies of these states can be evaluated using the method outlined in Sec. 2.16

where the determinental configuration wave-functions |x1 ↑ y2 ↑〉, |x1 ↑ x2 ↓〉, and

|x1 ↑ y2 ↓〉 give the energies of 3A2,
1
2
(1E + 1A1) and 1

2
(1E + 3A2), and hence each

multiplet.

4.3.1 Cluster and basis.

The structure of the nitrogen-vacancy and tri-nitrogen-vacancy complexes are mod-

elled using 70 atom clusters centred on the vacant site: NC34H35 and N3C32H35. The

basis adopted for each of the atomic species are listed in Table 4.2. In each case,

the 16 atoms (two shells) in the centre of the cluster were in big basis, as defined

in Sec. 2.18.

Atom Wavefunction Charge density
N 4 × sp 5
C 4 × sp 4
H 2 × sp 3

Table 4.2: The atomic basis used for the calculations in Sec. 4.3.

In diamond, structures and energies are insensitive to the presence of bond-

centred Gaussians, and consequentially, the relaxation was performed without in-

cluding these. For calculations of transition energies, rates and the multiplet ener-

gies, the basis was increased so that all but the surface H atoms were in ‘big-basis’.
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4.3.2 The vacancy bordered by a N atom

The relaxed [V-N]− (S=1) defect has trigonal symmetry with three N-C bond

lengths at 1.44 Å. The bond lengths of the three C radicals are 1.45 Å. The Kohn-

Sham energy levels revealed the t2-derived a↑1- and a↓1- levels (occupied) to lie 1.08

and 1.32 eV below the e↑- and e↓-levels. The Kohn-Sham levels in the region of

the band-gap are plotted in Fig. 4.1. The wavefunctions of the e-levels have little

amplitude on N in agreement with EPR studies [95] and are derived from the three

radicals of the vacancy, as indicated in Fig. 4.2. The total energies of the electronic

configurations gave the 3A2,
1E, 1A1 ordering of the multiplets, with energies of

0.00, 0.44 and 1.67 eV respectively. Thus, in agreement with experiment, Hund’s

rule is satisfied.
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Figure 4.1: The spin-polarised Kohn-Sham eigenvalues for the V-N complex in diamond. Only the
states in the region of the gap are plotted. Arrows indicate occupation and spin, and the empty
boxes show empty states. The ‘valence band tops’ have been aligned to facilitate comparison.

Now consider the optically excited state found by promoting an electron from

a↓1- to the e↓-level. This leaves a single hole in the e-level and corresponds to a 3E

term. The vertical excitation energy is the energy difference of these configurations

and differs from the ZPL by the relaxation energy of the excited state. A transi-

tion state calculation gave an optical energy of 1.77 eV in fair agreement with the

1.945 eV experimentally observed for 3A2 → 3E. The radiative lifetime of ∼20 ns,

compared to the experimental value of 13±0.5 ns [76] is found using the expression
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Figure 4.2: A contour plot for one of the e-level wavefunctions (au) of [V-N]−. The plane passes
through the vacancy site which is at the centre of the plot, and also through the N and one C
atom. Note that the level is nodal at the N atom. The second e-level is qualitatively similar.

in Sec. 2.17.2. It is worth re-emphasising that estimates of the radiative lifetime

are sensitive to the transition energy and spatial extent of the wavefunction. If the

experimental transition energy is used in this expression, the estimated lifetime is

reduced to 15 ns.

For neutral [V-N], the e-level contains one electron and hence the ground state

has 2E symmetry. A transition from the a1-level to the e-level (Fig. 4.1) is allowed.

A transition state calculation estimates the energy to be 1.57 eV, and radiative

lifetime is estimated to be 20 ns, which is broadly in agreement with the 2.156 eV

observed 2E → 2A1 transition [81] which has a ∼ 29 ns lifetime [106]. This estimate

is reduced to ∼10 ns if the experimental transition energy is used. The ground state

permits a dynamic J-T effect and an A2-level is then expected to lie close to the 2E

ground-state [103]. The additional 2A2 → 2A1 optical transition3 has been detected

about 100 cm−1 below the 2.156 eV line.

In both charge states of [V-N], there is a filled a1-level just above the valence

band top, and a transition from this level to the e-level has an energy of 3-3.5 eV,

and a radiative lifetime of the order of 1 ns. This (extremely fast) transition has an

energy in the nitrogen absorption band, and as a consequence may not be observed.

In any case it is not likely to be responsible for either the 1.945 or 2.156 eV spectra.

It is worth noting that if the N atom is moved from a site neighbouring the

vacancy to one lattice site separation, the total energy of the cluster increases by

3This transition is forbidden in the C3v point group, but can be induced under stress.
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∼3.3 eV in the neutral charge state. However, the dissociated system would act

more like isolated V− and N+
s . This would give rise to an associated Coulomb

energy

−e
2

εr
,

which amounts to around 1 eV.

The large value of the stabilisation energy has important implications. One

would expect these centres to be stable to high temperatures. However, before they

dissociate, one might expect them to migrate. In fact, the idea of ‘vacancy-enhanced

aggregation of nitrogen’ [76] has long been mooted.

4.3.3 The vacancy bordered by three N atoms

For the [V-N3] defect, the ordering of levels in the band-gap is the reverse of the

[V-N] centre, with the a1-level derived from the vacancy t2-level now lying above the

e (Fig. 4.3). This a1-level contains just one electron in the neutral charge state, and
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Figure 4.3: The spin-polarised Kohn-Sham eigenvalues for the [V-N3]0 complex in diamond. Shown
are the 2A1 ground state, and the 2E excited state associated with the N3 optical transition. Also
shown is an 2A1 excited state which is found to be the lowest in energy. This is associated with
the N2 vibronic centre. Only the states in the region of the gap are plotted. Arrows indicate
occupation and spin, and the empty boxes show empty states.

is largely localised on the C dangling bond. No J-T effects are then expected for the

ground state of this defect. The excited state generated by promoting an electron
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from the e-level to fill the a1-level possesses 2E-symmetry, and might undergo a J-T

distortion, but this is not experimentally observed [105]. The S = 1
2

EPR centre

labelled P2 has been correlated with the N3 optical centre [107, 108].

The calculated N-C bond lengths are 1.43-1.44 Å and the C-C bond lengths of

the unique C atom are 1.46 Å. The e → a1 transition state energy at 2.8 eV is in

good agreement with the observed value of 2.985 eV for the 2A1 → 2E transition,

and the calculated radiative life-times are 10 and 8 ns using the calculated and

experimental transition energies respectively.

Now, the interpretation of the experimental data for the decay times of the

N3 centre is rather complex [74]: the lifetime not only varies with temperature,

but there is a strong sample dependence, which appears to be correlated with the

concentration of A-centres. At low temperature, the seven samples reported in

Ref. [74] have decay times ranging with increasing A-centre concentration from 18

to 41 ns. The temperature dependence for any particular sample assumes that there

is some thermal activation from the excited state of the N3 transition to a lower

excited state. The lower excited state is associated with the N2 vibronic system.

Then the experimentally observed decay time, τ , is given by the expression:

1

τ
≈ 1

τrad
+ νe−EA/kBT , (4.1)

where τrad is the true radiative lifetime of the N3 transition, ν is an attempt fre-

quency and EA is the activation energy. The temperature dependent term is a

phonon-assisted decay into the excited state of the N2 system which is directly

correlated with the N3 centre [74, 108]. The temperature effect is significant above

temperatures around 500 K. Using a least squares fit, the parameters in Eq. 4.1 are

found to be found to be τrad = 41 ns, ν = 590± 200 ns−1, and EA = 530± 20 meV

for the sample with lowest A-centre concentration. If a theory including tunnelling

effects is used, the fit to experiment is poor, and gives a value of τrad = 150 ns.

The fact that there is no ZPL associated with N2 suggests that this lower excited

state may have A2 symmetry, since transitions between A2 and A1 states are not al-

lowed in C3v. If this is the case, this presents a serious problem to the interpretation

of these ab initio results: the only way to construct a multiplet which transforms

as A2 is from an e2 electronic configuration. This can be done by exciting the two

electrons from the e↓-level in Fig. 4.3 to give a e2a2
1a

1
1. This would be higher in

energy than the 2E state.

In principle, the undetected state may be A1 symmetry, provided that the dipole

moment of the centre is aligned in such a way that 〈ΨA1|r.E|ΨA1〉 = 0. Thus, the

hidden state may arise from an a1
1e

4a2
1 electron configuration, i.e. the a1-level above

the valence band is depopulated. However, one would expect this to be a high energy
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system (a transition state calculation would place such a transition at 4.7 eV), and

in these calculations the dipole matrix element shows that a transition would be

allowed, so a ZPL would be expected.

An alternative excited state is found by exciting the electron from the partially

filled a1-level to the a1-level above it. The resulting KS-levels are also plotted in

Fig. 4.3, and this is in fact a lower excited state (by around 0.5 eV) than that with
2E symmetry. More significantly, the dipole matrix element 〈A1|r|A1〉 is orders of

magnitude smaller than 〈A1|r|E〉, consistent with the N2 centre. The much longer

lifetime of this transition is due mainly to the highly dispersed nature of this second

a1 KS-level.

Naturally, there are many further excited states that can be generated from

arrangements of occupancies of the e, and two a1-levels. The most likely of these is

the e3a1
1a

1
1 configuration which possesses an energy around 0.7 eV higher in energy

than the 2E excited state.

4.3.4 Conclusions

To conclude, in the case of the [V-N] complex, the theory is able to account for the

ground state electronic structure, the symmetries of the principal optical transitions

with semi-quantitative estimates of their energies and rates.

Furthermore, the multiplet structure assigned to [V-N3] has been reproduced

although the first excited state is found to be of A1 rather than A2 symmetry.

However, the calculated radiative lifetime of the 2A1 → 2E transition is too short

by at least a factor of four.

4.4 The vacancy-silicon complex

A number of experiments over the past ten years have added evidence to the idea

that Si can be present in the form of isolated impurities in diamond. Initial stud-

ies where natural diamonds were implanted with Si ions [109] revealed an optical

feature near 1.68 eV, which at the time was attributed to lattice damage due to

the proximity in energy to the GR1 band. However, the same signals were seen

in CVD diamond where the substrate was made of Si [110] or where the growth

chamber was made of fused silica [111], and the common Si-factor led to suggestions

that Si may be present in the form of an interstitial or Si-X complex. Combining

the requirement for Si with the fact that the 1.68 eV line is enhanced when the

vacancy becomes mobile [112], naturally leads to the assignment to some form of

vacancy-silicon complex.
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In contrast to the single or double luminescence lines that arise from the [V-N]

centres, the 1.682 eV ZPL was resolved into complex set of twelve photo-luminescent

and absorption peaks [113]. Each of the three naturally occurring Si isotopes ac-

count for a set of four lines, representing a transition from an orbitally twofold

degenerate ground state, split by 0.20 meV, to a doublet excited state split by

1.07 meV. The results presented here show that the origin of these doublets lies in

the extraordinary structure of the [V-Si] defect.

4.4.1 Cluster and basis.

The silicon-vacancy complex is modelled using a 85 atom cluster centred on a bond:

SiC42H42. The basis adopted for each of the atomic species are listed in Table 4.3.

The central six C atoms and the Si atom were treated in ‘big basis’ as described

in Sec. 2.18. For the calculation of transition energies and rates, the bases was

augmented by including a single bond-centre in all but C-H bonds.

Atom Wavefunction Charge density
Si 4 × sp 5
C 4 × sp 4
H 2 × sp 3

Bond-centres 1 × sp 1

Table 4.3: The atomic basis used for the calculations in Sec. 4.4.

4.4.2 Results

In contrast to the [V-N] defects, the Si atom is unstable at the lattice site and

spontaneously moves to the split-vacancy site yielding a defect of D3d symmetry

as illustrated in Fig. 4.4. The separation between the Si atom and its six nearest

neighbours for the neutral cluster is 2.01 Å, and is relatively insensitive to the

charge state, being 2.00 Å in the negative charge state. The six dangling bonds

form two gap e-levels (Fig. 4.5) whose states are made up of bonding and anti-

bonding combinations. The lower level is filled and possesses odd parity (e′′), whilst

the upper is half-filled and has even parity (e′). These calculations show that the

S=1 spin configuration is around 0.25 eV more stable than S=0 thus agreeing with

Hund’s rule. The orbitally non-degenerate 3A′
2 ground state rules out this charge

state as a candidate for the 1.682 eV band.

However, the position of the deep e-levels shown in Fig. 4.5, suggests that the

defect can readily act as an acceptor in synthetic or type Ib diamonds and in the

negative ionised case, the upper e′-level has a single hole leading to a 2E ′ ground
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Figure 4.4: A schematic representation of the relaxed split-vacancy geometry of the V-Si complex.
The solid circles represent C atoms, the empty circle the relaxed Si site, and the dashed circles
the diamond lattice sites.

state. An internal optical transition can then occur between the e-levels leading

to a 2E ′ → 2E
′′

optical line at 1.86 eV in good agreement with the observed line

at 1.682 eV. The doublets are likely to be split by spin-orbit or more likely a J-T

effect. The radiative lifetimes of the transition are estimated to be 3 ns using the

calculated transition energy, and 2 ns using the experimental value, which is in

excellent agreement with experimental value of 1-4 ns [114].

In a similar calculation to that performed for [V-N]0, the energy increase in

separating the vacancy and Si by a lattice site is found to be 0.32 eV. This is a

much smaller stabilisation energy due to (at least in part) the large strain around

a substitutional Si atom.

Preliminary calculations show that in [V-Ge], the impurity does not prefer this

site but remains at a C site pushing away its three C neighbours, although a

metastable configuration exists in the split-vacancy structure.
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Figure 4.5: The spin-polarised Kohn-Sham eigenvalues for the V-Si complex in diamond in the
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4.5 The vacancy-phosphorus complex.

4.5.1 Introduction

There has been a considerable amount of work carried out on incorporating phos-

phorus in diamond with the aim of making a shallow donor defect. However, almost

all studies have succeeded in making highly resistive material despite substitutional

P (Ps) being expected to behave as a donor [115, 116, 117]. Electron paramagnetic

resonance (EPR) provides some evidence for Ps [118], and a second P defect is

found in P doped diamond grown by the high pressure method [119]. The latter

defect is trigonal with very little spin density at the P nucleus.

P has also been incorporated into chemical vapour deposition grown (CVD) dia-

mond by adding PH3 to the gas phase [120, 121]. Nitrogen apparently increases the

incorporation of P within the films yielding concentrations as high as 3×1019 cm−3

(as measured via SIMS). In spite of these large concentrations, the films were highly

resistive. PL experiments revealed broad intense bands around 1.7 eV which in-

creased with [P]. These were assigned to donor-acceptor pair recombination al-

though the identities of the defects are not known. Significantly, no sharp optical

lines due to P or the vacancy were detected.

Success at making conducting, n-type diamond has been achieved through a
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cold implantation of P ions followed by rapid thermal annealing [122]. It may be

that this process rapidly removed vacancies resulting from the implantation.

CVD diamond usually contains a high concentration, up to ≈ 5 × 1018 cm−3 of

vacancies [85]. The lack of an optical signal due to vacancies in the P rich material

suggests that they are bound up with P in some form. As with the N-V and Si-V

centres, a P-V complex may be understood in terms of the vacancy.

It might be thought that the P-V defect would be similar to N-V. In that case

we would expect it to act as an acceptor, with spin 1 in the ionised state, and

to possess a sharp luminescence line arising from the a1 → e internal transition.

However, it shall be shown below that this is not the case and [P-V]− has spin S=0

and no internal optical transitions are possible.

P-V acts as a deep acceptor and would compensate substitutional P and N. This

would explain the insulating properties of P-rich diamond, the lack of P-related

sharp luminescent bands, as well as the presence of broad donor-acceptor optical

bands.

4.5.2 Cluster and basis.

The calculations for the P-V complex have been performed on a 85 atom cluster in

the same way as the Si-V complex. The basis used is given in Table 4.4. The initial

runs had the central (P+6C) atoms in ‘big basis’ (Sec. 2.18).

Atom Wavefunction Charge density
P 4 × sp 5
C 4 × sp 4
H 2 × sp 3

Table 4.4: The atomic basis used for the calculations in Sec. 4.5.

4.5.3 Results

Previously [117], substitutional phosphorus has been examined using AIMPRO: it

is found to be an on-site defect with a (resonant) LVM around 380 cm−1.

In the first case the P atom was placed as far away from the vacancy and the

surface as possible. The structure was relaxed in the neutral charge state. Then the

P atom was moved to border the vacancy and the cluster re-relaxed. The energy

in this case was lower by 1.5 eV than the case where P was separated from the

vacancy. This shows that substitutional P is unstable in the presence of vacancies

and readily forms the P-V complex.
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In the P-V complex, the P atom did not remain at its lattice site but drifted

away until it lay mid-way between two lattice sites as with the split-vacancy Si-V

complex. Fig. 4.4 can also be used to understand the inner core of the relaxed

86 atom (D3d) cluster. The six P-C separations are 2.00 Å, the same as the Si-

C distances in the negative Si-V complex. In fact the only difference in the two

systems is the species of the impurity at the centre. The reason for the stability of

the split-vacancy is partially connected with the large atomic size of P although Ge-

V does not appear to assume the same structure. Fig. 4.6 shows the spin-polarised

Kohn-Sham energy levels of the P-V defect in the vicinity of the band gap, together

with those of a similar sized cluster without any defects. These reveal a mid-gap

e′-level (even) containing three electrons and an e′′-level just above the valence band

top, resulting in an effective spin of S=1/2. The position of this mid-gap level is

qualitatively similar to that found in the Si-V defect and thus the defect would be

expected to trap electrons arising from say substitutional N or indeed P. Thus the

P-V defect acts as a deep acceptor. However, the e′ levels are then filled and the

defect must be diamagnetic and no internal optical transitions are possible.
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Figure 4.6: Kohn-Sham eigenvalues of the [P-V] complex in diamond in vicinity of the band gap.
The arrows and filled boxes denote spin polarised and non-polarised occupied levels respectively
and the empty boxes empty levels. (a) An 86 atom cluster representing pure diamond. (b,c) Spin-
polarised levels for the neutral P-V defect. Note the e′′↑-level is full and the e′↓ level is half-filled
giving a 2E′ ground state. (d) shows the levels of [P-V]− where all gap levels are filled.

When the Fermi-level is low, such as for example when the material is irradiated
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or the absence of substitutional N, then a neutral P-V defect would be formed having

S=1/2. The wave-functions of the e′ gap levels are combinations of sp3 orbitals on

the six C atoms surrounding P and possess very little amplitude on P itself as shown

in Fig. 4.7. The trigonal symmetry of the defect and the fact that the spin density
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Figure 4.7: The pseudo-wavefunction for an e′′↑ state (au×10). Note that the amplitude near P
is negligible.

is very low on P suggests that this defect might be the EPR centre investigated in

Ref. [119].

Although no internal optical transitions are possible for the ionised defect, neu-

tral pairs of N+ and (P-V)− defects could luminesce and be the source of the broad

band donor-acceptor recombination band observed in Ref. [121]. The luminescence

energy would then be given by the difference in energies of the (excited) system

containing the neutral N and P-V centres:

{E(N0) + E([P − V ])},
and the (ground state) system containing the ionised centres:{

(E(N+) + E([P − V ]−)) − e2

εr

}
.

Note, the energy of the ionised system includes the Coulomb interaction energy4.

With the N donor level and the P-V acceptor level (Fig. 4.6) at Ec − 1.7 eV and

approximately Ec − 2.7 eV respectively (where Ec is the conduction band edge),

then for r about 5 Å, this transition would be around 1.5 eV, close to the observed

value.
4The Coulomb energy, e2/εr = 13.606× 2/5.5r which = 0.26 eV for r=10Å.



CHAPTER 4. VACANCY-X COMPLEXES IN DIAMOND 103

4.5.4 Summary

In conclusion, the calculations suggest a strong binding energy of P with vacancies.

In the P-V centre, the P atom lies mid-way between two vacancies. The centre

has D3d symmetry with spin S=1/2 in the neutral charge state, and there is little

spin-density on the P atom consistent with EPR experiments. The defect acts

as a deep acceptor and together with N would explain the pronounced broad PL

bands seen around 1.7 eV in P-doped diamond. The defect could also compensate

remaining substitutional P atoms, provided that there are vacancies present in the

sample5. This would explain the difficulties in making phosphorus electrically active

in diamond.

4.6 Vacancy-hydrogen complexes

4.6.1 Introduction

It is well known that hydrogen readily complexes with vacancies in silicon; infrared-

absorption experiments [13] have shown that VHn, n = 1, 2, 3, 4, defects are present

in ion-implanted samples. Furthermore, it is well established that impurities trap

hydrogen, such as SiGa in GaAs [123], P in Si [124], B in Si [125], and it has been

suggested that similar effects may be seen in diamond [126].

However, the location of H in diamond is not universally agreed upon, despite

numerous studies. It is well known that CVD grown samples can contain as much

as 1 at.% of H [127], but it is believed that most of this lies at grain boundaries

and surfaces.

Calculations have provided evidence that if H exists in an isolated form in bulk

diamond, it would preferably occupy a bond centre [128, 129, 130], with the tetra-

hedral interstitial site being variously reported to be between 1.7 and 2.7 eV higher

in energy.

It has been suggest [131, 132, 133] that hydrogen may also be being trapped at A-

centres (neighbouring substitutional N atoms). Recent calculations [134] suggested

that the saving in energy by moving a single H atom from the bond-centred site to

that in between the two N atoms is around 4 eV. The intermediate stage where the

H atom is adjacent to only one of the N atoms is 3 eV higher in energy than the

N-H-N system. So it seems clear that if isolated H atoms exist in bulk diamond,

they would prefer to occupy sites in the lattice close to other defect sites.

H2 might be present in molecular form, and calculations predicted that a centre

with a H2 molecule in an interstitial space would be stable [135]. However, later it

5This is highly likely in the P-implanted samples.
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was shown that a system made up of one bond-centred H and one anti-bonded was

much lower in energy (by 3.3 eV). This structure has since been termed H∗
2, and is

seen in Si [136] and Ge [137]. A similar centre is believed to exist in GaAs [138].

Experiment has provided a number of clues as to the presence of H in diamond.

IR-absorption studies [139] have reported C-H related stretch and wag LVMs at 3107

and 1405 cm−1 respectively. H on the 〈111〉 surface of diamond has a fundamental

stretch mode somewhat lower [140] at 2829 cm−1. This suggests that the C-H bond

giving rise to the 3107 cm−1 band is somewhat shorter, perhaps reflecting a more

confined local environment.

Cathodoluminescence (CL) has revealed the presence of optically active H-

related centres [141], with a ZPL at 540 nm (2.30 eV), close to the feature seen

in H-implanted natural diamond [142] which persists up to 1000◦C and exhibits iso-

topic shifts with deuterium. The 540 nm line appears to arise from centres located

at grain boundaries.

A number of EPR studies have reported signals that might be related to H-

dangling-bond centres [73, 143, 144, 145]. In Refs. [73, 145] two signals are reported

labelled H1 and H2, with estimated separations between the unpaired electron spin

and nuclear spin of 1.9 and 2.3 Å respectively. It has been suggested that these

centres are highly distorted hydrogenated vacancies, where two of the dangling

bonds reconstruct to leave a unique radical. Ref. [143] suggests that the defects are

dispersed throughout the sample, and thus the centre is simply V-H, whereas the

later studies suggest that the experimental evidence is more consistent with centres

close to grain boundaries where local distortions are rather strong. In Ref. [73], a

number of cluster-calculations where reported, which supported the assignment of

the H1 signal to a single H at a perturbed V site.

4.6.2 Cluster and basis

Reported here are the atomic and electronic structure of VHn, n = 1 − 4, with

their LVMs. The calculations were performed on (70+n)-atom clusters (HnC35H35)

centred at the vacant lattice site. The basis used is summarised in Table 4.5, with

the central 4C+nH defect atoms in ‘big-basis’ as described in Sec. 2.18. Further

relaxation calculations were performed on the larger 130+n-atom cluster HnC70H60.

For electronic structure calculations, the relaxed structures were embedded in a

186+n-atom cluster HnC104H82. In the case of the divacancy, a bond-centred, 85-

atom cluster was used(HC42H42).
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Atom Wavefunction Charge density
C 4 × sp 4
H 2 × sp 3

Bond-centres 1 × sp 1

Table 4.5: The atomic basis used for the calculations in Sec. 4.3.

4.6.3 VH

VH was relaxed with a single hydrogen placed ∼ 1.1 Å along the 〈111〉 direction

from one of the C atoms neighbouring the vacancy. All but the surface H atoms

were allowed to relax. The final H-C bond was 1.053 Å, and the distance between

the H and the three unsaturated C atoms at 2.028 Å, where these atoms have

relaxed away from the vacancy site by around 12%. The C bonded to the hydrogen

relaxed by around 10%.

Now, Zhou et al. suggest that the S = 1
2

EPR centre arises from unpaired spin

centred at one of the unsaturated C atoms, and analysis of the hyperfine anisotropy

provides an estimate of a ∼ 1.9 Å separation between the electronic and nuclear

(hydrogen) spin. This is in good agreement with the VH geometry as calculated

here. Note, the experimental estimate of the separation is not the H-C separation,

but the H-C-dangling-bond distance. This is less than the inter-atomic distance.

In order to model the electronic structure of the VH complex, the relaxed geom-

etry taken from the 70-atom cluster was embedded in a larger (187-atom) cluster,

and the self-consistent KS-levels calculated. The KS-eigenvalues for the neutral

VH complex are plotted in Fig. 4.8. The defect gives rise to filled singlet below a

doublet containing only a single electron, where both levels are deep in the gap,

and could give rise to 2E → 2E ⊗ 2E internal optical transitions. If it is assumed

that the system is analogous to the [V-N]0 centre, the lowest excited state is 2A1,

although the calculations have not been performed to confirm this. A transition

state calculation predicts the transition energy to be about 1.1 eV (1127 nm). The
2E ground state is a candidate for a Jahn-Teller distortion. The electronic structure

indicates that the defect could act both as a donor, or more likely, as an acceptor.

In the positive charge state, the re-relaxed geometry puts the H 1.046 Å from

the C to which it is bonded, and 2.072 Å from the remaining unsaturated atoms.

The KS-levels are also plotted in Fig. 4.8. The doublet is now completely empty,

and the singlet level lies around 2 eV below. This defect would be EPR inactive,

but could give luminescence: a transition state calculation predicts a transition at

around 1.2 eV.

In the negative charge state, the defect can adopt either a S = 1 or an S = 0
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Figure 4.8: The Kohn-Sham eigenvalues for the VHn (n=+1,0,-1) complex in diamond as follows:
(a) 1+, (b)&(c) neutral, (d)&(e) 1- (S=0), and (f)&(g) 1- (S=1). The eigenvalues of different
charge states have been shifted to bring the valence band tops into agreement to facilitate com-
parison, and only the levels in the region of the gap are plotted. Arrows indicate occupation
and spin-direction, the filled boxes indicate filled spin-averaged levels and the empty boxes show
unoccupied levels.

electronic configuration. To examine the stabilities of the two spin configurations

of VH−, the relaxed VH0 geometry was re-relaxed in each case, and the final total

energies compared. The calculations indicate Hund’s rule is obeyed, with the high-

spin, S = 1 state being around 0.25 eV more stable than that with S = 0.

The relaxed geometries for the 1- charge state are very similar for both spin

configurations, with the C-H separations being 1.064 and 2.058 Å in each case.

If this defect exists, it is likely to be EPR active, and may give rise to optical

transitions. A transition state calculation predicts that the 3A2 → 3E transition

would be around 1.5 eV, and the lifetime is estimated at around 5 ns. The KS-

levels are plotted in Fig. 4.8 for both spin states. Now, this optical transition is

rather lower than the optical transition seen experimentally around 2.3 eV, but an

assignment cannot be ruled out on this evidence.

Finally, for each of the charge states, the dynamical matrix has been constructed,

and the normal modes calculated as described previously (Sec. 3.2). The local

vibrational modes are listed in Table 4.6. Note, in principle all of these modes are

IR-active, although it is possible that they would not be observed due to insufficient

concentration or a small induced dipole, which has not been calculated. It is possible

that this is the system responsible for the 3107 cm−1 band, but the calculated stretch
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mode is (for the neutral charge state) some 10% higher. Now, as is discussed in more

detail in Chapter 6, a 10% change in LVM can be obtained from around a 3% change

in bond length, which is around the tolerance of AIMPRO. In the VH complex in Si

which has been identified experimentally [13], the stretch mode was overestimated

by 9%6. In fact, increasing the C-H bond length in the VH complex by around 3%

increases the total energy by only around 30 meV but decreases the stretch mode

to 3114 cm−1, which is in much better agreement with the experimental mode.

However, due to a lack of experimental data, no firm assignment can be made.

1+ Neutral 1-(S=1) 1-(S=0)
H D H D H D H D

3563 2607 3411 2501 3214 2350 3240 2372

Table 4.6: The H/D stretch modes (cm−1) associated with four charge/spin states of VH.

4.6.4 VH2

If the assignment of the H1 centre to VH is incorrect, and in fact H2 arises from this

centre, it is possible that H1 arises from a vacancy where more than one dangling-

bond is saturated by H. This suggestion was originally made in Ref. [145].

The calculations performed in a similar way to those for VH but where either

two or three of the vacancy’s dangling-bonds are decorated with H indicate that the

more H present, the shorter the unsaturated C to H distance, in broad agreement

with this alternative model.

VH2 is C2v with the two equivalent H atoms lying 1.049 Å from their C neigh-

bours. The unsaturated C atoms lie 2.008 Å from the closest hydrogens. The

relaxation of the C atoms away from the vacancy site is slightly less pronounced

in this case with the two unsaturated C atoms moving around 12% further from

the vacancy centre and those bonded to H relax by around 11%. The electronic

structure, as plotted in Fig. 4.9, indicate that there is a filled a1-level around 1 eV

below an empty b2-level, both of which lie mid-gap. A transition state calculation

on a1 → b2 predicts an energy of around 0.9 eV. Around 0.5 eV above the valence

band maximum is a filled b1-level, and there could possibly be a transition from

this level at around 3 eV. A transition between levels with b1 and b2 symmetry is

not allowed.

For VH2 to be responsible for the reported S = 1/2 g = 2.0028 EPR-signal,

it would have to adopt either a positive or negative charge state. In the positive

6The observed mode assigned to VH is at 2068 cm−1 whereas the calculations find the VH
stretch mode to be 2248 cm−1.
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Figure 4.9: The Kohn-Sham eigenvalues for the VHn
2 (n=1+,0,1-) complex in diamond as follows:

(a)&(b) 1+, (c) neutral, and (d)&(e) 1-. The notation is as in Fig. 4.8, and the charge states have
been shifted to bring the valence band edges into alignment.

1+ Neutral 1-
2H HD 2D 2H HD 2D 2H HD 2D

3392 3272 2464 3540 3504 2578 3347 3290 2435
3150 2382 2311 3470 2562 2544 3229 2401 2371

Table 4.7: The H/D stretch modes (cm−1) associated with three charge states of VH2.

charge state, the C-H bonds lengthen slightly to 1.064 Å with the unsaturated C to

H separation being slightly shorter at 2.060 Å. The a1-level is now only half filled, as

indicated in Fig. 4.9. There are several possible optical transitions. However, again

those between the b1 and b2 levels are not allowed. Table 4.10, lists the remaining

two transitions, of which the time dominant transition (at 30 ns) is b↑1 → a↑1 which is

estimated to lie around 1.8 eV. In the negative charge state, the C-H and Cunsaturated-

H distances are 1.064 and 2.060 Å respectively. The electronic structure plotted in

Fig. 4.9 shows that there is only one low energy transition mechanism between the

gap states. This is a↓1 → b↓2 and estimated to be around 1 eV.

The highest local vibrational modes for all three charge states are listed in

Table 4.7
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4.6.5 VH3 and VH4

VH3 is trigonal and has an effective spin S = 1/2 in the neutral charge state.

The electronic structure of the triply hydrogenated vacancy is the reverse of that

calculated for VH, i.e. the doublet lies below the singlet, and the singlet is partially

filled, as can be seen in Fig. 4.10. The singlet lies mid-gap, with the doublet around

0.6 eV above the valence band top. In analogy to [V-N3], this defect may give rise to

an 2A1 → 2E internal optical transition. Again, a transition state calculation was

performed, and the estimated energy is some 3.2 eV, and is likely to be obscured

by nitrogen related optical activity.
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Figure 4.10: The Kohn-Sham eigenvalues for the neutral VH3 and VH4 complexes in diamond.
The notation is as in Fig. 4.8.

Although the fully hydrogenated vacancy is patently diamagnetic, and thus

cannot possibly be responsible for optical or EPR activity, for the sake of com-

pleteness, the structure of VH4 has also been calculated. The C-H bond-length is

only 1.023 Å. The KS-levels indicate that there are two levels that may be in the

gap. However, since they are shallow and filled, the vacancy has been effectively

passivated (Fig. 4.10), and would not give rise to any optical activity.

The LVMs of the VHn (n=3,4) defects have also been calculated, and are listed

in Table 4.8. It is interesting to note that as the number of H atoms in the vacancy

increases, so does the frequency of the highest stretch mode. This follows from

the fact that as H is added to the vacancy, the Coulombic repulsion from the

neighbouring H atoms increases and the attraction from the remaining dangling
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VH3 VH4 V2H
3H 2HD H2D 3D 4H 3HD 2H2D H3D 4D H D

3571 3531 3489 2584 4039 3994 3946 3895 2907 3123 2293
3442 3441 2559 2522 3842 3842 3842 2877 2805
3440 2539 2522 2521 3842 3842 2851 2805 2805

3842 2827 2805 2805 2805

Table 4.8: The H/D stretch modes (cm−1) associated with the neutral VH3, VH4, and V2H
complexes.

bonds decreases. This leads to shortened C-H bond lengths and the LVMS are

pushed up in frequency. This is seen in the observations of analogous defects in

Si [13]. Note, in the case of VH4, the highest mode is rather high, but if a 10%

overestimation is present, this might be reduced to around 3600 cm−1. Furthermore,

this breathing mode would be infra-red inactive, and the second, degenerate mode is

the one that would be experimentally observed (including a 10% error gives around

3460 cm−1).

4.6.6 Stabilities of VHn

E(VHn) E(VHn−1-Hb−c) Stabilisation energy
n (au) (au) (eV) [27.212 eV=1 au]
1 -432.873 -432.757 3.16
2 -435.998 -435.883 3.14
3 -434.014 -433.919 2.60
4 -437.124 -437.045 2.15

Table 4.9: The total energies of the clusters containing VHn and VHn−1-Hb−c systems for
n=1,2,3,4. Note that in all cases, H prefers to be located within the vacancy.

In order to estimate the stability of each of the VHn, n=1,2,3,4 centres, the

following calculations were performed. VHn and VHn−1+Hbond−centred were relaxed

in the larger (130+n-atom) cluster. Then, the difference in energy is an upper

bound on the stabilisation energy of each centre. The results are summarised in

Table 4.9.

These results show that vacancies, as one might expect, are deep hydrogen-traps,

but it should be noted that these energies are with reference to bond-centred H. As

discussed above, previous calculations have suggested that there are even deeper

traps in competition with these.
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4.6.7 V2H

H1 possesses a H–dangling-bond distance of ∼ 1.9 Å, but when the H concentra-

tions are much lower, this signal disappears to be replaced by the weaker H2 signal

with a separation around 2.3 Å. The H–dangling-bond distance of 2.3 Å is some-

what more than one would expect in a single vacancy, as confirmed by these and

other [73] calculations. Therefore, we suggest that this weaker defect may be a

divacancy containing hydrogen. We have relaxed an 85-atom cluster centred on a

bond between the two atoms that are removed to produce the divacancy, where a

single H is placed close to one of the C atoms neighbouring a vacancy. The C-H

bond length is found to be 1.078 Å. Then the distances between the H and the

5 remaining dangling-bonds are 2.004, 2.005, 2.595, 2.596, and 3.060 Å. The H/D

LVMs are listed in Table 4.8. The H and the unpaired electron spins are in different

halves of the divacancy, and therefore the measured interaction would be related to

the 2.6 Å separation. This is in reasonable agreement with the experimental value

2.3 Å.

4.6.8 Conclusion

In conclusion, we find that all four VHn, n = 1, 2, 3, 4 defects are stable and that

VH, VH±
2 and VH3 are all consistent with the H1-EPR spectrum in terms of the

separation of the electronic and nuclear spins. However, the fact that experimental

evidence [73] points toward a single radical and a single H in the centre means

that the true origin of the EPR signal cannot be any of these. The modelling

outlined in Ref. [73] finds that the relaxed structure exhibits a weakly reconstructed

bond between two of the unsaturated C atoms neighbouring the vacancy. No such

reconstruction is seen in the calculations performed for this study.

All VHn complexes are optically active, and the various transitions are listed in

Table 4.10. It is possible that any one of these centres may give rise to the 540 nm

hydrogen-related CL peak reported in Ref. [141]. However, there is insufficient

experimental data to make any firm assignment. Furthermore, one would expect

these centres to possess characteristic LVMs, and an experiment correlating LVM-

absorption to the H1- and H2-EPR centres could provide valuable insight into their

atomic structure. However, EPR can detect much lower concentrations of defects,

and it is possible that IR-absorption experiments would not be able to resolve VH-

related modes.

Now, H in a vacancy is strongly bonded to C, but the remaining dangling-bonds

exert a Coulomb attraction on the proton. This tends to lengthen the C-H bond.

Thus, one might expect that as more H is added, the C-H bonds would shorten,
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Defect Transition Energy (eV)

VH+ a↑1 → e↑ 1.2

VH0 a↑1 → e↑ 1.1

a↓1 → e↓ 1.4

VH−(S = 1) a↓1 → e↓ 1.5

VH+
2 a↑1 → b↑2 0.8

b↓1 → a↓1 2.1

VH0
2 a1 → b2 0.9

VH−
2 a↓1 → b↓2 0.9

VH0
3 e↓ → a↓1 3.2

Table 4.10: A table of the main optical transitions expected for VHn, n = 1, 2, 3 in diamond.

and consequently, the H-dangling-bond separation increases. Then if H1 is VH, H2

might be VHn, n > 1. However, this is inconsistent with the fact that H2 is only

seen in samples with a low [H].

More likely, as suggested in Ref. [73] H1 is the VH centre (either in the bulk or

close a grain boundary), and H2 is a related centre, also with a single H atom. This

is consistent with the model of the divacancy-hydrogen complex which possesses

a structure that is consistent with the 2.3 Å separation. Furthermore, one might

expect that when there is more H around, the divacancy would trap one H atom

in each of the vacancies, and become diamagnetic. If the divacancy was a deeper

trap to the H than the single vacancy, then this would also lend weight to this

assignment.

Note, the calculations can not predict where in the sample VH centres would

lie, and it is quite possible that they would all be present in a region close to the

surface and grain boundaries.

4.7 Summary

In conclusion,

• The calculations give a good account of the optical properties of the [V-N] and

[V-N]− defects; the transition state calculations are in reasonable agreement,

as are the radiative lifetimes.

• Using the von Barth approach for calculating multiplet structure has proved

successful for [V-N]−.

• Although the calculated transition energy of the neutral [V-N3] centre is in
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good agreement with experiment, the radiative lifetime is up to an order of

magnitude too short.

• Including the shallow KS-level in the electronic structure of this defect pro-

vides an explanation of the N2 vibronic centre which has been correlated with

N3. Further excited states are available, one of which is likely to give rise to

the N4 signal.

• The calculations show that the [V-Si]− defect possesses an unusual, D3d struc-

ture where Si occupies a split-vacancy site.

• These results point to [V-Si]− being responsible for the twelve optical lines seen

around 1.682 eV. This spectrum results from an internal transition between

two doubly-degenerate e-levels.

• The centre is paramagnetic but there is little wave-function amplitude at the

Si nucleus.

• A phosphorus-vacancy complex also adopts the D3d split-vacancy structure,

and would act as an acceptor. It is likely that P forming this centre is a reason

for the difficulty in producing n-type semiconducting samples.

• [P-V]− would not give rise to any sharp, internal optical transitions.

• An optical transition between [P-V] and the nitrogen donor may be responsible

for the broad 1.7 eV band seen in P-doped diamond samples.

• A complex of hydrogen with a vacancy produces an EPR (S=1/2) centre.

The deep vacancy t2-state is split into an e-level lying above an a1 and is

expected to give rise to an optical transition around 1.1 eV. It is possible that

a complex similar to this is responsible for the H1-EPR system.

• VHn, n=2,3,4 are also stable, and for n=2,3 the centre is expected to possess

deep gap states which would give rise to optical transitions. VH4 is completely

passivated.

• In all cases, there are large binding energies between impurities and vacancies.



Chapter 5

Nickel and Ni-X centres in
diamond and Si

‘The best preparation for good work tomorrow is to do good work today.’

Elbert Hubbard.

5.1 Nickel in diamond

5.1.1 Introduction

Synthetic diamonds grown using high-pressures and high-temperatures (HPHT) are

produced by heating together a carbon source1 typically with a diamond seed crys-

tal2. The presence of a transition metal (TM) catalyst is not strictly necessary,

but the ‘direct conversion’ methods yield only small crystals (typically < 100 nm

grains [146]). The catalyst can take several forms [146], including water, phos-

phorus, and transition metals (e.g. Cr, Mn, Fe, Co, Ni). With a transition metal

catalyst typical temperatures3 and pressures for synthesis are 1400◦C and 5 GPa

respectively [146]. Growth rates vary between companies, but Ref. [146] lists typical

values of 2-15 mg/h. The largest example is that grown by De Beers at 2840 mg

(6 mg/h) which implies a growth time of nearly twenty days!

Despite the wide variety of transition metals used, until recently, the only one

found to contaminate the diamonds in the form of dispersed impurities was Ni, the

reason for which is not clear. Recently, however, photoluminescence and absorption

experiments have identified cobalt-nitrogen complexes [147].

1The C source is usually graphite, although other sources including SiC are used.
2If a seed crystal is not used, spontaneous nucleation takes place at higher temperatures and

pressures.
3For other catalysts, higher temperatures are required - for oxyacid salts the synthesis temper-

ature is above 1600◦C, and for H2O T∼2000◦C.

114
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As the synthesis of diamonds using the HPHT has become more technologically

and commercially important, the need for characterisation of the diamonds pro-

duced using this method has prompted a great deal of experimental and theoretical

work.

In this Chapter, a number of Ni-related centres are examined, and comparisons

made to experiment and previous theory. The layout of the Section is as follows:

first the experimental results are described, then the theory of transition metal

impurities in diamond is outlined (Sec. 5.1.3). In Sec. 5.1.4 previous theoretical

studies of Ni+i and Ni−s are discussed, in Sec. 5.1.5.1 the approach used for this study

is described and the results are given in Sec. 5.1.5. Conclusions are in Sec. 5.1.6.

5.1.2 Experimental background

Ni impurities are known to occur in synthetic diamonds grown using the HPHT

method with solvent catalysts containing Ni. Since prominent optical features are

associated with these impurities, there have been great interest in these centres and

a wide range of experimental techniques have been used to characterise the defects.

5.1.2.1 Magnetic centres

EPR studies have unambiguously shown that substitutional nickel (hereafter re-

ferred to as Nis) exists in isolated form: the signal is isotropic even at 4 K, consistent

with an on-site defect and the ‘super-hyperfine’ interactions (from 13C) indicates

twelve next-nearest neighbours. A tetrahedral interstitial Ni impurity (hereafter

referred to as Nii) would possess only six such neighbours. This defect has been

associated with an optical transition at 2.51 eV [148, 149]. Various theoretical stud-

ies [150, 151, 152] have shown that TMs to the right of the periodic table possess a

partially filled t2-level in the band-gap, and in the case of Ni, the effective spin of

S = 3
2

suggests the negative charge state [25]. This is consistent with the relatively

high concentration of N-donors in samples exhibiting this EPR signal.

Two other EPR centres labelled NIRIM-1 and NIRIM-2 are associated with

nickel [153], tentatively in the interstitial site. They are observed in Ni-containing

synthetic diamond when the concentration of N is lowered by the addition of tita-

nium and/or zirconium getters to the melt. The NIRIM-1 signal (g = 2.0112, S =
1
2
) is isotropic at 25 K (implying Td symmetry) but anisotropic at 4 K where it

exhibits C3v symmetry. The signal is not observed in samples where Ni is not

present in the melt and is enhanced by the addition of boron dopants, suggesting

a positively charged defect, although the effect apparently disappears for high con-

centrations of B. This has led to speculation that Ni forms complexes with B [153],

but might just as well arise due to a change in charge state.
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It has been suggested that this signal originates from isolated Ni+i slightly dis-

torted away from an interstitial Td site [153]. However, there are no super-hyperfine

measurements which would exclude an assignment to Ni+s . The latter model was

rejected due to the observation of the NIRIM-1 and Ni−s EPR signals in measure-

ments on the same sample. This argument is not conclusive: since if the material is

inhomogeneous, Nis could certainly exist in more than one charge state. Such inho-

mogeneity is illustrated by the fact that both the neutral (2.156 eV) and negative

(1.945 eV) charge states of the [V-N] complex coexist (Chapter 4).

NIRIM-2 (g = 2.3285, S = 1
2
) exhibits trigonal symmetry at all temperatures.

It seems likely that NIRIM-1 is either Ni+i or Ni+s and NIRIM-2 is then a complex of

NIRIM-1 with an unknown acceptor X−. It was suggested that X is a vacancy [153],

but this seems unlikely if interstitial Ni is involved, as then Ni+i should easily mi-

grate to the vacancy forming Ni+s . On the other hand, if the Ni atom is in the

substitutional site, then one can imagine a vacancy at a neighbouring site being

energetically favourable, such as in the case of [P-V], [N-V] and [Si-V] complexes.

Other possibilities for an acceptor are boron or aluminium. The NIRIM-2 signal is

also enhanced by the addition of B although no hyperfine interactions with ‘X’ are

observed requiring the spin-density at ‘X’ to be small.

Finally, a class of EPR-defects labelled NE1-7 have been reported by Nadolinny

and Yelisseyev [154, 155]. They all involve Ni, and possibly a number of combina-

tions of vacancies and nitrogen, although the actual structures are speculative. One

interesting hypothesis in Refs. [154] and [155] is the formation of a split-vacancy

structure as seen in Si-V and P-V when Ni and a vacancy are combined. This then

forms the basis of aggregation of N atoms to form the more elaborate structures.

5.1.2.2 Optical centres

In samples where the concentration of N-donors is low (typically [Ns]<10 ppm), the

dominant optical feature is a pronounced optical band with a zero-phonon transition

at 1.40 eV superimposed on a broad band centre around 1.4 eV. The ZPL is made up

from two peaks separated by 2.7 meV [156], upon which is resolved fine structure

correlating with the natural abundances of the five Ni isotopes [157]. Uniaxial

stress [149] reveals that the 1.40 eV ZPL arises from a C3v centre. Nazaré et al. [149]

then suggest that the NIRIM-2 EPR defect is responsible for this ZPL, although

this seems to be based largely on the fact that the centres are both trigonal and

exist in samples with low donor concentrations. The transition occurs between a
2E ground state and an 2A excited state.

Other optical features seen in samples where [Ns] is low are peaks at 1.22 [158],

2.56 and 3.1 eV [159]. The lowest energy peak is believed to arise from a more
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positive4 charge state of the 1.40 eV doublet. The 2.56 eV band is only seen in

luminescence and exhibits a complicated structure which has proved difficult to

interpret [160]: it is thought that Nis acts as an acceptor to another impurity

centre which is responsible for the ZPL. The peak at 3.1 eV also appears to exhibit

structure [159]. Both the 1.22 and 3.1 eV lines are only detected in absorption.

In samples containing concentrations of N exceeding ∼50 ppm, bands at 1.883

and 2.51 eV become dominant. Using uniaxial stress, Nazaré et al. [161] found that

the 1.883 eV structure arises from a system with C2v symmetry. The 2.51 eV band

has only been reported in absorption.

An emission peak at 2.968 eV correlated with Ni has been observed in optical

detection of magnetic resonance experiments (ODMR) [162]. The ZPL associated

with the centre is very weak. The radiative lifetime of the transition is very long

(40 µs at low temperature).

Recently [163], samples containing Ni−s defects and high concentrations of Ns

impurities were annealed at 1900◦C. A complex set of ZPLs around 1.693 eV appear

at the temperature when Ns becomes mobile. These lines were not seen in samples

where Ni is absent and it is suggested that they are due to a complex containing

a single N close to a Ni impurity. The possibility that this complex is of the form

Ni−s -N+
s is examined in this Chapter.

5.1.3 Electronic structure of Ni in group IV semiconductors

The electronic structure of TM impurities in group-IV semiconductors is often

discussed in terms of the Ludwig-Woodbury model (LW) [150] and the vacancy

model [151]. The 3dn4s2 atomic configuration of a first row transition metal atom5

is expected to be changed by the environment of the lattice: first, the crystal field

causes the 3d-levels to drop below the 4s-level, and secondly, the crystal field splits

the d-levels into e- and t2-levels.

First, according to the LW-model neutral interstitial impurities possess a t2-level

lying below the e and the 3dn+2 configuration becomes t62e
n−4. For Ni+i , the highest

state is then e3 which gives an S = 1
2

defect. This would thus be a candidate for

a Jahn-Teller distortion, but a distortion along 〈111〉 would not split the e-level.

Such a distortion might then cost energy. However, the spin-orbit coupling would

split the degenerate e-state when Ni+i is displaced along 〈111〉, and the consequent

lowering of energy might exceed the energy required to move Ni off-site. Since these

energy changes oppose each other, one would expect that the net lowering of energy,

4It is only observed in samples where [Ns] is very low (<5 ppm), resulting in a lower Fermi
energy.

5For Ni, n = 8.
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as well as the splitting of the e-level, to be very small and the effect would disappear

at temperatures when the upper level becomes occupied, or when kBT exceeds the

reorientation energy barrier.

This would explain why the anisotropic signal of NIRIM-1 at 4 K, attributed to

Ni+i , becomes isotropic at 25 K [153]. Indeed, the spin-orbit interaction splits the

e-level in the trigonal 1.4 eV optical defect by 2.7 meV [164] which corresponds to

34 K. Thus spin-orbit interactions have the correct order of magnitude.

However, an alternative viewpoint is prevalent [165, 166]: a chemical re-bonding

force drives Ni+i off-site. According to this model, Ni+i spontaneously distorts along

〈111〉. Now, chemical re-bonding forces are usually rather strong and this makes the

disappearance of the trigonal symmetry at temperatures as low as 25 K unlikely.

Substitutional N in diamond moves off-site by this mechanism and the reorientation

barrier between the equivalent minima is observed [167], and calculated [168], to be

0.7 eV. In the chemical re-bonding model, Ni+i should be identified with NIRIM-2

which is known to be a trigonal defect rather than NIRIM-1 and this leaves unre-

solved the assignment of NIRIM-1. The almost Td symmetry of NIRIM-1 suggests

a simple defect, such as Ni+i or Ni+s whereas there there many possibilities for the

trigonal NIRIM-2 centre involving pairs.

The LW-model for substitutional TM impurities places the e-level below the

t2-level. Now, the four sp3 bonds of the C atoms surrounding Ni form a1 and t2

states. The Ludwig-Woodbury model asserts that these t2-levels lie below those of

the TM and consequently are filled leaving n−6 electrons in the t2-levels of the TM

impurity. For Ni−s , the t2-level has three electrons which, if Hund’s rule operates,

yields an S = 3
2

state. This model implies that the highest occupied gap-levels are

localised on Ni.

On the other hand, the ‘vacancy’ model of substitutional TM impurities on the

far-right of the periodic table considers that the associated d−levels lie deep in the

valence band and couple weakly with the t2-levels arising from the Td symmetry of

the ideal vacancy, V [151, 152, 169, 170, 171]. Now V− has an electronic configura-

tion a2
1t

3
2 and if Hund’s rule is not obeyed, a Jahn-Teller distortion occurs leading

to a structure with C2v symmetry. This distortion splits the t2 level into an a1

lying below b1 and b2 [172]. In Si, Ni−s , Pd−
s and Pt−s possess this C2v symmetry

although the level ordering is inverted from V−, i.e. b1, b2 and a1 [173, 174]. How-

ever, in diamond Hund’s rule is obeyed for V− and calculations similar to those

described here [93] show that the a2
1t

3
2, S = 3

2
configuration has a lower energy than

a Jahn-Teller distorted S = 1
2

state.

Thus applying the LW-model or the vacancy model leads to the prediction that

Ni−s should exist in an S = 3
2

state. Notably they differ on the question of whether
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the gap wavefunctions are mainly localised on Ni or on the C atoms surrounding it.

This is discussed below.

It is expected then that Nii can act as a donor whereas Nis acts as an acceptor.

The types of diamond in which these centres are founds suggests that these acceptor

and donor levels lie above the acceptor level due to B−
s level at Ev+0.37 eV [175]

and below the donor level of N+
s level at Ec-1.7 eV [176]. In fact, photo-EPR

experiments [177] show that Ni−s possesses an acceptor level at Ev+3.03 eV. These

experiments also support the correlation of the 1.883 and 2.51 eV ZPLs to Ni−s .

There is a possibility that Nis can act as a donor. This would require the t2 level

to lie in the upper part of the gap with an extended wavefunction so that correlation

effects are small. The levels of Ni+s would then be close to those of Ni−s . In Ni+s ,

the t2 level contains one electron and this would provoke a Jahn-Teller distortion.

If the distortion led to a trigonal defect, the t2 level splits into e and a1. It is not

yet clear whether the e-level would lie above or below the a1-state, but the splitting

is likely to be very small, and if the e-level is lower, a further spin-orbit splitting

is expected – just as in the Ni+i case. For such a distortion to disappear at 25 K,

as with NIRIM-1, either the interval between the split levels, or alternatively the

barrier to reorientation, must be less than around 2 meV.

5.1.4 Previous calculations

CNDO calculations (see Sec. 2.5.1) have been carried out [24, 165] on Nii and Nis.

Ni−s possesses Td symmetry in agreement with experiment. However, the ordering

of electronic gap levels appears to be at variance with experiment. Ni0s was found

to possess a filled mid-gap a1-level lying below the empty t2-level [165]. Tetrahedral

Ni−s must then have a t2-level containing one electron, which is plainly inconsistent

with the assignment of an effective spin S = 3
2
.

This result may be affected by the positions of the nearest neighbours. If the

surrounding shell of C neighbours is allowed to relax outwards, the splitting between

the a2
1 and t12 states was reported to decrease, and it was suggested that eventually

they would cross giving a configuration t32a
0
1 which is consistent with experiment.

Similar CNDO calculations were then carried out on Ni0i . In agreement with

the discussion above, a filled e-level was found to lie just above the valence-band

top. On removal of one electron this level moves to mid-gap. The tetrahedral

site was found, however, to be unstable and a structure with 1.5 eV lower energy

arises when Ni+i is moved 0.1 Å along the [1̄1̄1̄] direction6, with the four nearest

neighbours allowed to relax. However, if the neighbours were held fixed, the nickel

6Here the convention that one neighbour is along [111] is adopted, and the distortion in the
[1̄1̄1̄] direction is therefore towards three nearest C-neighbours.
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atom moved 0.042 Å along [111] towards a C neighbour. This C3v distortion does

not alter the degeneracy of the level, and cannot be attributed to a Jahn-Teller

effect since it does not raise the degeneracy of the e-level. It must therefore be

a chemical re-bonding effect. Subsequent to the observation of the 1.22 eV band,

the structure and transition energy of a Ni++
i system was reported [178]. Here the

1.22 eV ZPL was assigned to a 3E →3 T1 transition at this centre. This would

suggest that a further EPR-active centre should be observed in low N samples.

Recently, Ni+i has been investigated using a discrete variational local density

functional method [166]. The calculations were based on clusters of 30 carbon atoms

around the central tetrahedral interstitial Ni atom with two types of boundary

conditions were applied: the first is a free boundary condition, in which the surface

dangling bonds are left unsaturated for calculation of the geometry of the defect,

and the second is a Watson sphere approach which enabled the electronic structure

to be found. Only the central five atoms were allowed to relax and the symmetry

constrained to be trigonal.

Again the on-site defect was found to be unstable. The Ni atom moved 0.2 Å

from the Td site along [1̄1̄1̄], away from one C neighbour. When relaxed, this C

neighbour also moved along [111]. The total nearest neighbour relaxation lowers

the binding energy by around 8 eV. Such a distortion energy is far too big to

explain the properties of the NIRIM-1 signal. The ordering of gap levels leads to

the electronic configuration e4a2
1e

3. The shortest resulting Ni-C bond-length (which

lies along [111]) is just 1.52 Å, with the other three Ni-C bonds being 1.58 Å. These

are surprising short bond lengths. The Ni-C bond-length observed in the Ni(CO)4

molecule is 1.84 Å [179], and one would have expected the large Ni atom to have

repelled the surrounding carbon atoms. These calculations also led to assignments

to this defect for the experimentally observed optical transitions at 1.40 and 3.1 eV.

It appears then that previous calculations identify Ni+i with the NIRIM-2 defect.

5.1.5 AIMPRO calculations

5.1.5.1 Cluster and basis

The atomic basis used in the calculations for this chapter are listed in Table 5.1.

In each case, the central defect atoms and their neighbours were treated using a

‘big-basis’ as defined in Sec. 2.18, with the remaining atoms in ‘minimal-basis’. In

the case of Ni+i B−
s , additional orbitals were placed on bond-centred sites around

the central 6 atoms. The clusters used consisted of 71 atoms centred on the Ni

impurity atom with the surface dangling bonds saturated with hydrogen atoms.

Substitutional defects are modelled using the tetrahedral cluster NiC34H36, whereas
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Atom Wavefunction Charge density
Ni 7 × spd 14
B 4 × sp 5
N 4 × sp 5
C 4 × sp 4
H 2 × sp 3

Bond-centres 1 × sp 1

Table 5.1: The atomic basis used for the calculations in Sec. 5.1.

interstitial Ni was modelled using the cluster, NiC30H40, centred on a Td interstitial

site. In the case of the Ni-vacancy complex, a bond-centred cluster was adopted:

NiC42H42.

It should be noted that since the charge density is fitted using s-Gaussians, a

large number of functions are required to adequately fit the highly peaked charge

density of d-orbital elements. This can lead to near singularities in the inversion of

the density matrix. Consequently the results presented here should be regarded as

near to or at the limit of stability of the current incarnation of AIMRPO.

5.1.5.2 Nickel carbonyl

The Ni-basis7 has been tested on the relatively simple Ni(CO)4 molecule, which

is ideally suited due to the tetrahedral structure and Ni-C bonds. The Ni-C and

C-O bond lengths have been determined experimentally to be 1.837 and 1.141 Å

respectively [179]. AIMPRO produced optimised bond lengths of 1.819 and 1.150 Å,

errors of just 1.0 and 0.8%. These results provide confidence that the basis used

well describes the structural behaviour of Ni-C bonds.

5.1.5.3 Interstitial Ni+

This defect was found to remain on-site retaining Td symmetry in contrast to the

previous calculations described above. In order to confirm the stability of the defect,

the nickel atom was displaced along [111], towards one of the C neighbours, by

0.4 Å. Then it, and its four nearest C neighbours were allowed to relax. The Ni

atom returned to the tetrahedral site with the four nearest carbon neighbours at

a distance of 1.72 Å. The six next-nearest neighbours were at 1.78 Å. This cluster

was then relaxed further with all the atoms allowed to move. This resulted in an

expansion and the final structure has Ni-C nearest neighbour lengths of 1.84 Å

and next nearest neighbour lengths of 2.00 Å. This shows that there is extensive

7For this calculation all atoms were in ‘big-basis’, and additional bond-centred functions were
placed between C and O atoms.
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movement of the first two shells and limiting the movement to nearest neighbours is

insufficient. The Ni-C lengths are very close to those found in Ni(CO)4 (1.837 Å).

The energy necessary to distort Ni+i from its Td site was evaluated as follows.

The total energy of cluster was calculated for various Ni displacements along 〈111〉
for two cases: in case (i) only the Ni atom is moved, and in case (ii) the surrounding

neighbours are allowed to relax at each step. The resulting potential profiles are

plotted in Fig. 5.1. This graph shows that the global energy minimum is to be
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Figure 5.1: The variation of potential energy with 〈111〉 displacement of the interstitial nickel atom
from the relaxed structure. The curve shown with X’s denotes case (i) when the four surrounding
carbon atoms are not relaxed at each Ni position, and the curve shown with triangles denotes case
(ii) when the four nearest neighbours are free to relax.

found at the tetrahedral site, in both cases, and the amount of energy required to

move the Ni off-site by 0.1 Å towards a C is around 0.01 eV. Thus our calculations

give no support to the idea of a chemical rebonding force responsible for Ni moving

spontaneously away from the Td site.

The electronic levels of the positive charged relaxed cluster are shown in Fig. 5.2

(a,b). The only low energy dipole allowed optical transition for Ni+i arises from

a 2E → 2T2 estimated to be 1.38 eV using the Slater transition state method

(Sec. 2.17.1).

We consider the defect could be a candidate for the NIRIM-1 centre. As already

explained, spin-orbit interaction might stabilise a 〈111〉 distortion, below 20 K,

with a splitting of the e-level by perhaps 2 meV. No optical lines have so far been

associated with the NIRIM-1 defect.
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Figure 5.2: A schematic representation of the electronic structure (Kohn-Sham eigenvalues) of
the two interstitial Ni defects examined in this work. (a) and (b) correspond to the Ni+i spin up
and spin down electronic levels respectively, with the arrows signifying filled states and the boxes
empty states. Similarly, (c) and (d) corresponds to the up and down KS-levels of the Ni+i -B−

s

complex. The levels have been shifted linearly to facilitate comparison.

5.1.5.4 The Ni+i -B−
s complex

Ni+i might be expected to complex with negatively charged acceptors and hence

the Ni+i -B−
s defect has been investigated. Here B is substituted for one of the four

nearest C neighbours and the cluster then allowed to relax. Ni moves slightly away

from the Td site along 〈1̄1̄1̄〉, by 0.16 Å. The boron atom relaxes radially outwards

(along [111]), with a relaxed Ni-B bond-length of 1.98 Å. The three C neighbours

also relaxed outwards with final Ni-C bond-lengths of 1.87 Å.

The electronic structure (Fig. 5.2(c,d)) can be understood as arising from that

of Ni+i where the t2-levels are split into an e- and a1-level by the trigonal symmetry.

It is assumed that the a↑1-level drops into the valence band. The highest occupied

e↓-level contains a single hole 2.4 eV below the lowest empty, (anti-bonding) a↓1
state, giving the system a 2E ground state. The corresponding e↑-level is filled, and

lies 3.7 eV below the unoccupied a1-level which is believed to represent the conduc-

tion band edge. The least energetic optical transition would be between the e↓- and

an e↓-level 1.2 eV below. Such a transition is not consistent with the experimen-

tally observed symmetries of Ni-related optical reanstitions. A second low-energy

transition between the e↓- and a↓1-levels (∼1.8 eV). As discussed in Sec. 5.1.5.9, the
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estimated transition rate via these route are rather low compared to the 2.4 eV

e↓ → a↓1 transition corresponding to 2E → 2A1.

The C3v symmetry of the final structure, the 2E and 2A1 ground and excited

states and the effective spin of S = 1
2

are all consistent with an assignment to the

1.4 eV and NIRIM-2 centres. No strong hyperfine interaction with B would be

expected, or is observed, because the hole occupies an e state which has a node at

the B site. Hence Nii-B or possibly Nii-Al complex are candidates for these defects.

Transition state calculations have been performed on the two optical transitions

highlighted above. a↓1 → e↓ gives 1.61 eV, and the e↓ → a↓1 is 2.78 eV. Although the

higher energy transition is calculated to be the more rapid, there may be several

reasons for discounting it. First, and most important, identifying a1-level with the

bottom of the conduction band would suggest a broad optical feature, contrary

to experiment. Secondly, a conduction state is rather diffuse, and the artificial

confinement of the cluster would therefore exaggerate the dipole matrix element for

this transition.

If B rather than Al is involved, and since B possesses two naturally occurring

isotopes, one might expect that the optical line would be split by zero-point motion

effects of the two isotopes. This follows as the frequencies of the defective lattice are

different in the ground and excited states. However, the effect would not occur if the

ground and excited state wavefunctions had nodes at the B site. This splitting would

be in addition to the 2.7 meV splitting due to spin-orbit coupling. No additional

splitting is observed in the 1.4 eV centre. Now, although the e wavefunction is

nodal at the B site, the a1 wavefunction is not. Hence, the model implies a splitting

for B although it might not be resolvable as for example the absence of isotopic fine

structure in the 856 meV ZPL in Si [12].

The conclusions are that this defect remains a possible candidate for the 1.4 eV

ZPL and the NIRIM-2 EPR centres.

5.1.5.5 Substitutional Ni−

The cluster containing the substitutional defect, Ni−s , was relaxed with an effective

spin of S = 3
2
. The inner 17 atoms (three shells of C atoms) were allowed to move.

Ni remained on the Td site with four nearest-neighbours at 1.89 Å and the twelve

next-nearest neighbours at 2.58 Å. The pseudo-wavefunction associated with one

of the filled t↑2 states possesses a nodal surface between the Ni and neighbouring C

atoms (Fig. 5.3) but it is difficult to draw definite conclusions as to the localisation

of the pseudo-wavefunctions: there is always a near nodal surface through C as a

consequence of using pseudo-potentials.

The spin-polarised energy levels are shown in Fig. 5.4(a,b). The highest occupied
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Figure 5.3: A contour plot of the pseudo-wavefunction associated with one of the three Ni−s t↑2
states taken through the {11̄0} plane; the x-axis is along 〈001〉, and the y-axis along 〈110〉. The
wavefunction amplitude is in au×10. The Ni atom is at the centre of the plot and marked with the
white square. The two C atoms are marked with black circles. The plot shows the anti-bonding
character of the wavefunction, i.e. there is a node in the wavefunction between the Ni atom and
its four C neighbours.

spin-up energy level has t2 symmetry and lies 3.0 eV above another occupied t2 spin-

up level and 3.1 eV below an unoccupied spin-up singlet which is believed to be

the bottom of the conduction band. The corresponding empty spin-down t2-levels

are 1.7 eV above an occupied doublet. These results suggest dipole allowed optical

transitions around 1.7 and 3.1 eV whereas an observed transition occurs around

2.51 eV [148].

If a transition state calculation is performed, then the average energy of the

transition between the e- and t2-levels is 2.33 eV.

Note, a transition to the conduction band is likely to be rather broad, and it

is therefore not likely that this transition is responsible for any of the sharp ZPLs

correlated with Ni. The experimentally observed transition at 1.883 eV found in

N-rich material [159] is also thought to be related to the substitutional defect.

The same cluster was then relaxed with effective spin of S = 1
2

which corresponds

to an average of the 2E, 2T1 and 2T2 states which arise from the e2t32 electronic

configuration. The total energy for this structure was some 1.03 eV higher in

energy than that with S = 3
2
. Thus the 4A2 configuration is found to be the most

stable, in agreement with experiment.
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Figure 5.4: A schematic representation of the electronic structure (Kohn-Sham eigenvalues) of the
four substitutional Ni defects examined in this work. (a) and (b) correspond to the Ni−s spin up
and spin down electronic levels respectively, with the arrows signifying filled states and the boxes
empty states. Similarly, (c) and (d) correspond to Ni−s N+

s , (e) and (f) to Ni+s , and (g) and (h) to
Ni+s B−

s . Once more, all the levels have been linearly shifted to facilitate comparison.

5.1.5.6 The Ni−s -N+
s complex

One might expect Ni−s to attract an ionised N donor and form a close by donor-

acceptor pair Ni−s -N+
s , as suggested in Ref. [147]. A cluster centred on Nis, with

with one of the nearest carbon neighbours replaced by N, was relaxed with effective

spin S = 1
2
. The final structure retained C3v symmetry: the Ni-N bond length

was 1.92 Å and the three Ni-C bond lengths were 2.07 Å. The N atom has moved

slightly (∼ 0.15 Å) away from Ni.

The presence of the N atom split the triply degenerate t↑2-level of Ni−s into an

occupied a↑1-level lying 1.4 eV below an e↑-level occupied by one hole as shown

schematically in Fig. 5.4(c). This could account for the 1.693 eV transition found

by Lawson et al. [163]. Similarly, the t↓2-level is split into an occupied a↓1-level

0.2 eV below an empty e↓-level (Fig. 5.4(d)). This electronic configuration has 2E
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symmetry.

We have assumed here that the splitting of the t2 level of Ni−s into a1 lying

below an e level would cause the a↓1 level to be occupied leading to a S = 1
2

state.

However, there is a possibility that the a↓1 remains empty and S = 3
2

: the same as

for Ni−s . The cluster was relaxed in this 4A1 configuration and found to be ∼ 0.8 eV

higher in energy than 2E - the ground state.

The excited state structure is rather complicated. An optical transition from

the ground state must conserve spin. The excitation of an electron from the a1-level

would produce 2A1 + 2A2 + 2E states, but there are further multiplets arising from

the promotion of an electron from a lower e-level. Such a calculation is beyond the

scope of the methods used here. However, Ni−s -N+
s possesses optical transitions that

may account for the band around 1.693 eV seen in type Ib diamonds annealed to

1900◦C [163].

During the formation of the 1.693 eV centre, the strength of the 1330 cm−1 LVM

absorption attributed to Ns remains constant. This has caused some uncertainty

in the interpretation of the 1.693 eV centre as a Ni−s -N+
s . Now, the lattice absorp-

tion at 1330 cm−1 arises as free “neutral” Ns where both N and one C neighbour

move away from each other. The decreased C-C back bonds give a local mode at

1330 cm−1 [180]. However, N+
s would remain on-site and no local mode would be

expected from this charge state. If the annealing process caused Ni−s to complex

with N+
s , there would then be no loss of IR absorption at 1330 cm−1. We conclude

that the optical line at 1.693 eV is probably due to Ni−s -N+
s defect.

5.1.5.7 Substitutional Ni+

When the N donor concentration is lowered and the Fermi level drops, one might

expect the Ni−s t32-level to be depopulated and form an EPR active Ni+s centre with

an effective spin of S = 1
2
. The gap t↑2 level is occupied with one electron and a

Jahn-Teller distortion would be expected.

In this simulation, the Ni atom was displaced from the Td site along [111] by

∼ 0.4 Å and it and all the C atoms were allowed to relax. The Ni atom moved back

to the Td site, with the first two shells of C atoms at 1.94 and 2.58 Å. The shortest

Ni-C bonds are now 0.12 Å longer than those in Ni−s .

In order to obtain self-consistency for the positive charge state, it was necessary

to impose a finite temperature upon the calculation, i.e. the t↑2 level had a single

electron ‘smeared’ over the three degenerate levels using the method outlined in

Sec. 2.13.1. This, as mentioned there, reduces the driving force for a Jahn-Teller

distortion. We can say that the distortion must be very small and consequently

the levels are close to being degenerate. It appears that a trigonal distortion is a
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possibility – although it is not possible to rule out a displacement of Ni along [100]

say giving C2v symmetry. Moving one of the C nearest neighbours away from Ni

along [111] causes the t2 level to split into an e-level lying below a1. The defect then

possesses a 2E ground state. Spin-orbit coupling (or another Jahn-Teller distortion)

would then split of the e level in an identical way with the Ni+i centre.

Since the t↑2 level is now occupied by only one electron, it possesses 2T2 symmetry.

An optical transition from the e-level below this state is allowed, which results in

T2 ⊗ T2 ⊗ E multiplets. The spin S = 1
2
, and the near Td symmetry are both

consistent with an assignment to the NIRIM-1 EPR centre.

5.1.5.8 The Ni+s -B−
s complex

A complex of Ni+s with B−
s might anticipated in low [N] or boron doped material.

This would lead to a stable trigonal defect somewhat analogous with Ni+i -B−
s . In

the calculation, both the Ni and B atoms moved along [111], and the defect is stable

with a long B-Ni length of 2.32 Å. The three Ni-C bonds were 2.11 Å, and the Ni

next-nearest neighbour-shell occurred at 2.51-2.56 Å.

The energy levels are shown in Fig. 5.4(g,h) where it can be seen that the Nis-t2

levels have split into an e state lying below a1. A single electron occupies the e↑

state, which lies above an a1-level, leading to a 2E ground state. Of the possible

optical transitions, e↑ → a↑1 (1.1 eV) a↑1 → e↑ (2.1 eV) and a↓1 → e↓ (1.8 eV) are the

lowest in energy considering only the difference in Kohn-Sham levels.

However, when the multiplets are considered, one finds that there are expected

to be a large number of S = 1
2

systems due to the number of unoccupied levels in

the gap. However, the transition from the a↓1- to the (empty) e-level above it is the

most rapid as estimated using the method outlined in Sec. 2.17.2, and a transition

state calculation provides an estimated energy of 2 eV. This would lead to a 2A1

excited state, which is consistent with the 1.40 eV ZPL. The complex is also a

candidate for the NIRIM-2 defect.

5.1.5.9 Radiative lifetimes

For each dipole allowed transition mechanism for each centre, an estimate for the

radiative transition rate can be calculated using Eq. 2.47. We suppose here that

the transition energy is given by the difference in the Kohn-Sham eigenvalues. The

calculated rates are listed in Table 5.2. To my knowledge, the only radiative lifetimes

obtained experimentally for a Ni-related centres are 140 µs the 2.56 eV luminescence

peak at 2.3 K and 40 µs for the 2.968 eV emission band at temperatures <15 K.

Broadly, these estimates indicate that although there a numerous potential ra-

diative transition mechanisms, it would appear that in each case there is a single
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Ni+i Ni+i -B−
s

Trans. P 2
ij ∆E τ Trans. P 2

ij ∆E τ

t↓2→e↓ 0.62 1.4 227 e↑→a↑1 0.38 3.7 21.0
e↓→e↓ 1.08 1.2 207

a↓1→e↓ 0.05 1.8 1.3µs

e↓→a↓1 0.40 2.4 68.2
Ni−s Ni−s -N+

s

Trans. P 2
ij ∆E τ Trans. P 2

ij ∆E τ

t↑2→a↑1 6.50 3.1 2.1 a↑1→e↑ 2.63 1.4 53.3

t↑2→e↑ 1.22 3.8 7.3 e↑→e↑ 0.57 3.3 18.8

e↓→t↓2 1.77 1.7 44.2 e↑→a↑1 1.31 3.5 6.8

a↓1→e↓ 2.35 0.2 20.5µs
e↓→e↓ 0.96 1.2 231

a↓1→a↓1 0.76 1.6 1.1

e↓→a↓1 0.01 2.6 1.5µs
Ni+s Ni+s -B−

s

Trans. P 2
ij ∆E τ Trans. P 2

ij ∆E τ

e↑→t↑2 1.30 2.5 20.1 e↑→a↑1 0.52 1.1 550

t↑2→a↑1 10.99 3.5 0.8 a↑1→e↑ 1.58 2.0 30.5

e↓→t↓2 1.38 2.1 30.1 e↑→e↑ 0.35 2.5 69.7

e↑→a↑1 0.45 2.9 34.7

a↑1→a↑1 0.13 3.1 100

a↓1→e↓ 5.17 1.8 12.7
e↓→e↓ 0.79 2.0 60.6

a↓1→a↓1 0.20 2.7 96.7

e↓→a↓1 0.51 2.9 31.0

Table 5.2: The dipole-allowed transitions for Ni and Ni-X centres. The transitions are written in
terms of the absorption. All transition energies [eV], ∆E, are found from the difference between
the calculated Kohn-Sham eigenvalues, and the dipole matrix elements squared are also listed
(P 2

ij). The radiative lifetimes, τ are listed in ns unless stated otherwise.
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dominant transition so that the others would then not be observed experimentally.

For each defect, the dominant transitions appear to be as follows:

• Ni+i The only dipole allowed transition is at 1.4 eV (t↓2 → e↓), and has an

estimated lifetime of 0.2 µs.

• Ni+i B−
s The time dominant transition listed in Table 5.2 is at 3.7 eV. The

1.8 eV optical transition e→ a1 may account for the 1.40 eV centre, however,

the estimated transition time is 1.3 µs, and thus is unlikely to be seen since

there appear to be more rapid decay routes.

• Ni−s The dominant transitions appear to be from the t↑2 state to the conduction

band estimated at 2 ns. Now, the theory used does not describe the conduction

band well, so the interpretation of the rates has to be very careful. Thus it

is suggested that the dominant transition is t↑2 → conduction band, but the

e↓ → t↓2 transition is not ruled out.

• Ni−s N+
s Again, the dominant transition is rather high in energy, so it is sug-

gested that the dominant observable transition would be the a↑1 → e↑ 1.4 eV

(53 ns) transition.

• Ni+s As before, the high energy (t↑2 → a↑1, 3.5 eV) transition is dominant, but

the e→ t2 transitions are in the 2-3 eV range and possess transition times of

around 20-30 ns.

• Ni+s B−
s This defect possesses more dipole allowed transitions than any of the

others, but it is clear from the rates that the 1.8 eV, a↓1 → e↓ transition is

dominant with an estimated radiative lifetime of 13 ns.

5.1.6 Conclusions

To summarise, the conclusions are as follows:

1. It is clear from this work that Ni defects cause substantial movements to C

atoms lying beyond the Ni nearest neighbours. Erroneous results may occur

if these atoms are prevented from moving.

2. Ni+i is stable at the tetrahedral interstitial site with an effective spin of S = 1
2

and, in the absence of spin-orbit coupling, has no tendency to distort along

〈111〉, in contrast with previous calculations. Spin-orbit coupling promotes a

[111] distortion leading to a slight splitting of the e-level. The splitting would

be of the order of the splitting observed in the 1.40 eV optical defect, i.e.
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around 2.7 meV. This would imply that the distortion would vanish above

30 K. The defect is a candidate for the NIRIM-1 defect observed in low N

diamonds, especially when B is present. NIRIM-1 is known the have Td sym-

metry above 25 K [148]. However, it is not the only candidate. The defect

results in an expansion of the cage of nearest neighbours by almost 10% which

might be observable by X-ray experiments. There is a mid-gap doublet e-level

with single hole lying ∼1.4 eV above a filled triplet t2 level. The transition

time between these levels is estimated to be 227 ns. Surprisingly, no optical

bands are correlated with the NIRIM-1 defect.

3. The Ni+i -B−
s donor-acceptor complex has effective spin S = 1

2
with trigonal

symmetry. The presence of B splits the fully occupied t2 level of Ni+i but

not the highest occupied e-level. The optical transition energies are then

similar to Ni+i (see Fig. 5.2). The a1 → e (2E → 2A1) 2.4 eV transition

which has a transition time estimated to be 68 ns could be responsible for the

1.40 eV optical centre. The transition should be split by the zero-point energy

of the two B isotopes present, assuming this to be resolvable. The ground

state would also be split by the spin-orbit interaction. The complex is a also

candidate for NIRIM-2; we note that the NIRIM-2 signal initially increases

with B, but apparently disappears for larger concentrations of B. This may

be because as the Fermi-level drops, Ni2+i defects may be created, but this

would then be seen as an S = 1 centre (which is estimated to be around

0.9 eV more stable than S = 0). Alternatively, a number of complexes could

form which lead to broad EPR signals. The absence of a hyperfine interaction

with 11B [153] may be due to the e-wavefunctions containing the hole having

a nodal surface that passes through the B site.

4. Ni−s is stable at a lattice site and the S = 3
2

configuration has an energy more

than 1 eV lower than that with S = 1
2
. The C-Ni bond lengths are 1.86 Å and

the t2 pseudo-wavefunctions overlap both Ni and its C neighbours. It possesses

a filled triplet t↑2 level around mid-gap, and a corresponding empty t↓2 level lies

about 1.4 eV above a filled e↓ level. The defect has been identified by EPR

experiments and associated with the 2.51 eV optical absorption band seen in

N rich diamonds defect [148]. Another transition at 1.883 eV is always found

along with the 2.51 eV line but the two have not been formally correlated.

The transition state calculation estimates 2.3 eV for the 4A2 → 4T2 optical

transition, which is fair agreement with experiment . We suspect that the

CNDO result which predicts a spin S = 1
2

configuration, a2
1t

1
2, is due to an

incorrect parameterisation used to describe the interaction of the Ni atom
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with the surrounding diamond lattice. This in turn leads to the rogue a1-level

lying below the t2-level.

5. The donor-acceptor complex, Ni−s -N+
s (S = 1

2
), is found to be stable with C3v

symmetry. It possesses a hole in a mid-gap e↑ level about 1.4 eV above a filled

a↑1 level. This would explain the 1.693 eV transition observed in Ref. [163]

and attributed to Ni-N defects. We note there would be a correlation between

the loss of Ni+s centres and the growth of the 1.693 eV system, assuming that

the only sinks for N+
s are the Ni−s defects. There would be no correlation

expected, and none found, with the density of neutral Ns defects. The latter

are related to the strength of the lattice absorption at 1330 cm−1.

6. Ni+s (S = 1
2
) lies close to the Td lattice site and possesses two optical transitions

around 2 eV, and one around 3.5 eV. The symmetry and spin state are also

consistent with the NIRIM-1 centre. Ni2+s would empty the t2 level altogether,

and thus be EPR-inactive (S=0).

7. The Ni+s -B−
s (S = 1

2
) defect has trigonal symmetry and a 2E ground state. The

complex gives rise to a large number of optical transitions and is a candidate

for NIRIM-2 and the 1.40 eV zero phonon doublet defect.

8. The high symmetry of isolated interstitial and substitutional impurities leads

to a number of degenerate gap levels, and in practice (depending on the charge

state), these will be split into multiplets. If the multiplet splittings are of order

0.5 eV [93] then each defect will give a small number of optical transitions

broadened by this amount. However, if the negative and positive charge states

are adopted for the substitutional and interstitial impurities respectively, then

the ground states are well defined (4A2 and 2E). Conserving spin gives well

defined excited states (4T2 and 2T2). It is interesting to note that these results

suggest that Ni0i would be electrically and optically inactive. Other charge

states are generally more complex. For example, Ni0s would have a ground

state arising from the e4t22 electronic configuration which leads to T2 ⊗ T2

multiplets (the same a the neutral vacancy - Sec. 4.2) which could conceivably

have an internal transition.

9. In general, when Nii and Nis are complexed with other impurities, the gap

states split to produce a larger number of possible transitions at smaller ener-

gies. Table 5.2 shows that one would expect at least 20 absorption lines from

the 6 defects studied. However, experiment has only identified a small num-

ber, about 68, of optical lines associated with Ni, which suggests that either
81.22, 1.40, 1.883, 2.51, 2.56, and 3.1 eV
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only a small number of complexes exist, the optical transitions possess small

oscillator strengths, there is a dominant transition mechanism for each defect

type, or the transitions are hidden by other absorption. This is especially

true at higher energies, say ∼ 3.5 eV, where Ni related peaks are buried in

the nitrogen absorption band. Using the crude estimate for transition times

indicated in the text, it would appear that a dominant transition mechanism

occurs for each defect, and this could account for the small number of observed

Ni-related optical centres.

10. As the only defect for which there is convincing evidence is Ni−s , one wonders

whether all the Ni related optical and EPR defects are simply different charge

states of substitutional Ni possibly complexed with other impurities. Further-

more, if Ni was found at interstitial site, one would expect Ni2+i (S = 1) to

be seen under EPR, and to date this is not the case. However, Ni2+s would

have zero effective spin, and would therefore not generate an EPR signal.

Hence, we suggest that NIRIM-1 and NIRIM-2 may be Ni+s and Ni+s -B−
s com-

plexes respectively. It is noteworthy that all the optical features due to Ni

are confined to octahedral growth sectors of diamond [159] and this also sug-

gests that the centres are incorporated as substitutional defects at the growing

(111) surfaces.

11. An alternative acceptor to those reported here is the vacancy in analogy to the

complexes with P, N and Si substitutional impurities. Preliminary studies into

this system strongly suggest that the structure would possess theD3d structure

preferred by the Si and P impurities, but due to problems in obtaining a self-

consistent charge density for Ni-V, no detailed results will be presented here.

This is an on-going area of study.

5.2 Nickel and nickel-hydrogen complexes in Si

5.2.1 Introduction

As stated above in Sec. 5.1.3, the vacancy model of substitutional TM-impurities

on the far-right of the periodic table [151, 181], considers that the d levels of the

TM impurity lie deep in the valence band of Si and couple weakly with the t2 levels

arising from the Td symmetry of the ideal vacancy. The important implication is

then that the gap-levels and structure of the defect are largely determined by those

of a perturbed vacancy [152, 169, 170, 171]. For Pt−, Pd− and Ni−, the gap t2 levels

contain three electrons and according to the Jahn-Teller theorem, a distortion will

occur for an S=1/2 state, leading to a splitting of these levels and a lowering of
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energy. DLTS shows that Nis possesses acceptor and donor activation energies at

Ec−0.45 and Ev +0.16 eV respectively [182]. EPR measurements on Ni− [183] and

Pt− [181, 184] reveal that the defect has C2v symmetry and furthermore, uniaxial

stress measurements on the EPR lines have shown [173, 184] that the gap t2 levels

split into a configuration b↑↓1 b↑2 a
0
1. This ordering of levels is the reverse to that

found for the negatively charged vacancy. Further evidence for the vacancy model

has been suggested recently when it was found that Pt-H complexes can be created

by high temperature in-diffusion of the impurities [185, 186, 187, 188]. Two LVMs

attributed to Si-H have been observed which undergo small shifts in mixed H-D

implantation or when the charge state of the defect is changed. These results

establish the presence of more than one H in the defect. The first suggestion was

that the H atoms bond to two of the four Si atoms surrounding the vacancy. It is

the purpose of this work to investigate this model.

As far as I am aware, there have been no ab initio calculations of the Jahn-Teller

distortion or the splitting of the t2 levels, nor of the complexes with H.

Reported in this Section are spin-polarised calculations on substitutional nickel,

Nis, and Ni-H2 complexes using large (up to 133 atoms) clusters. A key ingredient

is that we allow the atoms surrounding the defect to move and this enables us

to investigate in detail the Jahn-Teller distortion due to Ni−s and to obtain the

structure and the LVMs of the Ni-H2 defect. The LVMs are found by two methods:

the first is finding the solutions to the dynamical matrix as outlined in Sec. 2.15. In

the second method (Sec. 2.15.2, Ref. [40]) the energies corresponding to displacing

the H atoms from their equilibrium sites were found and the Schrödinger equation

for the oscillator solved numerically using these energies as a potential in accordance

with the Born-Oppenheimer approximation. The two methods give rather similar

results.

5.2.2 Cluster and basis

Ni is investigated since spin-orbit coupling is less important in this case than for Pd

and Pt. The basis used is listed in Table 5.3. In each case the central defect atoms

(Ni and H) and the four Si-neighbours where treated in ‘big basis’ as described in

Sec. 2.18. Ni−s is modelled using a 71 atom cluster, NiSi34H36, whereas the effect

Atom Wavefunction Charge density
Ni 7 × spd 14
Si 4 × sp 5
H 2 × sp 3

Table 5.3: The atomic basis used for the calculations in Sec. 5.2.
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of H was investigated in a 133 atom, negatively charged cluster NiSi70H62 where 19

central atoms were relaxed.

5.2.3 Results

The Ni atom was placed along [100] so that the symmetry of the cluster is C2v.

Three close-by levels for each spin lay in the gap region and these are occupied

with three electrons according to Fermi-statistics corresponding to 0 K, i.e. the

lowest was filled, the next filled in the up-spin case only and the others were empty.

The self-consistent energy and forces acting on the central 17 atoms were then

found for this S = 1/2 configuration, and these atoms were allowed to move to

minimise the energy of the cluster. The Ni atom moved closer to the substitutional

site while the surrounding Si atoms moved outwards from their lattice positions.

The splitting between the t2-derived levels gradually decreased and eventually we

were unable to obtain a self-consistent solution. This arises because during the

course to self-consistency, the three close-by gap levels, the uppermost of which is

empty, cross over and if, for example, the a1 state falls below the b1 state, the charge

density and hence potential changes discontinuously. On the next iteration, the level

ordering often reverses and the process never converges. This problem of ‘charge

sloshing’ is well-known and often occurs for close-by levels. It can be overcome by

occupying the gap-levels with Fermi-statistics corresponding to a finite temperature

(as described in Sec. 2.13.1) larger than the splitting of the t2 levels. This spreads

out the electrons among the three gap levels and the discontinuity in the charge

density arising from cross-over is reduced. However, this almost eliminates the

Jahn-Teller driving force for the Ni atom to lie off-site. For the finite-temperature

calculation the lowest energy configuration corresponded to a structure where the

Ni atom is essentially on site but the four surrounding Si atoms were displaced

outwards from their lattice sites by 0.270 Å and two of them were further displaced

along [100] by 0.006 Å. Second shell Si atoms were displaced by ∼ 0.07 Å. The three

gap levels were split by only 5 meV and the highest occupied spin-up level was 0.6 eV

below the corresponding (but empty) spin-down level. Thus the departure from Td

symmetry is extremely small. The ordering of the t2-derived gap levels is b↑↓1 b↑2 a
0
1

is the same as that found experimentally.

The problem of obtaining self-consistent solutions can now be overcome by re-

stricting the electronic configuration to be b↑↓1 b↑2 a
0
1. Then during the passage to

self-consistency, there is no discontinuity in the charge density but the energy levels

that are occupied at each stage are not necessarily in ascending order. However,

towards the end of the self-consistency cycle the energy levels ordered correctly and

the final energy obtained was lower than that obtained by the imposition of a tem-
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perature. The Ni atom was then moved along [100] and the equilibrium structure

was found to correspond to a displacement of 0.13 Å from the lattice site. The two

Si atoms with Cartesian components along [100] were displaced almost radially by

(0.15, ± 0.25, ± 0.22) Å and moved away from each other, whereas the other two Si

atoms with components along [100] were displaced (-0.07,± 0.16, ∓ 0.13) Å so that

they approached each other. Curiously, the four Ni-Si bonds are almost identical

in length at 2.645 Å. This distortion is similar to that found experimentally for the

negatively charged vacancy [172].

Suppose now, we occupy the t2 derived states according to a↑↓1 b↑1 b
0
2. This is the

configuration found experimentally for the negatively charged vacancy [172] but not

for Ni−s . Then the self-consistent cluster energy is higher than the previous config-

uration by 17 meV. We note that although we have shown that the C2v distortion

has a lower energy than Td it leaves open the possibility that other symmetries, e.g.

D2, have even lower energies as suggested in Ref. [189]. The slight distortion from

Td to C2v symmetry is consistent with the ease of reorientation of Pt around the

central lattice site. This motion occurs for temperatures above 12 K or even when

the slightest stress is imposed on the crystal at 2 K [184].

The pseudo-wave function of the t2-derived levels all possess a nodal surface

lying between the TM impurity and the surrounding Si atoms and peaks on either

side of the Si atoms along 〈111〉. This suggests that H atoms will lie either between

Si and Ni in the configuration suggested previously [173, 185, 187, 188], or outside

at anti-bonding (AB) sites as shown in Fig. 5.5. There were no problems with

self-consistency in the present case. For the first defect where the H atoms are

within the ‘vacancy’ occupied by the Ni atom, the H atoms repelled Ni along [100]

from its lattice site by 0.20 Å and formed Si-H bonds of length 1.508 Å with a

H-H separation of 1.517 Å. The LVMs due to H were calculated to lie at 2477 and

2511 cm−1. These values are far from the experimental ones for PtH2 [173, 185, 186]

and strongly suggest that this model is incorrect. The strong coupling between the

H atoms occurs because there is so little room for both Ni and H within the vacancy.

The second defect (Fig. 5.5) when relaxed yielded an energy 0.08 eV below the first

structure and the Ni atom moved 0.3 Å along [100] towards the H atoms and the

Si-H lengths became 1.557 Å. The separation between the H atoms was 7.3 Å. The

vibrational modes are given in Table 5.4. The two H related modes are slightly

split, by 7 cm−1, with the higher mode being A1. Now, uniaxial stress splitting

experiments on PtH2 [186] show that the upper and lower modes also have A1 and

B1 symmetries respectively. The stretch modes are close to those reported for PtH2

but the bend modes have not yet been detected.

Anharmonic effects are known to be important for H modes (Sec. 6.2, Refs. [40,
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Figure 5.5: Ni-H2 Complex with H at anti-bonding (AB) sites.

54, 56]) and we investigated their influence in the following way: the two modes

at 2009.9 and 2003.2 cm−1 represent A1 and B1 vibrational modes in which the H

atoms move either in phase or out of phase with each other. The energies necessary

to displace the H atoms by an amount r, parallel to the Si-H bonds, were evaluated

for each of these modes. This energy contains only even powers of r in the B1 mode

whereas it contains both even and odd powers in the A1 mode. The Schrödinger

equation for the oscillator was solved numerically [40] and the A1 and B1 frequencies

were then found to be 2037 and 2060 cm−1 and are separated by 23 cm−1. However,

now the B1 mode lies above the A1 mode contrary to experiment. Thus even though

the separation of the H atoms is very large, 7.3 Å, the two modes are split and their

ordering reversed by these anharmonic effects by an amount twice as large as that

observed for Pt-H2. However, there are other anharmonic terms which should be

considered. For example, r1θ
2
1 + r2θ

2
2 terms where rk and θk are the changes in the

equilibrium Sik-Hk lengths and angles respectively. These mix the stretch and bend

modes and are only present in the A1 mode where r1 = r2. These have the effect of

decreasing the mean Si-H length hence pushing up the A1 frequency. Such a term

then might well displace the A1 mode above that of B1.

Several other models of the defect were investigated, but all gave energies above

that of the AB structure. In addition, their vibrational modes were far from the
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Calc. A1 B1 A2 B2 A1 B1

Ni-H2 2009.9 2003.2 903.0 897.2 890.4 889.4
Ni-HD 2006.6 1442.5 900.1 889.8 636.6 630.6
Ni-D2 1445.1 1439.9 638.7 634.6 631.6 629.5
Expta,b

Pt-H2 1901.6 1888.2
Pt-HD 1894.6 1366.9
Pt-D2 1370.7 1362.5
aRef. [185, 186] bRef. [190]

Table 5.4: Vibrational Modes (cm−1) for the TM-H−
2 AB defect

observed values and often, the B1 mode lay higher than that of the A1. We suggest

then that the H atoms lie at AB sites in the Pt case especially as its larger size

makes it even less likely that H would lie inside.

Further arguments against the configuration in which H atoms are inside the

vacancy come from the comparison with LVMs assigned to the vacancy-hydrogen,

VH2, and H∗
2 complexes. The former are observed at 2122 and 2144 cm−1 [13].

The separation between the H modes here, ∼23 cm−1, is larger than that observed

in PtH2 where it might be expected that the TM squeezes the H atoms together,

increasing their interaction and the mode splitting. In the case of H∗
2, the AB

sited H atom gave an LVM at 1838 cm−1 [136] rather close to the stretch mode of

the PtH2 complex, whereas the other H-LVM, attributed to H-Si stretch where Si

has a tetrahedral environment, has a frequency at 2061.5 cm−1 – somewhat higher

than that found for Pt-H2. Recently, Uftring et al. [190] analysed the anisotropic

hyperfine parameter in PtH2 and concluded that the Pt-H distance is about 4.5 Å

which is close to the calculated Ni-H length of 4.28 Å in the AB sited model.

The wave-function for the highest occupied level in NiH−
2 (AB) has b2 symmetry

and vanishes in the (011) plane containing the two H atoms. This level occurs

around mid-gap in our calculations and the next lower level is very close to the

valence band. The positions of these levels is only approximate but they suggest

that the observed EPR signals are due to PtH−
2 complexes, for it is known that

when Ef lies above Ec − 0.1 eV, then the defect is not paramagnetic. There must

be a second acceptor level corresponding to the filling of b↓2 around Ec − 0.1 eV and

leading to diamagnetic NiH−−
2 . Uftring et al. [190] also concluded that the defect

has two acceptor levels as the effect of illumination on the paramagnetic complex is

easily understood to arise from the capture of photo-generated holes by PtH−
2 . In

addition, they suggested that the Pt hyperfine data is consistent with the H atoms

lying in the nodal plane of the highest occupied level. For NiH−
2 , the contour plots

of the pseudo-wavefunctions suggest that the isotropic hyperfine interaction with H
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would vanish leaving only an anisotropic one. However, spin-polarisation causes a

difference in all the spin-up and spin-down valence wave-functions and results in a

small polarised charge density of -0.007 a.u. at each proton. This is only -2% of the

charge density of a H atom in vacuo. Its magnitude is within a factor of three found

experimentally for PtH2 [173, 185, 186, 188]. It is unclear whether this discrepancy

is due to calculational errors or differences between Ni and Pt.

5.2.4 Conclusions

In conclusion, the calculations show that the substitutional Ni− defect with Td

symmetry is unstable against a displacement along the 〈100〉 axis. The t2 gap level

is split into b1, b2 and a1 levels in ascending energy. Nis can complex with two

H atoms at AB sites and act as a double acceptor. It gives two H-LVMs around

2000 cm−1. The polarisation charge density is very small and negative at the H

nuclei and we suggest that PtH2 complexes assume the same structure.



Chapter 6

Carbon-Hydrogen complexes in
GaAs.

‘The great tragedy of Science: the slaying of a beautiful hypothesis by

an ugly fact.’

Thomas Huxley

6.1 Introduction

Carbon is a very important dopant in GaAs due to its low diffusivity and high

solubility. In this Chapter, the details of the interaction of substitutional CAs

with hydrogen is explored in the cases of the isolated CAs-H complex and a class

of complexes due to CAs-dimers. The former case has been the subject of much

experimental and theoretical work, but the emphasis in Sec. 6.2 is the anharmonic

nature of the LVM observed experimentally at 2635 cm−1.

A number of C-H stretch modes have been observed at frequencies higher than

that due to CAs-H, a number of which exhibit a strong polarisation in one of the

〈110〉 directions. This is believed to be a consequence of the manner C is incorpo-

rated during growth, and the available experimental data points toward CAs dimer

complexing with H. The structures and modes of a range of possible configurations

are presented in Sec. 6.3.

6.2 Anharmonic theory of the CAs-H complex.

6.2.1 Introduction.

As discussed in Sec. 2.15.2, anharmonicity is especially important for vibrations

where the amplitude is large (typically > 0.1 Å). Thus, anharmonic effects have

140
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become evident experimentally where hydrogen is involved [54, 56], and in par-

ticular the high frequency stretch mode of the CAs-H complex in GaAs [51]. As

discussed in Sec. 2.15.2, CAs-H in GaAs exhibits an anomalous isotope shift, and

Davidson et al. found that the anharmonic vibration is characterised by the param-

eters χ = 1.1 and B = 176 amu cm−1. Now, absorption due to the overtone of a

mode is made possible by anharmonicity, but despite the large anharmonicity of the

2635 cm−1 mode, no overtone has been reported. An overtone has been observed for

the C-H vibration of the HCN molecule which has an anharmonicity parameter of

Bo=102 amu cm−1 [191]. This is only 58% of the value of B for the stretch mode in

GaAs. These experimental results raise the question as to why the anharmonicity

is so large for CAs-H in GaAs and yet the intensity of the overtone seems to be so

low. The aim of this section is to provide a possible answer.

The theory is applied to HCN in Sec. 6.2.4 and to CAs-H in GaAs in Sec. 6.2.5.

In Sec. 6.2.6 the effects of electrical anharmonicity are considered. First, a brief

review of carbon and carbon-hydrogen complexes in GaAs is presented.

6.2.2 Experimental background & previous theoretical stud-

ies.

Carbon is known to preferentially substitute for As in GaAs [192]. Its low diffusiv-

ity [193, 194, 195] and high solubility make it an ideal dopant. Acceptor concentra-

tions of the order of 1020 cm−3 and higher have been achieved in molecular beam

epitaxy (MBE) [196], metalorganic MBE (MOMBE) [193, 194, 197, 198, 199], and

metalorganic vapour phase epitaxy (MOVPE) [200, 201, 202]. However hydrogen

introduced during growth leads to a degradation in electrically activity: it can lead

to premature device failure [203, 204], and passivate up to 60% of CAs [205].

The hydrogen passivation of single carbon acceptors to form CAsH pairs was

first reported by Pan et al. [206], and the 2635 cm−1 infrared absorption band has

been assigned to the H-stretch mode of this centre [207]. The isotopic shifts arising

from 13C (Ref. [207]) and D (Ref. [208]) unambiguously identify the constituent

chemical species, and uniaxial stress studies indicate that H lies along a trigonal

axis [207]. Previous theoretical studies have shown that the lowest energy atomic

configuration in the neutral charge state is the hydrogen atom sited near a C-Ga

bond-centre, as shown in Fig. 6.1 [45, 209].

As well as the intense infra-red absorption due to the C-H stretch mode, a

complete set of lower lying vibrational modes have been observed experimentally for

CAs-H. Infra-red spectroscopy on GaAs containing high concentrations of C and H

grown by MBE and CVD revealed modes at 453 (labelled X) and 563 cm−1 (labelled

Y) [199]. Both were subsequently shown to be due to CAs-H as they exhibited shifts
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Figure 6.1: The CAs-H defect in GaAs.

with 13C and D. A Raman scattering experiment [210, 211] assigned the 453 cm−1

band to the C-related A1-band. Y is now believed to be the E+ band [51]. The E−

band was not observed in the early experiments. However, in deuterated samples,

the E− band was detected at 637 cm−1. This must imply that the unobserved

H-related E−-band lies above 637 cm−1 and a simple force constant model [51]

predicted the band to lie at 745.2 cm−1. The failure of the infra-red experiments to

locate this band was explained by the ab initio theory as the consequence of a small

transition dipole moment [212]. This band has since been detected at 739 cm−1 by

Raman scattering experiments [70].

The early calculations [45, 213] performed using AIMPRO predicted the high

frequency, stretch modes of CAs-H in good agreement with experiment, but rep-

resented the low frequency, bend-modes rather poorly. The basis used in these

calculations was rather modest, and when the basis was increased (Ref. [214]), the

modes at low frequency were much better reproduced. However, the stretch modes

became much higher in frequency, overestimating by more than 300 cm−1. I shall

show in Sec. 6.2 that this discrepancy can, at least in part, be mitigated by the

inclusion of anharmonic terms in the calculation of the vibrational mode.

The CAs-H complex has also been treated in a plane wave basis, super-cell

approach [209]. The calculation produced C-H and C-Ga lengths of 1.2 Å and

2.0 Å respectively, and vibrational modes of 2781 and 724 cm−1 for the C-H stretch

and E− modes respectively, although the lower modes were not reported.
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CAs-H HCN
Atom Wavefunction Charge Atom Wavefunction Charge

density density
Ga 8 × sp 8 H 2 × sp 3
As 8 × sp 8 C 6 × sp 6
C 8 × sp 8 N 8 × sp 8
H 2 × sp 3 Bond-centres 1 × sp 1

Bond-centres 1 × sp 1

Table 6.1: The atomic basis used for the calculations in Sec. 6.2.

Bond-lengths
Bond Calc Expt
H-C 1.07 1.06
C-N 1.15 1.15

Vibrational modes
12C-H 12C-D

Calc Expt Calc Expt
3318.9 3312 2611.5 2629
2125.0 2089 1944.5 1906
764.3 712 609.1 569

Table 6.2: The calculated and experimental [191] structure (Å) and vibrational modes (cm−1) of
the HCN molecule.

6.2.3 Clusters and basis.

The basic theory and approach used to estimate the effects of anharmonicity are

detailed in Sec. 2.15.2. The cluster used in all the following calculations on the

anharmonicity of the C-H stretch mode is bond-centred, and has 87-atoms: (CH)-

Ga22As21H42. The basis adopted for each of the atomic species are listed in Ta-

ble 6.1.

For CAs-H, the central C and H atom, as well as the four surrounding Ga atoms

were treated in big basis, as defined in Sec. 2.18. The remaining atoms were treated

using a minimal basis. A single bond-centre was placed between all neighbouring

atoms, except where one of these atoms was H. For HCN, all atoms were in big

basis, and a bond centre was placed in each bond.

The quasi-harmonic vibrational modes were calculated as described in Sec. 2.15,

where for CAs-H, energy double derivatives were found between each of the big-basis

atoms, and the remaining atoms treated using the Musgrave-Pople valence force

potential. Naturally, for HCN, all the double derivatives were computed.

6.2.4 Prussic acid molecule: HCN

The calculated structure and quasi harmonic LVMs are listed in Table 6.2. The

agreement with the experimental values [191] is excellent.

The values of the double derivatives calculated for HCN are listed in Table 6.3,
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EC,C EC,H EH,H

1.565 -0.374 0.376

Table 6.3: Calculated energy double derivatives for HCN (a.u.).
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Figure 6.2: (a) Potential energy (au) versus displacement from equilibrium, x, (au) for C-H stretch
in HCN. The oscillator wavefunctions for the ground (b), first (c) and second (d) excited states
are also shown. The horizontal lines show the energies of these states.

which show that EC,C is rather large. In particular, EC,C/EH,H=4.2, which is the

same order of magnitude as MC/MH . This satisfies the conditions for a physical

value of χ < 1 (Sec. 2.15.2.4). Inserting the double derivatives from Table 6.3

into Eq. 2.44 and iterating provides a value of χ = 0.77 for H and χ = 0.59 for

D. Evaluating the quasi-harmonic frequencies instead from the expression ν2 =

EH,H(1/mH +1/χmC) gives values of 3305 and 2512 cm−1 for H and D respectively.

Hence, the neglect of motion of the N atom is valid in the case of H since this

frequency is very close to that derived from diagonalising the dynamical matrix.

This is not the case for D, due to the coupling between the C-D and N-C modes.

The anharmonic potential is calculated as prescribed in Sec. 2.15.2, where the

motion of the N atom is neglected. Note, if the N atom is allowed to relax at each

point in the vibronic potential, little change is observed. The potential is shown in

Fig. 6.2, along with the polynomial fit f(x) =
∑8

n=2 anx
n. The maximum error in

the fit, |f(x) − Eai(x)| where Eai(x) is the ab initio energy at a displacement x, is

7×10−5 a.u. (=16 cm−1). The coefficients of the fit are given in Table 6.4.

Equating a2 with k/2 and setting χ = 0.77 gives a harmonic frequency of

3552.5 cm−1. This is much higher than the quasi-harmonic and experimental val-

ues because higher order even terms in displacement are present in quasi-harmonic
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a2 a3 a4 a5 a6 a7 a8

0.1846 -0.1932 0.1473 -0.0780 0.0234 -0.0265 0.0210

Table 6.4: Calculated polynomial coefficients (a.u.) for the fit to the vibronic potential of HCN.

modes, which tend to reduce them. Also plotted in Fig. 6.2 are the lowest three

energy levels and their wavefunctions as calculated using the secular equation de-

scribed in Sec. 2.15.2. Two features are worthy of note. First, the wavefunction

amplitudes are essentially zero outside of the range of energies calculated for the

vibration. If this were not the case, then the fit to the potential might be unreliable

in a region important to the vibration, and hence the wrong frequencies would be

found. Secondly, the amplitude of the peaks are larger for positive x than negative

x, due to the repulsive nature of the C-N bond. This asymmetry is important when

considering the electrical anharmonicity.

The calculated anharmonic modes are listed in Table 6.5. They are some 4%

lower than experiment, but the anharmonicity parameter, A is in good agreement.

Note, A is little changed by neglecting χ, despite the absolute value of the frequency

changing by 34 cm−1.

Mode χ = 0.77 χ = 1.0 Observed a5−8=0 x4 fit
Fundamental 3189 3155 3312 3229.7 1947.2
Overtone 6273 6206 6521.7 6448.2 4006.6
Anharmonicity, A 105 104 102.3 11.2 -112.2

Table 6.5: Calculated and observed anharmonic C-H frequencies (cm−1) of the HCN molecule.

The primary source of error in the vibrational frequencies comes from the pre-

cision with which theory can predict bond-lengths. The bond-length can effectively

be changed by adding a linear term to the potential energy (Sec. 2.15.2). If, using

this method, the C-H bond is decreased from the calculated 1.07 Å to 1.06 Å the

vibrational modes are almost coincident with experiment. A plot showing how the

vibrational modes vary with effective bond-length is shown in Fig. 6.3. Note, the

anharmonicity does not significantly change, showing that this parameter is only

weakly dependent on bond-length. A similar treatment for the DCN system is

hampered by the coupling between D-C and C-N modes.

It is instructive to compare these results with those of lowest order perturbation

theory. In order to do this, we must have a potential with only up to cubic and

quartic terms in x. This can be achieved in one of two ways. First, one might set

the coefficients ai, i=5,6,7,8 all equal to zero. This resultant frequencies are shown

alongside the experimental values in Table 6.5, and are in very poor agreement.
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Figure 6.3: The variation of the fundamental (a) and overtone (b) frequencies in cm−1 with the
change in the equilibrium C-H length (Å) in HCN. Curve (c) shows the the fundamental frequency
×2 and its difference from (b) demonstrates that the anharmonicity varies slowly with the C-H
length. The horizontal lines show the experimental frequencies (3312 and 6521.7 cm−1) [191]).

The alternative is to fit a quartic potential. The maximum error in the fit is much

greater than before (7.8×10−3 a.u. (1711cm−1), and consequentially the vibrational

modes are very poor. These are also shown in Table 6.5, where it can be seen that

the anharmonicity parameter is even the wrong sign. This is clear evidence that

such a procedure is insufficient to describe these vibrations.

In summary, using the relatively simple example of the tri-atomic molecule, it

has been shown that the anharmonic treatment described in Sec. 2.15.2 can describe

both the absolute frequencies and the anharmonicities of di-atomic vibrations. The

anharmonicity parameter, A, is relatively insensitive to bond-length and mass. Sig-

nificantly, low order perturbation theory is insufficient to model these systems.

6.2.5 The CAs-H stretch mode

The 87 atom bond-centred GaAs cluster with C at the central As site, and H placed

close to the centre of the C-Ga bond, was fully relaxed. The equilibrium C-H and

H-Ga lengths were 1.126 and 2.253 Å respectively. The calculated energy double

derivatives are listed in Table 6.6, and the quasi-harmonic modes calculated by

diagonalising the dynamical matrix made up from these and valence force potential

terms are listed in Table 6.7.

Notice that the stretch mode is in poor agreement with experiment (11% error),

but that the lower lying, C-related modes are much more accurate.

If one uses Eq. 2.38 to derive a value for χ using the experimental values of
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EC,C EC,H EH,H

0.342 -0.277 0.311

Table 6.6: Calculated double derivatives for CAs-H (a.u.).

Expt Theory Expt Theory
C-H Stretch A1 modes
12C-H 2635 2950 12C-H 453 456
13C-H 2628 2942 13C-H 438 440
12C-D 1969 2154 12C-D 440 442
13C-D 1958 2144 13C-D 427 428
E− H-like modes E+ C-like modes
12C-H 739 888 12C-H 563 553
13C-H 730 883 13C-H 548 536
12C-D 637 707 12C-D 466 495
13C-D 617 693 13C-D 464 487

Table 6.7: Calculated and observed [70, 215] LVMs (cm−1) due to CAs-H in GaAs.

the stretch mode, one gets a value around 0.6. However, if instead one uses the

theoretical values shown in Table 6.7, then one gets χ = 1.17 and if one uses

Eq. 2.44, then one gets χ = 1.23. Thus, it is clear that, unlike the case of HCN,

the anomalous isotope shifts are due to anharmonicity (as suggested by Davidson

et al. [51]) instead of a tightly bound C atom.

The vibronic potential for the C-H stretch mode was derived in the same was as

for HCN, and is plotted in Fig. 6.4, along with the polynomial fit. The fit coefficients

are listed in Table 6.8, and the maximum error in the fit was 3×10−5 a.u. (6 cm−1).

Again, also plotted are the first three energy levels and their wavefunctions.

a2 a3 a4 a5 a6 a7 a8

0.1703 -0.1771 0.1025 -0.0503 0.0378 -0.0225 0.0047

Table 6.8: Calculated polynomial coefficients (a.u.) for the fit to the vibronic potential of CAs-H in
GaAs.

Table 6.9 lists the harmonic, fundamental, and overtone frequencies for CAs-

H as calculated using a value of χ = 1.23. Notice, that in contrast to the case

of HCN, the fundamental frequency is in reasonable agreement with the quasi-

harmonic frequency, and overestimates the experimental value by some way. The

parameter A is 144cm−1, some 37% greater than that for HCN. As with HCN,

altering χ has a small effect on the vibrational frequencies, but virtually none on

A.
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Figure 6.4: (a) Potential energy (au) versus displacement from equilibrium, x, (au) for C-H stretch
in GaAs. The oscillator wavefunctions for the ground (b), first (c) and second (d) excited states
are also shown. The horizontal lines show the energies of these states.

Mode Expt Harmonic Fundamental Overtone Mass (a.m.u.) B Bo
12C-H 2635 3108.1 2963.2 5782.3 0.937 135.7 134.9
13C-H 2628 3100.5 2956.3 5769.2 0.941 135.7 134.9
12C-D 1969 2266.4 2189.3 4301.2 1.761 135.8 136.3
13C-D 1958 2256.0 2179.6 4282.5 1.778 135.8 136.3

Table 6.9: Calculated and experimental [51, 207, 208] anharmonic CAs-H frequencies (cm−1) for
the ab initio bond length, 1.126 Å.

Again, the error in absolute frequency is mainly due to the sensitivity to bond-

length. To examine this dependence, an additional linear term in the potential

was employed in the case of CAs-H in the same was as for HCN. The results are

shown in Fig. 6.5. The experimental frequency is reproduced when the bond-length

is increased by 0.035 Å from the ab initio length. The anharmonicity at the new

bond-length is A=156 cm−1. The calculated modes for the longer bond-length are

summarised in Table 6.10.

If, as with HCN, the coefficients ai of the polynomial fit are set to zero for

Mode Expt Harmonic Fundamental Overtone Mass (amu) B Bo
12C-H 2635 3012.8 2635.2 5114.3 0.937 159.1 146.2
13C-H 2628 3005.5 2629.1 5102.7 0.941 159.1 146.5
12C-D 1969 2196.9 1954.5 3819.0 1.761 160.3 158.4
13C-D 1958 2186.8 1945.9 3802.7 1.778 160.3 158.4

Table 6.10: Calculated and experimental [51, 207, 208] anharmonic CAs-H frequencies (cm−1) for
the lengthened C-H bond (1.161 Å).
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Figure 6.5: The variation of the fundamental (a) and overtone (b) frequencies in cm−1 with the
change in the equilibrium C-H length (Å) for C-H in GaAs. Curve (c) shows the the fundamental
frequency ×2 and its difference from (b) demonstrates that the anharmonicity varies slowly with
the C-H length. The horizontal line shows the experimental frequency (2635.2 cm−1 [51])

i > 4, then the fundamental and overtone H frequencies are 2988 and 5897 cm−1

(χ=1.23 and C-H=1.126 Å). The anharmonicity parameter A is then much lower at

79 cm−1. B still approaches the asymptotic value given by low order perturbation

theory for large m∗, but the rapid approach to the asymptotic value is only valid

for certain ranges of the coefficients ai, i > 4 and outside these ranges, masses

very much bigger than unity are needed for B to be given by its asymptotic value.

This means that low order perturbation theory is inapplicable. If the potential was

fitted with a quartic polynomial, then, as with the case of HCN, the error in the

fit is much larger and the frequencies of the fundamental and overtone are 2897

and 4269 cm−1. We therefore conclude that perturbation theory cannot be used to

describe the parameters B and Bo.

In summary, the calculated effective mass parameter χ is greater than unity for

the case of CAs-H in GaAs, but anharmonic effects are important. Thus, the cal-

culated transition frequencies depend critically on the CAs-H length. An increase

in length of the C-H bond by as little as 0.035 Å brings the calculated fundamental

frequency into agreement with the observed frequency. The anharmonicity param-

eter B is about 160 amu cm−1 and close to the estimate of 176 amu cm−1 given in

Ref. [51]. The anharmonicity is sensitive to high order derivatives in the potential

energy and it effects cannot be described by low order perturbation theory.
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Figure 6.6: Curve (a) shows the dipole moment of the cluster (au) versus the change in the
equilibrium C-H length (Å) for GaAs. Curve (b) shows the product of oscillator wavefunctions
Ψ0(x)Ψ2(x) shifted vertically upwards.

6.2.6 The intensity of the overtone

Ignoring electrical anharmonicity, the intensity of the overtone is simply propor-

tional to ∫
Ψ2xΨ0dx,

where Ψi is the ith vibronic state. However, as discussed in Sec. 2.15.2, the approx-

imation that the dipole operator is simply x is incorrect, and the true form of p̂ is

shown in Fig. 6.6.

The ratio of the overtone to fundamental intensities is given in Eq. 2.42 The

product Ψ2Ψ0 is also shown in Fig. 6.6, the asymmetry in which is a consequence

of the mechanical anharmonicity. Carrying out the integral with a linear dipole

operator gives an intensity ratio of 1.6%. Then, using the non-linear dipole, the

integral gives a ratio of 0.33%, a decrease of nearly 80%! Using the wavefunctions

generated for the elongated C-H bond, the ratios are 1.0 and 0.28% respectively,

which is a decrease of around 70%. Taking either of these results, a highly significant

reduction in the intensity of the overtone is due solely to electrical anharmonicity.

It is of interest to determine how the ratio varies as the electrical anharmonicity

is ‘turned on’ by instead of writing the ratio as in Eq. 2.42, writing

I(λ) =

(∫
Ψ2(x)(x+ λp′(x))Ψ0(x)dx∫
Ψ1(x)(x+ λp′(x))Ψ0(x)dx

)2

. (6.1)

Here, p′(x) is the purely anharmonic part of the dipole operator, which can be

included incrementally by varying λ from zero to one. The results of performing
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Figure 6.7: The intensity of the overtone versus the degree of electrical anharmonicity λ. The
C-H length is 1.126 Å in curve (a) and 1.161 Å in curve (b).

this calculation are summarised in Fig. 6.7, which plots the intensity ratio as a

proportion of the value where electrical anharmonicity is absent. It is interesting

to note that for a certain value of λ the intensity ratio is predicted to be zero.

6.2.7 Conclusions

A number of general conclusions can be drawn from this work. They are:

• The bonding parameter, χ, in the effective oscillator mass (Eq. 2.39) need not

be greater than unity to be physical.

• The local density functional approach adopted here can give quantitative in-

formation on the anharmonicity of vibrations.

• Low order perturbation theory cannot be used to describe anharmonic vibra-

tions.

• The intensity of the overtone can be significantly reduced by electrical anhar-

monic effects. In the case of CAs-H in GaAs this may be more than a 70%

reduction.

Specifically concerning the CAs-H in GaAs, it is concluded that the high fre-

quency stretch mode (observed experimentally at 2635 cm−1) is very anharmonic,

some 50% more so than the similar mode in the HCN molecule, and much greater

than the vibration of H on the 〈111〉 surface of diamond where A=113 cm−1 [53].

The reduction in the intensity ratio due to the electrical anharmonicity makes

it tempting to assign the lack of observation of the overtone to a combination
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of mechanical and electrically anharmonic effects. However, one should bear in

mind that the reorientation barrier for the H to an adjacent bond-centre is only

0.5 eV (Ref. [67]), and the frequency of the overtone is calculated to lie at around

5114 cm−1, which corresponds to an energy of more than 0.6 eV. Thus the lifetime

of the overtone may be too short to allow it to be observed.

6.3 Theory of hydrogenated CAs-dimers.

Recent papers [205, 208] have reported bands of localised vibrational modes (LVMs)

at 2643, 2651, and 2688 cm−1, all of which have been assigned to C-H stretch modes.

It is speculated that the lower two bands are due to CAsH pairs perturbed by the

proximity of another defect, such as a vacancy, an anti-site, or a nearby C-centre.

Interestingly, the 2651 and 2688 cm−1 bands are strongly polarised along one of the

〈110〉 directions perpendicular to the [001] growth direction [216, 217, 218]. This

means that the CAs−H unit is preferentially oriented along a specific 〈110〉 direction.

The [110] and [1̄10] directions are crystallographically equivalent in the zinc-blende

structure, but this is not true at the surface [219]. Using a simple model, Cheng

et al. [216] were able to account the intensities of the 2688 cm−1 band in terms of

the expected concentration of a (CAs-H)-C−
As complex. Hence, the model for the

2688 cm−1 band is a pair of substitutional C atoms at neighbouring As sites, with a

single H passivating one of the C acceptors, as indicated schematically in Fig. 6.8.

A series of experiments by Cheng et al. [216] suggest that (CAs)2H dissociates at

around 600◦C, releasing first a H atom, followed by the dissociation of the C-pairs.

The complex starts to reform by annealing in a H2 ambient at 500◦C, but would

not be oriented along any particular (110) axis. This suggests that CAs-H defects

are sufficiently mobile at 500◦C to bond with C-acceptors.

When samples containing the 2688 cm−1 band are exposed to a hydrogen plasma

at 320◦C, the intensity of the band decreases essentially to zero, and two new

bands at 2725 and 2775 cm−1 bands appear [217]. A subsequent anneal at 450◦C

removes the 2725 and 2775 cm−1 bands and the polarised 2688 cm−1 band reappears.

Hence, it was thought that these new bands may be due to a (CAs)2H2 complex

which partially dissociates by releasing a single H at 450◦C whilst the C atoms are

undisturbed. The 2725 and 2775 cm−1 bands do not exhibit the strong polarisation

seen in the 2688 cm−1 band. Further work, however, has suggested that the 2725

and 2775 cm−1 bands do not arise from the same centre [220].

A recent study [221] reported another band at 2729 cm−1 that is polarised. This

band is observed in samples where the 2688 cm−1 band is present, but is polarised

in the orthogonal 〈110〉 direction. It may be that this 2729 cm−1 band comes
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Figure 6.8: Schematic diagram of the C2H defect thought to be responsible for the 2688 cm−1

band as suggested in Ref.[216].

from a different, metastable (CAs)2H defect in which the CAs-H bond direction is

orthogonal to that in the 2688 cm−1 centre. If this were the case, one would expect

the 2729 cm−1 band to decay under annealing together with a corresponding growth

in the 2688 cm−1 band.

Previous studies [45, 209] have modelled the CGa and the CAs-CGa dimer. Re-

cently, first principles calculations [222] have shown that the model proposed in

Ref. [216] is the lowest energy configuration of the (CAs)2-H complex, and reported

the structures of (CAs)2-H2 complexes, but did not report the local vibrational

modes of these systems. Other models for C-dimers in GaAs have been examined

in literature [223, 224], but these complexes offer no obvious way to explain the

polarisation.

There are three possible configurations for (CAs)2H in which H occupies a bond-

centre located next to C, as indicated in Fig. 6.9. Similarly there are seven possible

configurations of (CAs)2H2, assuming that one H bonds to each C, as indicated in

Fig. 6.10. It is the aim of this paper to establish which sites are most stable, and

to investigate theoretically the assignment made for the 2688 cm−1, and comment

on the 2729, 2725, and 2775 cm−1 vibrational systems.
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Figure 6.9: Schematic diagram of the three configurations of the C2H defect. 1, 2, and 3 label
bond centred sites in which the H atoms have been sited in this study.
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Figure 6.10: Schematic diagram of seven configurations of the C2H2 defects examined in this
paper. The H sites are labelled using the numbers 1-7, and they can be paired into seven unique
defect configurations as follows: (1,2), (1,3), (1,4), (3,5), (3,6), (4,5), and (6,7).
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Atom Wavefunction Charge density
Ga 4 × sp 5
As 4 × sp 5
C 4 × sp 4
H 2 × sp 3

Bond-centres 1 × sp 1

Table 6.11: The atomic basis used for the calculations in Sec. 6.3.

6.3.1 Clusters and basis.

In this study, the clusters are centred on a central Ga site surrounded by alternate

shells of As and Ga atoms. Most calculations are based on the defect free cluster

which contains 131 atoms: Ga31As40H60. To model the defects, one or two of the

nearest neighbours to the central Ga are replaced by C, and zero, one, or two H

are placed in the appropriate C-Ga bond centres. The clusters are charged to take

account of the difference in the number of Ga and As atoms. In a number of cases,

a larger, 163-atom cluster (Ga43As44H76) has also been optimised for comparison.

The number of basis functions for Ga, As, C and H are listed in Table 6.11.

The central three shells of atoms are treated in big basis (as defined in Sec. 2.18),

including the central defect atoms. The remaining atoms are in minimal basis,

and a single set of functions was placed between neighbouring atoms. Recalling

the differences between the results with the different bases in the early calculations

of CAs-H, one might consider that this basis is rather small. However, since the

clusters themselves are somewhat larger, the overall cluster basis is reasonable.

6.3.2 Results.

The carbon-dimer is made up of two CAs centres separated by a single Ga site. Since

isolated CAs is a single acceptor, the dimer is expected to be a double acceptor and

the results presented here are for the double negative charge state. Starting with

the two C ionised atoms at neighbouring ideal As lattice sites, all but the surface H

atoms in the 131-atom cluster were relaxed subject to a C2v symmetry constraint.

In the final structure, the C-atoms have moved apart due to the strong Coulomb

repulsion. The final bond-lengths are summarised in Table 6.12. The total energy

of the (C−
As)2 system as described above, is around 1.2 eV higher in energy than a

configuration where the two C atoms are separated by two Ga sites, i.e. the (C-Ga-

C)−− structure is metastable. This is consistent with the observations (Ref. [216])

that once H is lost from the defect, it rapidly dissociates.
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Defect # atoms C1-Ga C1-H C2-Ga C2-H C1-Gaback C2-Gaback

(CAs)2 131 2.18 - 2.18 - 2.02, 2.02, 2.07 2.02, 2.02, 2.07
(CAs)-H 132 3.32 1.124 - - 2.03, 2.03, 2.03 -

164 3.27 1.125 - - 1.96, 1.96, 1.96 -
(CAs)2-H 132 3.40 1.128 1.94 - 2.01, 2.03, 2.03 2.07, 2.08, 2.08

164 3.36 1.128 1.88 - 1.95, 1.96, 1.96 1.99, 2.00, 2.03
(CAs)2-H2 133 3.44 1.127 1.94 1.120 2.01, 2.02, 2.04 2.02, 2.02, 3.52

165 3.41 1.129 1.89 1.132 1.94, 1.96, 1.97 1.97, 1.97, 3.35

Table 6.12: The bond lengths of the relaxed (CAs)2, (CAs)−H, (CAs)2 −H and (CAs)2 −H2. The
C1-Ga and C2-Ga lengths are to the common Ga neighbour. The ‘back’ bonds refer to the three
remaining C-Ga separations shown in Figs. 6.9 and 6.10. All lengths are in Å.

6.3.2.1 The (CAs)2-H complex.

Fig. 6.9 shows schematically the three sites that the H can adopt if one assumes

that the H atom lies at a C-Ga bond-centre. In each case, all but the surface

atoms in the 132 atom cluster were relaxed, and we have assumed that the centre

would be a single acceptor. From our calculations, the lowest energy configuration

is that suggested by Cheng et al. with the H in the bond-centre site 1 in Fig. 6.9.

The configurations with the H atoms at sites 2 and 3 are 0.5 and 0.9 eV less stable

respectively. The bond-lengths and LVMs of the lowest energy structure are listed in

Tables 6.12 and 6.13 respectively. The calculated C-H stretch mode is 2826 cm−1,

5% greater than the experimental value of 2688 cm−1, which is within the error

bounds of the method. The lower lying modes are characterised by C-H wag and

C-related modes.

Defect masses 132 atoms 164 atoms
12C1-H-Ga-12C2 2826 2830
12C1-D-Ga-12C2 2070 2072
13C1-H-Ga-12C2 2818 2822
13C1-D-Ga-12C2 2059 2061

Table 6.13: The C-H stretch modes of the lowest energy C1-H-Ga-C2 system (cm−1) for the
various combinations of carbon and hydrogen isotopes in the 132 and 164 atom clusters. Note,
the C1-H stretch mode is unaffected by a change in mass of C2.

It is pertinent to compare these results with the structure and modes of the CAsH

centre. The final CAs-H bond length was 1.12 Å, which is very slightly (∼ 0.3%)

shorter than that of C2H. Generally, the shorter the C-H bond-length, the higher one

would expect the LVM to be, however, the calculated C-H stretch mode of the CAsH

centre was also 2826 cm−1. Thus, the experimentally observed 53 cm−1 splitting

between the 2635 and 2688 cm−1 bands is not reproduced in these calculations.

Previous studies have shown that anharmonic terms are important for C-H stretch
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modes in GaAs [40]. In general, the anharmonic corrections for the two defects

would be different, and this might account for the discrepancy. Perhaps more

fundamentally, however, LVMs are extremely sensitive to the C-H length: roughly,

a 3% change in bond length gives rise to a 10% change in the LVM. Applying this

to the C2H complex, a decrease in bond length of around 0.01 Å would increase the

stretch mode to lie 50 cm−1 above that of CAsH. To test this hypothesis, the C-H

bond in the (CAs)2H system was shortened to 1.12 au (a decrease of 1%), and the

LVMs re-evaluated. The stretch mode increased to 2913 cm−1 (an increase of 3%).

The total energy of the system increased by around 2 meV. Thus, the calculated

frequencies are consistent with experiment to within the limitations of the method.

Now, for the stretch mode to be polarised along [110], it is sufficient to show

that the displacement of the H atom is also along [110]. Our calculation shows this

to be the case, and we list the projection of the normal co-ordinates onto the [110],

[1̄10] and [001] directions in Table 6.14. In fact, this is also the case with the H

[110] [11̄0] [001]
C1 0.00 0.21 -0.17
C2 0.00 0.00 0.00
H 0.00 -0.75 0.61

Table 6.14: The projection onto the [110], [11̄0], and [001] directions of the C-H stretch mode of
the C1h symmetry (CAs)2H complex, calculated in the 132 atom cluster (cm−1). The C atoms are
labelled 1 and 2 according to Fig. 6.9. The mode is symmetric about the C1h mirror plane.

atom in either of the other bond-centred sites. The only requirement for the C-H

stretch mode to be polarised is that the C-dimers must be preferentially aligned in

one 〈110〉 direction.

The stability of the defect can be seen from the following argument. When H

is at site 1 (Fig. 6.9), the Ga neighbour with the broken bond relaxes away from

the C-H unit and becomes close to C2, relieving the local strain. Now, a larger

C-(H)-Ga separation tends to lead to a shorter C-H bond due to a reduction in

the covalent bonding with the Ga atom. If H is at site 3, the Ga neighbour does

not relax to the same extent since there is no local strain there. This leads to a

relatively long C-H bond and hence a lower vibrational frequency. The C-H stretch

mode for the high energy C2H configuration with H at site 3 is calculated to lie at

2774 cm−1. Consistent with the above argument, this is somewhat lower than that

of the lowest energy structure (site 1). Consequently, this metastable defect cannot

account for the experimentally observed 2729 cm−1 band polarised orthogonally to

the 2688 cm−1 band.
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Model (1,2) (1,3) (1,4) (3,5) (3,6) (4,5) (6,7)
Stretch modes 2640 2895 2819 2791 2749 2806 2783

2586 2836 2779 2770 2747 2803 2779
Etot 133 atoms 0.95 0.00 0.26 0.22 0.75 0.03 0.64

165 atoms - 0.00 - - - 0.16 -

Table 6.15: The C-H stretch modes for the 133 atom clusters (cm−1) and total energies for the 133
and 165 atom clusters, Etot (eV), relative to the (1,3) pairing for the seven configurations of the
(CAs)2H2 complex. The models are labelled according to pairing of hydrogen atoms as described
in Fig. 6.10.

Isotopes 133 atoms 165 atoms
12C1-H-Ga-12C2-H 2836, 2895 2827, 2788
13C1-H-Ga-12C2-H 2829, 2895 2819, 2788
12C1-D-Ga-12C2-H 2077, 2895 2069, 2788
13C1-D-Ga-12C2-H 2066, 2895 2058, 2788
12C1-H-Ga-13C2-H 2836, 2887 2826, 2780
12C1-H-Ga-12C2-D 2836, 2121 2826, 2039
12C1-H-Ga-13C2-D 2836, 2109 2826, 2029

Table 6.16: The C-H stretch modes of the lowest energy (CAs)2H2 model (1,3) (Fig. 6.10) in the
133 and 165 atom clusters (cm−1). Since the two C-H units are practically decoupled, only a
subset of the permutations of isotopes is required. The modes are not shifted significantly by the
Ga mass.

6.3.2.2 The (CAs)2-H2 complex.

There are a number of possible configurations of the defect. If one assumes that

both of the H atoms are approximately C-Ga bond centred, and only one H atom

is bonded to each of the C atoms, then there are seven possible combinations of

sites. The possible H locations are shown schematically in Fig. 6.10, labelled 1-7,

and the seven combinations are denoted by the sites of the pairs of H atoms: (1,2),

(1,3), (1,4), (3,5), (3,6), (4,5), and (6,7). All of these defects are fully passivated,

and the band-gap is free from defect levels.

The lowest energy system is (1,3), and the total energy of each model quoted

in Table 6.15 relative to this. The two C-H and stretch modes are also listed in for

each configuration. Note, the (1,3) pairing is only marginally more stable than that

of (4,5). This result may be sensitive to cluster size, and we investigate below the

results in larger clusters.

The various bond lengths of the (1,3) model are listed in Table 6.12, and the

values of the stretch modes for the H and C isotopes are listed in Table 6.16. It

can be clearly seen the two H atoms are practically decoupled. As with (CAs)2H,

the normal modes of the (CAs)2H2 are polarised in the [110] and [11̄0] directions,
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133 atoms 165 atoms
Mode [110] [11̄0] [001] Mode [110] [11̄0] [001]

C1 2895 0.00 0.01 -0.01 2827 0.00 -0.21 0.16
H1 0.00 -0.03 0.02 0.01 0.76 -0.58
C2 0.23 0.01 0.14 -0.02 0.00 -0.01
H2 -0.81 -0.04 -0.51 0.08 -0.01 0.04
C1 2836 -0.01 -0.21 0.16 2788 0.00 -0.02 0.02
H1 0.02 0.76 -0.59 0.00 0.07 -0.05
C2 0.01 0.00 0.01 0.23 -0.03 0.12
H2 -0.03 0.00 -0.02 -0.84 0.12 -0.45

Table 6.17: The projection onto the [110], [11̄0], and [001] directions of the normal stretch modes
of the C1 symmetry (CAs)2H2 complex (cm−1). The C atoms are labelled 1 and 2 according to
Fig. 6.10.

and consequentially the IR absorption of the system should be strongly polarised.

In fact, all of the seven models examined for this centre would also be strongly

polarised, and it is unlikely that there is a configuration that would not be po-

larised since in each case the C-H bond directions are largely in the [110] and [11̄0]

directions. The normal coordinates of each of the stretch modes projected onto

the [110], [11̄0], and [001] directions are listed in Table 6.17. These show that the

deviation from [110] and [11̄0] polarisation of the vibrations due to the relaxation

of the atoms is to small to account for the lack of polarisation observed in the 2725

and 2775 cm−1 bands. Therefore, since the experimental bands are not polarised,

they cannot be attributed to the (CAs)2H2 complex.

As stated above, the calculated values of the LVMs are extremely sensitive to

bond lengths, which are in turn affected by the proximity of the centre to the

cluster surface. To explore the effect of cluster size in the case of the lowest energy

configuration we have also calculated the relaxed structure and LVMs for the (1,3)

and (4,5) systems for the (CAs)2H2 complex in the 165 cluster. Then the (1,3)

system is again more stable than the (4,5) pairing by 0.16 eV. The final (1,3) pair

structure possessed C-H bond lengths of 1.129 and 1.132 Å, and stretch modes

lying at 2827 cm−1 and 2787 cm−1 for the stretches involving the hydrogen atoms

at sites 1 and 3 respectively in Fig. 6.10. However, in contrast with the calculation

performed on the smaller cluster, the lower frequency mode now arises from the H

atom at site 3. The calculated splitting of the two stretch modes is 40 cm−1. A

summary of the bond lengths and local modes are listed in Tables 6.12 and 6.16

respectively.

As with the smaller cluster, the modes are polarised in the [110] and [11̄0]

directions (Table 6.17). For comparison, we have also calculated the structures and

LVMs of the CAsH and (CAs)2H systems in 164 atom clusters, and they possess
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stretch modes of 2820 and 2830 cm−1 respectively. The bond lengths are listed in

Table 6.12.

As indicated above, the (CAs)2H2 complex has two stretch modes polarised in

orthogonal directions. It may be that the 2729 cm−1 band, which cannot be assigned

to (CAs)2H, is due to one of these modes. However, this leaves a second band (higher

in frequency) undetected, which should be polarised in the same direction as the

2688 cm−1 band.

6.3.3 Conclusions.

The lowest energy structure of (CAs)2H is planar in agreement with the model

put forward by Cheng et al. [216] shown in Fig. 6.8 and also with recent calcula-

tions. [222] The (CAs)2H2 complex is not planar and the H atoms lie in the bond

centred sites marked 1 and 3 in Fig. 6.10. This is also in agreement with recent

calculations [222]. The LVMs calculated for these systems broadly agree with the

assignments of the (CAs)2H complex to the 2688 cm−1. It is possible that the

2729 cm−1 band observed by Stavola et al. arises from the [110] polarised mode

of this system, but no second mode was detected. These calculations do not sup-

port the hypothesis that a metastable (CAs)2H configuration is responsible for the

2729 cm−1 band.



Chapter 7

Conclusions

A conclusion is the place where you got tired of thinking.

- Arthur Block

Although detailed conclusions have been presented at the appropriate places in

Chapters 4 to 6, it is worth making a few more general conclusions about the way

in which AIMPRO has been used to examine the various defects. Suggestions are

made for where areas presented here might be extended.

The detailed study of a number of vacancy-impurity complexes in diamond

has revealed that the techniques used here are able to describe semi-quantitatively

transition energies and radiative lifetimes. More significantly, in all the situations

explored, the symmetries of the ground and excited states have been found to agree

with experiment. In the case of the complex of Si with a vacancy, the code was able

to predict the unusual structure. Without such a structure it is difficult to imagine

how such a centre could give rise to the experimental observations.

The attempts thus far in producing n-type diamond by doping with phosphorus

have been mainly unsuccessful. The calculations on the phosphorus-vacancy com-

plex may go some way to explaining why this is. There have been suggestions that

alternative ways of generating shallow levels might be analogous to the so called

‘shallow thermal donors’ seen in silicon. These are thought to be formed when deep

donor centres are forced up in energy by the proximity of neighbouring oxygen

atoms [225]. Calculations are under way to see how similar complexes in diamond

behave.

Ni in diamond has been of interest for more than a decade as catalytic synthesis

has become more important. The work presented here has two main implications:

first, Ni and Ni-X complexes possess a large number of optical transition mechanisms

but in each case there is expected to be a single rate dominant transition. Secondly,

the previous assignments of interstitial Ni to optically and electrically active centres

161
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is found wanting. We find that there is no requirement for Nii and the previous

assignments involving this centre may be incorrect.

There are a large number of further Ni and Co related complexes that require

study, most importantly the apparent aggregation of N at these impurities under

annealing. This work has been started. Another centre that is thought to be crucial

to the understanding of at least Ni in diamond is the Ni-vacancy complex, which is

thought to be the core at the centre of the class of EPR centres labelled NE1-7. A

number of attempts have been made using AIMPRO to establish the ground state

structure and electronic properties. However, to date there have been significant

difficulties in establishing self-consistency. This is, at least in part due to the rather

large number of fitting functions required to model the charge density, which in

turn leads, in this case, to instability in the calculation.

There remain a number of other problems of great interest that are difficult to

treat using the approach adopted for this thesis. Of these, the most significant might

be why Ni related centres are exclusively found in the octahedral growth sectors.

In fact, this is true of other centres, including Co. This polarisation is thought

to arise during growth, but simulating this has proved difficult, since it requires

the calculation of the relative stabilities of impurity atoms on different surfaces.

Another question is why only Ni and Co are found as dispersed impurities, despite

the fact that the whole range of first row transition metals are used in diamond

synthesis.

Finally, it is worth noting that a number of Ni-related centres exhibit structure

due to spin-orbit interaction; in principle, this effect can be treated using AIMPRO,

since the Bachelet, Hamann, and Schlüter [11] pseudopotential contain spin-orbit

parameters. Naturally, including spin-orbit effects would cost significant extra com-

puting time.

Often, subtle effects (such as Jahn-Teller distortions) are seen experimentally,

and it is desirable to be able to resolve these computationally. Two examples

contained in this thesis are as follows. For Ni−s in Si, it has been shown that

the ground state ordering of one-electron levels can be established for the Jahn-

Teller distorted system. This is achieved by adopting a sophisticated algorithm that

dictates which Kohn-Sham eigenvalues are occupied throughout the self-consistent

cycle, and thus avoids discontinuous changes in charge density (so called charge

sloshing). In fact a similar approach must be adopted to determine the energies of

multiplets as in the [V-N]− complex in diamond.

In contrast to these successes, the sensitivity of the vibrational modes of CAs-

H centres in GaAs to the C-H bond-lengths has proved difficult to resolve. This
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regrettably leads to a degree of empiricism to justify certain interpretation1. How-

ever, since this arises from the density functional theory at the very root of the

calculations, there is no obvious route to a better method.

However, when combined with total energies, vibrational modes can be a highly

discriminative tool. As an illustration, one can turn to Ni-H2 in Si. Here, the

location of H with respect to the Ni atom, that is whether the H is bond-centred

or anti-bonded, is hard to discriminate purely on the grounds of total energies.

In fact most arrangements are of a similar energy, but the crucial difference is in

the vibrational modes. This will most likely prove to be important in the case of

gold-hydrogen complexes which are also under investigation.

As highlighted above, a number of difficulties can be traced to either the fact that

the calculations are performed in clusters or there is a problem with the intermediate

fit to the charge density. To a large extent, these are solved in a new incarnation

of AIMPRO, where the calculations are performed using super-cells, and hence the

intermediate fit to the charge density is no longer required. This eliminates the

near instability in some situations involving atoms whose basis includes d-orbitals,

such as Ni-V. Furthermore, calculations of more ionic III-V compounds (such as

GaN) as well as the interesting II-VI compounds will also become possible, since

the super-cell would not suffer from problem of charge building up at surfaces in

the case of clusters.

Whether it is the cluster or super-cell approach, the parallelisation of AIMPRO

has lead to two important improvements. First, a 71-atom cluster made up from

atoms with s- and p-orbitals can be relaxed very quickly, and single energies cal-

culated in minutes rather than hours. Secondly, very large clusters can be used,

without which the study of extended defects (such as the (CAs)2-H2 centres in GaAs)

would be difficult. Furthermore, a new area of interest being developed in the AIM-

PRO group is that of proteins and related biological molecules. Even the smallest

of these systems contain several hundreds of atoms, and without massively parallel

computer platforms, relaxation would be prohibitively slow.

However, there is a severe problem in obtaining relaxed structures for such

highly complex molecules, and this is the number of local energy minima. In fact,

one can break down a molecule such as a peptide into smaller units - in this case

amino acids. Each of these groups will have a number of local minima. Therefore,

it is likely that a new strategy will be adopted for the minimisation of the energy,

perhaps by calculating the forces using some form of parameterisation of the force

constants, hydrogen bonding and so on.

1This refers to the 10% change in vibrational frequency for a 3% change in bond-length.
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In conclusion, theory can be viewed from two points: first, it can be an aid to

experiment, where it is used to explain observation. The second is perhaps more

significant, in that theory can be used as a predictive tool, guiding further experi-

ments. For example, the predictions that [Si-V] and [Si-V]− would be paramagnetic,

and current experiments are underway to test this hypothesis.



Appendix A

Character tables

Tabulated here are character tables for the 3 point groups most often discussed

in this thesis: in the Schoenflies (international) notation, C2v (2mm), C3v (3m)

and Td (4̄3m). (For a detailed explanation of their derivation and use, see for

example Ref. [226], from which these tables are taken.) Each table also shows

some combinations of the coordinates (x, y, z) that transform according to each

irreducible representation (IR).

Each IR is denoted by A or B if it is one dimensional, and E or T if it is 2-

or 3-dimensional, respectively. The dimensionality is linked to the degeneracies

of one-electron Kohn-Sham levels (except for the case of accidental degeneracy),

which are usually labelled in lower case. Thus, for example, a Kohn-Sham level

that transforms as t2 in the Td point group is three-fold degenerate (as well as spin

degenerate). Such a level can therefore be occupied by up to 6 electrons.

The symmetry operations are as follows: e is the identity operation; Cn is a

rotation through 2π/n; σv is a reflection in a vertical plane (passing through the

symmetry axis); σd is a reflection in a diagonal plane; and Sn is an improper rotation

of 2π/n. In the case of C2v there are two inequivalent σv operations, one of which

is identified by a prime.

C2v e C2 σv σ′
v

A1 1 1 1 1 x2; y2; z2; z
A2 1 1 -1 -1 xy
B1 1 -1 1 -1 xz; x
B2 1 -1 -1 1 yz; y

C3v e 2C3 3σv

A1 1 1 1 x2 + y2; z2; z
A2 1 1 -1
E 2 -1 0 (x2 − y2, xy);

(x, y); (xz, yz)

Td e 8C3 2C2 6σd 6S4

A1 1 1 1 1 1
A2 1 1 1 -1 -1
E 2 -1 2 0 0
T1 3 0 -1 -1 1
T2 3 0 -1 1 -1 (x, y, z)
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Appendix B

Jahn-Teller distortions

The Jahn-Teller theorem applied to the (ground-state) one-electron picture of the

Kohn-Sham levels can be understood as follows (in the absence of spin-orbit inter-

action).1 If the highest occupied one-electron level is degenerate and partially occu-

pied, then the system may distort to a lower symmetry such that the degeneracy is

lifted. This will lower the total energy provided the reduction in the energy of the

occupied orbital(s) is greater than any increase in energy due to the distortion. This

follows from the fact that the total energy is related to the sum of the one-electron

energies.

Take as an example, a t2 level in tetrahedral symmetry containing two electron.

This is the case for the neutral vacancy in silicon. A trigonal distortion will split the

t2 level into an singlet (a1) and a doublet (e). This is illustrated in Fig. B.1(a)→(b).

The addition of a further electron makes the e-level unstable, and a further Jahn-

Teller distortion (say C2v) will split this doublet into two singlets – b1 and b2 – as

shown in Fig. B.1(b)→(c).

t2
a1 a1

b2

b1

Td C2vC3v

e

(a) (b) (c)

Figure B.1: A diagram showing the splittings of a t2-level with C3v and C2v distortions to illustrate
the Jahn-Teller effect.

1Only the static Jahn-Teller effect is discussed. For a more detailed explanation of the Jahn-
Teller effect, see Ref. [104], and references therein.
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If the trigonal distortion had resulted in the e-level below the a1, this would

also be unstable against a Jahn-Teller distortion, provided that Hund’s rule is not

obeyed, i.e. the electrons have opposite spins. If instead the electrons are aligned,

i.e. a spin S=1 centre, then no Jahn-Teller distortion would be expected.

The above principles can naturally be applied to excited states. Thus, a excited

state generated by promoting an electron from the a1 to e level in Fig. B.1(b) would

be a candidate for a further Jahn-Teller distortion.
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